
J. Math. Soc. Japan
Vol. 52, No. 3, 2000

Dimension theory of group C �-algebras of

connected Lie groups of type I

By Takahiro Sudo

(Received Feb. 25, 1998)

(Revised Nov. 27, 1998)

Abstract. In this paper we determine isomorphism classes of connected

solvable Lie groups with some conditions such that their group C �-algebras

have stable rank one, and give its applications. Also, we show that stable rank

of group C �-algebras of connected Lie groups of type I is estimated in terms of

their closed normal subgroups and quotient groups.

§1. Introduction.

Stable rank of C �-algebras was introduced by M. A. Rie¨el [Rf ], who raised the

interesting problem of describing stable rank of group C �-algebras of Lie groups in

terms of the structure of groups. In this direction, H. Takai and the author [ST1], [ST2]

estimated stable rank of the C �-algebras of solvable Lie groups of type I by the complex

dimension of the spaces of all 1-dimensional representations of groups. Moreover, the

author [Sd1], [Sd2] considered both amenable and nonamenable cases for connected Lie

groups of type I.

In this paper, ®rst of all, we give a lemma which states isomorphism classes of

connected, solvable Lie groups with the centers of their universal covering groups

connected such that their group C �-algebras have stable rank one. To show the lemma,

we use the technical lemma in [ST2] which states isomorphism classes of simply

connected, solvable Lie groups such that their group C �-algebras have stable rank one.

Also, we show a similar result in the case of connected nilpotent Lie groups. Applying

these results, we give some generalizations of the results in [ST1], [ST2].

Secondly, combining some main results obtained in [Sd1], [Sd2], we estimate stable

rank of the reduced C �-algebras of connected Lie groups of type I by the complex

dimension of the spaces of all 1-dimensional representations in the reduced duals of

these groups. Moreover, we estimate stable rank of the reduced C �-algebras of these

groups in terms of their closed normal subgroups and quotient groups.
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§2. Stable rank of group C �-algebras of connected solvable Lie groups of

type I.

We ®rst review some notations used in this paper. Let A be a C �-algebra and A
n

its n-direct sum. For a unital C �-algebra A, we denote by Ln�A� the set of all elements

�ai�
n
i�1 of An such that

Pn
i�1 a

�
i ai is invertible in A. Then the stable rank of A, denoted

by sr�A�, is de®ned by

fyg5inffn A N jLn�A� is dense in A
ng

where 5means minimum. For a nonunital C �-algebra, its stable rank is de®ned by that

of its unitization.

Let G be a Lie group. We denote by Ĝ the space of all equivalent classes of

irreducible unitary representations of G equipped with the hull-kernel topology and by

Ĝ1 the space of all 1-dimensional representations of G. We use the facts that Ĝ1 is

closed in Ĝ (cf. [ST2; Lemma 2.6]), and Ĝ1 is isomorphic to �G=�G;G��5 as a topological

group, where �G;G� is the commutator subgroup of G (cf. [ST2; Lemma 2.3]). Let Ĝr be

the reduced dual of G. Put Ĝr;1 � Ĝr V Ĝ1. By de®nition, Ĝr;1 � Ĝ1 if G is amenable,

i.e. Ĝ � Ĝr. And Ĝr;1 � q if G is nonamenable. Let C ��G�, C �
r �G� be the full, reduced

group C �-algebra of G respectively.

Let R
n, Z

n be the n-direct product of the group of real numbers, integers

respectively, and T
s the s-torus.

First of all, we give the following lemma:

Lemma 2.1. Let G be a connected solvable Lie group, and ~G its universal covering

group. If the center Z of ~G is connected, then sr�C ��G�� � 1 if and only if G is iso-

morphic to either R or T
s or the direct product T

s � R.

Proof. Let G be the central discrete subgroup of ~G such that ~G=G GG. Since

G HZ, then by the homomorphism theorem of groups,

~G=ZG � ~G=G�=�Z=G�GG=�Z=G�:

Note that C ��G� � C �
r �G� since G is solvable, and Z=G is amenable. Thus C �� ~G=Z� is

considered as a quotient C �-algebra of C ��G� (cf. [Kn; p. 1349]). On the other hand, we

have the following exact sequence of abelian groups (cf. [OV; p. 47]):

p1�Z� ! p1� ~G� ! p1� ~G=Z� ! Z=Z0 ! 0

where p1��� and Z0 respectively mean the fundamental group and the connected

component of the identity of Z. Since Z is connected and ~G is simply connected, i.e,

p1� ~G� � 0, we obtain that ~G=Z is simply connected.
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If ~G � Z, then G is commutative. Hence sr�C ��G�� � 1 if and only if G is

isomorphic to either R or T
s or T

s � R.

If ~G=Z is not isomorphic to R, then by [ST2; Lemma 3.7] we see sr�C �� ~G=Z��V 2.

Hence sr�C ��G��V 2.

If ~G=ZGR, then ~G is isomorphic to the semi-direct product R
s
ca R with s �

dimZ by simply connectedness of ~G (cf. [OV; p. 57 Exercises 15]). Then one can check

from calculation of product that ~G is commutative. So is G. r

Remark. If G � R
2
ca R with a the rotation action of R on R

2, then its center is

isomorphic to Z. It is known that G is the nonexponential, simply connected, solvable

Lie group unique up to isomorphisms with dimensionU3 ([LL]).

It is also known that connected is the center of any connected, nilpotent Lie group

(cf. [Hc; XVI. Theorem 1.1]).

For a topological space X, we denote by dimX its covering dimension. We let

dimC X � �dimX=2� � 1 with � � � the Gauss symbol. Then we have the following:

Proposition 2.2. Let G be a connected nilpotent Lie group. Then the following are

equivalent:

(1) sr�C ��G�� � 1.

(2) G is isomorphic to either R� T
k or R or T

k.

(3) dimC Ĝ1 � 1.

Proof. (1) , (2): This follows from Lemma 2.1 and the fact [Hc; XVI. Theorem

1.1] that connected is the center of any connected nilpotent Lie group.

(2) ) (3): It is well known that if G � R� T
k, then Ĝ is isomorphic to R� Z

k.

(3) ) (2): If G is commutative, it is isomorphic to T
k � R

t for some k; tV 0. So

the implication is clear.

Suppose that G is noncommutative. We take a maximal compact commutative

subgroup K of G such that G is homeomorphic to the product space K � R
t for some

tV 0 (cf. [Cv; Theorem 9]). Moreover, since G is nilpotent, K is contained in the center

of G (cf. [GOV; Theorem 1.6]). Thus K is a normal subgroup of G. Then G=K is a

simply connected nilpotent Lie group. Put H � G=K .

If HGR, then GGKca R. Note that KGT
k for some kV 0. Since K is

contained in the center of G, we have GGT
k � R.

Otherwise, we have that H=�H;H �GR
n for some nV 2 [ST1; Lemma 3.5] (cf.

[ST2; Lemma 2.1]). Hence we obtain that

dimC Ĝ1 V dimC Ĥ1 V 2: r
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Remark. It is known that for a simply connected, nilpotent Lie group G, the

following are equivalent (cf. [ST1; Lemma 3.5]):

(1) G is isomorphic to R.

(2) dimC Ĝ1 � 1.

(3) sr�C ��G�� � 1.

Using Proposition 2.2, we have the following:

Theorem 2.3. Let G be a connected nilpotent Lie group. Then

sr�C ��G�� � dimC Ĝ1:

Proof. It is known ([Sd2], cf. [ST2; Proposition 3.3]) that for any connected

amenable Lie group G of type I, one has that

dimC Ĝ1 U sr�C ��G��U 24dimC Ĝ1

where4means maximum. By Proposition 2.2, the proof is complete. r

Remark. This result generalizes the main theorem in [ST1] which states that the

above equality holds for simply connected, nilpotent Lie groups.

By Lemma 2.1 and the same reason in Proposition 2.2, we have the following:

Theorem 2.4. Let G be a connected, solvable Lie group of type I. If the center of ~G

is connected, then

sr�C ��G�� �
1 if GGR or T

s or R� T
s

24dimC Ĝ1 otherwise

�

where4means maximum.

Remark. H. Takai and the author [ST2] obtained the following formula:

sr�C ��G�� � �24dimC Ĝ1�5dimG

for any simply connected, solvable Lie group G of type I.

We next give some examples as follows:

Example 2.5. Let ~G � R
n and G � T

n
GR

n=Z n. Then by Fourier transform,

C ��G�GC0�Z
n�. Moreover, we obtain that

sr�C ��G�� � 1 � dimC Ĝ1 U dimC� ~G�51 � �n=2� � 1 � sr�C �� ~G��:

T. Sudo586



Example 2.6. Let ~G be the 3-dimensional real Heisenberg group of all matrices g

g �

1 a c

0 1 b

0 0 1

0

@

1

A; a; b; c A R:

We let g � �c; b; a�. Then the center of ~G consists of all elements of the form �c; 0; 0�.

Then G � f�t; 0; 0�jt A Zg is a central discrete subgroup of G. Put G � ~G=G G �T � R�

ca R whose action a is de®ned by aa�e
it; b� � �e i�t�ab�; b� for �e it; b� A T � R. Then

�G;G�GT so that G=�G;G �GR
2. Hence Ĝ1 GR

2. Since � ~G�51 G ~G=� ~G; ~G �GR
2, and

by Theorem 2.3, we get that

sr�C ��G�� � 2 � sr�C �� ~G��:

§3. Dimension theory of group C �-algebras of connected Lie groups of type I.

In this section, ®rst of all, we estimate stable rank of the reduced C �-algebras of

connected Lie groups of type I by combining some results obtained in [Sd1] and [Sd2].

Next, we estimate stable rank of the reduced C �-algebras of these groups in terms of

their closed normal subgroups and quotient groups.

We ®rst show the following estimation of stable rank of the reduced C �-algebras of

connected Lie groups of type I:

Theorem 3.1. Let G be a connected Lie group of type I. Then

dimC Ĝr;1 U sr�C �
r �G��U 24dimC Ĝr;1

where Ĝr;1 is the space of all 1-dimensional representations in the reduced dual Ĝr.

Proof. Note that if G is amenable, we have Ĝr;1 � Ĝ1. On the other hand, if

G is nonamenable, then Ĝr;1 � q so that dimC Ĝr;1 � 0 since by de®nition dimq

� ÿ1. Thus, by [Sd2; Proposition 3.5] and [Sd1; Proposition 2.3], we have the con-

clusion. r

Remark. In the case that G � R, the above formula gives 1 � sr�C ��G�� < 2. If G

is the real ax� b group, then we have 1 < sr�C ��G�� � 2. Consequently, the above

estimation is optimal.

Next we show the product formula of stable rank in the case of the reduced C �-

algebras of connected Lie groups of type I as follows:
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Theorem 3.2. If G;H are two connected Lie groups of type I, then

sr�C �r �G�nC �r �H��U sr�C �r �G�� � sr�C �r �H��:

Proof. Note that G �H is amenable if and only if so are both G and H. This

case was considered in [Sd2; Corollary 3.6]. If G �H is nonamenable, then by [Sd1;

Proposition 2.3], sr�C �r �G �H��U 2. The same methods in [Sd1; Corollary 2.4] implies

the conclusion. r

Remark. If G � R and H � R, then

sr�C �r �G�nC �r �H�� � 2 � sr�C �r �G�� � sr�C �r �H��:

Hence, the above inequality is optimal.

Finally, we estimate stable rank of the reduced C �-algebras of connected Lie groups

of type I in terms of their closed normal subgroups and quotient groups as follows:

Theorem 3.3. Let G be a connected Lie group of type I and H any closed normal

subgroup. Then

sr�C �r �G��U sr�C �r �H�� � sr�C �r �G=H��:

Proof. If G is nonamenable, then by [Sd1; Proposition 2.3], sr�C �r �G��U 2. Thus

the claim of theorem is established.

Next suppose that G is amenable. Then so are H, G=H. Since �H;H �, �G=H;G=H �

are also amenable, we have that C �r �H=�H;H ��, C �r ��G=H�=�G=H;G=H �� are quotient

C �-algebras of C �r �H�, C �r �G=H� respectively (cf. [Kn; p. 1349]). Then we choose a

closed normal subgroup K of G such that the next sequence is exact:

1! K=�G;G � ! G=�G;G � ! �G=H�=�G=H;G=H � ! 1:

By Pontryagin's corresponding theorem, one has the following exact sequence:

1 �K=�G;G��5  �G=�G;G��5  �G=K�5  1

as commutative Lie groups. Note that K=�G;G � is a quotient group of H=�H;H � via the

map H=�H;H � C h�H;H � 7! h�G;G� A K=�G;G �. In fact, if k�G;G � A K=�G;G �, then kH

A �G=H;G=H �. So kH � gH for some g A �G;G�. Thus, gÿ1k A H so that gÿ1k�G;G� �

gÿ1�G;G �k�G;G� � k�G;G�. Hence we have that

dim�G=�G;G ��5 � dim�K=�G;G ��5 � dim�G=K�5

U dim�H=�H;H ��5 � dim��G=H�=�G=H;G=H ��5:
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Therefore, using [Sd2; Proposition 3.5] and [ST2; Lemma 3.2], we obtain that

sr�C ��G��U 24dimC Ĝ1 � 24dimC �G=�G;G ��5

U dimC �H=�H;H ��5 � dimC ��G=H�=�G=H;G=H ��5

� sr�C �
r �H=�H;H ��� � sr�C �

r ��G=H�=�G=H;G=H ���

U sr�C ��H�� � sr�C ��G=H��: r

Remark. Note that the above inequality is optimal. In fact, we let G � R2 and

take its closed normal subgroup H isomorphic to R. Then we have that

sr�C ��G�� � 2 � sr�C ��H�� � sr�C ��G=H��:

Example 3.4. We denote by Gn�2 the simply connected, nilpotent Lie group of all

upper triangular �n� 2� � �n� 2� matrices over real numbers with one on the diagonal.

Let H2n�1 be the �2n� 1�-dimensional generalized Heisenberg group consisting of all

matrices

1 a1 � � � an c

.
.

.
0 b1

.
.

.
.
.
.

.
.

.
bn

0 1

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ai; bi; c A R �1U iU n�:

By direct computation, one can see that H2n�1 is a closed normal subgroup of Gn�2.

Moreover, we have that dimC Ĝn�2 � ��n� 1�=2� � 1 and dimC Ĥ2n�1 � n� 1. Using

Theorem 2.3, we obtain that

sr�C ��G3�� � sr�C ��H3�� with G3 � H3,

sr�C ��Gn�2�� < sr�C ��H2n�1�� if nV 2.

�

Example 3.5. In Theorem 3.3, we note that H is of non type I in general. For

example, let M � C 2
ca R be the Mautner group where at�z;w� � �e itz; e iytw� for t A R,

�z;w� A C 2, y A RnQ, and let G � McâR where âs�z;w; t� � �z; e2pisw; t� for s A R. Then

G is of type I, but M is of non type I (cf. [Tk; 9. Appendix]).
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