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Abstract. The vertical bundle of the twistor ®bration over a 4-dimensional

self-dual manifold is a holomorphic line bundle and plays an important role in a

study of the twistor space. On the other hand, the vertical bundle of the twistor

space over a quaternionic manifold is not a holomorphic line bundle, in

general. We shall give the condition for a vertical bundle to be a holomorphic

line bundle.

1. Introduction.

We are concerned with holomorphic structures on the vertical bundle of the twistor

®bration over a quaternionic manifold.

For an oriented m-dimensional conformal manifold M, we may consider a Weyl

structure D on M, which is a symmetric linear connection preserving the conformal

structure of M. Over M, there is a line bundle L associated to the CO�m�-principal

bundle of M and the representation A 7! jdetAj1=m of the linear group. Thus a Weyl

structure D on M induces a linear connection DL on L. In the case of m � 4, if the

curvature of DL is a self-dual 2-form, then D is called a self-dual Weyl structure. While

it is known that if M is a 4-dimensional self-dual manifold, then there is a complex 3-

manifold Z ®bered over M by a family of projective lines. Z is called the twistor space

of M. The vertical bundle Y of Z is considered as a complex line bundle over Z and

has a natural Hermitian metric. We choose a Weyl structure D on M, then a linear

connection ` on Y is induced by D. If the curvature of ` is of type �1; 1� relative to the

complex structure on Z, then we call ` a Chern connection. A Chern connection on Y

induces a holomorphic structure that renders Y a holomorphic line bundle over Z. In

particular, if D is the Levi-Civita connection of a self-dual metric on M, then the

induced connection ` on Y is a Chern connection, and n2
Y is isomorphic to the dual

bundle of the canonical bundle of Z as a holomorphic bundle.
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Gauduchon showed that for a 4-dimensional self-dual manifold, a linear connection

` on Y is a Chern connection if and only if a Weyl structure D that induces ` is self-

dual. Furthermore, if M is compact, he classi®ed the types of the conformal structures

admitting holomorphic sections on np
Y. Using these results and a vanishing theorem,

he proved that if the conformal class of M contains a metric with negative scalar

curvature then the twistor space of M does not contain any nontrivial divisor.

A 4n-dimensional manifold (nV 2) is called quaternionic if it has a GL�n;H�Sp�1�-

structure preserved by a torsion-free connection. We note that if n � 1 then

GL�1;H�Sp�1� � CO�4�. Salamon showed that there is a twistor space Z over a

quaternionic manifold M. The ®ber Zx over each point x A M is a real 2-sphere, which

parametrizes almost complex structures on TxM, and the total space of Z admits a

complex structure. Therefore, we regard the notion of quaternionic manifold as a

generalization of that of self-dual manifold and examine quaternionic manifolds and

their twistor spaces.

In the next section, we recall the twistor space of a quaternionic manifold. We

express a twistor space and its vertical bundle as associated bundles with the

GL�n;H�Sp�1�-principal bundle and representations of GL�n;H�Sp�1�. Thus we see that

a connection D on a quaternionic manifold induces a connection ` on a vertical bundle.

Further, we may describe the curvature R` of ` explicitly, and see the relation between

the curvatures R` and RD. In Section 3, we recall representations of the structure group

GL�n;H�Sp�1� and the ®rst prolongation of its Lie algebra. Combining the Clebsch-

Gordan formula and the formulas of irreducible decompositions of GL�n;H�-modules,

we describe the ®rst prolongation as a GL�n;H�Sp�1�-module. In Section 4, we shall

study a curvature of a quaternionic manifold by means of representation theory. We

consider RD as a 2-form with values in the Lie algebra gl�n;H�l sp�1� of

GL�n;H�Sp�1�. From the ®rst Bianchi identity, we see that RD determines an element

of a Spencer cohomology. By using some irreducible decompositions of GL�n;H�Sp�1�-

modules, we have the irreducible decomposition of a curvature of a quaternionic

manifold. In Section 5, we have the main theorem. From the results in Sections 3 and

4, we may describe a curvature of a quaternionic manifold explicitly. We shall obtain

the condition for the vertical bundle of the twistor space of a quaternionic manifold to

have a Chern connection. We also ®nd that this condition corresponds to the condition

for a Weyl structure to be self-dual in the case of a 4-dimensional self-dual manifold. In

Section 6, we deal with hypercomplex manifolds. A 4n-dimensional manifold that has a

GL�n;H�-structure with a torsion-free connection is called a hypercomplex manifold. We

note that the class of hypercomplex manifolds is included in that of quaternionic
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manifolds. It is known that a hypercomplex manifold has a unique torsion-free

connection. It is called the Obata connection. Applying the theorem in Section 5 to the

case of a hypercomplex manifold, we see that an Obata connection induces a Chern

connection on a vertical line bundle.

The author would like to express his gratitude to Professors Takashi Nitta and Shin

Nayatani for their valuable advice and kind encouragement.

2. Twistor spaces.

Let M be a quaternionic manifold, which is a real 4n-dimensional manifold, nV 2;

with a GL�n;H�Sp�1�-structure admitting a torsion-free connection. We choose a

connection D out of such connections. We denote by E, H the standard complex

representations of GL�n;H�, Sp�1� on C
2n, C 2 respectively. The complex vector spaces

E and H possess antilinear structure maps v 7! ~v commuting with the action of the

respective groups and satisfying ~~v � ÿv. Such representations are called quaternionic.

Then the complexi®ed cotangent bundle of M has the form

�T �M�C GEnC H;�2:1�

where E, H are vector bundles associated to representations E, H respectively. The

symmetric powers S kH �kV 0� are the irreducible complex representations of Sp�1�. If

k is even, then S kH has a real structure induced from the structure map of H, so we

regard it as a real vector space. In particular, S2H is the adjoint representation of

Sp�1�. There is an Sp�1�-invariant skew form oH A L
2H � which induces an iso-

morphism HGH �. Using the inclusion S2H ,! HnHGoH
HnH � � EndH, we

may identify sp�1� with S2H. Let h ; i be the inner product on S2HHHnH induced

by oH : If J;K A S2H, then as endomorphisms of TM,

J � K � K � J � ÿhJ;Ki1:�2:2�

We consider the bundle

Z � fJ A S2H j hJ; Ji1=2 �
���

2
p

g

whose ®ber Zx over a point x A M is a real 2-sphere. From �2:2�, an element J A Zx

de®nes an almost complex structure on TxM. The bundle Z is called the twistor space

of M. Let p be the natural projection from Z to M and Y the vertical tangent bundle

on Z. For any point J A Zx, we have a natural identi®cation

YJ � fA A S2H j J � A � ÿA � Jg;
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where YJ � TJZx is the ®ber of Y at J. The bundle Y admits a complex structure

determined by

JA � J � A; A A YJ :

An inner product h ; i on YJ is induced by the embedding of YJ in S2
H. J is

compatible with h ; i, so Y has a canonical Hermitian structure. We denote by W
�x� the

KaÈhler form on YJ (J A Zx) induced by h ; i. Let vD denote the vertical projection

from TZ to Y with respect to D. Any vector U on Z, at a point J, is represented by

U � �vD�U�;X �;

where X � p��U� is the projection of U in TxM. Thus we obtain an almost complex

structure J on Z de®ned by

JU � �J � vD�U�; JX�:

Salamon showed that J is integrable when M is a quaternionic manifold. We de®ne P

the orthogonal projection of p�S2
H onto Y such that for any point J of Zx,

P
J�A� � Aÿ

1

2
hA; JiJ; A A S2

H:

A connection D on M induces a connection DAd on S2
H via the adjoint representation

of Sp�1�. We denote by p
�DAd the pull back connection on p

�S2
H. We may de®ne a

Hermitian connection ` on Y as follows:

` � P � p�DAd
;

more explicitly,

Ù
~A � gDAd

X Aÿ
1

2
hA; JivD�U�; U A TJZ;

where ~A is a vertical vector ®eld on Z de®ned by

~A�J� � P
J�A�; A A S2

H; J A Zx:

We may compute the curvature of ` as follows.

Lemma 2.1 ([3]). Let R` denote the curvature of the Hermitian connection ` on Y

induced by a connection D of M. Then we have

R`

B;CA �
1

2
W

�x��C;B�JA;�1�

R`

B; ~X
A � 0;�2�

R`

~X ;
~Y
A � P

J �RD�X ;Y�;A�;�3�
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where A;B;C A YJ ; X ;Y A TxM, ~X , ~Y is the horizontal lift of X, Y respectively, and RD

is the curvature of D.

Proof. (1) We note that �B;C� � W
�x��B;C�J and (2.2), we have

R`

B;CA � B̀`~C
~Aÿ C̀`~B

~Aÿ �̀ ~B; ~C�
~A

� B̀ ÿ
1

2
hA; Ji ~C

� �
ÿ C̀ ÿ

1

2
hA; Ji ~B

� �

� ÿ
1

2
f�hA; B̀Ji�C ÿ �hA; C̀Ji�Bg

�
1

2
�hA;CiBÿ hA;BiC�

�
1

2
W

�x��C;B�JA:

(2) We note that � ~X ;
~B� is vertical, we have

R`

B; ~X
A � B̀` ~X

~Aÿ ` ~X`~B
~Aÿ �̀ ~B; ~X �

~A

� B̀�
gDAd
X A� ÿ ` ~X ÿ

1

2
hA; Ji ~B

� �

� ÿ
1

2
hDAd

X A; JiB�
1

2
DAd

X �hA; JiB�

� ÿ
1

2
hDAd

X A; JiB�
1

2
�hDAd

X A; Ji� hA;DAd
X Ji�B

� 0:

g

(3) We note that RDAd
� d�Ad��RD� � ad�RD�, we have

R`

~X ;
~Y
A � ` ~X`~Y

~Aÿ `~Y` ~X
~Aÿ �̀ ~X ;

~Y �
~A

� ` ~X �
gDAd
Y A� ÿ `~Y �

gDAd
X A� ÿ gDAd

�X ;Y �A

� gDAd
X DAd

Y Aÿ gDAd
Y DAd

X Aÿ gDAd
�X ;Y �A

� P
J�RDAd

�X ;Y �A�

� P
J �RD�X ;Y�;A�: r
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From this lemma, we see that R` is J-invariant in cases of (1) and (2). In (3), [ ; ]

is the bracket of the Lie algebra g � gl�n;H�l sp�1� of the structure group

GL�n;H�Sp�1�. RD is a 2-form with values in g and A is in YJ HS2HG sp�1�, so we

take notice of the component on sp�1� of RD in Section 5. By virtue of representation

theory, we examine the curvature of a connection on a quaternionic manifold.

3. Representations of GL�n;H�Sp�1�.

We denote by G the structure group GL�n;H�Sp�1� of M. Let g�1� be the ®rst

prolongation of the Lie algebra g of G and T the representation of G corresponding to

the tangent bundle. We have

gHEndT � T nT �
;

then g�1� is de®ned to be the kernel of the skewing mapping

q : gnT � ! T nL2T �
:

We shall determine the above homomorphism for g � gl�n;H�l sp�1�GE �ElS2H:

Tensor products are indicated either in the usual way or simply by juxtaposition. From

(2.1), we have

gnT � G �E �ElS2H�nEH;

and

T nL2T � GE �HnL2�EH�

GE �Hn �S2ElL2ES2H�:

There is a contraction j : E � nS2E ! E; so by Schur's lemma, E appears in E � nS2E,

and we have

E � nS2EGElC;�3:1�

where C � ker j. In a similar fashion, we see

E � nL2EGElD:�3:2�

C and D are both irreducible. Combining the above isomorphisms and the Clebsch-

Gordan formula

S jHnS kHG 0
min� j;k�

r�0

S j�kÿ2rH;�3:3�

we have
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Lemma 3.1 ([8]).

gnT �
G 3EHlCHlDHlES3H;

T nL
2T �

G 2EHlCHlDHlES3HlDS3H;

where nEH denotes an isotypic component isomorphic to the direct sum of n copies of EH.

From this lemma, we obtain

Proposition 3.1 ([8]).

g�1� � ker qGEH:

We represent the isomorphism in Proposition 3.1 more precisely. There is one copy

of EH in each of the three terms on the right-hand side of

gnT �
G �C l sl�n;H�l sp�1��nEH:

We take a basis feig
2n
i�1 of E, such that ~ej � ej�n;gej�n � ÿej � j � 1; . . . ; n�; and an

SU�2�-basis fh; ~hg of H (oH�h; ~h� � 1), where v 7! ~v are antilinear structure maps

commuting with the action of GL�n;H� or Sp�1� and satisfying ~~v � ÿv. Let fe ig2ni�1

denote the dual basis of E �, then

a1 �
X2n

i�1

�e ihei~hÿ e i~heih�e1h A C nEH;

a2 �
X2n

i�1

�e ihe1~hÿ e i~he1h�eihÿ
1

2n
a1 A sl�n;H�nEH;

a3 �
X2n

i�1

f2e iheihe1~hÿ �e i~heih� e ihei~h�e1hg A sp�1�nEH;

are representatives of the element e1h in each of the three copies of EH, and ker q is

spanned by the element

a �
n� 1

n
a1 � 2a2 � a3�3:4�

�
X2n

i�1

f�e ihei~hÿ e i~heih�e1h� 2�e ihe1~hÿ e i~he1h�eih

� 2e iheihe1~hÿ �e i~heih� e ihei~h�e1hg:
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By using (3.4), in Section 5, we may describe a curvature of a quaternionic manifold

concretely.

4. Curvature of a quaternionic manifold.

We consider the Spencer complex

� � � ! g
�r� nL

sÿ1
T

� ! g
�rÿ1� nL

s
T

� ! g
�rÿ2� nL

s�1
T

� ! � � � ;

where g
�r� denotes the r-th prolongation of g, where g

�0� � g; g
�1� � T . The cohomology

at the point g
�rÿ1� nL

s
T

� is denoted by H
r; s�g�.

For a quaternionic manifold M with a torsion-free connection D, the curvature R
D

of D lies in gnL
2
T

�. The ®rst Bianchi identity implies that qR � 0, and hence R
D

represents the cohomology class in H
1;2�g� of the sequence

g
�1� nT

� ! gnL
2
T

� ! T nL
3
T

�
:

In order to decompose these spaces, we introduce some irreducible decompositions of

GL�n;H�-modules. First,

EnS
2
EGS

3
ElF ;

EnL
2
EGL

3
ElF

0
;

�

�4:1�

where modules F and F
0 are irreducible, and F GF

0 via Schur's lemma. Secondly,

E
� nS

3
EGS

2
ElU ;

E
� nL

3
EGL

2
ElV ;

�

�4:2�

with U , V irreducible, and from (4.1) and (4.2),

E
� nEnS

2
EGS

2
ElU lE

�
F ;

E
� nEnL

2
EGL

2
ElV lE

�
F :

�

�4:3�

We see that both left-hand members in (4.3) contain EnE from (3.1) and (3.2), thus we

have that

E
�
F GS

2
ElL

2
ElW ;

for some irreducible module W . Thirdly,

L
3�EH�GL

3
ES

3
HlFH:

Combining the above decompositions and the Clebsch-Gordan formula (3.3), we have

T. Kobayashi492



Lemma 4.1 ([8]).

gnL
2T �

G 2S2El 2L2ElU lW l �2S2El 3L2ElV lW�S2HlL
2ES4H;

T nL
3T �

GS2ElL
2ElW l �S2El 2L2ElV lW�S2Hl �L2ElV�S4H:

On the other hand, from (2.1) and Proposition 3.1, we have

g
�1� nT �

GEHnEHGS2ElL
2El �S2ElL

2E�S2H:�4:4�

Thus we see that the components of gnL
2T � minus those of q�g�1� nT �� all occur in

T nL
3T � with the exception of U . Using Schur's lemma, we may check that

q : gnL
2T � ! T nL

3T � has full rank. Hence we obtain

Proposition 4.1 ([8]).

H 1;2�g�GU :

Therefore, the curvature RD has the form

RD � q

X

i

vi n t i

 !

� RU ;�4:5�

where vi A g
�1�
; t i A T �, and RU A U , i.e., RD decomposes into irreducible GL�n;H�Sp�1�-

components in S2E;L2E;S2ES2H;L
2ES2H, and U .

Remark. In the case of a 4-dimensional conformal manifold, we see that g
�1� n

T �
GS2ElC lS2ES2HlS2H and H 1;2�g�GU lS4H. Thus a curvature has its

components in S2E, C , S2ES2H, S2H, U and S4H. If M is self-dual, then the S4H-

component vanishes. The components lying in C , S2ES2H, and U correspond to the

parts of the scalar curvature, the traceless Ricci curvature, and the self-dual Weyl tensor,

respectively. And the S2E-component and the S2H-component correspond to the self-

dual part and the anti-self-dual part of the curvature of DL respectively.

5. Chern connections.

Let X be a complex manifold and L a Hermitian line bundle over X . A Hermitian

connection on L is called a Chern connection, if its curvature is of type �1; 1� with

respect to the complex structure on X . It is well-known that for any ®xed Hermitian

structure on L, there is a natural bijection between Chern connections and holomorphic
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structures on L, obtained by identifying a Chern connection with its �0; 1�-part. In

Section 2, we have seen that the twistor space of a quaternionic manifold is a complex

manifold and its vertical bundle is a Hermitian line bundle. In this section, we shall

obtain the condition for a Hermitian connection on the vertical bundle to be a Chern

connection.

We extend the curvature R of a torsion-free connection on a quaternionic manifold

to a complex bilinear form, also denote it by R, on TMC . We see that the U-

component RU of R is gl�n;H�-valued. So from (4.5), we also see that the sp�1�-

component of R is constructed by the vectors epheqh, epheq~h, ep~heqh, and ep~heq~h in

g�1� nT �
GEHnEH. We denote the coe½cients of these vectors by apq, ap~q, a~pq, and

a~p~q respectively. On the other hand, from (3.4), we may express the component on sp�1�

of R as follows:

R�eph; eqh�S 2H � apqh � h� bpq~h � h;

R�eph; eq~h�S 2H � ap~qh � h� bp~q~h � h� cp~q~h � ~h;

R�ep~h; eqh�S 2H � a~pqh � h� b~pq~h � h� c~pq~h � ~h;

R�ep~h; eq~h�S 2H � b~p~q~h � h� c~p~q~h � ~h;

where a � b means the symmetric product of a and b. We note that coe½cients apq, ap~q,

a~pq, bpq, bp~q, b~pq, b~p~q, cp~q, c~pq, c~p~q and apq, a~pq, ap~q, a~p~q satisfy the following relations:

apq � ap~q ÿ aq~p; ap~q � ÿapq; a~pq � aqp;

bpq � a~p~q ÿ a~q~p; bp~q � ÿa~pq ÿ aq~p; b~pq � ap~q � a~qp; b~p~q � aqp ÿ apq;

cp~q � ÿa~q~p; c~pq � a~p~q; c~p~q � a~qp ÿ a~pq �p; q � 1; . . . ; 2n�:

8

<

:

�5:1�

At ®rst, since a curvature is skew-symmetric, its complex coe½cients satisfy

apq � ÿaqp; ap~q � ÿa~qp;

bpq � ÿbqp; bp~q � ÿb~qp; b~p~q � ÿb~q~p;

cp~q � ÿc~qp; c~p~q � ÿc~q~p;

ap~q � a~pq � b~p~q; cp~q � c~pq � bpq;

apq ÿ bp~q ÿ b~pq � c~p~q � 0 �p; q � 1; . . . ; 2n�:

8

>

>

>

>

>

<

>

>

>

>

>

:

�5:2�

Next, the curvature R is real, i.e., R�X ;Y� � R�X ;Y � for X ;Y A TMC , where � is

the operation of complex conjugation, so that its coe½cients also satisfy the following

conditions (5.3):
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ajk �

cfj�nfk�n
�1U j; kU n�

ÿcfj�nfkÿn
�1U jU n; n� 1U kU 2n�

ÿcfjÿnfk�n
�n� 1U jU 2n; 1U kU n�

cfjÿnfkÿn
�n� 1U j; kU 2n�

8
>>>>>><
>>>>>>:

aj ~k �

ÿcfj�nk�n
�1U j; kU n�

cfj�nkÿn
�1U jU n; n� 1U kU 2n�

cfjÿnk�n
�n� 1U jU 2n; 1U kU n�

ÿcfjÿnkÿn
�n� 1U j; kU 2n�

8
>>>>>><
>>>>>>:

bjk �

ÿbfj�nfk�n
�1U j; kU n�

bfj�nfkÿn
�1U jU n; n� 1U kU 2n�

bfjÿnfk�n
�n� 1U jU 2n; 1U kU n�

ÿbfjÿnfkÿn
�n� 1U j; kU 2n�

8
>>>>>><
>>>>>>:

bj ~k �

bfj�nk�n
�1U j; kU n�

ÿbfj�nkÿn
�1U jU n; n� 1U kU 2n�

ÿbfjÿnk�n
�n� 1U jU 2n; 1U kU n�

bfjÿnkÿn
�n� 1U j; kU 2n�.

8
>>>>>><
>>>>>>:

Moreover, we assume that R is of type �1; 1�. From Lemma 2.1, we see that R` is

of type �1; 1� if and only if R satis®es the condition

P
J��RD�JX ; JY� ÿ RD�X ;Y�;A�� � 0���

for each X ;Y A TxM and A A YJ . We take a real basis

X j � e jh� e j�n~h;

Y j �
�������
ÿ1

p
�e jhÿ e j�n~h�;

Z j � e j�nhÿ e j~h;

W j �
�������
ÿ1

p
�e j�nh� e j~h� � j � 1; . . . ; n�

8
>>><
>>>:

�5:4�

on TMC , and put J � ah � h� b~h � h� c~h � ~h. Since J is a real operator, i.e., J � J, and

hJ; Ji �
���
2

p
, we have c � a; b � ÿb and 4acÿ b2 � 1. For each A A YJ , A � dh � h�

e~h � h� f ~h � ~h; we also have f � d; e � ÿe; 4df ÿ e2 � 1; and 2af ÿ be� 2cd � 0 (i.e.,

hJ;Ai � 0�. We compute the condition ��� for the basis (5.4), we obtain the following

conditions for coe½cients of R (5.5):
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ajk � b
~jfk�n

� bfj�n~k
ÿ c ~j~k � 0;

ajk ÿ b
~jfk�n

� bfj�n~k
ÿ c ~j~k � 0;

ajk�n ÿ b ~j~k � bfj�nfk�n
ÿ c

~jfk�n
� 0;

ajk�n � b ~j~k � bfj�nfk�n
ÿ c

~jfk�n
� 0;

bjk � bfj�nfk�n
� 0;

bjk ÿ bfj�nfk�n
� 0;

bjk�n ÿ bfj�n~k
� 0;

bjk�n � bfj�n~k
� 0;

bj�nk�n � b ~j~k � 0;

bj�nk�n ÿ b ~j~k � 0 � j; k � 1; . . . ; n�:

For example, we compute ��� for X j and X k, then we have

P
J��RD�JX j

; JX k� ÿ RD�X j
;Y k�;A��

� f2e�ajk � b
~jfk�n

� bfj�n~k
ÿ c ~j ~k� ÿ 4d�bjk � bfj�nfk�n

�gh � h

� f4f �ajk � b
~jfk�n

� bfj�n~k
ÿ c ~j ~k� � 4d�aj�nk�n ÿ bjk�n ÿ bj�nk ÿ cfj�nfk�n

�g~h � h

� f2e�aj�nk�n ÿ bjk�n ÿ bj�nk ÿ cfj�nfk�n
� � 4f �bjk � bfj�nfk�n

�g~h � ~h

� 0;

for each A. So we get some equations in (5.5).

From (5.2), (5.3) and (5.5), we obtain

apq � c~p~q and bpq � b~p~q � 0 �p; q � 1; . . . ; 2n�:�5:6�

Using the relation (5.1), we may rewrite the conditions (5.3) and (5.6) as the

following (5.7):

apq �

afp�nfq�n
�1U p; qU n�

ÿafp�nfqÿn
�1U pU n; n� 1U qU 2n�

ÿafpÿnfq�n
�n� 1U pU 2n; 1U qU n�

afpÿnfqÿn
�n� 1U p; qU 2n�

8
>>>>>><
>>>>>>:
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ap~q �

ÿafp�nq�n
�1U p; qU n�

afp�nqÿn
�1U pU n; n� 1U qU 2n�

afpÿnq�n
�n� 1U pU 2n; 1U qU n�

ÿafpÿnqÿn
�n� 1U p; qU 2n�

8
>>>>>><
>>>>>>:

apq � aqp; a~p~q � a~q~p;

ap~q ÿ aq~p � a~qp ÿ a~pq �p; q � 1; . . . ; 2n�:

In (5.7), we note that the ®rst 2 conditions correspond to (5.3), and the last 3 conditions

correspond to (5.6). From (5.7), we see that the curvatures of type �1; 1� are constructed

by the vectors

Ajk � ejhek~hÿ ej~hekh� ej�nhek�n
~hÿ ej�n

~hek�nh;

Bjk �
�������
ÿ1

p
�ejhek~hÿ ej~hekhÿ ej�nhek�n

~h� ej�n
~hek�nh�;

Cjk � ejhek�n
~hÿ ej~hek�nh� ej�n

~hekhÿ ej�nhek~h;

Djk �
�������
ÿ1

p
�ejhek�n

~hÿ ej~hek�nhÿ ej�n
~hekh� ej�nhek~h�;

Ejk � ejhekh� ekhejh� ej�n
~hek�n

~h� ek�n
~hej�n

~h;

Fjk �
�������
ÿ1

p
�ejhekh� ekhejhÿ ej�n

~hek�n
~hÿ ek�n

~hej�n
~h�;

Gjk � ejhek�nh� ek�nhejhÿ ej�n
~hek~hÿ ek~hej�n

~h;

Hjk �
�������
ÿ1

p
�ejhek�nh� ek�nhejh� ej�n

~hek~h� ek~hej�n
~h�;

Ijk � ej�nhek�nh� ek�nhej�nh� ej~hek~h� ek~hej~h;

Jjk �
�������
ÿ1

p
�ej�nhek�nh� ek�nhej�nhÿ ej~hek~hÿ ek~hej~h�;

Kjk � ek~hejh� ej~hekhÿ ek�nhej�n
~hÿ ej�nhek�n

~h;

Ljk �
�������
ÿ1

p
�ek~hejh� ej~hekh� ek�nhej�n

~h� ej�nhek�n
~h�;

Mjk � ek�nhej~h� ej~hek�nh� ek~hej�nh� ej�nhek~h;

Njk �
�������
ÿ1

p
�ek�nhej~h� ej~hek�nhÿ ek~hej�nhÿ ej�nhek~h� � j; k � 1; . . . ; n�

over R. We note that g
�1� nT �

GEHnEHGS2ElL
2El �S2ElL

2E�S2H. We

may see that the above vectors are all in S2ElL
2ElS2ES2H and span S2El
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L
2ElS2ES2H. More precisely, S2E, L2E, and S2ES2H are spanned by fAjk � Akj ;

Bjk � Bkj;Cjk ÿ Ckj ;Djk �Dkjg, fAjk ÿ Akj ;Bjk ÿ Bkj ;Cjk � Ckj;Djk ÿDkjg, and fEjk, Fjk,

Gjk, Hjk, Ijk, Jjk, Ajk � Akj � 2Kjk, Bjk � Bkj � 2Ljk, Cjk � Ckj �Mjk �Mkj , Djk ÿDkj �

Njk ÿNkjg, respectively. Hence we obtain the following

Theorem 5.1. Let M be a quaternionic manifold with a torsion-free connection D,

and Y the vertical bundle of the twistor ®bration Z. Then the linear connection ` on Y

induced by D is a Chern connection if and only if the curvature RD of D has no

component in L
2ES2H.

Remark. The condition for the curvature RD of D to have no component in

L
2ES2H in Theorem 5.1 corresponds to the condition for a Weyl structure to be self-

dual in the case of a 4-dimensional self-dual manifold (cf. Remark in Section 4).

Example. If �M; g� is a quaternionic KaÈhler manifold with Levi-Civita connection

D, then D induces a Chern connection. Because the components of the curvature RD lie

in L
2ElU .

6. Hypercomplex manifolds.

A 4n-dimensional manifold M with a GL�n;H�-structure admitting a torsion-free

connection is a hypercomplex manifold. Therefore the family of quaternionic manifolds

contains that of hypercomplex manifolds. Applying the results of Sections 3 and 4 with

the Lie algebra gl�n;H�, we obtain

Theorem 6.1 ([8]).

gl�n;H��1� � 0;

H 1;2�gl�n;H��GUlS2E:

For any two torsion-free G-connections `
�1� and `

�2�, the di¨erence `
�1� ÿ `

�2�

belongs to g�1�. From the ®rst equation in Theorem 6.1, we see that a torsion-free

GL�n;H�-connection is unique if it exists. We call it the Obata connection. And we also

see that the curvature of an Obata connection has the components in UlS2E. Hence

an Obata connection induces a Chern connection.
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