Holomorphic vertical line bundle of the twistor space over a quaternionic manifold

By Toshimasa Kobayashi

(Received Jun. 18, 1998)
(Revised Nov. 11, 1998)

Abstract

The vertical bundle of the twistor fibration over a 4-dimensional self-dual manifold is a holomorphic line bundle and plays an important role in a study of the twistor space. On the other hand, the vertical bundle of the twistor space over a quaternionic manifold is not a holomorphic line bundle, in general. We shall give the condition for a vertical bundle to be a holomorphic line bundle.

1. Introduction.

We are concerned with holomorphic structures on the vertical bundle of the twistor fibration over a quaternionic manifold.

For an oriented m-dimensional conformal manifold M, we may consider a Weyl structure D on M, which is a symmetric linear connection preserving the conformal structure of M. Over M, there is a line bundle L associated to the $C O(m)$-principal bundle of M and the representation $A \mapsto|\operatorname{det} A|^{1 / m}$ of the linear group. Thus a Weyl structure D on M induces a linear connection D^{L} on L. In the case of $m=4$, if the curvature of D^{L} is a self-dual 2-form, then D is called a self-dual Weyl structure. While it is known that if M is a 4-dimensional self-dual manifold, then there is a complex 3manifold Z fibered over M by a family of projective lines. Z is called the twistor space of M. The vertical bundle Θ of Z is considered as a complex line bundle over Z and has a natural Hermitian metric. We choose a Weyl structure D on M, then a linear connection ∇ on Θ is induced by D. If the curvature of ∇ is of type $(1,1)$ relative to the complex structure on Z, then we call ∇ a Chern connection. A Chern connection on Θ induces a holomorphic structure that renders Θ a holomorphic line bundle over Z. In particular, if D is the Levi-Civita connection of a self-dual metric on M, then the induced connection ∇ on Θ is a Chern connection, and $\otimes^{2} \Theta$ is isomorphic to the dual bundle of the canonical bundle of Z as a holomorphic bundle.

[^0]Gauduchon showed that for a 4-dimensional self-dual manifold, a linear connection ∇ on Θ is a Chern connection if and only if a Weyl structure D that induces ∇ is selfdual. Furthermore, if M is compact, he classified the types of the conformal structures admitting holomorphic sections on $\otimes^{p} \Theta$. Using these results and a vanishing theorem, he proved that if the conformal class of M contains a metric with negative scalar curvature then the twistor space of M does not contain any nontrivial divisor.

A $4 n$-dimensional manifold $(n \geq 2)$ is called quaternionic if it has a $G L(n, \boldsymbol{H}) \operatorname{Sp}(1)$ structure preserved by a torsion-free connection. We note that if $n=1$ then $G L(1, \boldsymbol{H}) S p(1)=C O(4)$. Salamon showed that there is a twistor space Z over a quaternionic manifold M. The fiber Z_{x} over each point $x \in M$ is a real 2 -sphere, which parametrizes almost complex structures on $T_{x} M$, and the total space of Z admits a complex structure. Therefore, we regard the notion of quaternionic manifold as a generalization of that of self-dual manifold and examine quaternionic manifolds and their twistor spaces.

In the next section, we recall the twistor space of a quaternionic manifold. We express a twistor space and its vertical bundle as associated bundles with the $G L(n, \boldsymbol{H}) S p(1)$-principal bundle and representations of $G L(n, \boldsymbol{H}) S p(1)$. Thus we see that a connection D on a quaternionic manifold induces a connection ∇ on a vertical bundle. Further, we may describe the curvature R^{∇} of ∇ explicitly, and see the relation between the curvatures R^{∇} and R^{D}. In Section 3, we recall representations of the structure group $G L(n, \boldsymbol{H}) S p(1)$ and the first prolongation of its Lie algebra. Combining the ClebschGordan formula and the formulas of irreducible decompositions of $G L(n, \boldsymbol{H})$-modules, we describe the first prolongation as a $G L(n, \boldsymbol{H}) S p(1)$-module. In Section 4, we shall study a curvature of a quaternionic manifold by means of representation theory. We consider R^{D} as a 2-form with values in the Lie algebra $\mathfrak{g l}(n, \boldsymbol{H}) \oplus \mathfrak{w p}(1)$ of $G L(n, \boldsymbol{H}) S p(1)$. From the first Bianchi identity, we see that R^{D} determines an element of a Spencer cohomology. By using some irreducible decompositions of $G L(n, \boldsymbol{H}) \operatorname{Sp}(1)$ modules, we have the irreducible decomposition of a curvature of a quaternionic manifold. In Section 5, we have the main theorem. From the results in Sections 3 and 4, we may describe a curvature of a quaternionic manifold explicitly. We shall obtain the condition for the vertical bundle of the twistor space of a quaternionic manifold to have a Chern connection. We also find that this condition corresponds to the condition for a Weyl structure to be self-dual in the case of a 4-dimensional self-dual manifold. In Section 6, we deal with hypercomplex manifolds. A $4 n$-dimensional manifold that has a $G L(n, \boldsymbol{H})$-structure with a torsion-free connection is called a hypercomplex manifold. We note that the class of hypercomplex manifolds is included in that of quaternionic
manifolds. It is known that a hypercomplex manifold has a unique torsion-free connection. It is called the Obata connection. Applying the theorem in Section 5 to the case of a hypercomplex manifold, we see that an Obata connection induces a Chern connection on a vertical line bundle.

The author would like to express his gratitude to Professors Takashi Nitta and Shin Nayatani for their valuable advice and kind encouragement.

2. Twistor spaces.

Let M be a quaternionic manifold, which is a real $4 n$-dimensional manifold, $n \geq 2$, with a $G L(n, \boldsymbol{H}) S p(1)$-structure admitting a torsion-free connection. We choose a connection D out of such connections. We denote by E, H the standard complex representations of $G L(n, \boldsymbol{H}), S p(1)$ on $\boldsymbol{C}^{2 n}, \boldsymbol{C}^{2}$ respectively. The complex vector spaces E and H possess antilinear structure maps $v \mapsto \tilde{v}$ commuting with the action of the respective groups and satisfying $\tilde{\tilde{v}}=-v$. Such representations are called quaternionic. Then the complexified cotangent bundle of M has the form

$$
\begin{equation*}
\left(T^{*} M\right)^{C} \cong \mathbf{E} \otimes_{C} \mathbf{H} \tag{2.1}
\end{equation*}
$$

where \mathbf{E}, \mathbf{H} are vector bundles associated to representations E, H respectively. The symmetric powers $S^{k} H(k \geq 0)$ are the irreducible complex representations of $S p(1)$. If k is even, then $S^{k} H$ has a real structure induced from the structure map of H, so we regard it as a real vector space. In particular, $S^{2} H$ is the adjoint representation of $S p(1)$. There is an $S p(1)$-invariant skew form $\omega_{H} \in \Lambda^{2} H^{*}$ which induces an isomorphism $H \cong H^{*}$. Using the inclusion $S^{2} H \hookrightarrow H \otimes H \cong \omega_{H} H \otimes H^{*}=$ End H, we may identify $\mathfrak{s p}(1)$ with $S^{2} H$. Let \langle,$\rangle be the inner product on S^{2} H \subset H \otimes H$ induced by ω_{H}. If $J, K \in S^{2} H$, then as endomorphisms of $T M$,

$$
\begin{equation*}
J \circ K+K \circ J=-\langle J, K\rangle 1 . \tag{2.2}
\end{equation*}
$$

We consider the bundle

$$
Z=\left\{J \in S^{2} \mathbf{H} \mid\langle J, J\rangle^{1 / 2}=\sqrt{2}\right\}
$$

whose fiber Z_{x} over a point $x \in M$ is a real 2-sphere. From (2.2), an element $J \in Z_{x}$ defines an almost complex structure on $T_{x} M$. The bundle Z is called the twistor space of M. Let π be the natural projection from Z to M and Θ the vertical tangent bundle on Z. For any point $J \in Z_{x}$, we have a natural identification

$$
\Theta_{J}=\left\{A \in S^{2} \mathbf{H} \mid J \circ A=-A \circ J\right\},
$$

where $\Theta_{J}=T_{J} Z_{x}$ is the fiber of Θ at J. The bundle Θ admits a complex structure determined by

$$
\mathscr{J} A=J \circ A, \quad A \in \Theta_{J} .
$$

An inner product \langle,$\rangle on \Theta_{J}$ is induced by the embedding of Θ_{J} in $S^{2} \mathbf{H} . \mathscr{J}$ is compatible with \langle,$\rangle , so \Theta$ has a canonical Hermitian structure. We denote by $\Omega^{(x)}$ the Kähler form on $\Theta_{J}\left(J \in Z_{x}\right)$ induced by \langle,$\rangle . Let v^{D}$ denote the vertical projection from $T Z$ to Θ with respect to D. Any vector U on Z, at a point J, is represented by

$$
U=\left(v^{D}(U), X\right)
$$

where $X=\pi_{*}(U)$ is the projection of U in $T_{x} M$. Thus we obtain an almost complex structure \mathscr{J} on Z defined by

$$
\mathscr{J} U=\left(J \circ v^{D}(U), J X\right) .
$$

Salamon showed that \mathscr{J} is integrable when M is a quaternionic manifold. We define Π the orthogonal projection of $\pi^{*} S^{2} \mathbf{H}$ onto Θ such that for any point J of Z_{x},

$$
\Pi^{J}(A)=A-\frac{1}{2}\langle A, J\rangle J, \quad A \in S^{2} \mathbf{H}
$$

A connection D on M induces a connection $D^{\text {Ad }}$ on $S^{2} \mathbf{H}$ via the adjoint representation of $S p(1)$. We denote by $\pi^{*} D^{\text {Ad }}$ the pull back connection on $\pi^{*} S^{2} \mathbf{H}$. We may define a Hermitian connection ∇ on Θ as follows:

$$
\nabla=\Pi \circ \pi^{*} D^{\mathrm{Ad}}
$$

more explicitly,

$$
\nabla_{U} \tilde{A}=\widetilde{D_{X}^{\mathrm{Ad}}} A-\frac{1}{2}\langle A, J\rangle v^{D}(U), \quad U \in T_{J} Z
$$

where \tilde{A} is a vertical vector field on Z defined by

$$
\tilde{A}(J)=\Pi^{J}(A), \quad A \in S^{2} \mathbf{H}, \quad J \in Z_{x}
$$

We may compute the curvature of ∇ as follows.
Lemma 2.1 ([3]). Let R^{∇} denote the curvature of the Hermitian connection ∇ on Θ induced by a connection D of M. Then we have

$$
\begin{align*}
& R_{B, C}^{\nabla} A=\frac{1}{2} \Omega^{(x)}(C, B) \mathscr{\mathscr { L }} A \tag{1}\\
& R_{B, \tilde{X}}^{\nabla} A=0 \tag{2}\\
& R_{\tilde{X}, \tilde{Y}}^{\nabla} A=\Pi^{J}\left[R^{D}(X, Y), A\right], \tag{3}
\end{align*}
$$

where $A, B, C \in \Theta_{J}, X, Y \in T_{x} M, \tilde{X}, \tilde{Y}$ is the horizontal lift of X, Y respectively, and R^{D} is the curvature of D.

Proof. (1) We note that $[B, C]=\Omega^{(x)}(B, C) J$ and (2.2), we have

$$
\begin{aligned}
R_{B, C}^{\nabla} A & =\nabla_{B} \nabla_{\tilde{C}} \tilde{A}-\nabla_{C} \nabla_{\tilde{B}} \tilde{A}-\nabla_{[\tilde{B}, \tilde{C}]} \tilde{A} \\
& =\nabla_{B}\left(-\frac{1}{2}\langle A, J\rangle \tilde{C}\right)-\nabla_{C}\left(-\frac{1}{2}\langle A, J\rangle \tilde{B}\right) \\
& =-\frac{1}{2}\left\{\left(\left\langle A, \nabla_{B} J\right\rangle\right) C-\left(\left\langle A, \nabla_{C} J\right\rangle\right) B\right\} \\
& =\frac{1}{2}(\langle A, C\rangle B-\langle A, B\rangle C) \\
& =\frac{1}{2} \Omega^{(x)}(C, B) \mathscr{J} A .
\end{aligned}
$$

(2) We note that $[\tilde{X}, \tilde{B}]$ is vertical, we have

$$
\begin{aligned}
R_{B, \tilde{X}}^{\nabla} A & =\nabla_{B} \nabla_{\tilde{X}} \tilde{A}-\nabla_{\tilde{X}} \nabla_{\tilde{B}} \tilde{A}-\nabla_{[\tilde{B}, \tilde{X}]} \tilde{A} \\
& =\nabla_{B}\left(\widetilde{D_{X}^{\mathrm{Ad}}} A\right)-\nabla_{\tilde{X}}\left(-\frac{1}{2}\langle A, J\rangle \tilde{B}\right) \\
& =-\frac{1}{2}\left\langle D_{X}^{\mathrm{Ad}} A, J\right\rangle B+\frac{1}{2} D_{X}^{\mathrm{Ad}} \widetilde{(\langle A, J\rangle B)} \\
& =-\frac{1}{2}\left\langle D_{X}^{\mathrm{Ad}} A, J\right\rangle B+\frac{1}{2}\left(\left\langle D_{X}^{\mathrm{Ad}} A, J\right\rangle+\left\langle A, D_{X}^{\mathrm{Ad}} J\right\rangle\right) B \\
& =0 .
\end{aligned}
$$

(3) We note that $R^{D^{A d}}=d(A d)\left(R^{D}\right)=a d\left(R^{D}\right)$, we have

$$
\begin{aligned}
R_{\tilde{X}, \tilde{Y}}^{\nabla} A & =\nabla_{\tilde{X}} \nabla_{\tilde{Y}} \tilde{A}-\nabla_{\tilde{Y}} \nabla_{\tilde{X}} \tilde{A}-\nabla_{[\tilde{X}, \tilde{Y}]} \tilde{A} \\
& =\nabla_{\tilde{X}}\left(\widetilde{D_{Y}^{\mathrm{Ad}}} A\right)-\nabla_{\tilde{Y}}\left(\widetilde{D_{X}^{\mathrm{Ad}}} A\right)-D_{[X, Y]} \widetilde{\mathrm{Ad}} A \\
& =D_{X}^{\mathrm{Ad}} \widetilde{D_{Y}^{\mathrm{Ad}}} A-D_{Y}^{\mathrm{Ad}} \widetilde{D_{X}^{\mathrm{Ad}}} A-D_{[X, Y]}^{\mathrm{Ad}} A \\
& =\Pi^{J}\left(R^{D^{A \mathrm{~d}}}(X, Y) A\right) \\
& =\Pi^{J}\left[R^{D}(X, Y), A\right] .
\end{aligned}
$$

From this lemma, we see that R^{∇} is \mathscr{g}-invariant in cases of (1) and (2). In (3), [,] is the bracket of the Lie algebra $\mathfrak{g}=\mathfrak{g l}(n, \boldsymbol{H}) \oplus \mathfrak{w p}(1)$ of the structure group $G L(n, \boldsymbol{H}) S p(1) . R^{D}$ is a 2-form with values in \mathfrak{g} and A is in $\Theta_{J} \subset S^{2} H \cong \mathfrak{s p}(1)$, so we take notice of the component on $\mathfrak{s p}(1)$ of R^{D} in Section 5. By virtue of representation theory, we examine the curvature of a connection on a quaternionic manifold.

3. Representations of $G L(n, \boldsymbol{H}) S p(1)$.

We denote by G the structure $\operatorname{group} G L(n, \boldsymbol{H}) S p(1)$ of M. Let $\mathfrak{g}^{(1)}$ be the first prolongation of the Lie algebra \mathfrak{g} of G and T the representation of G corresponding to the tangent bundle. We have

$$
\mathfrak{g} \subset \operatorname{End} T=T \otimes T^{*}
$$

then $\mathfrak{g}^{(1)}$ is defined to be the kernel of the skewing mapping

$$
\partial: \mathfrak{g} \otimes T^{*} \rightarrow T \otimes \Lambda^{2} T^{*}
$$

We shall determine the above homomorphism for $\mathfrak{g}=\mathfrak{g l}(n, \boldsymbol{H}) \oplus \mathfrak{s p}(1) \cong E^{*} E \oplus S^{2} H$. Tensor products are indicated either in the usual way or simply by juxtaposition. From (2.1), we have

$$
\mathfrak{g} \otimes T^{*} \cong\left(E^{*} E \oplus S^{2} H\right) \otimes E H
$$

and

$$
\begin{aligned}
T \otimes \Lambda^{2} T^{*} & \cong E^{*} H \otimes \Lambda^{2}(E H) \\
& \cong E^{*} H \otimes\left(S^{2} E \oplus \Lambda^{2} E S^{2} H\right)
\end{aligned}
$$

There is a contraction $\varphi: E^{*} \otimes S^{2} E \rightarrow E$, so by Schur's lemma, E appears in $E^{*} \otimes S^{2} E$, and we have

$$
\begin{equation*}
E^{*} \otimes S^{2} E \cong E \oplus C \tag{3.1}
\end{equation*}
$$

where $C=\operatorname{ker} \varphi$. In a similar fashion, we see

$$
\begin{equation*}
E^{*} \otimes \Lambda^{2} E \cong E \oplus D \tag{3.2}
\end{equation*}
$$

C and D are both irreducible. Combining the above isomorphisms and the ClebschGordan formula

$$
\begin{equation*}
S^{j} H \otimes S^{k} H \cong \bigoplus_{r=0}^{\min (j, k)} S^{j+k-2 r} H \tag{3.3}
\end{equation*}
$$

we have

Lemma 3.1 ([8]).

$$
\begin{aligned}
& \mathfrak{g} \otimes T^{*} \cong 3 E H \oplus C H \oplus D H \oplus E S^{3} H \\
& T \otimes \Lambda^{2} T^{*} \cong 2 E H \oplus C H \oplus D H \oplus E S^{3} H \oplus D S^{3} H
\end{aligned}
$$

where $n E H$ denotes an isotypic component isomorphic to the direct sum of n copies of EH.
From this lemma, we obtain
Proposition 3.1 ([8]).

$$
\mathfrak{g}^{(1)}=\operatorname{ker} \partial \cong E H
$$

We represent the isomorphism in Proposition 3.1 more precisely. There is one copy of $E H$ in each of the three terms on the right-hand side of

$$
\mathfrak{g} \otimes T^{*} \cong(\boldsymbol{C} \oplus \mathfrak{s l}(n, \boldsymbol{H}) \oplus \mathfrak{s p}(1)) \otimes E H
$$

We take a basis $\left\{e_{i}\right\}_{i=1}^{2 n}$ of E, such that $\tilde{e}_{j}=e_{j+n} \widetilde{e_{j+n}}=-e_{j}(j=1, \ldots, n)$, and an $S U(2)$-basis $\{h, \tilde{h}\}$ of $H\left(\omega_{H}(h, \tilde{h})=1\right)$, where $v \mapsto \tilde{v}$ are antilinear structure maps commuting with the action of $G L(n, \boldsymbol{H})$ or $S p(1)$ and satisfying $\tilde{\tilde{v}}=-v$. Let $\left\{e^{i}\right\}_{i=1}^{2 n}$ denote the dual basis of E^{*}, then

$$
\begin{aligned}
& \alpha_{1}=\sum_{i=1}^{2 n}\left(e^{i} h e_{i} \tilde{h}-e^{i} \tilde{h} e_{i} h\right) e_{1} h \in \boldsymbol{C} \otimes E H, \\
& \alpha_{2}=\sum_{i=1}^{2 n}\left(e^{i} h e_{1} \tilde{h}-e^{i} \tilde{h} e_{1} h\right) e_{i} h-\frac{1}{2 n} \alpha_{1} \in \mathfrak{s l}(n, \boldsymbol{H}) \otimes E H, \\
& \alpha_{3}=\sum_{i=1}^{2 n}\left\{2 e^{i} h e_{i} h e_{1} \tilde{h}-\left(e^{i} \tilde{h} e_{i} h+e^{i} h e_{i} \tilde{h}\right) e_{1} h\right\} \in \mathfrak{s p}(1) \otimes E H,
\end{aligned}
$$

are representatives of the element $e_{1} h$ in each of the three copies of $E H$, and ker ∂ is spanned by the element

$$
\begin{align*}
\alpha= & \frac{n+1}{n} \alpha_{1}+2 \alpha_{2}+\alpha_{3} \tag{3.4}\\
= & \sum_{i=1}^{2 n}\left\{\left(e^{i} h e_{i} \tilde{h}-e^{i} \tilde{h} e_{i} h\right) e_{1} h+2\left(e^{i} h e_{1} \tilde{h}-e^{i} \tilde{h} e_{1} h\right) e_{i} h\right. \\
& \left.+2 e^{i} h e_{i} h e_{1} \tilde{h}-\left(e^{i} \tilde{h} e_{i} h+e^{i} h e_{i} \tilde{h}\right) e_{1} h\right\}
\end{align*}
$$

By using (3.4), in Section 5, we may describe a curvature of a quaternionic manifold concretely.

4. Curvature of a quaternionic manifold.

We consider the Spencer complex

$$
\cdots \rightarrow \mathfrak{g}^{(r)} \otimes \Lambda^{s-1} T^{*} \rightarrow \mathfrak{g}^{(r-1)} \otimes \Lambda^{s} T^{*} \rightarrow \mathfrak{g}^{(r-2)} \otimes \Lambda^{s+1} T^{*} \rightarrow \cdots
$$

where $\mathfrak{g}^{(r)}$ denotes the r-th prolongation of \mathfrak{g}, where $\mathfrak{g}^{(0)}=\mathfrak{g}, \mathfrak{g}^{(1)}=T$. The cohomology at the point $\mathfrak{g}^{(r-1)} \otimes \Lambda^{s} T^{*}$ is denoted by $H^{r, s}(\mathfrak{g})$.

For a quaternionic manifold M with a torsion-free connection D, the curvature R^{D} of D lies in $\mathfrak{g} \otimes \Lambda^{2} T^{*}$. The first Bianchi identity implies that $\partial R=0$, and hence R^{D} represents the cohomology class in $H^{1,2}(\mathfrak{g})$ of the sequence

$$
\mathfrak{g}^{(1)} \otimes T^{*} \rightarrow \mathfrak{g} \otimes \Lambda^{2} T^{*} \rightarrow T \otimes \Lambda^{3} T^{*}
$$

In order to decompose these spaces, we introduce some irreducible decompositions of $G L(n, \boldsymbol{H})$-modules. First,

$$
\left\{\begin{array}{l}
E \otimes S^{2} E \cong S^{3} E \oplus F \tag{4.1}\\
E \otimes \Lambda^{2} E \cong \Lambda^{3} E \oplus F^{\prime}
\end{array}\right.
$$

where modules F and F^{\prime} are irreducible, and $F \cong F^{\prime}$ via Schur's lemma. Secondly,

$$
\left\{\begin{array}{l}
E^{*} \otimes S^{3} E \cong S^{2} E \oplus U \tag{4.2}\\
E^{*} \otimes \Lambda^{3} E \cong \Lambda^{2} E \oplus V
\end{array}\right.
$$

with U, V irreducible, and from (4.1) and (4.2),

$$
\left\{\begin{array}{l}
E^{*} \otimes E \otimes S^{2} E \cong S^{2} E \oplus U \oplus E^{*} F, \tag{4.3}\\
E^{*} \otimes E \otimes \Lambda^{2} E \cong \Lambda^{2} E \oplus V \oplus E^{*} F
\end{array}\right.
$$

We see that both left-hand members in (4.3) contain $E \otimes E$ from (3.1) and (3.2), thus we have that

$$
E^{*} F \cong S^{2} E \oplus \Lambda^{2} E \oplus W
$$

for some irreducible module W. Thirdly,

$$
\Lambda^{3}(E H) \cong \Lambda^{3} E S^{3} H \oplus F H
$$

Combining the above decompositions and the Clebsch-Gordan formula (3.3), we have

Lemma 4.1 ([8]).
$\mathfrak{g} \otimes \Lambda^{2} T^{*} \cong 2 S^{2} E \oplus 2 \Lambda^{2} E \oplus U \oplus W \oplus\left(2 S^{2} E \oplus 3 \Lambda^{2} E \oplus V \oplus W\right) S^{2} H \oplus \Lambda^{2} E S^{4} H$, $T \otimes \Lambda^{3} T^{*} \cong S^{2} E \oplus \Lambda^{2} E \oplus W \oplus\left(S^{2} E \oplus 2 \Lambda^{2} E \oplus V \oplus W\right) S^{2} H \oplus\left(\Lambda^{2} E \oplus V\right) S^{4} H$.

On the other hand, from (2.1) and Proposition 3.1, we have

$$
\begin{equation*}
\mathfrak{g}^{(1)} \otimes T^{*} \cong E H \otimes E H \cong S^{2} E \oplus \Lambda^{2} E \oplus\left(S^{2} E \oplus \Lambda^{2} E\right) S^{2} H \tag{4.4}
\end{equation*}
$$

Thus we see that the components of $\mathfrak{g} \otimes \Lambda^{2} T^{*}$ minus those of $\partial\left(\mathfrak{g}^{(1)} \otimes T^{*}\right)$ all occur in $T \otimes \Lambda^{3} T^{*}$ with the exception of U. Using Schur's lemma, we may check that $\partial: \mathfrak{g} \otimes \Lambda^{2} T^{*} \rightarrow T \otimes \Lambda^{3} T^{*}$ has full rank. Hence we obtain

Proposition 4.1 ([8]).

$$
H^{1,2}(\mathfrak{g}) \cong U
$$

Therefore, the curvature R^{D} has the form

$$
\begin{equation*}
R^{D}=\partial\left(\sum_{i} v_{i} \otimes t^{i}\right)+R_{U} \tag{4.5}
\end{equation*}
$$

where $v_{i} \in \mathfrak{g}^{(1)}, t^{i} \in T^{*}$, and $R_{U} \in U$, i.e., R^{D} decomposes into irreducible $G L(n, \boldsymbol{H}) \operatorname{Sp}(1)$ components in $S^{2} E, \Lambda^{2} E, S^{2} E S^{2} H, \Lambda^{2} E S^{2} H$, and U.

Remark. In the case of a 4-dimensional conformal manifold, we see that $\mathfrak{g}^{(1)} \otimes$ $T^{*} \cong S^{2} E \oplus C \oplus S^{2} E S^{2} H \oplus S^{2} H$ and $H^{1,2}(\mathfrak{g}) \cong U \oplus S^{4} H$. Thus a curvature has its components in $S^{2} E, C, S^{2} E S^{2} H, S^{2} H, U$ and $S^{4} H$. If M is self-dual, then the $S^{4} H$ component vanishes. The components lying in $C, S^{2} E S^{2} H$, and U correspond to the parts of the scalar curvature, the traceless Ricci curvature, and the self-dual Weyl tensor, respectively. And the $S^{2} E$-component and the $S^{2} H$-component correspond to the selfdual part and the anti-self-dual part of the curvature of D^{L} respectively.

5. Chern connections.

Let X be a complex manifold and \mathscr{L} a Hermitian line bundle over X. A Hermitian connection on \mathscr{L} is called a Chern connection, if its curvature is of type $(1,1)$ with respect to the complex structure on X. It is well-known that for any fixed Hermitian structure on \mathscr{L}, there is a natural bijection between Chern connections and holomorphic
structures on \mathscr{L}, obtained by identifying a Chern connection with its (0,1)-part. In Section 2, we have seen that the twistor space of a quaternionic manifold is a complex manifold and its vertical bundle is a Hermitian line bundle. In this section, we shall obtain the condition for a Hermitian connection on the vertical bundle to be a Chern connection.

We extend the curvature R of a torsion-free connection on a quaternionic manifold to a complex bilinear form, also denote it by R, on $T M^{C}$. We see that the U component R_{U} of R is $\mathfrak{g l}(n, \boldsymbol{H})$-valued. So from (4.5), we also see that the $\mathfrak{s p}(1)$ component of R is constructed by the vectors $e_{p} h e_{q} h, e_{p} h e_{q} \tilde{h}, e_{p} \tilde{h} e_{q} h$, and $e_{p} \tilde{h} e_{q} \tilde{h}$ in $\mathfrak{g}^{(1)} \otimes T^{*} \cong E H \otimes E H$. We denote the coefficients of these vectors by $\alpha_{p q}, \alpha_{p \tilde{q}}, \alpha_{\tilde{p} q}$, and $\alpha_{\tilde{p} \tilde{q}}$ respectively. On the other hand, from (3.4), we may express the component on $\mathfrak{s p}(1)$ of R as follows:

$$
\begin{aligned}
& R\left(e^{p} h, e^{q} h\right)_{S^{2} H}=a_{p q} h \cdot h+b_{p q} \tilde{h} \cdot h, \\
& R\left(e^{p} h, e^{q} \tilde{h}\right)_{S^{2} H}=a_{p \tilde{q}} h \cdot h+b_{p \tilde{q}} \tilde{h} \cdot h+c_{p \tilde{q}} \tilde{h} \cdot \tilde{h}, \\
& R\left(e^{p} \tilde{h}, e^{q} h\right)_{S^{2} H}=a_{\tilde{p} q} h \cdot h+b_{\tilde{p} q} \tilde{h} \cdot h+c_{\tilde{p} q} \tilde{h} \cdot \tilde{h}, \\
& R\left(e^{p} \tilde{h}, e^{q} \tilde{h}\right)_{S^{2} H}=b_{\tilde{p} \tilde{q}} \tilde{h} \cdot h+c_{\tilde{p} \tilde{q}} \tilde{h} \cdot \tilde{h},
\end{aligned}
$$

where $a \cdot b$ means the symmetric product of a and b. We note that coefficients $a_{p q}, a_{p \tilde{q}}$, $a_{\tilde{p} q}, b_{p q}, b_{p \tilde{q}}, b_{\tilde{p} q}, b_{\tilde{p} \tilde{q}}, c_{p \tilde{q}}, c_{\tilde{p} q}, c_{\tilde{p} \tilde{q}}$ and $\alpha_{p q}, \alpha_{\tilde{p} q}, \alpha_{p \tilde{q}}, \alpha_{\tilde{p} \tilde{q}}$ satisfy the following relations:

$$
\left\{\begin{array}{l}
a_{p q}=\alpha_{p \tilde{q}}-\alpha_{q \tilde{p}}, a_{p \tilde{q}}=-\alpha_{p q}, a_{\tilde{p} q}=\alpha_{q p}, \tag{5.1}\\
b_{p q}=\alpha_{\tilde{p} \tilde{q}}-\alpha_{\tilde{q} \tilde{p}}, b_{\tilde{q}}=-\alpha_{\tilde{p} q}-\alpha_{q \tilde{p}}, b_{\tilde{p} q}=\alpha_{p \tilde{q}}+\alpha_{\tilde{q} p}, b_{\tilde{p} \tilde{q}}=\alpha_{q p}-\alpha_{p q}, \\
c_{p \tilde{q}}=-\alpha_{\tilde{q} \tilde{p}}, c_{\tilde{p} q}=\alpha_{\tilde{p} \tilde{q}}, c_{\tilde{p} \tilde{q}}=\alpha_{\tilde{q} p}-\alpha_{\tilde{p} q} \quad(p, q=1, \ldots, 2 n) .
\end{array}\right.
$$

At first, since a curvature is skew-symmetric, its complex coefficients satisfy

$$
\left\{\begin{array}{l}
a_{p q}=-a_{q p}, a_{p \tilde{q}}=-a_{\tilde{q} p}, \tag{5.2}\\
b_{p q}=-b_{q p}, b_{p \tilde{q}}=-b_{\tilde{q} p}, b_{\tilde{p} \tilde{q}}=-b_{\tilde{q} \tilde{p}}, \\
c_{p \tilde{q}}=-c_{\tilde{q} p}, c_{\tilde{q} \tilde{q}}=-c_{\tilde{q} \tilde{p}}, \\
a_{p \tilde{q}}+a_{\tilde{p} q}=b_{\tilde{p} \tilde{q} \tilde{p}}, c_{p \tilde{q}}+c_{\tilde{p} q}=b_{p q}, \\
a_{p q}-b_{p \tilde{q}}-b_{\tilde{p} q}+c_{\tilde{p} \tilde{q}}=0 \quad(p, q=1, \ldots, 2 n)
\end{array}\right.
$$

Next, the curvature R is real, i.e., $\overline{R(X, Y)}=R(\bar{X}, \bar{Y})$ for $X, Y \in T M^{C}$, where $\bar{*}$ is the operation of complex conjugation, so that its coefficients also satisfy the following conditions (5.3):

$$
\begin{aligned}
& \overline{a_{j k}}= \begin{cases}c_{\widetilde{j+n k+n}} & (1 \leq j, k \leq n) \\
-c_{\widetilde{j+n k-n}} & (1 \leq j \leq n, n+1 \leq k \leq 2 n) \\
-c_{\widetilde{j-n} \widetilde{k+n}} & (n+1 \leq j \leq 2 n, 1 \leq k \leq n) \\
c_{\widetilde{j-n k-n}} & (n+1 \leq j, k \leq 2 n)\end{cases} \\
& \overline{a_{j \tilde{k}}}= \begin{cases}-c_{\widetilde{j+n k+n}} & (1 \leq j, k \leq n) \\
c_{\widetilde{j+n k-n}} & (1 \leq j \leq n, n+1 \leq k \leq 2 n) \\
c_{\tilde{j-n k+n}} & (n+1 \leq j \leq 2 n, 1 \leq k \leq n) \\
-c_{\widetilde{j-n k-n}} & (n+1 \leq j, k \leq 2 n)\end{cases} \\
& \overline{b_{j k}}= \begin{cases}-b_{\widetilde{j+n \kappa}+n} & (1 \leq j, k \leq n) \\
b_{\widetilde{j+n k-n}} & (1 \leq j \leq n, n+1 \leq k \leq 2 n) \\
b_{\widetilde{j-n k+n}} & (n+1 \leq j \leq 2 n, 1 \leq k \leq n) \\
-b_{\widetilde{j-n} \widetilde{k-n}} & (n+1 \leq j, k \leq 2 n)\end{cases} \\
& \overline{b_{j \tilde{k}}}= \begin{cases}b_{\widetilde{j+n k+n}} & (1 \leq j, k \leq n) \\
-b_{\widetilde{j+n k-n}} & (1 \leq j \leq n, n+1 \leq k \leq 2 n) \\
-b_{\widetilde{j-n k+n}} & (n+1 \leq j \leq 2 n, 1 \leq k \leq n) \\
b_{\widetilde{j-n k-n}} & (n+1 \leq j, k \leq 2 n) .\end{cases}
\end{aligned}
$$

Moreover, we assume that R is of type $(1,1)$. From Lemma 2.1, we see that R^{∇} is of type $(1,1)$ if and only if R satisfies the condition

$$
\begin{equation*}
\Pi^{J}\left(\left[R^{D}(J X, J Y)-R^{D}(X, Y), A\right]\right)=0 \tag{*}
\end{equation*}
$$

for each $X, Y \in T_{x} M$ and $A \in \Theta_{J}$. We take a real basis

$$
\left\{\begin{array}{l}
X^{j}=e^{j} h+e^{j+n} \tilde{h}, \tag{5.4}\\
Y^{j}=\sqrt{-1}\left(e^{j} h-e^{j+n} \tilde{h}\right), \\
Z^{j}=e^{j+n} h-e^{j} \tilde{h}, \\
W^{j}=\sqrt{-1}\left(e^{j+n} h+e^{j} \tilde{h}\right) \quad(j=1, \ldots, n)
\end{array}\right.
$$

on $T M^{C}$, and put $J=a h \cdot h+b \tilde{h} \cdot h+c \tilde{h} \cdot \tilde{h}$. Since J is a real operator, i.e., $\bar{J}=J$, and $\langle J, J\rangle=\sqrt{2}$, we have $c=\bar{a}, \bar{b}=-b$ and $4 a c-b^{2}=1$. For each $A \in \Theta_{J}, A=d h \cdot h+$ $e \tilde{h} \cdot h+f \tilde{h} \cdot \tilde{h}$, we also have $f=\bar{d}, \bar{e}=-e, 4 d f-e^{2}=1$, and $2 a f-b e+2 c d=0$ (i.e., $\langle J, A\rangle=0$). We compute the condition $(*)$ for the basis (5.4), we obtain the following conditions for coefficients of R (5.5):

$$
\begin{aligned}
& a_{j k}+b_{\tilde{j k+n}}+b_{\widetilde{j+n \tilde{k}}}-c_{\tilde{j} \tilde{k}}=0, \\
& a_{j k}-b_{\widetilde{j k+n}}+b_{\widetilde{j+n \tilde{k}}}-c_{\tilde{j} \tilde{k}}=0, \\
& a_{j k+n}-b_{\tilde{j} \tilde{k}}+b_{\widetilde{j+n k+n}}-c_{\tilde{j k+n}}=0, \\
& a_{j k+n}+b_{\tilde{j} \tilde{k}}+b_{\widetilde{j+n \pi+n}}-c_{\tilde{j k+n}}=0, \\
& b_{j k}+b_{\widetilde{j+n k+n}}=0, \\
& b_{j k}-b_{\widetilde{j+n k+n}}=0, \\
& b_{j k+n}-b_{\widetilde{j+n \tilde{k}}}=0, \\
& b_{j k+n}+b_{\widetilde{j+n \tilde{k}}}=0, \\
& b_{j+n k+n}+b_{\tilde{j k}}=0, \\
& b_{j+n k+n}-b_{\tilde{j k}}=0 \quad(j, k=1, \ldots, n)
\end{aligned}
$$

For example, we compute $(*)$ for X^{j} and X^{k}, then we have

$$
\begin{aligned}
\Pi^{J}(& {\left.\left[R^{D}\left(J X^{j}, J X^{k}\right)-R^{D}\left(X^{j}, Y^{k}\right), A\right]\right) } \\
= & \left\{2 e\left(a_{j k}+b_{\widetilde{j k+n}}+b_{\widetilde{j+n \tilde{k}}}-c_{\tilde{j} \tilde{k}}\right)-4 d\left(b_{j k}+b_{\widetilde{j+n k+n}}\right)\right\} h \cdot h \\
& +\left\{4 f\left(a_{j k}+b_{\widetilde{j k+n}}+b_{\widetilde{j+n \tilde{k}}}-c_{\tilde{j k}}\right)+4 d\left(a_{j+n k+n}-b_{j k+n}-b_{j+n k}-c_{\tilde{j+n k+n}}\right)\right\} \tilde{h} \cdot h \\
& +\left\{2 e\left(a_{j+n k+n}-b_{j k+n}-b_{j+n k}-c_{\widetilde{j+n k+n}}\right)+4 f\left(b_{j k}+b_{\widetilde{j+n k+n}}\right)\right\} \tilde{h} \cdot \tilde{h} \\
= & 0,
\end{aligned}
$$

for each A. So we get some equations in (5.5).
From (5.2), (5.3) and (5.5), we obtain

$$
\begin{equation*}
a_{p q}=c_{\tilde{p} \tilde{q}} \quad \text { and } \quad b_{p q}=b_{\tilde{p} \tilde{q}}=0 \quad(p, q=1, \ldots, 2 n) \tag{5.6}
\end{equation*}
$$

Using the relation (5.1), we may rewrite the conditions (5.3) and (5.6) as the following (5.7):

$$
\overline{\alpha_{p q}}= \begin{cases}\alpha_{\widetilde{p+n q+n}} & (1 \leq p, q \leq n) \\ -\alpha_{\widetilde{p+n q-n}} & (1 \leq p \leq n, n+1 \leq q \leq 2 n) \\ -\alpha_{\widetilde{p-n q+n}} & (n+1 \leq p \leq 2 n, 1 \leq q \leq n) \\ \alpha_{\widetilde{p-n q-n}} & (n+1 \leq p, q \leq 2 n)\end{cases}
$$

$$
\begin{aligned}
& \overline{\alpha_{p \tilde{q}}}= \begin{cases}-\alpha_{\widetilde{p+n q+n}} & (1 \leq p, q \leq n) \\
\alpha_{\widetilde{p+n q-n}} & (1 \leq p \leq n, n+1 \leq q \leq 2 n) \\
\alpha_{\widetilde{p-n q+n}} & (n+1 \leq p \leq 2 n, 1 \leq q \leq n) \\
-\alpha_{\widetilde{p-n q-n}} & (n+1 \leq p, q \leq 2 n)\end{cases} \\
& \alpha_{p q}=\alpha_{q p}, \alpha_{\tilde{p} \tilde{q}}=\alpha_{\tilde{q} \tilde{p}}, \\
& \alpha_{p \tilde{q}}-\alpha_{q \tilde{p}}=\alpha_{\tilde{q} p}-\alpha_{\tilde{p} q} \quad(p, q=1, \ldots, 2 n) .
\end{aligned}
$$

In (5.7), we note that the first 2 conditions correspond to (5.3), and the last 3 conditions correspond to (5.6). From (5.7), we see that the curvatures of type $(1,1)$ are constructed by the vectors

$$
\begin{aligned}
& A_{j k}=e_{j} h e_{k} \tilde{h}-e_{j} \tilde{h} e_{k} h+e_{j+n} h e_{k+n} \tilde{h}-e_{j+n} \tilde{h} e_{k+n} h, \\
& B_{j k}=\sqrt{-1}\left(e_{j} h e_{k} \tilde{h}-e_{j} \tilde{h} e_{k} h-e_{j+n} h e_{k+n} \tilde{h}+e_{j+n} \tilde{h} e_{k+n} h\right), \\
& C_{j k}=e_{j} h e_{k+n} \tilde{h}-e_{j} \tilde{h} e_{k+n} h+e_{j+n} \tilde{h} e_{k} h-e_{j+n} h e_{k} \tilde{h}, \\
& D_{j k}=\sqrt{-1}\left(e_{j} h e_{k+n} \tilde{h}-e_{j} \tilde{h} e_{k+n} h-e_{j+n} \tilde{h} e_{k} h+e_{j+n} h e_{k} \tilde{h}\right), \\
& E_{j k}=e_{j} h e_{k} h+e_{k} h e_{j} h+e_{j+n} \tilde{h} e_{k+n} \tilde{h}+e_{k+n} \tilde{h} e_{j+n} \tilde{h}, \\
& F_{j k}=\sqrt{-1}\left(e_{j} h e_{k} h+e_{k} h e_{j} h-e_{j+n} \tilde{h} e_{k+n} \tilde{h}-e_{k+n} \tilde{h} e_{j+n} \tilde{h}\right), \\
& G_{j k}=e_{j} h e_{k+n} h+e_{k+n} h e_{j} h-e_{j+n} \tilde{h} e_{k} \tilde{h}-e_{k} \tilde{h} e_{j+n} \tilde{h}, \\
& H_{j k}=\sqrt{-1}\left(e_{j} h e_{k+n} h+e_{k+n} h e_{j} h+e_{j+n} \tilde{h} e_{k} \tilde{h}+e_{k} \tilde{h} e_{j+n} \tilde{h}\right), \\
& I_{j k}=e_{j+n} h e_{k+n} h+e_{k+n} h e_{j+n} h+e_{j} \tilde{h} e_{k} \tilde{h}+e_{k} \tilde{h} e_{j} \tilde{h}, \\
& J_{j k}=\sqrt{-1}\left(e_{j+n} h e_{k+n} h+e_{k+n} h e_{j+n} h-e_{j} \tilde{h} e_{k} \tilde{h}-e_{k} \tilde{h} e_{j} \tilde{h}\right), \\
& K_{j k}=e_{k} \tilde{h} e_{j} h+e_{j} \tilde{h} e_{k} h-e_{k+n} h e_{j+n} \tilde{h}-e_{j+n} h e_{k+n} \tilde{h}, \\
& L_{j k}=\sqrt{-1}\left(e_{k} \tilde{h} e_{j} h+e_{j} \tilde{h} e_{k} h+e_{k+n} h e_{j+n} \tilde{h}+e_{j+n} h e_{k+n} \tilde{h}\right), \\
& M_{j k}=e_{k+n} h e_{j} \tilde{h}+e_{j} \tilde{h} e_{k+n} h+e_{k} \tilde{h} e_{j+n} h+e_{j+n} h e_{k} \tilde{h}, \\
& N_{j k}=\sqrt{-1}\left(e_{k+n} h e_{j} \tilde{h}+e_{j} \tilde{h} e_{k+n} h-e_{k} \tilde{h} e_{j+n} h-e_{j+n} h e_{k} \tilde{h}\right)
\end{aligned} \quad(j, k=1, \ldots, n),
$$

over \boldsymbol{R}. We note that $\mathfrak{g}^{(1)} \otimes T^{*} \cong E H \otimes E H \cong S^{2} E \oplus \Lambda^{2} E \oplus\left(S^{2} E \oplus \Lambda^{2} E\right) S^{2} H$. We may see that the above vectors are all in $S^{2} E \oplus \Lambda^{2} E \oplus S^{2} E S^{2} H$ and span $S^{2} E \oplus$
$\Lambda^{2} E \oplus S^{2} E S^{2} H$. More precisely, $S^{2} E, \Lambda^{2} E$, and $S^{2} E S^{2} H$ are spanned by $\left\{A_{j k}+A_{k j}\right.$, $\left.B_{j k}+B_{k j}, C_{j k}-C_{k j}, D_{j k}+D_{k j}\right\},\left\{A_{j k}-A_{k j}, B_{j k}-B_{k j}, C_{j k}+C_{k j}, D_{j k}-D_{k j}\right\}$, and $\left\{E_{j k}, F_{j k}\right.$, $G_{j k}, H_{j k}, I_{j k}, J_{j k}, A_{j k}+A_{k j}+2 K_{j k}, B_{j k}+B_{k j}+2 L_{j k}, C_{j k}+C_{k j}+M_{j k}+M_{k j}, D_{j k}-D_{k j}+$ $\left.N_{j k}-N_{k j}\right\}$, respectively. Hence we obtain the following

Theorem 5.1. Let M be a quaternionic manifold with a torsion-free connection D, and Θ the vertical bundle of the twistor fibration Z. Then the linear connection ∇ on Θ induced by D is a Chern connection if and only if the curvature R^{D} of D has no component in $\Lambda^{2} E S^{2} H$.

Remark. The condition for the curvature R^{D} of D to have no component in $\Lambda^{2} E S^{2} H$ in Theorem 5.1 corresponds to the condition for a Weyl structure to be selfdual in the case of a 4-dimensional self-dual manifold (cf. Remark in Section 4).

Example. If (M, g) is a quaternionic Kähler manifold with Levi-Civita connection D, then D induces a Chern connection. Because the components of the curvature R^{D} lie in $\Lambda^{2} E \oplus U$.

6. Hypercomplex manifolds.

A $4 n$-dimensional manifold M with a $G L(n, \boldsymbol{H})$-structure admitting a torsion-free connection is a hypercomplex manifold. Therefore the family of quaternionic manifolds contains that of hypercomplex manifolds. Applying the results of Sections 3 and 4 with the Lie algebra $\mathfrak{g l}(n, \boldsymbol{H})$, we obtain

Theorem 6.1 ([8]).

$$
\begin{gathered}
\mathfrak{g l}(n, \boldsymbol{H})^{(1)}=0, \\
H^{1,2}(\mathfrak{g l}(n, \boldsymbol{H})) \cong U \oplus S^{2} E .
\end{gathered}
$$

For any two torsion-free G-connections $\nabla^{(1)}$ and $\nabla^{(2)}$, the difference $\nabla^{(1)}-\nabla^{(2)}$ belongs to $\mathfrak{g}^{(1)}$. From the first equation in Theorem 6.1, we see that a torsion-free $G L(n, \boldsymbol{H})$-connection is unique if it exists. We call it the Obata connection. And we also see that the curvature of an Obata connection has the components in $U \oplus S^{2} E$. Hence an Obata connection induces a Chern connection.

References

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in Four-Dimensional Riemannian Geometry, Proc. R. Soc. Lond. Ser. A, Vol. 362 (1978), 425-461.
[2] A. Besse, Einstein Manifolds, Springer Verlag, 1987, Die Ergebnisse der Mathematik 10.
[3] P. Gauduchon, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Scuola Norm. Sup. Pisa, Serie 4, Vol. 18, Fasc., 4 (1991), 563-629.
[4] , Weyl Structures on Self-Dual Conformal Manifolds, Proceedings of Symposia in Pure Mathematics, Vol. 54 (1993), Part 2, 259-270.
[5] D. Joyce, Compact Hypercomplex and Quaternionic Manifolds, J. Differential Geometry, 35 (1992) 743-761.
[6] M. Obata, Affine Connections on Manifolds with Almost Complex, Quaternion or Hermitian Structure, Japan J. Math., New Ser., Vol. 26 (1956), 353-362.
[7] S. M. Salamon, Quaternionic Kähler Manifolds, Invent. Math., 67 (1982), 143-171.
[8] ——, Differential Geometry of Quaternionic Manifolds, Ann. Sci. École Norm. Sup. (4), 19 (1986), 31-55.

Toshimasa Kobayashi

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, 560-0043 Osaka, Japan
E-mail: toshi@math.sci.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C07; Secondary 53C10, 53C15.
 Key Words and Phrases. Quaternionic manifold, twistor space, Obata connection.

