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Abstract. Our primary object of this paper is to give a representation formula for

surfaces with prescribed mean curvature in the hyperbolic 3-space of curvature ÿ1 in

terms of their normal Gauss maps. For CMC (constant mean curvature) surfaces, we

derive another representation formula in terms of their adjusted Gauss maps. These

formulas are hyperbolic versions of the Kenmotsu representation formula for surfaces in

the Euclidean 3-space. As an application, we give a construction of complete simply

connected CMC H (jHj < 1) surfaces embedded in the hyperbolic 3-space.

Introduction.

Let H 3�ÿc2� be the hyperbolic 3-space of constant curvature ÿc2 (c > 0). In this

paper, we give a representation formula for surfaces with prescribed (not necessarily

constant) mean curvature in H
3�ÿc2�, as a hyperbolic version of the Kenmotsu rep-

resentation formula [Ke] for surfaces in E
3. Hence we call it the Kenmotsu type

representation formula. This is given via an integrable di¨erential equation of ®rst order

in terms of the prescribed mean curvature and the normal Gauss map. The normal

Gauss map was de®ned by Kokubu [Ko1], and he gave a representation formula for

minimal surfaces in H
3�ÿc2� by means of the normal Gauss map. (The Kenmotsu

type representation formula for minimal surfaces in H
3�ÿc2� coincides with Kokubu's

representation formula.)

In Section 1, we review the de®nition of the normal Gauss maps for surfaces in

H
3�ÿc2� in terms of complex 2� 2 matrices. In Section 2, we show that the normal

Gauss map G of a surface with mean curvature H in H
3�ÿc2� satis®es a nonlinear

partial di¨erential equation of second order. If we put c � 0 in it, we can obtain the

generalized harmonic map equation (abbreviated to GH equation) for the Gauss map of

a surface with mean curvature H in E
3. Then we call it the hyperbolic GH equation.

The hyperbolic GH equation is the integrability condition for a surface with mean

curvature H in H
3�ÿc2�, from which we obtain the Kenmotsu type representation

formula in H
3�ÿc2�. The idea to obtain the Kenmotsu type representation formula in
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H
3�ÿc2� is based on a new viewpoint for the mechanism of obtaining the Kenmotsu

representation formula in E
3 (see Appendix I).

In Section 3, we concentrate on constant mean curvature (abbreviated to CMC)

surfaces in H
3�ÿc2�. The Gauss map for a CMC surface in E

3 is a harmonic map to

the unit 2-sphere S
2 with the standard metric g0. In contrast, the normal Gauss map

for a CMC H surface in H
3�ÿc2� is not so. However, it is a harmonic map to S

2 with

a di¨erent metric hc;H from g0, where hc;H has singularities in case jHjY c. When

H � c (resp. jHj > c), using the notion of the Lawson correspondence [L] at `adapted

frame level' (cf. Bobenko [Bo]), we can adjust the normal Gauss map to a holomorphic

map (resp. a harmonic map) to �S 2
; g0�, and obtain the Bryant representation formula

[Br] (reformulated by Umehara-Yamada [UY]) (resp. the Kenmotsu-Bryant type rep-

resentation formula [AA1]). Our method here of `adjusting' gives a new viewpoint to

the proof of these formulas. When jHj < c, using the Lawson type correspondence (cf.

Fujioka [F ]) at adapted frame level, we can adjust the normal Gauss map of a CMC H

surface in H
3�ÿc2� to the one of a minimal surface in H

3�ÿc20� (c0 �
�����������������

c2 ÿH 2
p

), and

obtain another representation formula for CMC H surfaces in H
3�ÿc2�. (We call it

the Kokubu-Bryant type representation formula.)

In Section 4, we construct complete simply connected CMC H (jHj < 1) surfaces

embedded in H
3�ÿ1� by applying the result [AA4] of the Dirichlet problem for harmonic

maps from the unit disk to �S 2
; h1;H�.

In Appendix II, we remark that for a CMC H (jHj < c) (not totally umbilic)

surface in H
3�ÿc2�, there exists a dual CMC H spacelike surface in the de Sitter 3-space

of constant curvature c2 arising from a parallel translation.

In Appendix III, we give spin versions of the above representation formulas in

H
3�ÿc2�.

The authors would like to express their sincere thanks to Professor K. Kenmotsu

for his interest and continuous encouragement. They would also like to thank the

referee for many helpful suggestions.

1. Normal Gauss map of surfaces in H
3�ÿc2�.

The hyperbolic 3-space H
3�ÿc2� is de®ned as the following hyperquadric in the

Minkowski 4-space L
4 � �R4

; h ; i�:

H
3�ÿc2� � x � �x0; x1; x2; x3� A L

4

�

�

�

�

hx; xi :� ÿx2
0 � x2

1 � x2
2 � x2

3 � ÿ 1

c2
; x0 > 0

� �

:

We will consider L
4 as the space Herm�2� of 2� 2 Hermitian matrices by

x � �x0; x1; x2; x3� A L
4 7! x � x0 � x3 x1 �

�������

ÿ1
p

x2

x1 ÿ
�������

ÿ1
p

x2 x0 ÿ x3

� �

:�1:1�

Here hx; xi � ÿdet x and the canonical basis of L
4 is given by

e0 �
1 0

0 1

� �

; e1 �
0 1

1 0

� �

; e2 �
0

�������

ÿ1
p

ÿ
�������

ÿ1
p

0

� �

; e3 �
1 0

0 ÿ1

� �

:
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The complex special linear group SL�2;C� acts isometrically on L
4 by

g � x � gxg� �g A SL�2;C�; x A L
4�;

where g� � tg. SL�2;C� also acts on H
3�ÿc2� isometrically and transitively. Indeed,

SL�2;C� is the double cover of the identity component SO��1; 3� of the isometry group

of H
3�ÿc2�. The isotropy group at a point �1=c�e0 A H

3�ÿc2� is the special unitary

group SU�2�, and hence

H
3�ÿc2� � SL�2;C�=SU�2� � 1

c
e0�g� :�

1

c
gg�

�

�

� g A SL�2;C�
� �

:

SU�2� is the double cover of the rotational group SO�3�. Indeed, the subgroup

SU�2� in SL�2;C� acts isometrically on the Euclidean 3-space E
3 � fx A L

4 j x0 � 0gG
�������

ÿ1
p

�su�2��HHerm�2��, and acts on the unit 2-sphere S
2 (with the standard metric g0)

in E
3 transitively (and isometrically). Then

S
2 � SU�2�=U�1� � f�h� :� he3h

� j h A SU�2�g;

where U�1� � f�cos y�e0 �
�������

ÿ1
p

�sin y�e3 j y A �0; 2p�gGS
1
HC .

The Gram-Schmidt procedure for complex row-vectors of each matrix g A SL�2;C�
gives the (Iwasawa) decomposition

SL�2;C� � S � SU�2� C g � sh;�1:2�

s A S � a w

0 1=a

� � �

�

�

�

a > 0;w A C

� �

; h A SU�2�:�1:3�

H
3�ÿc2� can be identi®ed with the Lie group S:

H
3�ÿc2� � 1

c
e0�s� �

1

c
ss� A L

4

�

�

�

�

s A S

� �

GS:�1:4�

Under this identi®cation, the action of S on H
3�ÿc2� can be regarded as the left

translation L of the Lie group S on itself. Let $ denote the projection from SL�2;C�
to S.

Take a coordinate �w; t� on S as the following map C , then we obtain the upper

half-space model H
3
��ÿc2� of H

3�ÿc2�:

C : R3
� � C � R� C �w; t� !

����

ct
p

���

c
p

w=
��

t
p

0 1=
����

ct
p

� �

A S�HSL�2;C��;

H
3
��ÿc2� � �R3

�; gc�; gc �
jdwj2 � dt2

c2t2
:

Lemma 1.1. For a tangent vector X � �X1 �
�������

ÿ1
p

X2;X3� at �w; t� A H
3
��ÿc2�,

put ~X � dC�X� A TsS (where s � C�w; t�� and
~~X � �1=c�d�e0 �C��X � A TxH

3�ÿc2�H
Herm�2� (where x � �1=c�ss��. Then, under the identi®cation Te0

SGT�1=c�e0H
3
��ÿc2� �

�������

ÿ1
p

�su�2� via �1=c�de0,

dLsÿ1 ~X � sÿ1 ~~X �sÿ1�� � 1

ct
�X1e1 � X2e2 � X3e3� �

1

ct
X A

�������

ÿ1
p

�su�2�:
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Now let M be a Riemann surface and f : M ! H
3�ÿc2� a conformal immersion.

Let E : U ! SL�2;C� be an adapted framing of f on every contractible open set U of

M, that is, E : U ! SL�2;C� is a smooth map such that f jU � �1=c�e0 � E � �1=c�E�e0,
E�e3 is a unit normal vector ®eld of f and E��e1 ÿ

�������

ÿ1
p

e2� is a vector ®eld of type

�1; 0�. Here we remark that the adapted framing on U is determined uniquely up to the

right action of a U�1�-valued function. Corresponding to the decomposition SL�2;C�
� S �SU�2�, we have a decomposition E � Sh, where S � $ � E : U ! S and h : U !
SU�2�. It should be pointed out that S is a framing of f de®ned globally on M,

that is, f � �1=c�e0 �S. Put G � �h�, and then G � Gf is a map from M to S
2. The

following lemma implies that G coincides with the normal Gauss map of f de®ned by

Kokubu [Ko1].

Let N be the unit normal vector ®eld of f : M ! H
3
��ÿc2��GH

3�ÿc2��, and put
~N � dC�N�, ~~N � �1=c�d�e0 �C��N�.

Lemma 1.2. G � dL
S

ÿ1 ~N.

Proof. G � he3h
� � S

ÿ1�Ee3E���Sÿ1�� � S
ÿ1 ~~N�Sÿ1�� � dL

S
ÿ1 ~N. r

Lemma 1.2 combined with Lemma 1.1 gives the following geometric interpretation

of the normal Gauss map for a surface in H
3
��ÿc2� � �R3

�; gc�. Regarding the under-

lying space R
3
��HR

3� of H 3
��ÿc2� as the half-space of the Euclidean 3-space E

3, parallel

translate the unit normal vector N�z� at a point f �z� � �w; t� on the immersed surface in

H
3
��ÿc2� to the origin of E3, then we obtain the vector N�z� in

�������

ÿ1
p

�su�2�GE
3. Next

normalize N�z� with respect to the Euclidean norm, then we obtain the normal Gauss

map G � �1=ct�N : M ! S
2.

Example 1. The hyperbolic cylinder in H
3
��ÿc2� is de®ned by

f : R2 ! H
3
��ÿc2�; f �x; y� � 1

c�c2 cosh c1xÿ c1 sin c2y�
c2 sinh c1x; c1 cos c2y;

c1c2

c

� �

for some positive constants c1; c2 satisfying ÿcÿ2
1 � cÿ2

2 � ÿcÿ2. This is a ¯at surface

with CMC H � c�c1=2c2 � c2=2c1� (jHj > c). Its normal Gauss map G is given by

G�x; y�

� ÿc1c2 sinh c1x sin c2y

c2�c2 cosh c1xÿ c1 sin c2y�
;

ÿc1c2 cosh c1x cos c2y

c2�c2 cosh c1xÿ c1 sin c2y�
;

c1 cosh c1xÿ c2 sin c2y

c�c2 cosh c1xÿ c1 sin c2y�

� �

:

Then the image of G is the set f�x1; x2; x3� A S
2 j x3 0 c1=c2gU f�0;Gc1=c; c1=c2�g. See

Figure 1 for the hyperbolic cylinder and its image under G.

We remark that the `isometry group' of E3 is the semi-direct product E
3
cSU�2�

(see Appendix I), in contrast, SL�2;C� can not be decomposed into a semi-direct

product of SU�2� and a complementary part. Then the transformation law Gg� f �
h�Gf for normal Gauss maps holds only for each element g � sh in the normalizer

N�S� of S:

N�S� � z w

0 1=z

� � �

�

�

�

z;w A C ; z0 0

� �

:
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Regarding S 2 as the extended complex plane Ĉ � C U fyg by the stereographic

projection P1 : S
2nfe3g ! C (resp. P2 : S

2nfÿe3g ! C), we can identify the normal

Gauss map G with the map to Ĉ : On every contractible open set U ,

G � P1 � G � q

p
� E22

E21
resp: G � P2 � G � p

q
� E21

E22

� �

;

where E � E11 E12

E21 E22

� �

� Sh; h � q ÿp

p q

� �

:

�1:5�

Remark 1.3. We here review the generalized Gauss map for a conformal im-

mersion f : M ! H 3�ÿc2�. The generalized Gauss map G : M ! Gr2�L4� of f carries

a point on M to the oriented spacelike 2-space in L4, which is given by the parallel

translation of the tangent space of M at the point to the origin of L4. The Grassmann

manifold Gr2�L4� consisting of oriented spacelike 2-planes in L4 has the following

structure of a homogeneous space:

Gr2�L4� � SL�2;C�=�R� �U�1�� � Q2
1 :� f�g�e1 ÿ

�������

ÿ1
p

e2�g�� j g A SL�2;C�g;

where �w� is the complex line through 0 and w A C 4
1 � L4 nR C . Take a complex

coordinate �g11=g21; g12=g22� A Ĉ � Ĉ (g � �gij� A SL�2;C�) on Gr2�L4�. Then G is

considered as the pair �G1;G2� of the following two hyperbolic Gauss maps (cf. [Br],

[AA1]):

G1 �
E11

E21
; G2 �

E12

E22
: M ! Ĉ :

(G1 and G2 are independent of the choice of adapted framings, and then can be de®ned

globally on M.) However, this decomposition of G is not invariant by the action of

SL�2;C� on H 3�ÿc2�. G1;G2 have the following relation to the G : M ! S 2
G Ĉ (via

P1):

G1 � S�G�; G2 � S�ÿ1=G�;

where g�z� � �g11z� g12�=�g21z� g22� (z A Ĉ), that is, the conformal action on Ĉ by

g � �gij� A SL�2;C�.

Figure 1.
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Let f be the dual �1; 0�-form to E��e1 ÿ
�������

ÿ1
p

e2� on U . Then the induced metric is

given by f �ds2 � f � f and df � ÿr5 f, where r stands for the connection form of

f �ds2. We denote by H the mean curvature of f and by F � Qf � f its Hopf dif-

ferential. The pullback E
ÿ1dE of the Maurer-Cartan form t on SL�2;C� by the

adapted framing E on U is represented as follows (cf. [Br], [AA1]):

E
ÿ1dE � E

�th � E
�tm;

E
�th �

1

2

�������

ÿ1
p

r Hf�Qf

ÿHfÿQf ÿ
�������

ÿ1
p

r

 !

; E
�tm � c

2

0 f

f 0

� �

;

�1:6�

where t � th � tm is the decomposition corresponding to the reductive orthogonal

decomposition sl�2;C� � su�2�l
�������

ÿ1
p

su�2� �: hlm.

2. Kenmotsu type representation formula for surfaces in H
3�ÿc2�.

Let f : M ! H
3�ÿc2� be a conformal immersion and E � Sh : U ! SL�2;C� �

S �SU�2� the adapted framing of f on a contractible open set U of M. The framing

S � $ � E : M ! SHSL�2;C� satis®es

S
ÿ1dS � h�Eÿ1dEÿ hÿ1dh�hÿ1 � h E

�tm � �E�th ÿ hÿ1dh�
ÿ �

hÿ1

on every U , from which we obtain

S
ÿ1dS� �Sÿ1dS�� � 2h�E�tm�hÿ1 � c�a� a��;

where a is an sl�2;C�-valued �1; 0�-form de®ned on U by

a � hE12h
�f; where E12 �

1

2
�e1 ÿ

�������

ÿ1
p

e2�:

We note that a is a global section of T��1;0�MnGÿ1T �1;0�
S

2, where Gÿ1T �1;0�
S

2 is the

pullback bundle of T �1;0�
S

2 via the normal Gauss map G of f . By means of each

composition Pi � G : M ! Ĉ (i � 1; 2) in (1.5), a can be represented by

a �

ÿP1 � G �P1 � G�2

ÿ1 P1 � G

 !

o1 on Gÿ1�S 2�nfe3gHM;

ÿP2 � G 1

ÿ�P2 � G�2 P2 � G

� �

o2 on Gÿ1�S 2�nfÿe3gHM;

8

>

>

>

>

<

>

>

>

>

:

where o1 � p2f and o2 � q2f. We often denote this a brie¯y by

a � ÿG G2

ÿ1 G

� �

o;�2:1�

regarding G as P1 � G and o � o1 as the nowhere-vanishing �1; 0�-form de®ned

everywhere on M.

The Lie algebra s of S is the space of upper triangular matrices fte3 � zE12 j t A R;

z A Cg�Hsl�2;C��. Then the s-valued 1-form S
ÿ1dS is represented by
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S
ÿ1dS �

c

2
�a� a�� �

c

4
�e3; a� a��:

The h-part th and m-part tm of S
ÿ1dS are given respectively by

t 0h �
c

4
�e3; a�; t 00h �

c

4
�e3; a

��; t 0m �
c

2
a; t 00m �

c

2
a�
:

From the equation (2.11) in [AA1], a and H satisfy the equation

da�
c

4
�e3; a

��5 a
� �

� ÿ
1

2
H�a�

5 a�:�2:2�

From this equation (2.2) combined with (2.1), we obtain that

o�� o1� �
2�G�z

fc�1ÿ jGj2� �H�1� jGj2�g�1� jGj2�
dz:�2:3�

From Proposition 2.1 and Remark 2.2 in [AA1], we have the following:

Proposition 2.1. The induced metric f �ds2 on M and the Hopf di¨erential F of f

are given by

f �ds2 � �1� jGj2�2o � o;�2:4�

F � 2Gzo � dz �
4Gz�G�z

fc�1ÿ jGj2� �H�1� jGj2�g�1� jGj2�
dz � dz:�2:5�

Remark 2.2. It follows from (2.3) and (2.4) that the above 1-form o is smooth

everywhere and G is nowhere-holomorphic on M. From (2.5), Gz�w� � 0 at w A M if

and only if w is an umbilic point of f .

From the equations (2.1), (2.2) and (2.3), we also obtain the following nonlinear

partial di¨erential equation of second order for G.

Theorem 2.3. The normal Gauss map G�� P1 � G� : M ! S
2
G Ĉ of f satis®es

c�1ÿ jGj2� �H�1� jGj2�

1� jGj2
Gzz �

2fcjGj2 ÿH�1� jGj2�gG

�1� jGj2�2
GzGz � HzGz:�2:6�

Remark 2.4. If we use P2 instead of P1, o � o2 and G�� P2 � G� : M ! S
2
G Ĉ

satisfy the equations (2.3) and (2.6) in which H replaced by ÿH.

Put c � 0 in the equation (2.6), it is the GH equation for the Gauss map of a

surface in E
3 with mean curvature H (see Appendix I). Moreover, when H is constant,

the equation (2.6) implies the following harmonicity for the normal Gauss map. Hence

we call it the hyperbolic GH equation.

Theorem 2.5. For a CMC H conformal immersion f : M ! H
3�ÿc2�, the normal

Gauss map G�� P1 � G� of f is a non-holomorphic harmonic map from M into Ĉ

equipped with the following metric hc;H :

hc;H �
4jdzj2

j�1� jzj2�fc�1ÿ jzj2� �H�1� jzj2�gj
:
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This metric hc;H is regular if and only if jHj > c. When H � c (resp. H � ÿc�, hc;H has

a singular point only at the point z � y A Ĉ (resp. z � 0 A Ĉ�. When jHj < c, the

singular set of hc;H is the round circle jzj �
�����������������������������������

�c�H�=�cÿH�
p

in Ĉ .

Remark 2.6. Especially the singular metric h0 :� �1=c�hc;0 � 4jdzj2=

j�1ÿ jzj2��1� jzj2�j (for H � 0) we call Kokubu's metric ([Ko1]). The isometry group

of h0 is biggest among those of the singular metrics hc;H�jHj < c�. Namely, when

0 < jHj < c the orientation preserving isometry group of �S 2; hc;H� is given by

U�1�=fGe0g, in contrast, when H � 0 it is given by the subgroup in SL�2;C�=fGe0g

generated by U�1� and e1.

Now we can state the following:

Theorem 2.7 (Kenmotsu type representation formula in H
3�ÿc2�). Let M be a

simply connected Riemann surface with a reference point z0. Given a real-valued smooth

function H on M, let n : M ! Ĉ be a non-holomorphic smooth map satisfying the

following equation:

c�1ÿ jnj2� �H�1� jnj2�

1� jnj2
nzz �

2fcjnj2 ÿH�1� jnj2�gn

�1� jnj2�2
nznz � Hznz:�2:6 0�

De®ne a 1-form o on M as follows and assume that it is smooth on M:

o �
2�n�z

fc�1ÿ jnj2� �H�1� jnj2�g�1� jnj2�
dz:

Put an sl�2;C�-valued 1-form a and an s-valued 1-form m on M by

a �
ÿn n2

ÿ1 n

� �

o; m �
c

2
�a� a�� �

c

4
�e3; a� a��:

Then there exists uniquely a smooth map S : M ! S such that S�z0� � e0 and

S
ÿ1dS � m. Put f � �1=c�SS

�, then f : M ! H
3�ÿc2� is a conformal immersion

outside fw A Mjo�w� � 0g with prescribed mean curvature H and the normal Gauss

map G � Pÿ1
1 � n. The induced metric f �ds2 � �1� jnj2�2o � o and the Hopf di¨erential

F � 2nzo � dz.

Proof. One needs only to check the hyperbolic GH equation (2.6 0) implies the

integrability condition dm� m5 m � 0. r

Remark 2.8. When H1 0, the Kenmotsu type representation formula coincides

with Kokubu's representation formula [Ko1] for minimal surfaces in H
3�ÿc2�.

Remark 2.9. The Kenmotsu type representation formula for surfaces in H
3�ÿc2�

can be deformed to the Kenmotsu representation formula for surfaces in E
3, as the Lie

group SL�2;C� collapses into the Abelian group C
3 (cf. [UY], [AA1]).

3. Adjusted representation formulas for CMC surfaces in H
3�ÿc2�.

In this section, we concentrate on CMC surfaces in H
3�ÿc2�. We introduce the

notion of `adjusting' the normal Gauss maps to more suitable maps. The Bryant
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formula ([Br], [UY]) represents CMC c surfaces in H
3�ÿc2� by means of holomorphic

data, and the Kenmotsu-Bryant type formula ([AA1]) represents CMC H (jHj > c)

surfaces in H
3�ÿc2� by means of harmonic maps to �S 2; g0�. The Gauss data in these

formulas can be regarded as an adjustment of the normal Gauss map through the

Lawson correspondence at adapted frame level as below. With these understood, we

can also obtain the Kokubu-Bryant type representation formula for CMC H (jHj < c)

surfaces in H
3�ÿc2� by means of harmonic maps to S

2 equipped with Kokubu's metric.

The Lawson correspondence [L] is a bijective correspondence between the space of

isometric immersions with CMC H�Zc� into H
3�ÿc2� and the space of isometric

immersions with CMC H0 :�
�����������������

H 2 ÿ c2
p

into E
3. This correspondence is local or for

simply connected surfaces. Let M be a contractible Riemann 2-manifold with �1; 0�-
type coframe f, and the metric is ds20 � f � f. We denote by r the connection form

on M. Let f : M ! H
3�ÿc2� be an isometric immersion with CMC H � Hc and the

Hopf di¨erential F0 � Qf � f. Let E � Ec : M ! SL�2;C� be the adapted framing of

f , and hence it satis®es the following equation (3.1) in which t � c:

E
ÿ1
t dEt � tt :�

1

2

�������

ÿ1
p

r �t�Ht�f�Qf

�tÿHt�fÿQf ÿ
�������

ÿ1
p

r

 !

:�3:1�

Put Ht �
����������������

H 2
0 � t2

q

, then this equation (3.1) for each tZ 0 is also integrable (cf. [Bo,

Theorem 14.3]). Namely, we can obtain a smooth 1-parameter family fEt : M !
SL�2;C� j tZ 0g of the unique solution of each equation E

ÿ1
t dEt � tt (up to left

translation by a constant matrix in SL�2;C�). When t > 0, put ft :� �1=t�EtE
�
t . Here

we note that fc � f . ft : M ! H
3�ÿt2� (t > 0) is an isometric CMC Ht immersion with

the Hopf di¨erential F0, and Et is the adapted framing of ft. When t � 0, the solution

E0 : M ! SU�2� gives a harmonic map G0 � �E0� : M ! �S 2; g0�, and there exists an

isometric CMC H0 immersion f0 : M ! E
3 with the Hopf di¨erential F0 and the Gauss

map G0. The family f ftjtZ 0g of the above immersions is called the canonical 1-

parameter family associated with f � fc : M ! H
3�ÿc2� (cf. [UY]). Hence fEtjtZ 0g is

the canonical 1-parameter family of adapted framings associated with f � fc. (Here we

remark that the above E0 is not exactly an adapted framing of f0 in the sense of

Appendix I.)

Example 2. Let fc�� f � be the hyperbolic cylinder de®ned in Example 1. Put

a � coshÿ1�c=c1��� sinhÿ1�c=c2��. The canonical 1-parameter family f ftjtZ 0g of fc is

given as follows:

ft�t > 0� : R2 ! H
3
��ÿt2�;

ft�x; y� �
1

t�k2 cosh k1xÿ k1 sin k2y�
k2 sinh k1x; k1 cos k2y;

k1k2

t

� �

f0 : R
2 ! E

3; f0�x; y� � x;
1

k
cos ky;

1

k
sin ky

� �

;

where
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k �
2c

sinh 2a
�� 2H0�; k1 �

t

cosh a�t�
; k2 �

t

sinh a�t�
;

a�t� �
1

2
log

t

c
sinh 2a�

���������������������������

sinh2 2a�
c2

t2

r
 !( )

:

See Figure 2 for this deformation f ftgt A �0;c�, together with the images under the normal

Gauss maps Gt �0 < tY c) and the Gauss map G0.

Now we decompose the adapted framing Et : M ! SL�2;C� (tZ 0) into Et � Stht
corresponding to the decomposition SL�2;C� � S �SU�2�, where St : M ! S and ht : M

! SU�2�. (When t � 0, S0 � e0 and h0 � E0.) When t > 0, Gt :� �ht� is the normal

Gauss map of ft. Recall that the Kenmotsu type representation formula for f � fc
was given via the integrable equation of ®rst order for the framing Sc � Ech

ÿ1
c . It is

described by only Gc and some constants, in which both r and F0 never appear.

Since S
ÿ1
c dSc � hc�E

ÿ1
c dEc ÿ hÿ1

c dhc�h
�
c , r and F0 in E

ÿ1
c dEc appear only in the term

hÿ1
c dhc. r and F0 are independent of t�Z0�, and moreover, the manner which they

appear in the equation (3.1) is also independent of t�Z0�. Then the framing Ft :�

Ech
ÿ1
t of f � fc also satis®es an equation described by only Gt : M ! S

2
G Ĉ (via P1):

F
ÿ1
t dFt � ht�E

ÿ1
c dEc ÿ E

ÿ1
t dEt�h

ÿ1
t �S

ÿ1
t dSt�3:2�

�
1

2
�c�Hc ÿHt�at �

1

2
�cÿHc �Ht�a

�
t �

t

4
�e3; at � a�

t �;

where at � htE12h
�
t f �

ÿGt G2
t

ÿ1 Gt

 !

ot;

ot �
2�Gt�z

ft�1ÿ jGtj
2� �Ht�1� jGtj

2�g�1� jGtj
2�
dz:

In this way, we can adjust the normal Gauss map Gc of fc to each Gt and deform the

framing Sc of fc to the framing Fc satisfying the equation (3.2). If we will adjust Gc to

G0, we can obtain the framing F :� F0 � Ech
ÿ1
0 of f � fc satisfying the integrable

di¨erential equation described by only the harmonic map G0 : M ! �S 2
; g0�. When

Figure 2.
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H0 0 0, this integrable equation gives the Kenmotsu-Bryant type representation formula

[AA1, Theorem 3.2] for a CMC Hc�>c� immersion fc. When H0 � 0, we can obtain

the Bryant representation formula [Br, Theorem A] (reformulated in [UY]) for a CMC c

immersion. Hence we will call the map G0 the adjusted Gauss map of f . For example,

the adjusted Gauss map of the hyperbolic cylinder fc in H
3
��ÿc2� is given by the Gauss

map G0 of the right circular cylinder f0 in E
3, as in Example 2. We remark that, for a

non-simply connected surface M immersed in H
3�ÿc2�, the adjusted Gauss map is only

de®ned on the universal cover ~M.

We can apply the above mechanism to leading the more suitable representation

formula in the case of CMC H (jHj < c) surfaces in H
3�ÿc2�.

There exists a Lawson type bijective correspondence between the space of

isometric immersions with CMC H (0 < H < c) in H
3�ÿc2� and the space of isometric

minimal immersions into H
3�ÿc20� of c0 �

�����������������

c2 ÿH 2
p

(cf. [F ]). It follows from this

Lawson type correspondence that there exist the canonical 1-parameter family f ft : M !
H

3�ÿt2� j tZ c0g of isometric CMC Ht �
��������������

t2 ÿ c20

q

immersions with the Hopf di¨er-

ential F0, and the canonical 1-parameter family of the adapted framings Et : M !
SL�2;C� (tZ c0) of ft. For every tZ c0, we decompose Et � Stht, where St : M ! S

and ht : M ! SU�2�. (In this case, even if t & c0, S-component St never collapse to e0

as in the previous case of HZ c, that is, Sc0 2 e0.) For a conformal CMC H � Hc

(0YH < c) immersion f � fc : M ! H
3�ÿc2�, choose the framing Ft :� Ech

ÿ1
t (tZ c0).

As in the previous argument, this framing Ft gives another representation of f � fc by

means of the normal Gauss map Gt � �ht� of ft (tZ c0). Especially we will choose the

Gauss data Gc0 , which is a harmonic map to S
2
G Ĉ equipped with Kokubu's metric.

Recall that it has the biggest isometry group among the singular metrics fht;Ht
jtZ c0g.

We will also call the map Gc0 � �hc0 � : M ! S
2 the adjusted Gauss map of f . Now we

can obtain the following Kokubu-Bryant type representation formula.

Theorem 3.1 (Kokubu-Bryant type representation formula). Let M be a simply

connected Riemann surface with a reference point z0. Let n : M ! �S 2
G Ĉ ; h0 � 4jdzj2=

j1ÿ jzj4j� be a non-holomorphic harmonic map. For a nonnegative constant H such that

H < c, put c0 �
�����������������

c2 ÿH 2
p

. De®ne a 1-form o on M as follows and assume that it is

smooth on M:

o � 2�n�z
c0�1ÿ jnj4�

dz:

Put an sl�2;C�-valued 1-form a and an sl�2;C�-valued 1-form t on M by

a � ÿn n2

ÿ1 n

� �

o; t � 1

2
�c�H�a� �cÿH�a�f g � c0

4
�e3; a� a��:

Then there exists uniquely a smooth map F : M ! SL�2;C� such that F�z0� � e0

and F
ÿ1dF � t. Put f � �1=c�FF

�, then f : M ! H
3�ÿc2� is a conformal CMC H

immersion outside isolated degenerate points fz A M jo�z� � 0g with the adjusted Gauss

map n. The induced metric f �ds2 and the Gauss curvature K of f are given by

f �ds2 � �1� jnj2�2o � o; K � ÿc20 1� jnzj2�1ÿ jnj2�2

jnzj2�1� jnj2�2

" #

:
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Conversely, every conformal CMC H �jHj < c� immersion f : M ! H
3�ÿc2� is

congruent with the one constructed by a nowhere-holomorphic harmonic map g : M !

�Ĉ ; h0� as above.

Remark 3.2. For minimal surfaces in H
3�ÿc2�, the Kokubu-Bryant type repre-

sentation formula coincides with Kokubu's representation formula [Ko1], and the ad-

justed Gauss map is the normal Gauss map.

4. Construction of complete simply connected CMC surfaces in H
3�ÿ1�.

In this section, we give a construction of complete simply connected CMC H

(jHj < 1) surfaces embedded in H
3 � H

3�ÿ1� by applying the Kenmotsu type repre-

sentation formula. We note that our construction is di¨erent from those of Anderson

[An], Polthier [P] and Tonegawa [T]. It is rather similar to that in [Ak].

First, we rewrite the formula by using the upper half-space model H
3
� of H

3.

Theorem 4.1 (Kenmotsu type representation formula for CMC surfaces in H
3
�).

Let M be a simply connected Riemann surface with a reference point z0. For a non-

negative constant H satisfying H < 1, put k �
�����������������������������������

�1ÿH�=�1�H�
p

�0 < kY 1�. Let n be

a non-holomorphic harmonic map from M to Ĉ GS
2 (via Pÿ1

2 � equipped with the singular

metric

hk �
4jdzj2

j�k2 ÿ jzj2��1� jzj2�j
:

De®ne a 1-form o on M as follows and assume that it is smooth on M:

o � `�
�n�z

�k2 ÿ jnj2��1� jnj2�
dz; ` :�

2

1�H
:�4:1�

Then the path integrals

t�z� � exp ÿ2Re

� z

z0

no

� �

; w�z� �

� z

z0

t�oÿ n2o��4:2�

do not depend on any path from z0 to z in M, and

f �z� � w�z�; t�z�� � : M ! H
3
�

is a conformal CMC H immersion outside fz A Mjo�z� � 0g with the normal Gauss map

G � Pÿ1
2 � n : M ! S

2. The induced metric is given by

f �ds2 � `2 �
jnzj

2jdzj2

�k2 ÿ jnj2�2
:�4:3�

The singular set of the above metric hk is the round circle jzj � k in Ĉ . Let Dk

denote the open disk Dk � fz A C j jzj < kg equipped with the metric hk.

Remark 4.2. The diameter of Dk is ®nite, which implies that Dk is not complete.

The Gauss curvature at each point z of Dk is negative (resp. nonpositive) if 0 < H < 1

(resp. if H � 0) and decreases uniformly to ÿy as z goes to the boundary qDk.
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Let n be a nowhere-holomorphic harmonic map from the unit open disk D �
fz A C j jzj < 1g to Dk. Applying the above formula to the map n, we can construct a

simply connected CMC H surface in H
3
�. The following result guarantees the existence

of such a harmonic map and the completeness of the CMC surface constructed from it.

Theorem 4.3 ([AA4]). Given 0 < bY 1, let j be a C 1;b di¨eomorphism from qD to

qDk such that deg�j� � ÿ1. Then there exists uniquely a harmonic di¨eomorphism

n A Cy�D;Dk� satisfying the following properties:

(1) n A C 1; g�D;Dk� for 0 < g < b.

(2) njqD � j.

(3) There exists a positive constant C such that Cÿ1�1ÿ jzj2�Y k2 ÿ jn�z�j2 Y
C�1ÿ jzj2� for all z A D.

(4) There exists a positive constant d such that 0 < dY jnzjY dÿ1 on D.

Moreover, we can prove the following:

Theorem 4.4. Give a constant H such that 0YH < 1, and put k �
�����������������������������������

�1ÿH�=�1�H�
p

�0 < kY 1�. For 0 < bY 1, let j be a C1;b di¨eomorphism from qD

to qDk such that deg�j� � ÿ1. Then there exists a complete conformal CMC H

embedding f : D ! H
3
� whose normal Gauss map G is the composition Pÿ1

2 � n of Pÿ1
2 and

a harmonic di¨eomorphism n A Cy�D;Dk� satisfying n A C1; g�D;Dk� for 0 < g < b and

njqD � j. Moreover, the embedding f can be extended uniquely to a C1; g embedding

f̂ : D ! H
3
� :� f�w; t� A C � R jw A C ; tZ 0g satisfying f̂ �qD�H qH 3

� � f�w; 0� A C �
R jw A Cg.

Proof. Let n A C1; g�D;Dk�VCy�D;Dk� be the nowhere-holomorphic harmonic

di¨eomorphism with njqD � j, which is constructed in Theorem 4.3. By Theorem 4.1,

we can construct a conformal CMC H immersion f : D ! H
3
� whose normal Gauss

map coincides with Pÿ1
2 � n. First, we prove that f �D� is complete in H

3
�. It follows

from (4.3) combined with (3) and (4) in Theorem 4.3 that

f �ds2 Z
`2d2

4C2
� 4jdzj2

�1ÿ jzj2�2
:

Here 4jdzj2=�1ÿ jzj2�2 is the PoincareÂ metric on D. Then f �D� is complete in H
3
�.

Second, we prove that f can be extended uniquely up to a C1; g map f̂ : D ! H
3
�

satisfying f �qD�H qH 3
�, for all 0 < g < b. The uniqueness is obvious if such an

extension exists. (4.2) implies the following:

d�log t�z�� � ÿ�no� no�; dw�z� � t�oÿ n2o�:�4:4�

Represent z A D and n�z� A Dk as z � re
�����

ÿ1
p

h and n�z� � r�z�e
�����

ÿ1
p

y�z� in terms of polar

coordinates. Then a similar argument to [LT, Lemma 1.3] asserts that on qD

qr

qr

� �

�e
�����

ÿ1
p

h� � k jdj�e
�����

ÿ1
p

h�j; qy

qr

� �

�e
�����

ÿ1
p

h� � 0�4:5�

(see [AA4]). By (4.1), (4.4) and (4.5), then there exist a1�z�; a2�z� A C0;g�D� and
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b1�z�; b2�z�; c�z� A C0;g�D;C� such that

q�log t�z��

qr
� ÿ

1� a1�z��1ÿ r�g

1ÿ r
;

q�log t�z��

qh
� a2�z��1ÿ r�g;�4:6�

qw�z�

qr
�

t�z�f�1ÿ k�b1�z� � c�z��1ÿ r�gg

1ÿ r
;

qw�z�

qh
�

t�z�b2�z�

1ÿ r
;�4:7�

where b1�z� and b2�z� never vanish around qD. (4.6) implies that t�z� can be extended

to a C 1; g function t̂�z� on D satisfying

Cÿ1
1 �1ÿ r�Y t̂�z�YC1�1ÿ r�;�4:8�

where C1 is a positive constant depending only on g; d and C. From (4.7) and (4.8),

there exist an extension ŵ A C1; g�D;C� of w�z� and ~b1�z�; ~b2�z�; ~c�z� A C 0;g�D;C� such

that

qŵ�z�

qr
� �1ÿ k�~b1�z� � ~c�z��1ÿ r�g;

qŵ�z�

qh
� ~b2�z��4:9�

where ~b1�z� and ~b2�z� also never vanish around qD. Then we obtain a C 1; g extension

f̂ � �ŵ; t̂� : D ! H
3
� of f satisfying f̂ �qD�H qH 3

�.

Finally, we prove that f̂ is an embedding. Let p : H
3
� C �w; t� 7! w � �w; 0� A qH 3

�

be the projection, and put D :� p� f �D��. From the fact that f is a Cy immersion and

�Pÿ1
2 � n��D�HS

2
� :� f�x1; x2; x3� A S

2 j x3 > 0g, p � f : D ! D is a local di¨eomor-

phism, and then D is open in H
3
�. We also note that D � p�f̂ �D��. Suppose that

f �D� is a graph over D. It should be pointed out that the unit normal vector ®eld

along the C1; g curve f̂ jqD : qD ! qH 3
� coincides with n=jnj : qD ! C�GqH 3

��. From

the fact jnj � k on qD and (2) in Theorem 4.3, it is not hard to show that f̂ jqD :

qD ! qH 3
� is a simple closed C1; g curve. This implies that f̂ �D� is also a graph over

D. In this case, it is obvious that f̂ is an embedding. Hence, to complete the proof, it

is enough to show that f �D� is a graph over D.

Give any R (0 < R < k) and ®x it. Let WR :� nÿ1�DR� �HD� be the inverse image

of DR :� fz A C j jzj < Rg by n. Note that minfjzj j z A qWRg % 1 if R % k. By (4.6),

(4.8) and (4.9), we have

qt�z�

qh

�

qw�z�

qh
� O �k ÿ R�g� � �R % k�:�4:10�

It then follows from (4.10) that the unit normal vector ®led NR along the Cy curve

cR :� p � � f j
qWR

� : qWR ! qH 3
� almost coincides with n=jnj � n=R : qWR ! C�GqH 3

��

for R�<k� su½ciently close to k. Indeed,

NR�z� ÿ
n

R
�z�

�

�

�

�

�

� � O �k ÿ R�g� � �R % k�:�4:11�

By (4.11) combined with (2) in Theorem 4.3, it is also not hard to show that, for R�<k�

su½ciently close to k, cR : qWR ! qH 3
� is a simple closed Cy curve. Then the Jordan-

Brouwer Separation Theorem implies that there exists a relatively compact simply
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connected domain DR in qH 3
��GC� such that

qDR � cR�qWR�; qH 3
� � cR�qWR� qDR q �qH 3

�nDR�:

Since p � � f j
WR

� : WR ! qH 3
� is a local di¨eomorphism, we have DR � p� f �WR��. For

any point w A DR the set �p � � f j
WR

��ÿ1�w� is ®nite, and then p � � f j
WR
� : WR ! DR is a

covering map. Hence p � � f j
WR
� must be a di¨eomorphism because DR is a simply

connected. This implies that f �WR� is a graph over DR for each 0 < R < k. Letting

R % k, and then WR ! D, DR ! D. Therefore, f �D� is a graph over D. This

completes the proof of Theorem 4.4.

Appendix I. The Kenmotsu representation formula for surfaces in E
3.

We give another proof of the Kenmotsu representation formula [Ke] for surfaces in

E
3, which method could be extended in the case of non-¯at Riemannian 3-space forms

as in Section 2 and [AA2].

Under the identi®cation E
3
G spanfe1; e2; e3g �

�������

ÿ1
p

su�2�, the identity component

of the isometry group of E3 is given by �E 3
cSU�2��=fG1g, where E

3
cSU�2� acts E3

by

�v; h� � x � hxh� � v; �x; v A E
3; h A SU�2��:

Let f be a conformal immersion from a contractible Riemann surface M into

E
3 with the Gauss map g. A smooth map E � � f ; h� : M ! E

3
cSU�2� is called an

adapted framing of f if E�e3 � �h� � g, which exists uniquely up to the right multi-

plication of a U�1�-valued function. Let f be the dual �1; 0�-form to h�E12 on M, then

the induced metric is given by f �ds2 � f � f. We denote by r the connection form on

M. Let H be the mean curvature of f and F � Qf � f its Hopf di¨erential. The

pullback E
ÿ1dE of the Maurer-Cartan form on E

3
cSU�2� by the adapted framing

E � � f ; h� is given by

E
ÿ1dE � 0 f

f 0

� �

l hÿ1dh; hÿ1dh � 1

2

�������

ÿ1
p

r Hf�Qf

ÿHfÿQf ÿ
�������

ÿ1
p

r

� �

:�AI.1�

In order to get an equation for a framing of f which is independent of Q and r, it is

enough to remove merely the rotational part from the adapted framing E of f . Put

h � �0; h� : M ! E
3
cSU�2� and F � Ehÿ1. Then F is the framing of f given by

F � � f ; h��0; hÿ1� � � f ; e0� : M ! E
3
cSU�2�:

Since hÿ1dh � 0l hÿ1dh, we can remove the part containing Q and r from the framing

equation (AI.1) as follows:

df l 0 � F
ÿ1dF � h�Eÿ1dEÿ hÿ1dh�hÿ1 � h

0 f

f 0

� �

h�
l 0:

Then we obtain that

df � a� a�;�AI.2�

Kenmotsu type representation formula 891



where

a :� hE12h
�f � ÿg g2

ÿ1 g

� �

o; g � P1 � g : M ! Ĉ :

Here the induced metric f �ds2 is given by f �ds2 � f � f � tr�aa�� � �1� jgj2�2o � o:
Take an isothermal coordinate z on M such that f � eudz. Put o � wdz and

a � Adz. Since the mean curvature H of f is given by

H � 2eÿ2uh fzz; gi � eÿ2u tr�Azg� �
2gz

�1� jgj2�2w
;

the nowhere-vanishing �1; 0�-form o is given by

o � wdz � 2�g�z
H�1� jgj2�2

dz

unless H vanishes identically on an open subset of M. In this case, the integrability

condition for the equation (AI.2) is the following equation for the Gauss map g of the

immersion f :

H gzz ÿ
2g

1� jgj2
gzgz

 !

� Hzgz:�AI.3�

In [Ke], this equation (AI.3) is called the generalized harmonic (GH) equation.

Remark. Indeed, when H is nonzero constant, it follows from the GH equation

(AI.3) and the fact o0 0 that g is a nowhere-holomorphic harmonic map of M to

�S 2
; g0� (cf. [RV]). When H1 0, g is a holomorphic map from M to S

2 as well known

and o � wdz is a holomorphic 1-form on M.

The Kenmotsu representation formula guarantees a converse of the above argument.

Theorem (Kenmotsu representation formula [Ke]). Let M be a simply connected

Riemann surface with a reference point z0. Let n : M ! Ĉ be a non-holomorphic smooth

map satisfying the GH equation (AI.3) for a given smooth function H on M:

H nzz ÿ
2n

1� jnj2
nznz

 !

� Hznz:

De®ne a 1-form o on M as follows and assume that it is smooth on M:

o � 2�n�z
H�1� jnj2�2

dz:

Put an sl�2;C�-valued 1-form a on M by

a � ÿn n2

ÿ1 n

� �

o:

Then there exists uniquely a smooth map f : M !
�������

ÿ1
p

�su�2� � E
3 such that

df � a� a� and f �z0� � 0:
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f is a conformal immersion outside fz A Mjo�z� � 0g with prescribed mean curvature H

and the Gauss map g � Pÿ1
1 � n : M ! S

2. Moreover, the induced metric f �ds2 �

�1� jnj2�2o � o, the Hopf di¨erential F � 2nzo � dz, and the Gauss curvature K �

H 2�1ÿ �jnzj=jnzj�
2�.

Appendix II. Bonnet pairs of CMC surfaces in H
3�ÿc2� (and S

3
1�c

2�).

We give a duality for CMC surfaces in H
3�ÿc2� (and S

3
1�c

2�).

The classical Bonnet theorem implies a duality for CMC surfaces in E
3: Let f :

M ! E
3 be an immersed CMC H�00� surface oriented by a given unit normal vector

®eld N. If f has no umbilic points, then the parallel set de®ned by ~f � f � �1=H�N is

an immersed CMC H surface with the reversed orientation.

For a CMC H surface in H
3�ÿc2�, when jHj > c, one can obtain a `parallel'

CMC H surface in H
3�ÿc2� (see [PT]). When jHj < c, we can obtain a CMC H

spacelike surface in the de Sitter 3-space S
3
1�c

2� of constant curvature c2. S
3
1�c

2� is the

Lorentzian 3-space form de®ned as the pseudo-sphere in L
4 of radius 1=c:

S
3
1�c

2� � x A L
4 j hx; xi �

1

c2

� �
:

Let f : M ! H
3�ÿc2� be a conformal CMC H immersion. Take the adapted framing

E � �Eij� : U ! SL�2;C� of f on every contractible open set U of M. Put Ey � Ehy
for hy :� cosh�y=2�e0 � sinh�y=2�e3. Then the following maps are de®ned globally on

M:

f 0;y �
1

c
Ey � e0 � �cosh y� f �

1

c
�sinh y�N � expH

f �yN=c� : M ! H
3�ÿc2�;

f 3;y �
1

c
Ey � e3 � �sinh y� f �

1

c
�cosh y�N � expS

�N=c��yf � : M ! S
3
1�c

2�;

where N � E�e3 is the unit normal vector of f , expH and expS are the exponential maps

of H
3�ÿc2� and S

3
1�c

2� respectively. Assume that f : M ! H
3�ÿc2� is not totally

umbilic, that is, the Hopf di¨erential F is not identically zero. Let M denote the

Riemannian 2-manifold M with the reversed orientation.

Proposition AII.1. �1� When jHj > c, put y � tanhÿ1�c=H�. Then ~f � f0;y is a

conformal CMC H immersion from M into H
3�ÿc2� (with isolated degenerate points).

Here the induced metric ~f �ds2 � �jFj2=�H 2 ÿ c2�� f �ds2 and the Hopf di¨erential F ~f � F.

�2� When jHj < c, put y � tanhÿ1�H=c�. Then ~f � f3;y is a conformal CMC H

immersion from M into S
3
1�c

2� (with isolated degenerate points). Here the induced

metric ~f �ds2 � �jFj2=�c2 ÿH 2�� f �ds2 and the Hopf di¨erential F ~f � F.

Remark. For a conformal CMC H (jHj < c) immersion f 0
: M ! S

3
1�c

2�, we can

also obtain a conformal CMC H immersion ef 0
: M ! H

3�ÿc2� de®ned by ef 0 �

sinh y f 0 � �1=c�cosh yN 0 (y � tanhÿ1�H=c�), where N 0 : M ! H
3�ÿ1� is the unit

normal vector ®eld of f 0. Then f and
~~f are identical.
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Let G�� P2 � G� be the normal Gauss map of f : M ! H
3�ÿc2�. As in the case

of a surface in H
3�ÿc2�, we can de®ne the normal Gauss map for a spacelike surface in

S
3
1�c

2� (see [AA3]). In each case of Proposition AII.1, the map ~E � � ~Eij� :� Ey is an

adapted framing of the conformal immersion ~f from M. The normal Gauss map
~G : M ! Ĉ of the parallel surface ~f is given by

~G �
~E21

~E22

 !

� ey
E21

E22

� �

�

���������������

jH � cj

jH ÿ cj

s

G:

From Theorem 2.5, G is a non-holomorphic harmonic map to �Ĉ ; �hc;H�, where

�hc;H �
4jdzj2

j�1� jzj2�fc�1ÿ jzj2� ÿH�1� jzj2�gj
; and P�

1hc;H � P�
2
�hc;H on S

2:

When jHj > c, ~G �
�����������������������������������

�H � c�=�H ÿ c�
p

G is also a non-holomorphic harmonic map from

M to �Ĉ ; hc;H�. The metric hc;H is the regular metric on S
2, which deforms to the

standard metric 4jdzj2=fjHj�1� jzj2�2g on S
2 as c goes to 0 for a ®xed nonzero H.

When jHj < c, ~G �
�����������������������������������

�c�H�=�cÿH�
p

G is a non-holomorphic harmonic map from M

to Ĉ equipped with the following metric h 0
c;H :

h 0
c;H �

4jdzj2

j�1ÿ jzj2�fc�1� jzj2� �H�1ÿ jzj2�gj
:

The metric h 0
c;H restricted on the unit open disk deforms to the hyperbolic metric

4jdzj2=fjHj�1ÿ jzj2�2g as c goes to 0 for a ®xed nonzero H.

Appendix III. Spin version of representation formulas.

Finally, we give spin versions of the Kenmotsu type, the Kenmotsu-Bryant type and

the Kokubu-Bryant type representation formulas for surfaces in H
3�ÿc2�. We treat a

spin structure on a Riemann surface M as a complex line bundle whose square is the

holomorphic tangent bundle T �1;0�M of M, namely, a minus spin bundle of M. Kusner

and Schmitt [KS] gave a spin version of the Kenmotsu representation formula for

conformal immersions from M into E
3 (cf. [KT]), by choosing a spin structure Spin�M�

on M canonically induced from the pullback of the unique spin structure Spin�S 2� on

S
2 via the Gauss map, and by means of the lift c : Spin�M� ! Spin�S 2�. Using the

framing method, we can modify the approach by Kusner and Schmitt (see [AA2] for

details) in order to apply it to the representation formulas for a conformal immersion

f : M ! H
3�ÿc2�. Namely, we choose a spin structure Spin�M� on M induced from

Spin�S 2� via the normal Gauss map or the adjusted Gauss map, and give the condition

that the lift c : Spin�M� ! Spin�S 2� induces the integrable di¨erential equation for f .

First, we recall that SU�2� C h ! �h� A S
2 � SU�2�=U�1� is the unique principal

Spin�2�-bundle ~P on S
2, and the spin structure Spin�S 2� on S

2 (i.e. the minus spin

bundle associated to ~P) can be regarded as R
� �SU�2� excepting the image 0�S 2��GS

2�

of the zero-section.

Let M � �M; ds2� be an oriented connected Riemannian 2-manifold. Take a local

isothermal coordinate z on M with ds2 � e2ujdzj2, and put f � eudz. Let n be a smooth
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map from M to S
2, and �a; n� the (®ber metric preserving) bundle map of T �1;0�M

to T �1;0�
S

2. Take a local lift h : M ! SU�2� of n, that is, n � �h�, a A G�T��1;0�Mn

nÿ1T �1;0�
S

2� is locally described as follows:

a � hE12h
�f � ÿn n2

ÿ1 n

� �

o; where h � q ÿp

p q

� �

; n�� P1 � n� �
q

p
; o � p2f:

Let Spin�M� � Sÿ be the (unique) pullback bundle of Spin�S 2� under a. Then

Spin�M� de®nes a spin structure on M, that is, the minus spin bundle associated to the

principal spin bundle ~PM on M de®ned uniquely from ~P. The lift c : Spin�M� !
Spin�S 2� of a is described by a pair c1�z; z�

�����

dz
p

;c2�z; z�
�����

dz
pÿ �

of smooth sections of the

plus spin bundle S� associated to ~PM , where we consider c merely as the map from

Spin�M�n0�M� into R
� �SU�2�. Then the following diagram is commutative. (We

remark that c maps the zero spinor of Spin�M� to the zero spinor of Spin�S 2�.) We

call c � �c1

�����

dz
p

;c2

�����

dz
p

� the spinor representation of the bundle map �a; n� : T �1;0�M !
T �1;0�

S
2.

z
�����

f�p

jz A Spin�M� ���������!c��c1

����
dz

p
;c2

����
dz

p
�

Spin�S 2� C h�z� z 0

0 z

� �

� qz ÿpz

pz qz

� �

?
?
?
y

?
?
?
y

$ �p�z�z; q�z�z�

z2f�jz A T �1;0�M ���������!
a�h 0 1

0 0� �h �f
T �1;0�

S
2

C z2h�z�E12h�z��
?
?
?
y

?
?
?
y

z A M ���������!
n�he3h

�

S
2�GĈ� C h�z�e3h�z�� �� q�z�=p�z��;

where z A C and f� � eÿuq=qz denotes the dual to f. Then c1 � eu=2q;c2 � eu=2p, and

n�� P1 � n� �
c1

c2

; o � c2
2dz;�AIII.1�

a � ÿc1c2 c2
2

ÿc2
1 c1c2

 !

dz:�AIII.2�

The Dirac operator D= for the spinor representation c � c1�z; z�
�����

dz
p

;c2�z; z�
�����

dz
pÿ �

,

which is a smooth section of S� lS�, is de®ned by

D=c � D=
c1

�����

dz
p

c2

�����

dz
p

� �

� 2
qc2

�����

dz
p

ÿqc1

�����

dz
p

� �

:

Now we review the following proposition, which is already obtained as a part of the

proof of Theorem 2.7.

Proposition AIII.1. Let M be a Riemann surface and ~M the universal cover of M.

For a bundle map �a; n� of T �1;0�M into T �1;0�
S

2, de®ne an su�2�-valued 1-form m as

follows:
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m � c

2
�a� a�� � c

4
�e3; a� a��:

If m satis®es the integrability condition dm� m5 m � 0, there exists a smooth map

S : ~M ! S�HSL�2;C�� satisfying S
ÿ1dS � m. f :� �1=c�SS

� : ~M ! H
3�ÿc2� is a

conformal immersion with the normal Gauss map G � n.

From (AIII.2), we can rewrite the integrability condition dm� m5 m � 0 as follows,

in terms of the spinor representation c � �c1

�����

dz
p

;c2

�����

dz
p

� of �a; n�:

Im�c1qc2 � c2qc1� � 0;

c1 qc1 ÿ
c

2
c2jc1j2

� �

� c2 qc2 ÿ
c

2
c1jc2j2

� �

� 0:

8

>

<

>

:

These equations are equivalent to the following:

D=c � 2
qc2

ÿqc1

� �

� �cjc2j2 ÿ r�c1

ÿ�cjc1j2 � r�c2

 !

;�AIII.3�

where r is a real-valued function on M. Let H denote the mean curvature of f . It

follows from (2.3) combined with (AIII.1) that

c �D=c � ÿfc�jc2j2 ÿ jc1j2� �Hjcj2gjcj2;�AIII.4�

where � stands for the complex bilinear inner product on C
2. Then, from (AIII.3) and

(AIII.4), we obtain that r � c�jc2j2 ÿ jc1j2� �Hjcj2 and the following:

Proposition AIII.2. The integrability condition dm� m5 m � 0 is equivalent to the

following non-linear Dirac equation for c � �c1

�����

dz
p

;c2

�����

dz
p

�:

D=c � 2
qc2

ÿqc1

� �

� �cjc1j2 ÿHjcj2�c1

ÿ�cjc2j2 �Hjcj2�c2

 !

:

From Propositions AIII.1 and AIII.2, we obtain the following theorem.

Theorem AIII.3 (Spin version of Kenmotsu type representation formula). Let M

be a simply connected Riemann surface with a reference point z0 and H a smooth function

on M. Let c � �c1;c2� : M ! C
2 be a nowhere-vanishing C

2-valued smooth function

satisfying the equation

D=c � 2
qc2

ÿqc1

� �

� �cjc1j2 ÿHjcj2�c1

ÿ�cjc2j2 �Hjcj2�c2

 !

:

Put sl�2;C�-valued 1-forms a and m by

a � ÿc1c2 c2
1

ÿc2
2 c1c2

 !

dz; m � c

2
�a� a�� � c

4
�e3; a� a��:

Then there exists uniquely a smooth map S : M ! S�HSL�2;C�� such that S�z0� �
e0 and S

ÿ1dS � m. Put f � �1=c�SS
�, then f : M ! H

3�ÿc2� is a conformal im-
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mersion with the mean curvature H and the normal Gauss map G � Pÿ1
1 � �c1=c2�.

Here the induced metric f �ds2 and the Hopf di¨erential F are given by

f �ds2 � jcj4jdzj2; F � ÿ�c �D=c�dz � dz:

Remark AIII.4. The above formula coincides with the representation formula

obtained independently by Kokubu [Ko2].

Similarly, we can represent CMC surfaces in H
3�ÿc2� with the adjusted Gauss

maps g � n using the spinor representations of �a; n�.

Theorem AIII.5 (Spin version of Kenmotsu-Bryant type representation formula).

Let M be a simply connected Riemann surface with a reference point z0. Give a positive

constant H�Zc�, and put H0 �
�����������������

H 2 ÿ c2
p

. Let c � �c1;c2� : M ! C
2 be a nowhere-

vanishing C
2-valued smooth function satisfying the equation

D=c � ÿH0jcj2c:

Put sl�2;C�-valued 1-forms a and t by

a � ÿc1c2 c2
1

ÿc2
2 c1c2

 !

dz; t � 1

2
�cÿH0 �H�a� �c�H0 ÿH�a�f g:

Then there exists uniquely a smooth map F : M ! SL�2;C� such that F�z0� � e0

and F
ÿ1dF � t. Put f � �1=c�FF

�, then f : M ! H
3�ÿc2� is a conformal CMC

H�Zc� immersion with the adjusted Gauss map g � Pÿ1
1 � �c1=c2�.

Theorem AIII.6 (Spin version of Kokubu-Bryant type representation formula). Let

M be a simply connected Riemann surface with a reference point z0. Give a non-negative

constant H�Yc�, and put c0 �
�����������������

c2 ÿH 2
p

. Let c � �c1;c2� : M ! C
2 be a nowhere-

vanishing C
2-valued smooth function satisfying the equation

D=c � c0
jc1j2c1

ÿjc2j2c2

 !

:

Put sl�2;C�-valued 1-forms a and t by

a � ÿc1c2 c2
1

ÿc2
2 c1c2

 !

dz; t � 1

2
f�c�H�a� �cÿH�a�g � c0

4
�e3; a� a��:

Then there exists uniquely a smooth map F : M ! SL�2;C� such that F�z0� � e0

and F
ÿ1dF � t. Put f � �1=c�FF

�, then f : M ! H
3�ÿc2� is a conformal CMC

H�Yc� immersion with the adjusted Gauss map g � Pÿ1
1 � �c1=c2�.

Remark AIII.7. When H � c in the above Theorems AIII.5 and AIII.6, we obtain

a spin version of the Bryant representation formula ([Br], [UY]) for CMC c surfaces in

H
3�ÿc2�. The integrability condition is given by the linear Dirac equation D=c � 0,

which is the same as the one in the spin version of the Weierstrass representation

formula for minimal surfaces in E
3 (cf. [KT], [KS]).
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