J. Math. Soc. Japan
Vol. 53, No. 3, 2001

On the singular solutions of nonlinear singular

partial differential equations I

By Hidetoshi TAHARA

(Received Mar. 2, 2000)

Abstract. Let us consider the following nonlinear singular partial differential
equation:  (0,)"u = F(t,x,{(t0,)’0%u 74|/ <m j<m) i0 the complex domain. Denote by
S, [resp. S1y) the set of all the solutions u(z, x) with asymptotics u(z,x) = O(|¢|“) [resp.
u(t,x) = O(1/[log#|“)] (as t — 0 uniformly in x) for some a > 0. Clearly ¥}, > %:.
The paper gives a sufficient condition for ¥, = .%; to be valid.

The paper deals with nonlinear singular partial differential equations of the

form

(E) (10/0t)™u = F(t,x,{(10/0t)(8/0x)"u

j+\oc\£m,j<m)

in the complex domain. In Gérard-Tahara [1] the author has determined all the
singular solutions u(#,x) of (E) under the condition that u(z,x) = O(|¢|*) (ast — 0

uniformly in x) for some a > 0.

The present paper investigates singular solutions u(#,x) of (E) under a
weaker condition that u(z, x) = O(1/|logt|“) (as ¢ — 0 uniformly in x) for some

a>0.

§1. Preliminaries.

Notations: teC, x=(xi,...,x,)€eC", N={0,1,2,...}, and N*=

{1,2,...}. For a=(oy,...,0,) € N" we write |¢| =0y +---+a, and

() - () - )

Let me N*, N=4#{(j,2) e N x N"; j+ |a| <m,j < m}, and write the vari-

able Z as
Z ={Zjs}jsn<m e C".

j<m
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Let F(¢,x,Z) be a function in the variables (¢, x,Z) defined in a neighborhood of
the origin (0,0,0) € C; x C" x C, and assume the following:

(A1) F(t,x,Z) is holomorphic near (0,0,0);

(Ay) F(0,x,0) =0 near x =0;

(A3) a—F(O,x, 0) =0 near x =0, if |a| > 0.

0Z; ,

In this paper we always assume the conditions (A;), (Az), (Az), and we will

consider the following nonlinear partial differential equation

(E) (z%)rnu =F|tx, { (z%)j (i)au}ﬁﬁm

j<m

with u = u(t,x) as the unknown function.
For (E) we set

C(i,x) =" - Z;TF(O,X, 0)/1]

j<m Y00
and denote by 4;(x),..., 4,(x) the roots of the equation C(4,x) =0 in A. These
21(X), ..., Am(x) are called the characteristic exponents of (E).

The following is our basic problem:

PrROBLEM. Determine all kinds of local singularities which appear in the
solutions of (E).

Let us recall the result in Gérard-Tahara [I]. Denote:

« Z(C\{0}) denotes the universal covering space of C\{0};
Sy = {1 € A(C\{0}); |arg | < 0};
S(e(s)) = {te 2(C\{0});0 < |t| < ¢(argt)}, where &(s) is a positive-valued
continuous function on Rj;
D, ={xeC"lx < r}:
C{x} denotes the ring of convergent power series in x, or equivalently the
ring of germs of holomorphic functions at the origin of C".

DErFINITION 1. We denote by (), the set of all u(t,x) satisfying the following
conditions i) and ii):

i) u(t,x) is a holomorphic function on S(¢(s)) x D, for some positive-valued
continuous function &(s) and some r > 0;

ii) there is an @ > 0 such that for any 0 > 0 we have

max |u(t,x)| = O(]¢|*) (as t — 0 in Sy).

x| <r
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For the characteristic exponents 4;(x),...,4,(x), we set
u = t{i;Re 4;(0) > 0}.
When u =0, this is equivalent to the fact that Re 4;(0) <0 for all i=1,...,m
When u > 1, by a renumeration we may assume

{Rei,-(O) >0 forl<i<y,

1.1
(1.1) Re;(0) <0 forpu+1<i<m.

Then we already have:

TueOREM 1 (Gérard-Tahara [1]). Denote by ¥, the set of all O -solutions of
(E). Then we have:

(I) When u=0, we have . = {uy} where uy = uy(t, x) is the unique holo-
morphic solution of (E) satisfying uy(0,x) = 0.

(IL) When u>1, under (1.1) and the following additional conditions

1) 4i(0) # 4;(0) for 1 <i#j<u

2) C(1,0) #0,

3) C(i+j1241(0) + -+ j,44(0),0) #0 for any (i,j)e N x N* satisfying

I+ |]| >2 (where J= (jlv"'vj,u));
we have
y—O— = {U(¢la SR ¢,u); (¢17 SR ¢,u) € (C{x})ﬂ}a

where U(¢y,...,¢,) is an (@..-solution of (E) determined by (15, 9,) € (C{x})"
and having the expansion of the following form:

Uldyy..., ¢ Zu,

i>1

+ ¢1(x)l‘)'l(x) 44 ¢Iu(x)t)~u(x)

bSO A log ),

i+2m)| j| = k+2m
=1

(@1j1) #(0.1)

§2. Problems.

In we have restricted ourselves to the study of singular solutions
in O,. But, there seems to be a possibility that (E) has singular solutions which
do not belong in the class (,, as is seen in the following example.

ExampLE 1. The equation

ot \ox
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(where (¢,x) e C* and k € N*) has a family of singular solutions

\Vk
u(t,x) = (—) Lxlk, a,ce C,
k) (c—1logn)

which do not belong in the class (.
In order to include this kind of singular solutions in our framework, we
introduce the following new class of singular solutions:

DeFINITION 2. We denote by @, the set of all u(z,x) satisfying the fol-
lowing conditions i) and ii):

i) u(t,x) is a holomorphic function on S(¢(s)) x D, for some positive-valued
continuous function &(s) and some r > 0;

ii) there is an @ > 0 such that for any 0 >0 we have
max |u(t,x)| = O(Hog;ﬂa) (as t — 0 in Sp).

x| <r

Clearly we have @log > (,. Therefore, if we denote by Sy the set of all
Ojp4-solutions of (E), we have ¥,, > .%.. Hence, our next problems can be set
up as follows:

ProBLEM 1. When does ¥, = % hold?
PrOBLEM 2. When does %,, # < hold?

The purpose of this paper is to give a partial answer and a conjecture on the
problem 1. The problem 2 will be discussed in the forthcoming paper.

§3. A result and a conjecture.

In this section we will give a result on the problem 1 in a general form.

A function u(¢) on (0,7) is called a weight function if it satisfies the fol-
lowing conditions )~ u;3):

m)  p(t) e C(0,7)),

) u(t) >0 on (0,7) and w(z) is increasing in ¢,

U3) JT&ds < 00.

o ¢
By u,) and y;) the condition u(¢) — 0 (as t — +0) is clear. In this paper we
impose the additional condition on u(z):

(3.1) u(t) e C'((0,T)) and <t%) (t) = o(u(t)) (as t— +40).

The following functions are typical examples:
1 1
(—logr)®’  (~logt)(log(—log?))

(1) =
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with b > 1, ¢ > 1. Note that the function u(f) = t¢ with d > 0 does not satisfy
the condition (3.1).

DEerFINITION 3. Let u(f) be a weight function.

(1) For a>0 we denote by (,(u(r)) the set of all u(z,x) satisfying the
following conditions i) and ii):

1) u(t,x) is a holomorphic function on S(&(s)) x D, for some positive-valued
continuous function &(s) and some r > 0;

ii) for any 0 >0 we have

max [u(t, x)| = O(u(]))*) (as 1—0 in Sp).

(2) We define @, (u(t)) by

0

LemMA 1. (1) Gpy = Oy (u(0)) if u(t) = 1/(=logt)” with b > 1.

(2) If w(r) satisfies (3.1) we have O, = O1(u(t)) (= (u(1))).

Proor. (1) is clear. (2) is verified as follows. By (3.1), for any ¢ > 0 there
is a 0 > 0 such that #u/(¢) < eu(t) holds on (0,0] and therefore we have

%(t‘g,u(t)) <0 for 0<t<o.

Integrating this from ¢ to 0 we have

0 ‘u(0) <t fu(r) for 0<t<9

and so
0
(3.2) <,u5(€)> 1 <u(t) for 0<t<d.
Since ¢ > 0 is arbitrary, (3.2) leads us to the conclusion of (2). O

Denote by %, (u(1)) (resp. % (u(t))) the set of all @ (u(t))-solutions of (E)

(resp. @,(u(t))-solutions of (E)). By (2) of we have
Sy = S1(u1) = L (1))

The following theorem gives a sufficient condition for %, (u(t)) = &, to be
valid.

THEOREM 2. Let u(t) be a weight function satisfying (3.1). Then, S, (u(t))
=% is valid if

(3.3) Re4;(0) <0 for all i=1,...,m
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or if
(3.4) Re 4;(0) >0 for all i=1,...,m.
In case (3.3), by we have &, = {up} and therefore the condition
S (u(t)) = 4 is equivalent to the fact that the local uniqueness of the solution is
valid in % (u(t)) which is already proved in Tahara [4], [5].
In case (3.4) the proof of consists of the following two parts:
Ci) if ue & (u(t)) we have ue %, (u(t));
Cy) if ue S, (u(t)) we have ue %,.
The part C;) will be proved in §4 and the part C,) will be proved in §5.

CoROLLARY. [If (3.3) or (3.4) holds, we have S,y = ¥.

ReEMARK. The author believes that the following conjecture is true, though
at present he has no idea to prove this conjecture:

CONIECTURE. Sy = 4 is valid if

(3.5) ReZ;(0) #0 for all i=1,... ,m.

§4. Proof of C)).
The assertion C;) comes from the following proposition.

ProposITION 1. Let u(t) be a weight function satisfying (3.1). Assume
the condition (3.4). Then, if u(t,x)e 0. (u(t)) is a solution of (E) we have

u(t,x) € Op(u(1)).
First we note:

LemMA 2. Let 6 >0, U be a compact neighborhood of the origin of C-,
A(x) e COU), u(t,x)e C(0,6],C°(U)) and f(t,x)e C°((0,6] x U). Assume
>0, h>0, C>0, a>0 and assume the following i)~1iv):

) (1) < eult) on (0,0],

i) Rei(x)>h on U,

i) |f(¢,x)] < Cu(t)* on (0,0] x U,

iv) (t0/0t — A(x))u= f on (0,0] x U.

Then, if as < h holds we have

|u(0, x)]
#(0)"

Proor. By solving the equation iv) we see that u(t,x) is expressed by

(4.1) u(t, x)| < ( +s _Cag>,u(t)“ on (0,0] x U.

0

u(t,x) = (é)ﬂu(mu(é,x) - Jt G)A(X)f(r, x)%



Singular solutions of nonlinear PDE, I 717

and by ii) and iii) we have

£\ SNt dt
u(t. )| < (5) .01+ | (u@* S on 08 x v
Therefore, to show (4.1) it is sufficient to prove the following inequalities:
Nt (@)Y
4.2 Z) < (B2
42) (5 < (45) o 0.0
0 h

t . dt 1 p

(4.3) L (;) u(7) - < ; _agu(l) on (0,0].

The proofs of (4.2) and (4.3) are as follows. Recall that the condition i)
implies (3.2) and so

<§>8 < % on (0,0].

Since 0 < ae < h 1s assumed, we have

o e _ (r@)Y

) =<G) £<ﬂ5> on (0,0
which proves (4.2). Moreover, by the integration by parts and using the con-
dition i) we have

f—l—<>%z— -l <f5+ff3—(>“1%>d
tfh+1'uf T= h Th'uf h Th'uf H () dt

and therefore we obtain

71 . 11,
| Speraode < g Gt on (0.9
t
which leads us to (4.3). [

Next let us consider

(4.4) C<t%,x>u:f.

Since A4;(x),...,4n(x) are solutions of C(A,x)=0 in A, the equation is
written as
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(r%—il( )) (t%—im(x))u =f.

Therefore, applying m-times to this equation we obtain

LEMMA 3. Assume the condition (3.4), and assume that u, f € O, (u(t)) satisfy
the equation (4.4).  Then, if f € O,(u(1)) holds for some a > 0 we have u € O,(u(t)).

Denote

e { () (1), ) - oo ()

j<m

The equation (E) is written as

0
(4.5) C(ta,x>u:R[u].
Moreover we have

LemMA 4. If ue O,(u(t)) holds for some a >0 we have Rlu] € Op(u(t)) for
any b with 0 < b < min{2a,m}.

Proor. By [5, Lemma 11] we know that

u(t+ct) =0(u(t)) (as t — +40)

for some ¢ >0 and hence we can see that u € (,(u(1)) implies

AAAY . .
<t5> (6x>ue(0( (), j+|of <m and j<m

(see the proof of [5, Theorem 3]).
Therefore, by (Aj), (A2) and (Aj3) we have

Rlu] = F(t,x,0)

CY o[ (L)

JHlal<m =T

|ot|>0
AVEAN ooV
c 2 ol () (e () )
JHlel<m k+|Bl<m
j<m k<m

= O(|1) + O(11) O(u(|))*) + O(O(u(|t)*) x Ou(|H))).



Singular solutions of nonlinear PDE, I 719

Since |f| = O(u(]?))™) (as t — 40) is already proved in (3.2) with ¢ =1/m, we
obtain the conclusion of [Lemma 4. ]

Now, by using Lemmas 3 and 4 let us prove Proposition 1.

PROOF OF PrOPOSITION 1. Let ue (. (u(f)) be a solution of (E). Then, by
the definition of (), (u(t)) we have ue @,(u(t)) for some a>0. Choose a
sequence ao,dai,...,ay such that

1) aqp=a<a <ay<---<ay=m, and

i) a;y) <min{2a;,m} for i=0,1,...,N — 1.

Since u e @,,(u(1)) is known, by Lemma 4 we have R[u] € (, (u(t)) and
therefore by applying Lemma 3 to the equation C(¢0/0t,x)u = R[u] we have
ue O, (u(t)). Then, by Lemma 4 we have R[u] e, (u(f)) and so applying
Lemma 3 again to C(t0/dt,x)u = Ru] € 0,,(u(t)) we have ue 0, (u(1)).

Thus, by repeating the same argument as above we obtain u e @, (u(t)).
Since ay = m, this completes the proof of Proposition 1. ]

§5. Proof of ().
The assertion C,) comes from the following proposition.

PROPOSITION 2. Let u(t) be a weight function satisfying

5.1)  ult)e CY(0,T)) and <t%)(l):0(,u(l)) (as t — +0).

Assume the condition (3.4). Then, if ue 0,(u(t)) is a solution of (E) we have
ue @+.

We will prove this proposition from now. By (5.1) we have

(5:2) tuy (1) < Au(r) on (0,T)
for some 4 > 0. Also, by (3.4) we can find 4 >0 and R > 0 such that
(5.3) Reli(x) >2h >0 on Dg, i=1,...,m.

Without loss of generality we may assume that 0 < 4 < 1 holds.

Let u € O,,(u(t)) be a solution of (E), and assume that u(¢, x) is holomorphic
on S(e(s)) x Dyg where &(s) is a positive-valued continuous function and R > 0 is
sufficiently small. Since the condition (5.1) is assumed, by [S, Lemma 11| we
have u(t+ ct) = O(u(t)) (as t — 40) for some ¢ > 0 and by the same argument
as in the proof of [S, Theorem 3] we have

ANEAY : ,
<ZE> (5) ue Op(u(t)) for j+|af <m and j < m.

Therefore, for any 6y > 0 we can find 6 >0 and M > 0 such that
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(5.4) <z%>j ((%)au(z, X)

for j+ |af <m and j<m

where Sy, (0) = {t € Sp,;0 < |t| <}.
Our purpose is to show the following: if Ry > 0 is sufficiently small, for any
Oy > 0 we can find 6, >0 and M, > 0 such that

< Mu(jt)™ on Sy,(6) x Dr

(5.5) u(t,x)] < My|t|" on Sy, (61) x Dg,.

The rest part of this section is used to prove this estimate.
Denote

On = <t% — /1m(0)> <t% — Am_1(0)> ce (z% — /11(0)>.

Since u € 0,,(u(?)) is a solution of (E), we have

(5.6) Onu = F(t,x,0)

oF o\
+ Z(az, 0 " 0Z (0’0’0)) <15) !

j<m
oF AR
Jlef<m =
|e] >0
oV (oY oN/oV
I (CIOEREION
JHel <m k+|pl<m
j<m k<m
a o
F(t,x,0) +Za]tx@u+ Z b 4(t,x)0O (8x> u,
j<m JHal<m

j<m
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satisfying a;(0,0) = 0, and b; ,(¢,x) (j+ |«| <m, j < m) are functions in 0,,(u(z)).
Note that a;(t,x) (j < m) are independent of u, but b; ,(¢,x) (j+ |o| <m,j < m)
depend on u.

Introduce the following notation. For a formal power series f(z,x) in x
with coefficients in C°((0, T)) of the form

where a;(t,x) (j < m) are holomorphic functions in a neighborhood of (0,0)
(J

SDIRAL 1.(1) € C°((0, 7))

aeN"

we write

Lol = > 1) —p‘“'

aeN" |O(|'

(which is a formal power series in p with coefficients in C°((0,7))). In case
f(t,x) is a function on (0,7) x Dg continuous in ¢ and holomorphic in x, by
using the Taylor expansion of f(#,x) in x we can define [|f(7)], in the same
way. Note that the following majorant relation holds:

()

Take any 0p > 0. Let R >0 and 0 > 0 be the ones in (5.4). Note that ¢
depends on 6y but R is independent of €. For (j, k) e N x N satistfying j+ k <
m—1 we set

0 :
< IO, i=Lem

p

. _ ko ; iau V=10 7
(57 butn.0) = 0 x 3|02 uee’ ™|
(58) ¢j7k(t“0’ 0) = Jf(%)Rele(O)ﬂ(T)k
X v 2 au zeV 10
{Zk @”(5)“) e,

+kAZ

o) =k

O, (%) u(re‘/__w) } ?
p

Then, by the argument similar to the proof of [4, Lemma 3] we have
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LEMMA 5. ;4 (8,0,0) (j+k <m—1) and ¢, (t,p,0) (j+k<m—1) are
well-defined in C°([0,0] x [0, R] x (—0o,00)) and satisfy the following properties

(1)~(4) on {(t,p,0);0<t<0,0<p<R and |0] < Oy}:
(1) For any (j, k) we have

\2h
Uat.0,0) < (5) 40.0.0) + ¢4 (2,p.0).

(2) When k >0, we have
0
_IE—I_zh ¢j,k(t7p70)
0 0
< I’lﬂ(l) %lpj—o—l,k—l(tvpv 9) + nkAﬂU)%‘ﬂj,k—l(LP? 0)

(3) When k=0 and j=0,1,...,m—2, we have

0
<_ZE + 2h> $i.0(t,0,0) <Y1 0(t,p,0).

(4) When k=0 and j=m— 1, we have

0
<_ta + 2h> ¢m—1,0(t7p7 9)

< Kt + (d(l,p) + b(t7p)) Z wj,O(tapa 0)

j<m

+ Bu(1) Z U 4 (1,,0)

]+k<m 1

for some K >0, B> 0, a(t,p) € C°([0,5] x [0, R]) with a(0,0) =0, and b(t,p) €
C°([0,0] x [0, R]) with b(t,p) = O(u(t)™) (as t— +0 uniformly in pel0,R]).
Moreover, by (5.6) we see that K and a(t,p) are independent of 0.

ProOOF. Set

a o
w (1, %) = u()* 0 (a) u(teV 1 x).

Then we have
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(f% = i1 (0)> uj i (1, X)

= (1) 6j1 (%) u(te’=" x) + kul(0u(1) ' 6 (%) u(teV =", x)

and by integrating this from ¢ to 6 we have

w (1, x) = <§>ij+1(0)

9 [ATI'H(O) k a * \/_—19
O e (£ utee )

k()0 (£ e )} £

uj (0, x)

0x T

Therefore by taking the norm and by using (5.2) and (5.3) we obtain

ooy () utee™| = s,

P

t)Re 2+1(0)

<(3)  lm@l,

Y -
011 <5) ”(Te\/_w)

p

0; <%> u(re‘/jg)

}df
o) T

0)( £ ) utee’ ™

}df
o T
which leads us to the property (1).
Denote: ¢; = (1,0,...,0),...,e,=1(0,...,0,1) e N". If |a|] >0 we have

-G
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for some i =i, and
O, < OCu(te\/:—m)
0x

for any / =0,1,...,m and any p € [0, R].
When k >0, by using (5.3) and we can verify the property (2) as
follows:

(5.9) ‘ 0 (ﬁ>ﬂiu(teﬁ@)

ox

3
< —
p ap p

0
(_la_z n 2h) b,(1.0,0)

0
< <—15 +Re /lj+1(0))¢j,k(l,,0; 0)

0, (%) u(te¥ 1%

J

a o—e; -
041 (&) u(te*/_w)

p

0; (%) u(te*/jg)

+kAZ%

J

When k=0 and j=0,1,...,m— 2, the property (3) is verified by:

0 0
< nu(t) %lpj—i—hk—l (t,p,0) + nkAu(t) %%71(—1 (t,p,0).

0 0
<—za + 2h) 8;0(t,p,0) < (_t& +Re (0)> dj.0(2,p,0)

= (|0 1u(te’ "), = Yy1.0(1, . 0).

When k=0 and j=m —1 we have

5100 (r5428)dosoltr.0)

< <—r% +Re zm(0)>¢m1’0(z,p, 0) = H@mu(te\/__w)Hp.
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On the other hand, by (5.6) we know that the equation (E) is written as

O,,u = F(t,x,0) + Z(aj(t, x) + bj o(t,x))Oju

Jj<m
+ Z b; 4(t, x)O; iO(u
, PETTIEIN Ox
JHo[<m
|ot|>0

O(lt) + Y _(O(Jt] + [x]) + O(u(|1))")) Oju

j<m

3 o)+ ) u

Jtlo|<m
|ot|>0

Therefore, by taking the norm and by using we have

1O u(te’=10)],

< Kt + (0(t+p) + O(u(0)") Y |@u(te’ 1),

j<m

my 0 ON T
£ Y oun L @(5) (i)
JHlol<m P
|o|>0
< Kt + (O(t+p) + O(u(t)™) Y " ¥;0(t,p,0)
J<m
SRR
]+k<n71

Hence, combining this with (5.10) we obtain the property (4).

Next, we choose g; >0 (j=0,1,...,m—1) so that

5.11 <> j=0,1,...,m-2
(5.11) oy 2

hold and then we choose d, > 0 and R, > 0 sufficiently small so that

Om—1

a(l‘,p)<ﬁ j=0,1,...,m—1,

5.12
(512 . 3

725
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Um 1 h .
1 — =0,1,... —1

hold on {(¢,p);0 <1<6,,0<p<R,}. Since a(t,p) is independent of O, we
may assume that R, > 0 is also independent of 6.
Set

Zp? Z %klpa

Jjtk<m—1
[ p7 ZGJ¢] 0 t p7 + Z ¢j,k(l7p7 0)
j<m J+k<m—1

k>0

Then we have:

LEmMMA 6. There are C; >0 and C, > 0 such that
0
(5.14) <—ta—t+h> D(t,p,0)

1\ 0
< ou1Kt+ C (5> (1 + u() %> Y (0,p,0)

i<15(t,p, 0)

+ CZ:u(t) ap

holds on {(¢,p,0);0 <t <03,,0<p <Ry and |0] < Op}.

ProOF. By using (2)~(4) of we have

0
(—z& + 2h> D(1,p,0)
< Z oiii1.0(,p,0)

j<m-2

+ O 1Kt + 01 (Cl(t,p) + b(t,p)) Z wj,O(Z’pv 0)

j<m

+ Cau(r) Z U 4 (1,,0)

]+k<m 1

for some C; > 0, and therefore by (1) of [Lemma 3, [5.11), [5.12] and [[5.13] we
obtain
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0
(—z& + 2h) D(1,p,0)

h t 2h 1
< Z 50j+1l<5> l10‘/'+—170(57p70)+¢j+170(tvp70) + om-1K1

j<m-=2

+ 3 (343)7| 6 a0+ 4,0000.0)]

0 1\
+ CSﬂ(t)a_p Z l(g) lpj,k(énoa 0) + ¢j,k(tap7 (9)
h h h
< <§+Z+Z> Cb(t,p, 9) + 01Kt

h
e (;’5)2 (1 + u(t) %) w(o,p,0) + Cz,u(t)%@(l‘, p.0)

for some C; >0 and C, > 0. This immediately leads us to (5.14). O]

Now, let us complete the proof of [Proposition 2. Set

C 0
M> =a,1K +5—2}1 sup ((1 +M(52)%) ¥ (s, p, e)).

0<p<R,
0]<0o
Then, by we have
J 0 2h
(5.15) _ZEHZ — Czﬂ(l)% O(t,p,0) < My(t+17")

on {(¢,p,0);0<t<,0<p<R, and |0] < Op}.

COMPLETION OF THE PROOF OF PROPOSITION 2. Take any R; such that 0 <
R, < R, and then choose d; > 0 so that 0 <, < dJ, and

)
Rl-l—CzJ '[@dSSRz.

0

Define the function p(¢) by

t

p(t):Rl—I—CZJ @ds for 0 <t <.

0o ¢
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Then, R < p(t) < R, for 0 <t <y, (dp/dt) = Cou(t), and p(t) is increasing in
t. Moreover we have

(5.16) [0,01] x [0,R;] = {(£,p);0 <t <01,0<p<p(t)}.
Set
(5.17) o(t,0) = @(t,p(t),0) for 0 <<, and |0] < 6.

By we have
0 B 0 0P dp()
<—ta—t+/’l>(ﬂ(l, 0) = ( la_t+h> 6p i

0 0
= —t—+h— —|®
( t@t h Cz,u(t)a )

< My(t+ 12,

that 1s

(-;%HI)W, 0) < My(1+1*), 0<t<d; and |0] <0y

which is equivalent to

0 1 1
_a_t(t—h(p(l, 0)) <M, (Z—h+m>, 0<t<d; and |9| < 0y.

Since 0 < & <1 is assumed, by integrating this from ¢ to ; we have

/ 51 —h 5}1
To(,0) < 07"9(31,0) + My Lo

l—h h
and hence
(5.18) o(1,0) < M3t", 0 <t<6 and |0] < 0
where

=L ap (@ p.0) [ 40

= u s B

P o gy, P N\ T=r"h
|9|<9()

Thus, if we notice the fact that @(z,p, ) is increasing in p, by [5.16), (5.17) and
(5.18) we obtain

(5.19) (1, p,0) < Mst"
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n {(1,0,0);0 <1<3,0<p<R and || < 6).
Finally, let us show that the estimate (5.5) follows from [5.19). Note that

wwu%wzwmwjmu

holds. Therefore, by [5.19] and (1) of [Lemma 3 we have
mmwﬁ%n<(§ Ju(@e” ™), + do.o(t,.0)
P=\s p 0,085 /5

l 2 V-16 M3 h
s(5> sup [Ju(@e” )|, + =1

0<p<R, a0
|9|<9()
on {(t,p,0);0<1<6,,0<p<R; and |0] < Op}. This implies (5.5).
Since R; > 0 is chosen independently of 0p, this completes the proof of
IProposition 2. [
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