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Abstract. We give a necessary and su½cient condition for the existence of global

solutions of some partial di¨erential equation which is locally solvable and give some

applications in complex analysis of several variables.

§0. Introduction.

In this paper, we deal with the problem on the existence of global holo-

morphic solutions of some partial di¨erential equation on a Stein domain of C n�1

which is locally solvable. About this problem Wakabayashi [9] in 1968 pointed

out that equation qu=qx1 � f has no global solution even in a simply connected

Stein domain or a Runge domain in C n in general. In 1972, Suzuki [8] gave a

necessary and su½cient condition for the existence of global solutions of the same

equation for an arbitrary f . In 1981, Wakabayashi gave a necessary and suf-

®cient condition for the existence of global solutions of equation Du � f for an

arbitrary f , where D is an arbitrary nonsingular holomorphic vector ®eld on a

Stein manifold of dimension 2. The study was unpublished (see [10]).

Now we deal with an equation q� f1; . . . ; fn; u�=q�x1; . . . ; xn�1� � g which is

more general than qu=qx1 � f but less general than Du � f . The integral curves

of this equation are prime sets of f � � f1; . . . ; fn� (see De®nition 1.2) and this

equation is regarded as a family of holomorphic 1-forms on the prime sets of

f . And we give a necessary and su½cient condition for the existence of global

solutions of such equation for an arbitrary g (Theorem 2.1). This result include

that of Suzuki as a special case. Finally, we give some applications to

Aut�C n�1� in algebraic category (Theorem 3.2 and 3.3) and the existence of

an immersion of some Stein holomorphic family of open Riemann surfaces

(Theorem 3.5).
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§1. Preliminaries.

Let X be a connected complex manifold of dimension n� 1 and f1; . . . ; fn
be holomorphic functions on X. We set D � f�y� � �y1; . . . ; yn� A C

n
; y � f � p�;

p A X where f � � f1; . . . ; fn�g.

Definition 1.1. We say that the triple �X ; f ;D� satis®es condition �a� if

f ÿ1�y� is a pure 1 dimensional analytic subset of X for every y A D.

In this paper, we consider only the triple �X ; f ;D� which satis®es condition

�a�.

Definition 1.2. An irreducible component S of f ÿ1�y� will be called a

prime set (of f ).

Let fSngn�1;2;... be a sequence of mutually distinct prime sets, that is Sn VSm

0q �n0 m�.

Definition 1.3. The following set E will be called a limit set of fSng.

E � fp A X ; for every neighborhood U�p� of p in X, U�p�VSn 0q for

in®nitely many ng.

H. Shiga showed the following

Lemma 1.4 (Proposition 1 in [7]). If the limit set E of fSng contains a point

p0 of some prime set S0 such that there is no other prime set through p0, then

S0 HE.

Remark 1.5. In case n � 1, above lemma is true even for a point p0
which is an intersection point with other prime sets by Lemma 1 of [5]. But

if nb 2, it is not true any more. For example (see Example 1 in [7]), let X �

C�x1; x2; x3�, f1 � x1x2 and f2 � x3. Then �X ; f ;C 2� satis®es condition �a�.

Now let Sn � fx1 � 0; x3 � 1=ng, S0 � fx2 � x3 � 0g, then the limit set E of

fSngn�1;2;... contains �0; 0; 0� A S0 and ENS0.

Definition 1.6. Let fSngn�1;2;... be a sequence of mutually distinct prime

sets and S0 a prime set. We say that the sequence Sn converges to S0�Sn ! S0�

if there is a point p0 A S0, which is not an intersection point with other prime

sets, such that dist�Sn; p0� ! 0 �n ! y�.

It is easy to see that Sn ! S0 independently of the choice of such a point p0
by Lemma 1.4.
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Definition 1.7. A prime set S0 is regular if for every fSng such that

Sn ! S0 �n ! y� the limit set E of fSng is equal to S0.

Definition 1.8. If the matrix �qfi=qxj��i�1;...;n; j�1;...;n�1� is of rank n for every

point p of X, where �x1; . . . ; xn� is a local coordinate of p (we call it rank

condition in short) and every prime set of f is regular, we say that �X ; f ;D�

satis®es condition �b�.

We notice if �X ; f ;D� satis®es rank condition, �X ; f ;D� satis®es condition

�a�. We regard a prime set S as a point q and we denote by V the set of all such

points. We shall de®ne a neighborhood of q as follows: Let Sq be the prime set

corresponding to q. From rank condition Sq does not intersect with other prime

sets. Let the tube SW be the all prime sets passing through a neighborhood W

of an arbitrary point on Sq in X and U�q� be the points of V corresponding to

the prime sets passing through SW . It is easy to see that V is a topological

space with the neighborhood system fU�q�; q A Vg.

Proposition 1.9. If �X ; f ;D� satis®es condition �b�, V is regarded as an

unrami®ed Riemann domain over D and �X ; f ;V� is regarded as a ®ber space

whose ®bers are irreducible.

Proof. First we show V is a Hausdor¨ space. Let q and q 0 be points in V

such that q0 q 0. We take a su½ciently small neighborhood W1 of some point

on Sq in X such as Sq 0 VW1 � q. Let U�q� be the points of V corresponding to

the prime sets passing through W1. Now we can take a neighborhood W2 of

some point on Sq 0 in X su½ciently small such that each prime set passing through

W2 does not pass through W1. Because if not, there is a sequence of mutually

distinct prime sets fSng such that the limit set E of fSng contains Sq 0 (by Lemma

1.4) and E VW1 0q. It is a contradiction because E � Sq 0 since Sq 0 is regular

and Sq 0 VW1 0q. When we set U�q 0� to be the points of V corresponding to

the prime sets passing through W2, we conclude U�q�VU�q 0� � q.

Secondly we de®ne a projection map of V to D, where D is a domain in C n

(because f is an open map from condition �a�). From rank condition there is

a neighborhood W in X at every point p A X , an integer j and a biholomorphic

map F of W into D� C such as y1 � f1; . . . ; yn � fn; yn�1 � xj. For a point

q 0 A U�q� which is de®ned from SW we correspond a point y � f �Sq 0�. Such

map p : V ! D is well de®ned and locally homeomorphic. r

Examle 1.10 (see Example 3 in Fujita [3]). Let X � f�x1; x2; x3; x4� A C
4
;

x1x3 � x2x4 ÿ 1 � 0g, y1 � f1 � x1 and y2 � f2 � x2. Then X is a Stein mani-

fold and f1 and f2 are holomorphic functions on X. Then D � C
2 ÿ �0; 0� and

for every point y A D f ÿ1�y� is an irreducible 1 dimensional analytic subset of
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X. It is easy to see that �X ; f ;D� satis®es condition �b�. We note that D is not

pseudoconvex.

The following proposition follows from De®nition 1.7.

Proposition 1.11. If �X ; f ;D� satis®es rank condition and V is a Hausdor¨

space, then �X ; f ;D� satis®es condition �b�.

§2. Main theorem.

In this section we assume that X is a Stein (univalent) domain of C n�1 of

n� 1 complex variables x1; . . . ; xn�1 and f1; . . . ; fn are holomorphic functions on

X. For a given holomorphic functions g�x� on X, we consider the following

partial di¨erential equation:

q� f1; . . . ; fn; u�

q�x1; . . . ; xn�1�
� g; �1�

where u is an unknown function. We show the following

Theorem 2.1. The equation (1) has a global solution u for an arbitrary g on

X, if and only if

(a) �X ; f ;D� satis®es condition �b�;

(b) every prime set of f is simply-connected;

(c) V is a Stein manifold.

Lemma 2.2. If conditions (a), (b), (c) are satis®ed, equation (1) has a global

solution for an arbitrary g.

Proof. Let p � �x0� be an arbitrary point of X and y0 � f �x0�. From

rank condition there is an integer j such that

Dj � det
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0 0

at p. Then there is a su½ciently small neighborhood W of p such that

F : y1 � f1; . . . ; yn � fn; yn�1 � xj is a biholomorphic map of W to a neigh-

borhood of �y0; x0
j �. We transform (1) by F as follows:

q�y1; . . . ; yn; u�

q�y1; . . . ; yn; yn�1�

q�y1; . . . ; yn; yn�1�

q�x1; . . . ; xn�1�
� g�x1; . . . ; xn�1�;
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that is,
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� g:

Thus,

�ÿ1� j�n�1
Dj

qu

qyn�1
� g:

Therefore, the restriction of equation (1) to a prime set S passing through p

de®nes a holomorphic 1-form on S with local coordinate xj � j � 1; . . . ; n� 1� of

the form

du �
g

�ÿ1�n�2
D1

dx1 �
g

�ÿ1�n�3
D2

dx2 � � � � �
g

�ÿ1�2n�2
Dn�1

dxn�1; �2�

because S is a characteristic curve which satis®es dx1=D1 � ÿdx2=D2 � � � � �

�ÿ1�n�dxn�1=Dn�1�. So we can regard equation (1) as an analytic family of

holomorphic 1-forms on V.

Now, �V ; p;D� is an unrami®ed Riemann domain by Proposition 1.9. By

virtue of the Cauchy-Kovalevskaya theorem, for every point p A X there is a

neighborhood W and a local holomorphic solution uW in W of (1). We take W

small if necessary such that a neighborhood U�q� of q A V corresponding to the

prime set Sq passing through W is an univalent domain over D. We continue

uW analytically along each prime set passing through W. As equation (1) de®nes

a holomorphic 1-form along each prime set and each prime set is simply-

connected, uW can be continued single-valued and analytically on SW by

Hartogs' theorem, that is, if a function h�x1; . . . ; xn�1� is holomorphic on jxn�1j <

R when we ®x �x1; . . . ; xn� in jxij < r �i � 1; . . . ; n� and holomorphic on jxij < r

�i � 1; . . . ; n� 1� �r < R�, then h is holomorphic on jx1j < r; . . . ; jxnj < r, jxn�1j <

R. We set u for uW . We consider U 0 � U�q 0� similar as U � U�q� such that

U�q�VU�q 0�0q and a single-valued holomorphic solution u 0 on SW 0 . Since

q� f1; . . . ; fn; uÿ u 0�=q�x1; . . . ; xn�1� � 0 on SW VSW 0 , there is a holomorphic

function j on p�U�V p�U 0� such as uÿ u 0 � j� f1; . . . ; fn� on SW VS 0
W . Let
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fUigi�1;2;... be a countable open covering of V and ui be the solution on SWi

as above. When Ui VUj 0q and ui ÿ uj � jij� f1; . . . ; fn�; fjij � p : Ui VUjg is a

cocycle. Since V is a Stein manifold, such a cocycle is a coboundary, that is,

there are holomorphic functions ji on Ui such that ji ÿ jj � jij � p on Ui VUj

0q. If we set u � ui ÿ ji � p
ÿ1� f1; . . . ; fn� on SWi

, u is a global solution of (1)

in X. r

Lemma 2.3. If equation (1) has a global solution for an arbitrary g, condition

(b) is satis®ed.

Proof. Since equation (1) has a global solution for g1 1 by the assumption,

�X ; f ;D� satis®es rank condition and condition �a� consequently. Therefore we

can consider (1) as a family of holomorphic 1-forms on prime sets as (2). If

there is a prime set S0 which is not simply-connected, there is a holomorphic

1-form aj�xj� dxj whose integral on S0 is multi-valued by the Behnke-Stein

theorem in [1]. If we set

a1�x1��ÿ1�n�2
D1 � a2�x2��ÿ1�n�3

D2 � � � � � an�1�xn�1��ÿ1�2n�2
Dn�1;

it represents a holomorphic function g0 on S0. As a consequence of Cartan's

Theorem B, there is a holomorphic function g on X such that gjS0
� g0 because

S0 is a nonsingular analytic subset of a Stein domain of X. It is easy to see

that equation (1) for such g has not any single-valued holomorphic solution

on X. r

We denote by O the sheaf of holomorphic functions.

Lemma 2.4 (cf. Suzuki [8]). If �X ; f ;D� satis®es condition �b� and equation

(1) has a global solution for an arbitrary g, H 1�V ;O� � 0 and V is a Cousin-I

domain consequently.

Proof. Let L be a linear di¨erntial operator on X such that Lu � g means

equation (1). We denote by O
L the sheaf of local solutions of Lu � 0 on X.

Since Lu � g is locally solvable, the sequence of sheaves on X

0 ! O
L !

i
O!

L
O! 0

is exact. Since X is a Stein domain of C n�1, we have H p�X ;O� � 0 for pb 1 by

Cartan's Theorem B. Then we have the exact sequence as follows:

0 ! G�X ;O
L� !

~i
G�X ;O� !

~L
G�X ;O� ! H 1�X ;O

L� ! 0:

Therefore ~L is onto if and only if H 1�X ;O
L� � 0. Since ~L is onto if and only if

equation (1) has a global solution for an arbitrary g, H 1�X ;O
L� � 0. Since we

can consider naturally such as H 1�V ;O�HH 1�X ;O
L�, H 1�V ;O� � 0. r
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Assume that equation (1) has a global solution u0 for g1 1. Let F be

a locally biholomorphic map de®ned by y1 � f1; . . . ; yn � fn; yn�1 � u0. Let Y

be an unrami®ed Riemann domain over C n�1 de®ned by F. The domain Y is

biholomorphic to X and a Stein manifold. Now we transform (1) by F, then we

have

qu

qyn�1
� g: �3�

We can consider (3) as a family of holomorphic 1-forms on each prime set S

with coordinate yn�1 with parameter t, where S is an irreducible component of

Fÿ1�t� and t � �y1; . . . ; yn� A D � f�y� A C n
; y1 � f1; . . . ; yn � fng, so that D is an

unrami®ed domain over C n. Let y1 � f 1 � y1; . . . ; yn � f n � yn and consider

�Y ; y;D� � �Y ; f ;D�.

It is easy to see the following

Lemma 2.5. To prove that conditions (a), (b), (c) are satis®ed when equation

(1) has a global solution for an arbitrary g, it is enough to prove that conditions (a),

(b), (c) for �Y ; f ;D� and V are satis®ed when equation (3) has a global solution for

an arbitrary g.

Lemma 2.6. If equation (3) has a global solution for an arbitrary g, V is a

Stein manifold.

Proof. We shall show the lemma by the following four steps 1), 2), 3)

and 4).

1) We show �Y ; f ;D� satis®es condition �b� in case n � 1. Assume that

there are prime sets S1 and S2 and a sequence of mutually distinct prime sets

fSngn�1;2;... such that Sn converges to S1 and S2 simultaneously. Let pi be a

point of Si �i � 1; 2�. We take a su½ciently small neighborhood W1 of p1 in Y

such that SW1
corresponds to an univalent domain of V over D. Let �y01 ; y

0
2� �

F�p1� and G1 � Fÿ1jy2�y0
2
VW1. The line G1 is transversal to prime sets passing

through W1. We give initial values on G1 with a function 1=�y1 ÿ y01� where we

regard y1 as a coordinate of G1 and continue the initial value constantly to each

prime set passing through G1. We denote such function by h0. The function h0
is meromorphic on SW1

and its pole divisor is S1. We give a Cousin-I data such

as h0 on SW1
and 0 on Y ÿ S1. Since Y is a Stein manifold, there is a solution

h of the Cousin-I problem. When we set g � qh=qy2, g is holomorphic on Y

because h � h0 � k on SW1
where k is a holomorphic function and qh0=qy2 � 0.

Then equation qu=qy2 � g has no global solution on Y. Because, if u is a global

solution, q�uÿ h�=qy2 � 0 and �uÿ h�jSn
is constant. It is a contradiction that

limSn C pn!p1 juÿ hj � y and limSn C p 0
n!p2 juÿ hj < y. It is absurd because qu=qy2

� g has a global solution for arbitrary g from the assumption. So �Y ; f ;D�
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satis®es the condition �b� and V is regarded as an unrami®ed Riemann domain

over DHC by Proposition 1.9. It is well known that V is a Stein manifold.

2) Now let n > 1 and assume that V is a Hausdor¨ Stein manifold for Y

of dimension nÿ 1 such that for every hyperplane T in C
n, any connected

component Y 0 of f
ÿ1
�DVT� is a Stein submanifold of Y. When we consider

equation (3) 0 which is de®ned by restricting (3) to Y 0, we can consider (3) 0 as a

family of holomorphic 1-forms on the prime sets St with coordinate yn�1 where

t � �y1; . . . ; yn� A DVT . Since (3) 0 has a global solution for an arbitrary g

because (3) has a global solution for an arbitrary g and Cartan's Theorem B

holds good for Y and Y 0, V 0 is a Hausdor¨ Stein manifold by the assumption of

induction, where V 0 is a topological space de®ned from �Y 0; f jY 0 ;DVT�.

3) Now, we show that V is a Hausdor¨ space. Let q1 and q2 be distinct

points of V. We must ®nd disjoint neighborhoods U�q1� and U�q2�. Since p,

which is the projection of V to D in Proposition 1.9, is a local homeomorphism,

we need only to consider the case p�q1� � p�q2�. Choose U�q1� and U�q2� suf-

®ciently small such that pjU�q1�
and pjU�q2�

are homeomorphisms of U�q1� and

U�q2� onto an open ball B in C n. Suppose that there exists a point q3 A U�q1�V

U�q2�. Let T be a hyperplane in C n containing p�q1� � p�q2� and p�q3�. Since

each connected component of pÿ1�T� (that is V 0) is a Hausdor¨ space and BVT

is connected, we conclude that U�q1�VV 0 � U�q2�VV 0 and q1 � q2. This is a

contradiction.

4) Finally we shall prove the following statements.

If V is an unrami®ed Riemann domain over C n of n complex variables

x1; . . . ; xn with projection p and satis®es the following conditions:

(1) V is a Cousin-I domain;

(2) Each connected component of pÿ1�T� is a Stein manifold where T is an

arbitrary hyperplane in C n, then V is a Stein manifold.

In fact, we shall prove this by use of the idea of Cartan [2]. If we assume

that V is not a holomorphically convex domain, there is a boundary point of

V such that every holomorphic function on V is continued analytically across

such a point. We can choose such a boundary point p and a hyperplane T in

C
n that there is a connected component D of pÿ1�T�VV whose boundary

points contains p. We may assume T � fxn � 0g without loss of generality.

Since D is an unrami®ed Stein Riemann domain over C�x1; . . . ; xnÿ1�, there is

a holomorphic function f on D which can not be continued analytically across

every boundary point of D. The function f can be considered as a holomorphic

function on a neighborhood U in V which contains D and su½ciently near to

D. We give a Cousin-I data such as f =xn in U and 0 in V ÿD. Since V is a

Cousin-I domain, there is a solution g of the Cousin-I problem. Set h � xng.

Then h is holomorphic on V and hjD � f . It is absurd because h is continued
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analytically across p by the assumption. So, V is a holomorphically convex

domain.

To prove that V is a Stein manifold, it is su½cient to prove that if p1 and p2
are di¨erent points in V, then f �p1�0 f �p2� for some f A O�V�. To prove this,

it is su½cient to prove for the case p� p1�0 p�p2�. If the connected component

D of pÿ1�T� which contains p1 contains p2 too, f �p1�0 f �p2� for some f A

O�D� because D is a Stein manifold. Since V is a Cousin-I domain, there is a

holomorphic function h on V such that hjD � f by the same way above. Then

h� p1�0 h�p2�. If Di �i � 1; 2� is the connected component of pÿ1�T� which

contains pi and D1 VD2 � q, there is a holomorphic function on V such that

hjDi
� i by the same way above. Then h�p1�0 h� p2� r

Proof of Theorem 2.1. If conditions (a), (b), (c) are satis®ed, equation (1)

has a global solution for an arbitrary g by Lemma 2.2. If equation has a global

solution for an arbitrary g, condition (b) is satis®ed by Lemma 2.3 and conditions

(a), (c) are satis®ed by Lemma 2.4, Lemma 2.5 and Lemma 2.6. r

§3. Applications.

Definition 3.1. If f1; . . . ; fn are polynomials in C
n�1 of n� 1 com-

plex variables x1; . . . ; xn�1 such that �qfi=qxj��i�1;...;n; j�1;...;n�1� is of rank n for

every �x� A C n�1 and f ÿ1�y� is a simply-connected irreducible 1 dimensional

analytic subset for every �y� � �y1; . . . ; yn� A C
n, then we say � f1; . . . ; fn� satis®es

condition �g�.

Theorem 3.2. If � f1; . . . ; fn� satis®es condition �g�, di¨erential equation

q� f1; . . . ; fn; u�

q�x1; . . . ; xn�1�
� j� f1; . . . ; fn�; �4�

where j�y1; . . . ; yn� is an entire function such as j0 0 (at any point in C n), has

always a global solution u and the map y1 � f1; . . . ; yn � fn; yn�1 � u is an

automorphism of C n�1.

Proof. Now equation (4) is a special case of (1) and �X ; f ;D� �

�C n�1; f ;C n�. Since V � C
n is a Stein domain and �C n�1; f ;C n� satis®es rank

condition, �C n�1; f ;C n� satis®es condition �b� from Proposition 1.11. Then

equation has a global solution u by Lemma 2.2. From the proof in Lemma 2.2,

if we restrict equation (4) to the prime set S � f f ÿ1�y�g, it de®nes a holomorphic

1-form du which does not take zero on S. Let ~S be the compacti®cation of S

and y � ~S ÿ S. Then du can be considered as an Abel's di¨erential on ~S and

it has a pole of order 2 at y since degree of du � ÿ2 by the Riemann-Roch

theorem. Then ujS takes every value once by the residue theorem. So the map

y1 � f1; . . . ; yn � fn; yn�1 � u is an automorphism of C n�1. r
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Theorem 3.3. Let � f1; . . . ; fn� satisfy condition �g� and u be an entire

function. The map y1 � f1; . . . ; yn � fn; yn�1 � u is an automorphism of C n�1 if

and only if u satis®es equation

q� f1; . . . ; fn; u�

q�x1; . . . ; xn�1�
� j� f1; . . . ; fn�; �5�

where j�y1; . . . ; yn� is an entire function such as j0 0.

Proof. If � f1; . . . ; fn� satis®es condition �g�, there is a polynomial fn�1 such

that the map y1 � f1; . . . ; yn � fn; yn�1 � fn�1 is an automorphism of C n�1 by

Corollary of Theorem 4 in Fujita [3]. Then it is easy to see that if the map

y1 � f1; . . . ; yn � fn; yn�1 � u is an automorphism of C n�1, u � j� f1; . . . ; fn� fn�1

�c� f1; . . . ; fn�, where c is an arbitrary entire function and j is an entire function

such as j0 0. Now,

q� f1; . . . ; fn; u�

q�x1; . . . ; xn�1�
� j� f1; . . . ; fn�

q� f1; . . . ; fn�1�

q�x1; . . . ; xn�1�
� cj� f1; . . . ; fn�;

where c is a constant such as c0 0.

If � f1; . . . ; fn; u� satis®es equation (5), the map y1 � f1; . . . ; yn � fn; yn�1 � u

is an automorphism of C n�1 by Theorem 3.2. r

Definition 3.4. Let X be a Stein manifold of dimension n� 1 �nb 1�, D �

fjy1j < r1; . . . ; jynj < rng �ri > 0� and f � � f1; . . . ; fn� be a holomorphic map of

X onto D such that

(1) for any �y� A D; f ÿ1�y� is a one dimensional irreducible analytic subset

of X,

(2) f satis®es rank condition and

(3) �X ; f ;D� is homeomorphic preserving ®bers to D� R where R is an

open Riemann surface.

Then we call �X ; f ;D� a Stein holomorphic family of open Riemann surfaces.

Theorem 3.5. If �X ; f ;D� is a Stein holomorphic family of open Riemann

surfaces which is homeomorphic preserving ®bers to D� R where R is a simply

connected open Riemann surface, then there is an immersion F of �X ; f ;D� to

D� C , that is, there is a holomorphic function u on X such that the rank of the

transformation matrix of F � � f ; u� is n� 1 for every point p of X.

Proof. Since X is a Stein manifold in which Cousin II problem is solvable,

there is a global holomorphic section g of the canonical line bundle KX such as

g0 0. We consider di¨erential equation on X such as

q� f1; . . . ; fn; u�

q�x1; . . . ; xn�1�
� g
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where u is an unknown function and �x1; . . . ; xn�1� is a local coordinate of every

point of X. Then by the same way as in Lemma 2.2, the above equation has a

global solution. r

Remark 3.6. If �X ; f ;D� is a Stein holomorphic family of open Riemann

surfaces of type �g; n� where g is the genus of the ®ber, n is the number of

components of boundary of the ®ber and g and n are independent of points of D,

then the local immersion for D exists. See Nishimura [11].

Corollary 3.7. Let R be an arbitrary open Riemann surface and �X ; f ;D�

be a Stein holomorphic family of open Riemann surfaces which is homeomorphic

preserving ®bers to D� R. Then there is an immersion of ~X , which is an universal

covering space of X, to D� C .

Proof. Since � ~X ; f ;D� is a Stein holomorphic family of open Riemann

surfaces which is homeomorphic to D� ~R where ~R is an universal covering space

of R, there is an immersion of � ~X ; f ;D� to D� C from Theorem 3.5. r

Problem 3.8. Let X be a Stein domain of C n�1 and equation (1) has a global

solution for an arbitrary g. Then, is X biholomorphically equivalent to some

domain in V � C ?

Remark 3.9. Nishino [6] showed the following theorem. Let f �x1; x2� be

an entire function on X; D be a disk jy1j < r; �X ; f ;D� have a global holomorphic

section such as a line which is transversal to ®bers; f fx1 � fx2 � 0g � q; and

y1 � f �x1; x2� for each y1 A D be irreducible and conformally eqivalent to C .

Then X is biholomorphic to D� C . Therefore, in this case equation (1) has a

global solution for an arbitrary g. Now if y1 � f �x1; x2� is conformally equiv-

alent to the unit disk for every y1 A D and other conditions are same as above

ones, is X biholomorphic to a bounded domain in D� C ?
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