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Abstract. We give a necessary and sufficient condition for the existence of global
solutions of some partial differential equation which is locally solvable and give some
applications in complex analysis of several variables.

§0. Introduction.

In this paper, we deal with the problem on the existence of global holo-
morphic solutions of some partial differential equation on a Stein domain of C"*!
which is locally solvable. About this problem Wakabayashi [9] in 1968 pointed
out that equation du/dx; = f has no global solution even in a simply connected
Stein domain or a Runge domain in C” in general. In 1972, Suzuki [8] gave a
necessary and sufficient condition for the existence of global solutions of the same
equation for an arbitrary f. In 1981, Wakabayashi gave a necessary and suf-
ficient condition for the existence of global solutions of equation Du = f for an
arbitrary f, where D is an arbitrary nonsingular holomorphic vector field on a
Stein manifold of dimension 2. The study was unpublished (see [10]).

Now we deal with an equation 0(f,,...,f,,u)/0(x1,...,X,+1) =g Which is
more general than du/0x; = f but less general than Du = f. The integral curves
of this equation are prime sets of f = (fi,...,f,) (see Definition 1.2) and this
equation is regarded as a family of holomorphic 1-forms on the prime sets of
f. And we give a necessary and sufficient condition for the existence of global
solutions of such equation for an arbitrary g (Theorem 2.1). This result include
that of Suzuki as a special case. Finally, we give some applications to
Aut(C™") in algebraic category (Theorem 3.2 and 3.3) and the existence of
an immersion of some Stein holomorphic family of open Riemann surfaces

(Theorem 3.5).
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§1. Preliminaries.

Let X be a connected complex manifold of dimension n+ 1 and f,...,f,
be holomorphic functions on X. Weset D ={(y) = (y,...,»,) € C"; vy = f(p),

peX where f=(f,..., )}

DeriNITION 1.1. We say that the triple (X, f, D) satisfies condition (o) if
f7'(y) is a pure 1 dimensional analytic subset of X for every y e D.

In this paper, we consider only the triple (X, f, D) which satisfies condition

().

DEFINITION 1.2, An irreducible component S of f~'(y) will be called a
prime set (of f).

Let {S,},_; ,.. be a sequence of mutually distinct prime sets, that is S, .S,

gees

DerINITION 1.3. The following set E will be called a limit set of {S,}.
E={peX; for every neighborhood U(p) of p in X, U(p)NS,# & for
infinitely many v}.

H. Shiga showed the following

LemMmA 1.4 (Proposition 1 in [7]). If the limit set E of {S,} contains a point

Do of some prime set Sy such that there is no other prime set through p, then
S() c E.

REMARK 1.5. In case n=1, above lemma is true even for a point p,
which is an intersection point with other prime sets by Lemma 1 of [5]. But
if n> 2, it is not true any more. For example (see Example 1 in [7]), let X =
C(x1,x2,x3), fy=x1x2 and f, =x3. Then (X,f,C?) satisfies condition (o).
Now let S, ={x; =0,x3=1/v}, Sy ={x; =x3 =0}, then the limit set E of
{Sy},=15.. contains (0,0,0) e Sy and E & Sp.

DerFINITION 1.6, Let {S,},_;, be a sequence of mutually distinct prime
sets and Sy a prime set. We say that the sequence S, converges to Sy(S, — So)
if there is a point p, € Sy, which is not an intersection point with other prime

sets, such that dist(S,, py) — 0 (v — o).

It is easy to see that S, — Sy independently of the choice of such a point p,
by Lemma 1.4
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DEeFINITION 1.7. A prime set Sy is regular if for every {S,} such that
Sy — Sy (v — o0) the limit set E of {S,} is equal to Sp.

DeFINITION 1.8, If the matrix (3f;/0%);_; =1, 11 1S O rank n for every
point p of X, where (xi,...,x,) is a local coordinate of p (we call it rank
condition in short) and every prime set of f is regular, we say that (X, f, D)
satisfies condition (f).

We notice if (X, f,D) satisfies rank condition, (X, f, D) satisfies condition
(). We regard a prime set S as a point ¢ and we denote by V the set of all such
points. We shall define a neighborhood of ¢ as follows: Let S, be the prime set
corresponding to g. From rank condition S, does not intersect with other prime
sets. Let the tube X'y be the all prime sets passing through a neighborhood W
of an arbitrary point on S, in X and U(q) be the points of V' corresponding to
the prime sets passing through Xy. It is easy to see that J is a topological
space with the neighborhood system {U(q);q € V'}.

ProposiTioN 1.9. If (X, f,D) satisfies condition (ff), V is regarded as an
unramified Riemann domain over D and (X, f,V) is regarded as a fiber space
whose fibers are irreducible.

Proor. First we show V' is a Hausdorff space. Let ¢ and ¢’ be points in V'
such that ¢ # ¢’. We take a sufficiently small neighborhood W; of some point
on S, in X such as S, N W) = . Let U(q) be the points of ¥ corresponding to
the prime sets passing through W;. Now we can take a neighborhood W, of
some point on S, in X sufficiently small such that each prime set passing through
W, does not pass through W;. Because if not, there is a sequence of mutually
distinct prime sets {S,} such that the limit set E of {S,} contains S, (by [Lemmal
1.4) and ENW,; # . It is a contradiction because E = S, since S, is regular
and S, N W; # . When we set U(q’) to be the points of V' corresponding to
the prime sets passing through W), we conclude U(q)NU(¢') = &.

Secondly we define a projection map of V to D, where D is a domain in C"
(because f is an open map from condition (2)). From rank condition there is
a neighborhood W in X at every point p € X, an integer j and a biholomorphic
map @ of W into D x C such as y, = fi,...,», = f,, Vou1 = X;. For a point
q' € U(q) which is defined from X'y we correspond a point y = f(S,/). Such
map n: V — D is well defined and locally homeomorphic. ]

ExaMmLE 1.10 (see Example 3 in Fujita [3]). Let X = {(x1,x2,x3,X4) € c*
x1x3+xx4 — 1 =0}, yy,=f,=x; and y, = f, = x5. Then X is a Stein mani-
fold and f; and f, are holomorphic functions on X. Then D = C* — (0,0) and
for every point ye D f~!(y) is an irreducible 1 dimensional analytic subset of
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X. Tt is easy to see that (X, f, D) satisfies condition (). We note that D is not

pseudoconvex.
The following proposition follows from [Definition 1.7.

ProposiTiON 1.11.  If (X, f, D) satisfies rank condition and V is a Hausdorff
space, then (X, f,D) satisfies condition ().

§2. Main theorem.

In this section we assume that X is a Stein (univalent) domain of C"*! of
n+ 1 complex variables xi,...,x,4; and fi,..., f, are holomorphic functions on
X. For a given holomorphic functions g(x) on X, we consider the following
partial differential equation:

Ofi, - fott) (1)

5(X1,...,xn+1) ’
where u is an unknown function. We show the following

THEOREM 2.1.  The equation (1) has a global solution u for an arbitrary g on
X, if and only if

(a) (X, f,D) satisfies condition (f);

(b) every prime set of f is simply-connected,;

(c) V is a Stein manifold.

LemMa 2.2.  If conditions (a), (b), (c) are satisfied, equation (1) has a global
solution for an arbitrary g.

Proor. Let p = (x") be an arbitrary point of X and y° = f(x°). From
rank condition there is an integer j such that

o oh o of; |
5)61 o an_1 ax]'+1 o 8xn+1
A;=det| @ . S : # 0
Ofn ofn  Ofn Ofn
ox; Oxio1 Oxpe1 OXpa

at p. Then there is a sufficiently small neighborhood W of p such that
D:y1=f1,-..s Vo= fp Yup1 = X; 1s a biholomorphic map of W to a neigh-

borhood of ( yo,xj(.)). We transform (1) by @ as follows:

a(ylv"wynau) a(yla‘-'aynayn—i—l)
a(ylw"?yn?yn—i—l) a(xla"'axn—i—l)

=g(X1,. s Xnt1),
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that 1is,
[ 1 0 0 0 0 ]
[0 0 ofi |
0 1 0 0 0 g o oh
0x1 0x; 0Xn11
0 0 1 0 0 : ' : _ _
det| : : o : ; det =g.
: ; : . ; o, o o,
o o0 o0 ... 1 0 ox; 0 0x; T Oxpa
ﬁ@_u&_u ou ou o ... .. 0 |
L0yt 0y2 03 OVn Onsl |
Thus,
; ou
-1 ]-H’H-IA_ —a
( ) ’ ayn-l—l J
Therefore, the restriction of equation (1) to a prime set S passing through p
defines a holomorphic 1-form on S with local coordinate x; (j=1,...,n+1) of
the form
9 g
di=————do=————dou==——F—5— dx,.1, 2
(_I)I’H—QAI 1 (_1)n+3A2 2 (_1)2n+2An+1 +1 ( )
because S is a characteristic curve which satisfies dx;/4; = —dxy/4, =--- =

(=1)"(dxps1/4n11). So we can regard equation (1) as an analytic family of
holomorphic 1-forms on V.

Now, (V,zn,D) is an unramified Riemann domain by [Proposition 1.9. By
virtue of the Cauchy-Kovalevskaya theorem, for every point p e X there is a
neighborhood W and a local holomorphic solution uy in W of (1). We take W
small if necessary such that a neighborhood U(g) of ¢ € V' corresponding to the
prime set S, passing through W is an univalent domain over D. We continue
uy analytically along each prime set passing through W. As equation (1) defines
a holomorphic 1-form along each prime set and each prime set is simply-
connected, uy can be continued single-valued and analytically on Xy by

Hartogs’ theorem, that is, if a function A(xy,...,x,.1) is holomorphic on |x,.;| <
R when we fix (xi,...,x,) in |x;| <r (i=1,...,n) and holomorphic on |x;| < r
(i=1,...,n+1) (r <R), then A is holomorphic on |x;| < r,...,|x,| <r, [xpe1| <

R. We set u for uy. We consider U’ = U(q’) similar as U = U(q) such that
U(g)NU(q") # & and a single-valued holomorphic solution u’ on Xy/. Since
O(fys- s fyu—u')/0(x1,...,xp01) =0 on Xy N2y, there is a holomorphic
function ¢ on #n(U)N=n(U') such as u—u' =o(f,...,f,) on Ty NXy,. Let
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{Ui}i—1,,.. be a countable open covering of V" and u; be the solution on Xy,
as above. When UNU;# & and w; —w; = ¢;(f1, .-, f,) {gyom: UiN U} is a
cocycle. Since V is a Stein manifold, such a cocycle i1s a coboundary, that is,
there are holomorphic functions ¢; on U; such that ¢, — ¢, =¢;om on U;NUj;
#@. Ifwesetu=u;—g@on '(f],...,f,) on Ty, uis a global solution of (1)
mn X. ]

Lemma 2.3, If equation (1) has a global solution for an arbitrary g, condition
(b) is satisfied.

Proor. Since equation (1) has a global solution for g = 1 by the assumption,
(X, f, D) satisfies rank condition and condition (&) consequently. Therefore we
can consider (1) as a family of holomorphic 1-forms on prime sets as (2). If
there 1s a prime set Sy which is not simply-connected, there is a holomorphic
I-form a;(x;) dx; whose integral on Sp is multi-valued by the Behnke-Stein
theorem in [1]. If we set

ar(x1)(=1)"2 41 = ay(x2) (=1)" My = - = @ () (= 1) g,

it represents a holomorphic function gy on §y. As a consequence of Cartan’s
Theorem B, there is a holomorphic function g on X such that g[s = go because
So 1s a nonsingular analytic subset of a Stein domain of X. It is easy to see
that equation (1) for such g has not any single-valued holomorphic solution
on X. [

We denote by (0 the sheaf of holomorphic functions.

LemMa 2.4 (cf. Suzuki [8]). If (X, f, D) satisfies condition (f) and equation
(1) has a global solution for an arbitrary g, H'(V,0) =0 and V is a Cousin-I
domain consequently.

PrOOF. Let L be a linear differntial operator on X such that Lu = g means
equation (1). We denote by (F the sheaf of local solutions of Lu =0 on X.
Since Lu = g is locally solvable, the sequence of sheaves on X

00t L5050

is exact. Since X is a Stein domain of C"*!, we have H?(X, () =0 for p > 1 by
Cartan’s Theorem B. Then we have the exact sequence as follows:

0— I'(X,0% 5 rx,0) 5 r(x,0) — H(X,0") — 0.

Therefore L is onto if and only if H'(X,0%) =0. Since L is onto if and only if
equation (1) has a global solution for an arbitrary g, H'(X,0%) = 0. Since we
can consider naturally such as H'(V,0) c H'(X,0%), H'(V,0) = 0. O
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Assume that equation (1) has a global solution uy for g =1. Let @ be
a locally biholomorphic map defined by y; = f,..., ¥, = f,, Vop1 = . Let ¥
be an unramified Riemann domain over C"*! defined by @. The domain Y is
biholomorphic to X and a Stein manifold. Now we transform (1) by @, then we
have

ou
—q. 3
ayn—H J ( )

We can consider (3) as a family of holomorphic 1-forms on each prime set S
with coordinate y,,; with parameter ¢, where S is an irreducible component of
o (t)yand t = (y,,...,y,)eD={(»)eC";y,=f,,..., ¥, = f,}, so that D is an

unramified domain over C". Let y,=f,=»,...,y,=/f, =y, and consider

(Y,y,D)=(Y,f,D).
It is easy to see the following

Lemma 2.5. To prove that conditions (a), (b), (c) are satisfied when equation
(1) has a global solution for an arbitrary g, it is enough to prove that conditions (a),
(b), (c) for (Y,f,D) and V are satisfied when equation (3) has a global solution for

an arbitrary g.

LemMaA 2.6. If equation (3) has a global solution for an arbitrary g, V is a
Stein manifold.

Proor. We shall show the lemma by the following four steps 1), 2), 3)
and 4).

1) We show (Y,f,D) satisfies condition (f) in case n=1. Assume that
there are prime sets S; and S, and a sequence of mutually distinct prime sets
{Sv},21,5.. such that S, converges to Sy and S, simultaneously. Let p; be a
point of Si (i=1,2). We take a sufficiently small neighborhood W) of p, in Y
such that Xy, corresponds to an univalent domain of V over D. Let ()?,)9) =
@(p,) and I'y = &1 ya=y? N Wi. The line I'; is transversal to prime sets passing
through W,. We give initial values on I'; with a function 1/(y, — »?) where we
regard y, as a coordinate of /' and continue the initial value constantly to each
prime set passing through 7I';. We denote such function by 4y. The function /g
is meromorphic on Xy, and its pole divisor is S;.  We give a Cousin-I data such
as hp on Xy, and 0 on Y —S;. Since Y is a Stein manifold, there is a solution
h of the Cousin-I problem. When we set g = dh/dy,, ¢ is holomorphic on Y
because i = hy + k on Xy, where k is a holomorphic function and dhg/dy, = 0.
Then equation du/dy, = g has no global solution on Y. Because, if « is a global
solution, d(u —h)/0y> =0 and (u— h)|g is constant. It is a contradiction that
limg, 5 p,—p, |4 — h| = 00 and limg, 5/, [u —h| < co. It is absurd because du/dy,
— g has a global solution for arbitrary g from the assumption. So (Y,f,D)
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satisfies the condition (f) and V is regarded as an unramified Riemann domain
over D < C by [Proposition 1.9. It is well known that V" is a Stein manifold.

2) Now let n > 1 and assume that V' is a Hausdorff Stein manifold for Y
of dimension n — 1 such that for every hyperplane 7 in C", any connected

component Y’ of f 71(Dﬂ T) is a Stein submanifold of Y. When we consider

equation (3)’ which is defined by restricting (3) to Y’, we can consider (3)" as a
family of holomorphic 1-forms on the prime sets S; with coordinate y,,; where
t=(y,...,y,)€DNT. Since (3)’ has a global solution for an arbitrary g
because (3) has a global solution for an arbitrary g and Cartan’s Theorem B
holds good for Y and Y’, V' is a Hausdorff Stein manifold by the assumption of
induction, where V' is a topological space defined from (Y’,f|y,,DNT).

3) Now, we show that V' is a Hausdorff space. Let ¢; and ¢, be distinct
points of V. We must find disjoint neighborhoods U(g;) and U(g;). Since =,
which is the projection of V' to D in |[Proposition 1.9, is a local homeomorphism,
we need only to consider the case 7(q;) = n(q2). Choose U(gq;) and U(g,) suf-
ficiently small such that #|,,, and =, are homeomorphisms of U(g:) and
U(q,) onto an open ball B in C". Suppose that there exists a point g3 € U(gq;) N
U(qy). Let T be a hyperplane in C" containing n(¢q;) = n(¢>) and 7n(¢3). Since
each connected component of 7~!(T) (that is V') is a Hausdorff space and BN T
is connected, we conclude that U(q;)N V' = U(q) N V' and ¢, = ¢,. This is a
contradiction.

4) Finally we shall prove the following statements.

If 'V is an unramified Riemann domain over C" of n complex variables
X1,...,X, with projection n and satisfies the following conditions:

(1) Vis a Cousin-I domain;

(2) Each connected component of n~'(T) is a Stein manifold where T is an
arbitrary hyperplane in C", then V is a Stein manifold.

In fact, we shall prove this by use of the idea of Cartan [2]. If we assume
that 7 is not a holomorphically convex domain, there is a boundary point of
V' such that every holomorphic function on V' is continued analytically across
such a point. We can choose such a boundary point p and a hyperplane 7 in
C" that there is a connected component D of n~!(T)NV whose boundary
points contains p. We may assume 7 = {x, =0} without loss of generality.
Since D is an unramified Stein Riemann domain over C(xi,...,x,_1), there is
a holomorphic function f on D which can not be continued analytically across
every boundary point of D. The function f can be considered as a holomorphic
function on a neighborhood U in V which contains D and sufficiently near to
D. We give a Cousin-I data such as f/x, in Uand 0 in V' — D. Since V' is a
Cousin-I domain, there is a solution g of the Cousin-I problem. Set /& = x,g.
Then 4 is holomorphic on V and h|, = f. It is absurd because / is continued
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analytically across p by the assumption. So, V' is a holomorphically convex
domain.

To prove that V' is a Stein manifold, it is sufficient to prove that if p; and p,
are different points in V, then f(p,) # f(p,) for some f € O(V). To prove this,
it is sufficient to prove for the case n(p,) # n(p,). If the connected component
D of n~!(T) which contains p, contains p, too, f(p,) # f(p,) for some f e
O(D) because D is a Stein manifold. Since V' is a Cousin-I domain, there is a
holomorphic function 4 on V such that &|, = f by the same way above. Then
h(p,) # h(p,). If D; (i=1,2) is the connected component of n~!(7T) which
contains p; and D; N D, = &, there i1s a holomorphic function on V such that
h|p, =i by the same way above. Then h(p,) # h(p,) O]

PrOOF OF THEOREM 2.1. If conditions (a), (b), (c) are satisfied, equation (1)
has a global solution for an arbitrary g by [Lemma 2.2. If equation has a global
solution for an arbitrary g, condition (b) is satisfied by and conditions
(a), (c) are satisfied by [Lemma 2.4, [Lemma 2.3 and [Lemma 2.6 O

§3. Applications.

DeriNiTION 3.1, If f},...,f, are polynomials in C"™ of n+1 com-
plex variables xi,...,x,41 such that (3fi/0x;)_y ;-1 n+1) 18 of rank n for
every (x) e C" and f7'(y) is a simply-connected irreducible 1 dimensional
analytic subset for every (y) = (»,...,¥,) € C", then we say (f,..., f,) satisfies
condition (y).

THEOREM 3.2. If (f|,...,[,) satisfies condition (y), differential equation

O(f1y- -y [ tt)
= ooy o) 4
a(xly--~7x;1+l) ¢(f1 .fn) ( )
where ¢(yy,...,y,) is an entire function such as ¢ # 0 (at any point in C"), has
always a global solution u and the map y, = fi,...,V, = fu Vuy1 = U is an

automorphism of C"™!.

Proor. Now equation (4) is a special case of (1) and (X, f,D)=
(C™1 £,€™). Since ¥ = C" is a Stein domain and (C"™!, £, C") satisfies rank
condition, (C"™!, f,C") satisfies condition (f) from [Proposition I.1]. Then
equation has a global solution u by [Lemma 2.2. From the proof in [Lemma 2.2,
if we restrict equation (4) to the prime set S = {f~'(»)}, it defines a holomorphic
1-form du which does not take zero on S. Let S be the compactification of S
and oo =S —S. Then du can be considered as an Abel’s differential on S and
it has a pole of order 2 at oo since degree of du = —2 by the Riemann-Roch
theorem. Then u| takes every value once by the residue theorem. So the map
V1= fls s V0= fur Vpry = u is an automorphism of C"*'. ]
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THEOREM 3.3. Let (fy,...,f,) satisfy condition (y) and u be an entire
function.  The map y, = fi,..., Yy = fn, Vur1 = U 1S an automorphism of clif
and only if u satisfies equation

O(fys--os [ tt)
= ooy Ju)s S
5(X1,.-.,Xn+1) go(fl f) ( )
where ¢(yy,...,¥,) is an entire function such as ¢ # 0.

Proor. If (f},...,f,) satisfies condition (y), there is a polynomial f,,; such
that the map y; = f1,..., ¥, = fu» Vus1 = fup1 15 an automorphism of c"! by
Corollary of Theorem 4 in Fujita [3]. Then it is easy to see that if the map

V1 =1y s Yn = for Yprs = u is an automorphism of C"™, u=o(f;,..., f)fuis

+y(fy,---,f,), where s is an arbitrary entire function and ¢ is an entire function
such as ¢ #0. Now,
a(fl?'"?fnau) a(fl?"'?fn—i—l)
= yees S =co(fis--s 1),
a(xla"'axn+l) (p(fl f)a(x17'-'7xn+1) (p(fl f)

where ¢ 1s a constant such as ¢ # 0.

If (fi,...,f, u) satisfies equation (5), the map y; = f},..., ¥, = fos Vpy1 = U
is an automorphism of C"! by Mheorem 3.2. O

DErFINITION 3.4.  Let X be a Stein manifold of dimensionn+1 (n>1), D =
{Iyil <riy..oy |yl <ra} (ri>0) and f = (fi,...,f,) be a holomorphic map of
X onto D such that

(1) for any (y) € D, f!(y) is a one dimensional irreducible analytic subset
of X,

(2) f satisfies rank condition and

(3) (X, f,D) is homeomorphic preserving fibers to D x R where R is an
open Riemann surface.

Then we call (X, f, D) a Stein holomorphic family of open Riemann surfaces.

THEOREM 3.5. If (X, f,D) is a Stein holomorphic family of open Riemann
surfaces which is homeomorphic preserving fibers to D x R where R is a simply
connected open Riemann surface, then there is an immersion ® of (X, f,D) to
D x C, that is, there is a holomorphic function u on X such that the rank of the
transformation matrix of @ = (f,u) is n+ 1 for every point p of X.

Proor. Since X is a Stein manifold in which Cousin II problem is solvable,
there 1s a global holomorphic section g of the canonical line bundle Ky such as
g #0. We consider differential equation on X such as

ofiy-- s fou)

8(x1,...,xn+1) N
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where « is an unknown function and (xi,...,x,:1) is a local coordinate of every
point of X. Then by the same way as in [Lemma 2.7, the above equation has a
global solution. [

RemARk 3.6. If (X, f,D) is a Stein holomorphic family of open Riemann
surfaces of type (g,n) where g is the genus of the fiber, n is the number of
components of boundary of the fiber and g and » are independent of points of D,
then the local immersion for D exists. See Nishimura [1T].

COROLLARY 3.7. Let R be an arbitrary open Riemann surface and (X, f, D)
be a Stein holomorphic family of open Riemann surfaces which is homeomorphic
preserving fibers to D x R.  Then there is an immersion of X, which is an universal
covering space of X, to D x C.

Proor. Since (X, f,D) is a Stein holomorphic family of open Riemann
surfaces which is homeomorphic to D x R where R is an universal covering space

of R, there is an immersion of (X, f,D) to D x C from [Theorem 3.3. [l

PROBLEM 3.8. Let X be a Stein domain of C"™ and equation (1) has a global
solution for an arbitrary g. Then, is X biholomorphically equivalent to some
domain in V x C?

REMARK 3.9. Nishino [6] showed the following theorem. Letr f(x1,x2) be
an entire function on X; D be a disk |y,| < p; (X, f, D) have a global holomorphic
section such as a line which is transversal to fibers; {f, = f,, =0} = &; and
v, = f(x1,x2) for each y, € D be irreducible and conformally eqivalent to C.
Then X is biholomorphic to D x C. Therefore, in this case equation (1) has a
global solution for an arbitrary g. Now if y, = f(x1,x;) is conformally equiv-
alent to the unit disk for every y, € D and other conditions are same as above
ones, is X biholomorphic to a bounded domain in D x C?
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