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Abstract. Singular invariant hyperfunctions on the space of n� n complex and

quaternion matrices are discussed in this paper. Following a parallel method employed

in the author's paper on invariant hyperfunctions on the symmetric matrix spaces,

we give an algorithm to determine the orders of poles of the complex power of

the determinant function and to determine exactly the support of singular invariant

hyperfunctions, i.e., invariant hyperfunctions whose supports are contained in the set of

points of rank strictly less than n, obtained as negative-order-coe½cients of the Laurent

expansions of the complex powers.

1. Introduction.

In the preceding paper [6], the author has determined the exact orders

of pole of the complex power of the determinant function on the n� n real

symmetric matrix space V :� Symn�R� and the exact supports of the Laurent

expansion coe½cients. In this paper we shall deal with the same problem on

two similar vector spacesÐthe space of complex and quaternion Hermitian

matrices.

For a given homogeneous polynomial P�x� on the vector space V , we can

de®ne the hyperfunctions as a complex power of P�x� by

jP�x�j si :�
jP�x�js; if x A V i,

0; if x B V i.

�

with s A C where V i's are connected components of the set V ÿ fP�x� � 0g.

Each jP�x�jsi is well de®ned as a continuous function on V when the real part of

s A C is su½ciently large and meromorphically continued to the whole complex

plane. The locations of poles are described by the b-function of P�x� and

the possible orders of pole are calculated by the roots of the b-function. But

the order of pole of the linear combination
P

aijP�x�ji is fully depend on the
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coe½cients ai and it is not determined only by the b-function. It is rather easy

to verify that the support of the Laurent expansion coe½cients of jP�x�ji is

contained in the set fP�x� � 0g if the degree of the coe½cient is negative. But

the exact determination of the support seems to be not so easy.

The purpose of this paper is to give the complete answer of these problems

when P�x� is the determinant function on the space of complex or quaternion

Hermitian matrix space. First, we give the exact order of the poles of the linear

combination of the complex powers of the determinant function on the space of

complex and quaternion Hermitian matrices (Theorem 4.2) and we determine the

exact supports of hyperfunctions appearing as Laurent expansion coe½cients of

the complex power of the relative invariant (Theorem 4.3).

The method of the proof is similar to the case of the symmetric matrix

spaceÐthe microlocal method. We only give the outline of the proof because it

is easily constructed from the proof of that in the case of the symmetric matrix

space. However, the results are di¨erent from those in the case of symmetric

matrices. The reason for the obvious di¨erence seems to be a consequence of

the di¨erence of the structure of the roots of b-functions. Namely, we can ®nd

half integers in the roots of b-function of the determinant of real symmetric

matrix, but the roots of b-functions of the determinants of complex or quaternion

matrix are all integers.

We list here some related works on this topic. Similar results has been

obtained by Blind [1] and [2] by a functional analytic method. RaõÈs [7] treated

invariant distributions from his original view point. Ricci and Stein [8] con-

sidered the invariant distributions on the complex Hermitian matrix space. Sato-

Shintani [9] dealt with the zeta functions associated to the complex Hermitian

matrix space, which is closely related to the hyperfunctions treated here.

2. The Hermitian matrix space over the complex and the quaternion ®eld.

Let V :� Hern�C� be the space of n� n Hermitian matrices over the complex

®eld C , i.e., x A Mn�C� such that x � tx, and let G :� GLn�C� be the general

linear group over C . By regarding GLn�C� as a real algebraic group and

considering V � Hern�C� as an n2-dimensional real vector space, GLn�C�

operates algebraically on the real vector space V by

g : x c�! g � x � tg; �1�

with x A V and g A G . Here, g means the complex conjugate matrix of g and tg

is the transposition of g. This is a linear representation of G on V .

Let P�x� :� det�x�. Then P�x� is an irreducible polynomial with real

coe½cients on V , and it is relatively invariant under the action of G corre-

sponding to the character jdet�g�j2, i.e., P�g � x� � jdet�g�j2P�x�. We put S :�
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fx A V jP�x� � 0g and call it the singular set. The complement set V ÿ S

decomposes into �n� 1� open G-orbits

V i :� fx A Hern�C� j sgn�x� � �2i; 2�nÿ i��g �2�

with i � 0; 1; . . . ; n. Here, sgn�x� for x A Hern�C� stands for the signature of the

quadratic form qx�~v� :�
t�~v � x �~v on ~v A C

n when we consider qx��� as a quadratic

form on R
2n FC

n. The map

w : g c�! det�g � tg� � jdet�g�j2 �3�

is a continuous homomorphism from GLn�C� to R
�
>0. The kernel of w is

denoted by G
1 and it is a connected closed subgroup of G . The singular set S

consists of a ®nite number of G
1-orbits. Namely we have

S :� 6
1aian;0a janÿi

S
j
i �4�

where S
j
i :� fx A V j sgn�x� � �2 j; 2�nÿ i ÿ j��g is a G

1-orbit with sgn��� de®ned

as above.

In the same way, by putting V :� Hern�H� to be the space of n� n

Hermitian matrices over the Hamilton's quaternion ®eld H , and by putting

GLn�H� to be the general linear group over H , we can consider the same

situation. The group G :� GLn�H� acts on V in the same manner as (1) where g

means the quaternion conjugate matrix of g. We use the same notations as in

the complex case. Let P�x� :� det�x�, put S :� fx A V jP�x� � 0g and call it the

singular set. Then P�x� is an irreducible polynomial on V , and it is a relatively

invariant polynomial under the action of G corresponding to the character w�g�

:� jdet�g�j2, i.e., P�g � x� � w�g�P�x�. The non-singular subset V ÿ S decom-

poses into �n� 1� open G-orbits

V i :� fx A Hern�H�; sgn�x� � �4i; 4�nÿ i��g �5�

with i � 0; 1; . . . ; n. Here, sgn�x� for x A Hern�H� stands for the signature of

the quadratic form qx�~v� :�
t�~v � x �~v on ~v A H

n when we consider qx��� as a

quadratic form on R
4n FH

n. The continuous homomorphism w from G to R
�
>0

is de®ned as in the same way as (3). The kernel of w is denoted by G
1 and it is

a connected closed subgroup of G � GLn�H�. The singular set S consists of a

®nite number of G
1-orbits. Namely we have (4) where S

j
i :� fx A V j sgn�x� �

�4 j; 4�nÿ i ÿ j��g is a G
1-orbit with sgn��� de®ned as above.

Remark 2.1. We give here a de®nition of the determinant of a quaternion

Hermitian matrix. Let Mn�H� be the space of n� n quaternion matrices. Since

the quaternion ®eld H is non-commutative, the determinant of x A Mn�H� is not
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de®ned in the ordinary way. However we can de®ne the determinant for a

quaternion Hermitian matrix and we give the de®nition here.

Let f1; i; j; kg be a basis of the quaternion ®eld H over R. Here, 1 is the

identity element and

i2 � j2 � k2 � ÿ1; ij � k; jk � i; ki � j: �6�

An element z of H is given by z � a� bi � cj � dk with a; b; c; d A R and the

quaternion conjugate of z is given by z � aÿ bi ÿ cj ÿ dk. In particular, when

c � d � 0, z is a complex number.

Note that we can write

z � a� bi � cj � dk � �a� bi� � �c� di� j � a� bj

with a � a� bi and b � c� di. Then we can regard H as the algebra C lCj.

Consider the algebra homomorphism i from H to M2�C� by

i : z � a� bj c�!
a; b

ÿb; a

� �

: �7�

Let X � �zi; j� A Hern�H� be an n� n quaternion Hermitian matrix. By the

homomorphism i in (7), X is mapped in M2n�C� by

X c�! i�X � j� � �i�zi; j � j��: �8�

Since ÿ t�i�X � j�� � i�X � j�, we see that i�X � j� is an alternating matrix. Then

by putting

det�X� � Pf�i�X � j�� �9�

we can de®ne the determinant for the quaternion Hermitian matrix X . Here

Pf�A� means the Pfa½an of an alternating matrix A. It is easily checked that

det�X � is an irreducible polynomial with real coe½cients on Hern�H�.

3. The complex powers of the determinant.

Let V be Hern�C� or Hern�H�. We de®ne the complex power of the

determinant function for a complex number s A C by

jP�x�j si :�
jP�x�js if x A V i,

0 if x B V i

�

�10�

and consider a linear combination of jP�x�jsi

P�~a; s��x� :�
Xn

i�0

aijP�x�j
s
i ; �11�
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with s A C and an n� 1-dimensional vector ~a :� �a0; a1; . . . ; an� A C
n�1.

Let S�V� be the Schwartz's space of rapidly decreasing functions on V

and let S�V� 0 be the space of tempered distributions on V . For a function

f �x� A S�V�, the integral
�

P�~a; s��x� f �x� dx �12�

is absolutely convergent for a complex number s with su½ciently large real part.

Then (12) is holomorphic with respect to s A C if the real part R�s� is su½ciently

large and

f �x� c�!

�

P�~a; s��x� f �x� dx �13�

de®nes a tempered distribution on V with a holomorphic parameter s A C .

From the general theory of b-functions of prehomogeneous vector spaces, (12) is

meromorphically extended to the whole complex plane with respect to s. Then

(13) is de®ned for all s A C as a tempered distribution with a meromorphic

parameter s. Since the space of tempered distributions S�V� 0 on V is naturally

embedded into the space of hyperfunctions B�V� on V , P�~a; s��x� is well de®ned as

a hyperfunction with a meromorphic parameter s A C .

Let l be a ®xed complex number. If P�~a; s��x� does not have pole at s � l,

P�~a;l��x� is well de®ned and

P�~a;l��g � x� � w�g�P�~a;l��x�

for all g A G . Hence P�~a;l��x� is invariant under the action of G 1. The support

of P�~a;l��x� is given by

Supp�P�~a;l��x�� � 6
i A fi AZ j ai00g

V i:

If P�~a; s��x� has pole at s � l, then P�~a;l��x� does not have a meaning itself.

But the Laurent expansion coe½cients of P�~a; s��x� at s � l are G
1-invariant

hyperfunctions on V . Let

X

j AZ

P
�~a;l�
j �x��sÿ l� j

be the Laurent expansion of P�~a; s��x� at s � l. Then we have

Supp�P
�~a;l�
j �x��HS

if j < 0. In this way, we see that all the Laurent expansion coe½cients of P�~a; s��x�

of negative degree are G
1-invariant and their supports are contained in S.

We call them singular invariant hyperfunctions.
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Conversely, we have the following proposition.

Proposition 3.1 ([4], [5]). Any singular invariant hyperfunction on V is given

as a linear combination of some negative-order coe½cients of Laurent expansions of

P�~a; s��x� at various poles and for some ~a A C
n�1.

Proof. The prehomogeneous vector spaces

�G ;V� :� �GLn�C�;Hern�C��

and

�G ;V� :� �GLn�H�;Hern�H��

satisfy the su½cient conditions stated in [4] and [5]. One is the ®nite-orbit

condition and the other is that the dimension of the space of relatively invariant

hyperfunctions coincides with the number of open orbits. Then we have the

result. r

4. Main results.

The order of P�~a; s��x� fully depends on the vector ~a. In fact, even if P�~a; s��x�

has a possible pole at s � l, we can take ~a so that P�~a; s��x� is holomorphic at

s � l. On the other hand, by taking another ~a, we can make the order of pole

of P�~a; s��x� at s � l to be the possibly highest order. We have seen that the

support of the Laurent expansion coe½cients of P�~a; s��x� of negative degree is

contained S. But the exact support may be a proper subset of S. The exact

determination of the support is not deduced from the general theory. The

purpose of this paper is to give a complete answer to these problems.

We give some de®nitions to state the main results of this paper. We de®ne

the coe½cient vectors d
�k��s0� in the same way as the case of symmetric matrix

space in the following. d
�k��s0� is an nÿ k � 1-tuple of linear forms on C

n�1

given by

d
�k��s0� :� �d

�k�
0 �s0�; d

�k�
1 �s0�; . . . ; d

�k�
nÿk�s0�� A ��C n�1���nÿk�1

with k � 0; 1; . . . ; n, where �C n�1�� means the dual vector space of C n�1. Each

element of d�k��s0� is a linear form on ~a A C
n�1, i.e., a linear map from C to C

n�1,

d
�k�
i �s0� : C

n�1 C~a c�! hd
�k�
i �s0�;~ai A C :

We denote

hd�k��s0�;~ai :� �hd
�k�
0 �s0�;~ai; hd

�k�
1 �s0�;~ai; . . . ; hd

�k�
nÿk�s0�;~ai� A C

nÿk�1:

Definition 4.1 (Coe½cient vectors d�k��s0�). We de®ne the coe½cient vectors

d
�k��s0� �k � 0; 1; . . . ; n� by induction on k in the following way. First, we set
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d
�0��s0� :� �d

�0�
0 �s0�; d

�0�
1 �s0�; . . . ; d

�0�
n �s0��

such that hd
�0�
i �s0�;~ai :� ai for i � 0; 1; . . . ; n. Next, by induction on k, we de®ne

all the coe½cient vectors d
�k��s0� for k � 0; 1; . . . ; n by

d
�k��s0� :� �d

�k�
0 �s0�; d

�k�
1 �s0�; . . . ; d

�k�
nÿk�s0�� A ��C n�1���nÿk�1;

with d
�k�
j �s0� :� d

�kÿ1�
j �s0� � �ÿ1�s0�1

d
�kÿ1�
j�1 �s0�.

The following proposition is trivial by the de®nition.

Proposition 4.1. Let s0 be an integer. For an integer i in 0a ia nÿ 2

and ~a A C
n�1, if hd�i��s0�;~ai � 0, then hd�i�1��s0�;~ai � 0. In other words, if

hd�i�1��s0�;~ai0 0, then hd�i��s0�;~ai0 0.

Using the above mentioned vectors d
�k��s0�, we can determine the exact

orders of P�~a; s��x� at poles in the following theorem.

Theorem 4.2. The exact order of the poles of P�~a; s��x� is computed by the

following algorithm.

1. (In the complex case.) The exact order P�~a; s��x� at s � ÿm �m � 1; 2; . . .�

is computed by the following algorithm.

(a) If 1ama n, then P�~a; s��x� has a possible pole of order less than m.
. P�~a; s��x� is holomorphic if and only if hd�1��ÿm�;~ai � 0.
. For integers p in 1a p < m, then P�~a; s��x� has pole of order p if

and only if hd� p�1��ÿm�;~ai � 0 and hd� p��ÿm�;~ai0 0.
. P�~a; s��x� has pole of order m if and only if hd�m��ÿm�;~ai0 0.

(b) If m > n, then P�~a; s��x� has a possible pole of order less than n.
. P�~a; s��x� is holomorphic if and only if hd�1��ÿm�;~ai � 0.
. For integers p in 1a p < n, P�~a; s��x� has pole of order p if and

only if hd� p�1��ÿm�;~ai � 0 and hd� p��ÿm�;~ai0 0.
. P�~a; s��x� has pole of order n if and only if hd�n��ÿm�;~ai0 0.

2. (In the quaternion case.) The exact order P�~a; s��x� at s � ÿm

�m � 1; 2; . . .� is computed by the following algorithm.

(a) If 1ama 2nÿ 1, then P�~a; s��x� has a possible pole of order less

than b�m� 1�=2c.
. P�~a; s��x� is holomorphic if and only if hd�1��ÿm�;~ai � 0.
. For integers p in 1a p < b�m� 1�=2c, P�~a; s��x� has pole of order

p if and only if hd� p�1��ÿm�;~ai � 0 and hd� p��ÿm�;~ai0 0.
. P�~a; s��x� has pole of order b�m� 1�=2c if and only if

hd�b�m�1�=2c��ÿm�;~ai0 0.

(b) If m > 2n, then P�~a; s��x� has a possible pole of order less than n.
. P�~a; s��x� is holomorphic if and only if hd�1��ÿm�;~ai � 0.
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. For integers p in 1a p < n, P�~a; s��x� has pole of order p if and

only if hd� p�1��ÿm�;~ai � 0 and hd� p��ÿm�;~ai0 0.
. P�~a; s��x� has pole of order n if and only if hd�n��ÿm�;~ai0 0.

Next we consider the exact support of the Laurent expansion coe½cients of

the complex powers of the relative invariant. Remember that the structures of

the singular orbits given by

V :�
G

0aian
0a janÿi

S
j
i �14�

where we denote S
j
0 � V j. It is easily seen that S :�

F

1aian S i with S i �
F

0a janÿi S
j
i . Each singular orbit is a stratum which not only is a G-orbit but is

a G
1-orbit. The strata S

j
i �1a ia n; 0a ja nÿ i� have the closure inclusion

relation

S
j
i IS

jÿ1
i�1 US

j
i�1: �15�

They have the same structure as the case of symmetric matrix space and we use

the same notation here.

The support of a singular invariant hyperfunction is a closed set consisting of

a union of several strata S
j
i . Since the support is a closed G-invariant subset, we

can express the support of a singular invariant hyperfunction as a closure of a

union of the highest rank strata, which is easily rewritten by a union of singular

orbits. The exact support of the Laurent coe½cients of P�~a; s��x� is given by the

following theorem.

Theorem 4.3 (Support of the singular invariant hyperfunctions). Let m be a

positive integer and suppose that P�~a; s��x� has pole of order p at s � ÿm. Let

P�~a; s��x� �
X

y

w�ÿp

P�~a;ÿm�
w �x��s�m� j �16�

be the Laurent expansion of P�~a; s��x� at s � ÿm. The support of the coe½cients

P
�~a;ÿm�
j �x� is contained in S if j < 0. Recall that the coe½cient vectors

d
�k��s0� :� �d

�k�
0 �s0�; d

�k�
1 �s0�; . . . ; d

�k�
nÿk�s0�� A ��C n�1���nÿk�1

;

are de®ned in De®nition 4.1 at s � ÿm �m � 1; 2; . . .�. In both the complex case

and the quaternion case, the support of P
�~a;ÿm�
w �x� �w � ÿ1;ÿ2; . . . ;ÿp� is con-

tained in the closure Sÿw and it is given by

Supp�P�~a;ÿm�
w �x�� �

�

6
j A f0a jan�w j hd

�ÿw�
j

�ÿm�;~ai00g

S
j
ÿw

�

: �17�
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5. Outline of the proof of the main results.

The rest of this paper is devoted to give outlines of proof of Theorem 4.2

and Theorem 4.3.

We consider invariant hyperfunctions on V under the action of G as

solutions to a holonomic system. Let f �x� be a hyperfunction on V . We say

that f �x� is a ws-invariant hyperfunction if

f �r�g�x� � w�g� s f �x�; �18�

for all g A G with s A C and w�g� :� det�g�2. Then it is a hyperfunction solution

to the following system of linear di¨erential equations Ms obtained by taking

in®nitesimal actions of G ,

Ms : dr�A�x;
q

qx

� �

ÿ sdw�A�

� �

u�x� � 0 for all A A G: �19�

Here, G is the Lie algebra of G ; dr is the in®nitesimal representation of r; dw

is the in®nitesimal character of w. The system of linear di¨erential equation (19)

is a regular holonomic system and hence the solution space is ®nite dimensional.

See for detail [5].

The characteristic subvariety of the holonomic system (19) is denoted by

ch�Ms�. It is given by

ch�Ms� :� f�x; y� A T �
V j hdr�A�x; yi � 0 for all A A Gg: �20�

The characteristic variety has the following irreducible component decomposition,

ch�Ms� :� 6
n

i�0

Li; �21�

with Li � T �
S i
V where T �

S i
V stands for the conormal bundle of the rank �nÿ i�-

orbit S i. It is a well known result that the singular support of the hyperfunction

solution to Ms is contained in ch�Ms�.

We de®ne the subset L�
i by

L�
i :� Li ÿ 6

i0 j

L j �22�

It is an open-dense subset of Li. The open subset L�
i consists of several open

connected components, each of which is a G-orbit. Furthermore, L�
i is a non-

singular algebraic subvariety and an open dense subset in Li.

L�
i �

G

0a janÿi
0akai

L
j;k
i ; �23�
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with

L
j;k
i :� G �

I
� j�
nÿi

0i

 !

;
0nÿi

I
�k�
i

� �

 !

: �24�

Here, I
�q�
p :�

Iq

ÿIpÿq

� �

and Ip is an identity matrix of size p. Each orbit

L
j;k
i is a connected component in L

�
i .

Hyperfunction solutions u�s; x� to Ms that we consider in this paper are the

linear combinations

u�s; x� � P�~a; s��x� :�
X

n

i�0

ai � jP�x�j
s
i ; �25�

with ~a � �a0; a1; . . . ; an� A C
n�1 introduced in (11). Since P�~a; s��x� is a hyper-

function with a meromorphic parameter s A C , the microfunction sp�P�~a; s��x�� and

its principal symbols s
L

j; k
i

�P�~a; s��x�� depend on s A C meromorphically. See [6,

O3.3] for details on principal symbols.

We de®ne the coe½cient functions of P�~a; s��x� on the Lagrangian connected

component L j;k
i as a function of ~a and s in the same way as [6, Proposition 3.3].

Let

s
L

j; k
i

�P�~a; s��x�� :� c
j;k
i �~a; s�W j;k

i �s�=
��������

jdxj
p

; �26�

with c
j;k
i �~a; s� being a meromorphic function in s A C . We call c

j;k
i �~a; s� a

coe½cient function or simply a coe½cient of P�~a; s��x� on L
j;k
i with respect to the

canonical basis,

W
j;k
i �s�=

��������

jdxj
p

: �27�

The canonical basis (27) is de®ned in the same way as [6, Proposition 3.3]. Then

the coe½cient functions c
j;k
i �~a; s� depend on ~a A C

n�1 linearly and on s A C

meromorphically.

Then we have Proposition 5.1 and Proposition 5.10.

Proposition 5.1. The following three conditions are equivalent.

1. P�~a; s��x� has pole of order p at s � s0.

2. sp�P�~a; s��x��j
U

n
i�1L

�
i
has pole of order p at s � s0.

3. All the coe½cient functions in fc j;k
i �~a; s� j 0a ia n; 0a ja nÿ i;

0a ka ig have pole of order not greater than p at s � s0 and at least one

coe½cient of them has pole of order p at s � s0.

The proof of Proposition 5.1 can be carried out in the same way as [6,

Proposition 3.7]. Then we have only to compute the orders of pole or the
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supports of Laurent expansion coe½cients of the coe½cient functions c
j;k
i �~a; s�

instead of those of P�~a; s��x�. We use the following two relations (28) and (29) in

the proof of the main theorem.

Proposition 5.2. The coe½cient functions on L
�
i and L

�
i�1 have the following

relations. These relations depend on s A C meromorphically.

1. (the complex case)

c
j;k�1
i�1 �~a; s�
c
j;k
i�1�~a; s�

" #

� G�s� i � 1�
������

2p
p

"

exp�ÿ�p=2�
�������

ÿ1
p

�s� i � 1�� exp���p=2�
�������

ÿ1
p

�s� i � 1��
exp���p=2�

�������

ÿ1
p

�s� i � 1�� exp�ÿ�p=2�
�������

ÿ1
p

�s� i � 1��

#

�
"

exp���p=2�
�������

ÿ1
p

�i ÿ 2k�� 0

0 exp�ÿ�p=2�
�������

ÿ1
p

�i ÿ 2k��

#

� c
j�1;k
i �~a; s�
c
j;k
i �~a; s�

" #

�28�

2. (the quaternion case)

c
j;k�1
i�1 �~a; s�
c
j;k
i�1�~a; s�

" #

� G�s� 2i ÿ 1�
������

2p
p

"

exp�ÿ�p=2�
�������

ÿ1
p

�s� 2i ÿ 1�� exp���p=2�
�������

ÿ1
p

�s� 2i ÿ 1��
exp���p=2�

�������

ÿ1
p

�s� 2i ÿ 1�� exp�ÿ�p=2�
�������

ÿ1
p

�s� 2i ÿ 1��

#

�
"

exp�p
�������

ÿ1
p

�i ÿ 2k�� 0

0 exp�ÿp
�������

ÿ1
p

�i ÿ 2k��

#

� c
j�1;k
i �~a; s�
c
j;k
i �~a; s�

" #

�29�

Proof. See [3, Theorem 2.13]. The above relations are the cases of

Hern�C� and Hern�H�. r

By the relation formulas in Proposition 5.2, we have the following three

propositions in the complex (resp. quaternion) case.

Proposition 5.3. Let s0 :� ÿm �m � 1; 2; . . .�. For a ®xed integer p sat-

isfying 0a paminfm; ng (resp. 0a paminf�m� 1�=2; ng), we suppose that

hd� p��s0�;~ai0 0. Then c
�;�
q �~a; s� has pole of order q for q � 0; 1; . . . ; p at s � s0.
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Proposition 5.4. Under the same condition of Proposition 5.3, c�;0
q; �~a; s0�;ÿq

�

�nzc�q � hd�q��s0�;~ai for q � 0; 1; . . . ; p where �nzc�q is a non-zero constant

depending on q.

Proposition 5.5. Let s0 :� ÿm �m � 1; 2; . . .�. For a ®xed integer p sat-

isfying 0a paminfm; ng (resp. 0a paminf�m� 1�=2; ng), we suppose that

hd� p�1��s0�;~ai � 0. Then c
�;�
q �~a; s� has pole of order at most p for q � p; p� 1; . . .

at s � s0.

Then we have the following proposition.

Proposition 5.6 (Exact orders of coe½cient functions). Let s0 :� ÿm

�m � 1; 2; . . .�. The order of the pole of the coe½cient function c
�;�
i �~a; s� at s � s0

has the following property. There exists an integer p in 0a paminfm; ng

(resp. 0a paminf�m� 1�=2; ng) such that the orders of the pole at s � s0 of

c
�;�
q �~a; s� coincide with q for q in 0a qa p and the orders of the pole at s � s0
of c

�;�
q �~a; s� do not exceed p for q in pa qa n

Now we can give the proof of Theorem 4.2 in the complex (resp. quaternion)

case. We do not have to prove the converses since if we establish all the

statements, then the converses are automatically true since all the possible cases

are proved. We give here proof of part (a) of Theorem 4.2.

Lemma 5.7. Let s0 :� ÿm �m � 1; 2; . . .�. If hd�1��ÿm�;~ai � 0, then

P�~a; s��x� is holomorphic at s � s0.

Proof. By applying Proposition 5.5 in the case of p � 0, all the coe½cients

c
�;�
i �~a; s� �0a ia n� are holomorphic at s � s0. Thus, by Proposition 5.1,

P�~a; s��x� is holomorphic at s � s0. r

Lemma 5.8. Let s0 :� ÿm �m � 1; 2; . . .�. For a ®xed integer p satisfying

1a p < minfm; ng (resp. 0a paminf�m� 1�=2; ng), if hd� p�1��ÿm�;~ai � 0 and

hd� p��ÿm�;~ai0 0, then P�~a; s��x� has pole of order p at s � s0.

Proof. From the conditions hd� p��ÿm�;~ai0 0 and hd� p�1��ÿm�;~ai � 0, we

see that all the coe½cients c
�;�
i �~a; s� have pole of order at most p, and that the

coe½cient c
�;�
p �~a; s� has pole of order p by applying Proposition 5.3 and

Proposition 5.5. Then all the coe½cients c�;�i �~a; s� �0a ia n� have pole of order

at most p, and at least one of them has pole of order p. Thus, by Proposition

5.1, P�~a; s��x� has pole of order p at s � s0. r

Lemma 5.9. Let s0 :� ÿm �m � 1; 2; . . .� and suppose that ma n (resp.

ma 2n). If hd�m��ÿm�;~ai0 0 (resp. hd�b�m�1�=2c��ÿm�;~ai0 0), then P�~a; s��x� has

pole of order m (resp. b�m� 1�=2c) at s � s0.
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Proof. Since hd�m��ÿm�;~ai0 0 (resp. hd�b�m�1�=2c��ÿm�;~ai0 0), we see that

the coe½cient c
�;�
m �~a; s� (resp. c

�;�
b�m�1�=2c�~a; s�) has pole of order m by applying

Proposition 5.3 for the case p � m. On the other hand, all the coe½cients of

P�~a; s��x� have pole of order at most m since we are considering the poles at

s � ÿm with ma n (resp. ma 2n) by the theory of b-functions. Then all the

coe½cients c�;�i �~a; s� �0a ia n� have pole of order at most m (resp. b�m� 1�=2c),

and at least one of them has pole of order m (resp. b�m� 1�=2c). Thus, by

Proposition 5.1, P�~a; s��x� has pole of order m (resp. b�m� 1�=2c) at s � s0. r

By Lemma 5.7, Lemma 5.8 and Lemma 5.9, we have part (a) of Theorem

4.2 in the complex (resp. quaternion) case. The proof of part (b) is almost the

same, so we omit them.

Next we go to the proof of Theorem 4.3.

Proposition 5.10. Suppose that P�~a; s��x� has pole of order p at s � s0. We

give the Laurent expansion of P�~a; s��x� at s � s0 by

P�~a; s��x� �
X

y

w�ÿp

P�~a; s0�
w �x��sÿ s0�

w: �30�

Then we have

Supp�P�~a; s0�
w �x�� �

0

B

B

B

@

6

�i; j� AZ 2

c
j; k
i

�~a;s� has pole of

order bÿw for some k

in 0a ka i at s�s0

�

�

�

�

�

�

8

<

:

9

=

;

S
j
i

1

C

C

C

A

�31�

The proof of Proposition 5.10 can be carried out in the same way as [6,

Proposition 3.8]. By Proposition 5.10 and the argument in [6, O6], we can prove

Theorem 4.3.
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