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Abstract. We study the first positive eigenvalue /1(1” ) of the Laplacian on p-forms

for oriented closed Riemannian manifolds. It is known that the inequality )fll) < 1(10)

holds in general. In the present paper, a Riemannian manifold is said to have the gap
if the strict inequality }V(lw < /lgo) holds. We show that any oriented closed manifold M
with the first Betti number b;(M) = 0 whose dimension is bigger than two, admits two
Riemannian metrics, the one with the gap and the other without the gap.

1. Introduction.

Let (M,g) be an m-dimensional connected oriented closed Riemannian
manifold. We denote by i,((p )(M ,g) the k-th positive eigenvalue of the Laplacian
on the spaces of p-forms. We compare igl)(M ,g) with igo)(M ,g). In gerenal,
the commutativity of the Laplacian 4 =do +0d and the exterior differential
operator d implies the inequality igl)(M g) < igo)(M ,g). We are interested in a
Riemannian manifold (M, g) satisfying lgl)(M ,g) < /lgo)(M ,g). For convenience,
when a metric g satisfies igl)(M, g) < /lgo)(M, g) (resp. igl)(M, g) = AEO)(M, g)), we
call it a metric with (resp. without) the gap.

First of all, we study which closed manifolds M admit metrics g with the
gaps. While no 2-dimensional oriented closed manifold admits such a metric (cf.
IProposition 2.4), we obtain the following two theorems.

THEOREM 1.1. For an m-dimensional connected oriented closed manifold
M (m > 3), there exists a metric g on M without the gap, namely, we have

(M, g) =" (M, g).

THEOREM 1.2. For an m-dimensional connected oriented closed manifold
M (m > 3) with the first Betti number by(M) = 0, there exists a metric g on M
with the gap, namely, we have

(M, g) < AV (M, g).
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We know some examples of closed manifolds with 5;(M) # 0 which admit
metrics with the gaps, e.g., the m-dimensional tori (m > 3) (cf. Theorem 0.2 in
[CC-90]). We conjecture that our is valid for any m-dimensional
closed manifold (m > 3).

Next, we study geometric properties of Riemannian manifolds whose metrics
have the gaps. In the case of Einstein manifolds with positive Ricci curvature,
we obtain the following.

THEOREM 1.3. Let (M,g) be a connected oriented closed Einstein manifold
with positive Ricci curvature, and Isom(M,g) the isometry group of (M,g).
Suppose that (M,g) has the gap.

(i) If dimIsom(M,g) =0, then the identity map is strongly stable as a

harmonic map.

(i) If dimIsom(M,g) > 1, then the identity map is weakly stable as a

harmonic map.

The structure of the present paper is as follows: In Section 2, we give a
condition for a manifold to admit a metric with the gap, using the Hodge
decomposition theorem. In Section 3, we prove [Theorem 1.1 by constructing a
one-parameter family of metrics including metrics without the gap. In Section
4, we prove [Theorem 1.2l We first prove it in the case of the canonical spheres.
For a general case, we do it by gluing this sphere to a given manifold. In
Section 5, we prove [Iheorem 1.3. Furthermore, for all simply connected
compact simple Lie groups and simply connected irreducible Riemannian
symmetric spaces of compact type we completely determine whether or not their
canonical metrics are metrics with the gaps.
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for valuable discussion. Finally, the author also expresses his gratitude to the
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2. The decompositions of the eigenspaces.

Let (M,g) be an m-dimensional connected oriented closed Riemannian
manifold. The Hodge decomposition theorem says

A7(M) = H (M, g) @ dA”™ (M) @ 547" (M),

where A”(M) is the space of smooth p-forms on M and H”(M,g) the space of
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harmonic p-forms on (M,g). Since 4 commutes d (resp. J), the Laplacian
leaves the space of exact forms dA?~!'(M) (resp. the space of co-exact forms
JAPTY(M)) invariant. So we denote by /lllc(p)(M, g) (resp. /1,/6/<p)(M, g)) the k-th
eigenvalue of the Laplacian acting on dA?~'(M) (resp. 64771 (M)). For . > 0,
let us set EP) (1) = {we A?(M) | dw = iw}, E'P (1) = EP) () NdA?~' (M), and
E"P)(]) = EP)(J)N6AP* (M). Then we have EW () =E'"") (1)@ E"P)(]).
The operators (1/v/2)d and (1/v/A)d induce the isomorphisms between the
eigenspaces: E'(P)(J) ~ E"(»=1)(}). Especially, we obtain

(M, g) = 21"V (M, g). (2.1)
From /150) = lil(o) and (2.1) for p =1, we have the following.

PROPOSITION 2.1.  For every connected oriended closed Riemannian manifold
(M, g). we have (M. g) = min{2" (M, g),2/"" (M, g)}.

o COROLLARY 2.2. A metric g has the gap if and only if ii/(l)(M, g) <
j“1 (M7g)

RemArRk 2.3. For general p-forms (p>2), the opposite inequality
/lgp )(M ,g) > /lgp _1)(M ,g) may hold. The reason why the case of 1-forms is an
exception is that there exists no exact 0-form (except for the dual case p = m).

Moreover since the Hodge star operator commutes the Laplacian, all the
eigenvalues on p-forms and (m — p)-forms coincide (the Hodge duality).
For any oriented 2-dimensional manifold (M,g), we have the duality
0 2 1 2 2
A(M,g) =27 (M,g) and 1]V (M,g) = 47 (M,g) = A7 (M,g) by (2.1) for
p =2. Hence, from [Proposition 2.1, we have the following.

PROPOSITION 2.4. For any 2-dimensional connected oriented closed Rieman-
nian manifold (M,g), we have /lgl)(M, g) = ﬂ,go)(M, g).

3. Proof of Theorem 1.1.

3.1 The proof using the theorem of Anné and Colbois.

Let M be an m-dimensional connected oriented closed manifold (m > 3).
We construct a one-parameter family of metrics on M as follows: We remove
an m-disk D; from the sphere S™ and glue S — D; to a cylinder C = [0, 1] x
S§™-1 by identifying 6(S™ — D;) with {0} x S”™~!.  Similarly, we remove an m-
disk D, from M and glue M — D, to (S — D;)UC by identifying d(M — D)
with {1} x S™=!. Thus, we obtain the new manifold, denoted by M, which is
diffeomorphic to M and want to construct a family of metrics on M instead of
M. Take a metric g; (resp. g») on S™ (resp. M) which is flat in a neighborhood
of the disk Dy (resp. D;). We define a one-parameter family of continuous
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metrics g, on M such that

g1 on §" — Dy,
g. =< dr* ®e*h on [0,1] x S,
9> on M — D,

where r is the canonical coordinate of [0, 1] and / is the canonical metric of the
sphere S !(1) (see Figure 1).

(I

Figure 1: (M,g.)

Although g, is not smooth, Anné and Colbois defined the Lapla-
cian 4, induced from (M,g.) and studied its eigenvalues. We denote by
ng )(1\7 ge) < Zg” )(]\_1 ,ge) < --- the eigenvalues of the Laplacian on p-forms on
(M,g.) and by ﬁgp ) < ﬁgp ) < ... the union of the eigenvalues of the Laplacians
on p-forms on S”(1), (M,g) and [0,1]. Here, the eigenvalues for [0, 1] should be
understood with the relative boundary condition. The following theorem is a

special case of Theorem B in [AC-95].
THEOREM 3.1. For all k=1,2,..., and p=0,1, we have

lim 247 (M, g,) = i”.

=0

Now we go to the proof of [Theorem 1.1.

First, we consider the case of functions. It is easy to see that Zgo)(]\_l . ge) =0
and 2\ (M, g,)=2\" (M, g,)>0. Since 1\ (M,g)=0, 2" (M, g)>0, 2" (S"(1)) =
0, Zgo)(Sm(l))>O, and 150)([0,1])>O, we have

—_(0 —(0 —(0
0=p" =i <’ <.

Hence, by [Theorem 3.1, we have

WO(M,g,) =0, 2(M,g,) — 5 >0 3.1)
as ¢ — 0.
Similarly, we also consider the case of 1-forms. From the de Rham-Hodge
. (1 v (1 — =(1 —
theory, it follows that /lg )(M, go) = -+ = ,1[()1)(M, g.) =0 and ,121)+1(M7 g.) =

/151)(]\7[ ,g:) >0, where b; is the first Betti number of M =~ M. Since
=(1 =1 =1 =1 =1
WM, g) = =7 (M,g)=0, 7)), (M.g) >0, 7"([0,1)) =0, 1"([0,1]) >0,
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and Zﬁ”(sma)) > 0, we have

(1 1y _ (1
0=p = =R =/ <@\ < -
Hence, by Theorem 3.1, we have
1), 5 1), 5 (1
W(M,g) —0, A(M,g)— @, >0, (3.2)

as ¢ — 0. Since A")(M,g,) =" (M,g,) — 0 as ¢ — 0 and [3.2), we have

WM, g,) — @), >0 (some [>2), (3.3)

as ¢ — 0.
Therefore, from (3.1) and (3.3), there is some & > 0 such that

(M, g,) < 1" (M,g,). (3.4)

Since the eigenvalues of the Laplacian on the space of p-forms depend con-

tinuously on metrics with respect to the C°-topology (cf. [BU-83], and [MG-93],
p. 729), the strict inequality (3.4) still holds for a smooth metric g, which is close

to g,,. Hence, by Proposition 2.1, we have A\ (M, Js,) = A(M  Jay)- O

3.2. The proof using the theorem of Gentile and Pagliara.

Here we give an alternative proof of [Theorem 1.1. We consider the family
of metrics according to [GP-95]. We use the notation as in Subsection 3.1.
Take a metric ¢ on M such that g=dr’ ®@h on C=1[0,1] x S"'. A one-
parameter family of metrics g, (1> 0) is defined on M as

g on M — Q,
91:=3 2,42
t“dr-@®h on Q,

where Q :=[1/3,2/3] x §™ ! in C. Note that g, is smooth. Finally, we set
g, = vol(M,g.) "y,

so that the volume is one. Then, as t — oo, we see that /IEO)(M ,g;) — 0 by [Tk-

98] and that /" (M, g,) = 4|?(M,g,) — « by [GP-95]. Hence, by

2.1, for a sufficiently large 7 > 0, a metric g, has no gap. ]

4. Proof of Theorem 1.2.

We first construct a metric with the gap on the sphere. Note that the
canonical metric on the sphere has no gap (cf. Theorem 5.7). Throughout this
section, we use the notation as in Subsection 3.1.

LemMA 4.1. The sphere S™ (m > 3) admits a metric with the gap.
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Proor. First, we discuss the case of the odd dimensional sphere
§>*1(n>1). Let g, be the Berger metric on S?"*!  that is,

gi=(-1DnOn+g (t>0),

where n ©# is the symmetric product of the dual 1-form # of a unit Killing

vector field with respect to the canonical metric g. Tanno (cf. [Tn-79], [Tn-83])
verified that

4n+1) (p=0),

0 (=1, (4.1)

igp)(San,g,) _>{
as t — 0. Hence, if ¢ is sufficiently small, g, is a metric with the gap.
Next, we discuss the case of the even dimensional sphere M = S*'(n > 2).

Then M is diffeomorphic to S?". So we may construct a metric with the gap on
M. We define a one-parameter family of metrics 4, on M such that

B {azdr2 ®Bg; on Q=[1/3,2/3] x 1,
: dr? @ fyg; on C — Q,

where g, is the Berger metric on $?*~! and o and f are certain positive constants
to be specified later. Note that /4, is smooth. Moreover, we may assume that /,
is invariant under the reflection T of M with respect to {1/2} x S**~!. For a
sufficiently small ¢ > 0, we can take a sequence of smooth functions {F,;};Z, on
M such that for every i=1,2,...,e<F,; <1 and

— |1 2
e on M— lg—s,-,§+s,-] x =1
where {s;}, is a sequence of positive numbers satisfying that s; — 0 as i — oo.
Furthermore, we may also assume that F, ; depends only on r on C and that F, ;
is invariant under 7. Then, we can define a family of metrics on M by

he,i,t = Fs, ihy.

Now, we estimate /151)(117[ ,h. i) from above such as (4.3). Let w, be the first
eigen 1-form on (S?"~! g,). Since g, is a metric with the gap for a sufficiently
small >0 by (4.1), o, is co-exact. We set

5 — {(pa), on C=[0,1] x S>~1,
l 0 on M — C,
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where ¢ is a smooth cut-off function on M depending only on r such that

[ 1 on Q,
"o on M — C,

and that ¢ is invariant under 7. Since bj(M) = b;(S*") =0, there is no non-
trivial harmonic 1-form on (M,h,;,). Hence, by using the min-max principle,
we obtain

~ 12
) (77 |z 575,

il 7 (4.2)
HCOI||L2(M,/18,I-.,)

where we use the fact that @, is co-closed. Indeed, from {dF,; @y, =0, it
follows that

On,., (@) = F, {0, (@) + (1 — n)F, 2<dF, 1, @,y
=F,pB 04,0, =0.
We compute the right-hand side of (4.2). First, the numerator is
||dd)z||iz(ﬂvhw) = ||d60r||32(9,h&,-_,,) + ||d(¢wt)||iz(cf9,hm.z)
= ||d60;”iz(g7h,) + 2|\d(¢60t)||52([o71/3]x52"*'7h£.l-,z>'
Since @, is a co-exact eigen l-form on (S?'~!,g,), the first term is
||d60t||22(9,h,) = % ||dwf||i2(32”—',ﬁgx)
= 348" g o st oy
The second term is

2
2||d(pc,) ”LZ([O, 1/3]xS% b, ; 1)

(1/3 ¢

=2 FI2d(geo,)|;, drd g,
JO J §2n—1 ’

(1/3 ¢

2 2
<4 o e 71{|d(p A wt|h, + |€”d60z|h,}drdﬂﬁgr

2 2 2 2
S 4{||¢IHL2(071/3)||wt||L2(S2”*17ﬁg,) + ||(0||L2(071/3)||dwl||L2(S2”*1,ﬁg,)}

2 1 n— 2 2
= 401072013 + A (S Ba)llol 720,13 Hled Fa s g
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On the other hand, the denominator of the right-hand side of (4.2) is
<02 ~ 12
”waLZ(AZ,h&,,) = HCUtHLZ(Q,hg,,-,,)

& 2
= 3 ”a)lHLz(Sz"*l,[)’g,)'

Hence, substituting the above facts for (4.2), we obtain

), x5 12 1 e 12
%MMmm»sQ+;wMMNQ%%§‘ﬁm+;wwﬁmm. (43)

Since |[|¢’|| iz(o 1/3) is independent of all the parameters «,f,¢,¢ and i by the
choice of ¢, we can take two positive numbers o« and f such that

12,05 . (9% 4n
S x4 <mind 7 1 (44)
Moreover, there exists some #y > 0 such that for all ¢ < £,
. 97‘[72 4n (0)
min ?7? =V (Q7ht)7 (45)

where vgo) (2, hy) is the first eigenvalue on functions on (£, /,) with the Neumann
condition. In fact, by Proposition 4.2 in [Tn-79], there exists some 7, > 0 such
that for all ¢ < 1, igo)(Sz”‘l,g,) =4n. Thus, by using the product formula for
the eigenvalues, we have

12
vgo) (Q,h) = min{vgo) ( E@] ;szdr2> Jgo)(Sz”‘,/fgz)}

= min 9—712 4n
— 7|
Since A\ (8271, Bg,) — 0 as t — 0, there exists #; > 0 (0 < #; < fo) such that
12 1) e 12
(1 "‘;H(ﬂ”iz(o,l/s))ig )(52 ' Ban) < ;||§”/”22(0,1/3)- (4.6)
Hence, substituting (4.6) for (4.3), we have
0, — 12
V(M o) < 10220, % 2 (4.7)
for all ¢ and i.

On the other hand, according to Theorem III.1 in [CV-86] (see also Lemma
2 in [D-94]), there exist a sufficiently small &; > 0 and a sufficiently large integer 7,



On the gap between the first eigenvalues 315

such that
0 12,5 Wy
W @) =10 220,13 < A4 (M i), (4.8)

Therefore, we obtain

0), 1), 0 12
A Do) = 23V i) > (200) =119 10,17 % 3
(by (4.7),(4.8))

12
> — ||(ﬂ ||L2 0,173 > 0

(by (4.4),(4.5)).

Hence, A, ; . 1s a metric with the gap on S~ M. H

ProOF OF THEOREM 1.2. Now we give a proof of [Theorem 1.2. Let M be
an m-dimensional connected oriented closed manifold (m > 3) with b;(M) = 0.
We construct a metric with the gap on the manifold M in Section 3. By
4.1, we can take a metric g; with the gap on S”. Then A4 := igo)(S”",gl)—
igl)(S’”,gl) is positive. We consider the disk D; as the geodesic ball B(xj,r)
with the radius r > 0 centered at x; € S™. Set U, :=S™ — B(xy,r).

First, from Theorem 2 in [A-87] (see also Lemma 3 in [D-94]), it follows that

lim " (U, 1) = A8, g1). (4.9)

r—0

Furthermore, from p. 193 and (4.2) in [AC-93], it follows that
lim i (U, 01) = 44 (™, 91). (4.10)

where ﬂil)(Ur,gl) is the first positive eigenvalue of the Laplacian on 1-forms on

U, satisfying the boundary condition (III) in [AC-93], p. 191, i.e. vanishing at
boundary. The spectrum under this boundary condition has no 0-eigenvalue by
[A-89]. By (4.9) and (4.10), there exists an ¢ > 0 such that

1
150)(Sm7g1)_ZA<V§0)(U8ag1)7 (411)

. m 1
u@a@m)<ﬂ”w,go+1A (4.12)
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Next, by Theorem IIL.1 in [CV-86] (see also Lemma 2 in [D-94]), there exists
a metric 7 on M such that

h=g¢, on U, (4.13)

1 _
WU, g1) — A< AO(M h). (4.14)

By the inclusion of the Sobolev spaces H| (A'T*U,,g;) = H'(A'T*M,h) via the
0-extension and the assumption b;(M) = 0, the min-max principle implies

KM ) < @YU g). (4.15)

Therefore, we obtain

_ _ 1 -
AR = i (2,0 > W (U g1) = 4 - 1 (U 1)

(by (4.14),(4.19))

3
> Zg())(Sm?gl) - igl)(Smagl) - ZA

(by (4.11),(4.12))

1
—A .
>4 >0

Hence, / is a metric with the gap on M. ]

5. Gap and stability of Einstein manifolds.

First of all, let us recall the definition of the stability of the identity map of
Riemannian manifolds (see [EL-83], [U-87]). Let (M,g) be a connected oriented
closed Riemannian manifold. Since the identity map id : (M,g) — (M,g) is a
harmonic map, the Jacobi operator J;; acting on vector fields can be defined.

DeFINITION 5.1. The identity map is unstable (resp. weakly stable, or
strongly stable) if the first eigenvalue 1;(J;;) of Jiz is negative (resp. non-negative,
or positive).

From now on, by the duality of vector fields and 1-forms with respect to g,
we can regard for J;; to act on the spase of 1-forms. The following lemma
immediately follows.

LEmMMA 5.2, Let (M,g) be a connected oriented closed Einstein manifold with
Einstein constant o. For any 1-form o, we have Jiz;(®) = Aw — 20w. Hence,

W) =2 =20 and 17 (Jig) = 2" = 20, where 2(Jig) (resp. X! (Jia)) is the first
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eigenvalue of the Jacobi operator acting on the space of exact (resp. co-exact)
1-forms.

The following lemma due to Nagano (cf. [N-61]) is very crucial in our
argument.

LemMa 5.3. Let (M,g) be a connected oriented closed Einstein manifold with
positive Einstein constant o. Then /l{/(l)(M ,g) = 20.  Moreover, the equality holds
if and only if the isometry group Isom(M,g) is not discrete.

ProorF. We give a proof which is different from Nagano’s original proof
by using the results in [GM-75] and [TY-80]. From the Weitzenbock formula, it
follows that for any 1-form w,

(d0,0), = Vol + | Rie(or, ) dy,

= [Volz: + allo] .. (5.1)

On the other hand, Lemme 6.8 in |GM-75| showed that for any p-form w on M,

1 1
Vol* > — |do|* + —— do|”. (5.2)
p+1 m-—p

+1
Furthermore, Lemma 2.5 in [TY-80| showed that the equality in (5.2) holds if
and only if w 1s a conformal Killing. Especially, if o is a co-closed 1-form, this

condition is equivalent to that w is a Killing 1-form.
For a co-exact 1-form w, from and (5.2), it follows that

1 2 2
(4w, 0)2 = 5 ||dol|z: + ool 7.

Considering that ||dwl|}. = (dw,w),,, we have (dw,w),, > 20l|wl|;., that is,
i{/(l)(M, g) = 2.

Finally, the equality holds if and only if (M,g) has a non-trivial Killing
vector field, that is, dimIsom(M,g) > 1. O

PropoSITION 5.4. Let (M,g) be as in Lemma 5.3.

(i) In the case of dimlIsom(M, g) =0, the metric g has the gap only if
/Ii(Jld) > 0.

(i) In the case of dimIsom(M,g) > 1, the metric g has the gap if and only if
i{ (J,'d) > 0.

Proor. From [Lemma 5.3, if dimIsom(M,g) =0 (resp. dimIsom(M,g) >
1), we have i{'(l)(M, g) > 2a (resp. i{/(l)(M, g) = 2a). Since A;(Jig) = /150) — 20
by [Lemma 3.7, we see [Proposition 5.4, immediately. m
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Similarly, we have the following proposition.

ProposITION 5.5. Let (M,g) be as in Lemma 5.3.
(i) If dimIsom(M,g) =0, we have A{(Jis) > 0.
(ii) If dimIsom(M,g) > 1, we have A{(Jis) = 0.

Since o >0, there is no non-trivial harmonic 1-form by the Bochner
vanishing theorem. Hence, A;(Jiy) = min{4;(Jis),4{ (Jis)}. Therefore, by using
Propositions and B.3, we can prove Theorem 1.3.

Finally, we determine whether or not the metrics of well-known special
Einstein manifolds have the gaps.

ProPOSITION 5.6. Let G be a simply connected compact simple Lie group
and let g be the bi-invariant metric induced from the Killing form. The metric g
on G has the gap if and only if 2,(G,g) > 1/2, i.e. G is one of the following types:
By (l > 3), D; (l = 4), E; (l = 6,7,8), Fy.

ProOF. From and o =1/4, it follows that 2/"(G,g) =1/2.
On the other hand, the first eigenvalues on functions are computed in Table A4.1
(U-86]. Hence, by [Corollary 2.2, we obtain [Proposition 5.6, O

ProposITION 5.7.  Let (G/K,g) be a simply connected irreducible Riemannian
symmetric space of compact type with the canonical metric. The metric g on G/K
is one with the gap if and only if 21(G/K,g) > 1, i.e. G/K is one of the following
types:

Al SU(g+1)/SO(g+1) (¢ =2)
BI SO2I+1)/SOQ2I+1—-¢q) x SO(q) (I =q=>23)

DI SO(21)/SO(2l — q) x SO(q) (I > ¢ >3)

EI  (E¢/Sp(4)”

EIl  (Es/SU(2)-SU(6))™
EV (E7/SU))~

EVI  (E;/SO(12)-SU(2))~

EVII Eg/SO(16)

EIX  (Es/E;-SU(2))™
FI (F/Sp(3)-SU(2))"
G G,/SU(2) x SU(2)

Here, M~ means the universal covering of M.



On the gap between the first eigenvalues 319

Proor. We can prove this proposition by the same way as [Proposition 5.6
Namely, since o = 1/2, we have A{'(l)(G/K ,g) = 1. On the other hand, we also
know igo)(G/K ,g) due to Table 4.2 in [U-86]. Here, the first eigenvalue of the
symmetric space of type EIIl was dropped in the table but it is 1 because the
symmetric space of type EIII is hermitian. Hence, by [Corollary 2.2, we obtain

IProposition 5.7 H

[A-87]

[A-89]
[AC-93]
[AC-95]
[BU-83]
[CC-90]
[CV-86]
[D-94]
[EL-83]
[GM-75]
[GP-95]
[MG-93]
[N-61]
[TY-80]
[Tk-98]
[Tn-79]
[Tn-83]
[U-86]

[U-87]

References

C. Anné, Spectre du laplacien et écracement d’anses, Ann. Sci. Ec. Norm. Sup. (4), 20
(1987), 271-280; Correction of my paper “Spectre du laplacien et écracement d’anses”,
http://www.math.sciences.univ-nantes.fr/anne/(1999).

, Principe de Dirichlet pour les formes différentielles, Bull. Soc. Math. France,
117 (1989), 445-450.

C. Anné and B. Colbois, Opérateur de Hodge—Laplace sur des variétés compactes privées
d’un nombre fini de boules, J. Func. Anal., 115 (1993), 190-211.

———, Spectre du Laplacien agissant sur les p-formes différentielles et écrasement
d’anses, Math. Ann., 303 (1995), 545-573.

S. Bando and H. Urakawa, Generic properties of the eigenvalues of the Laplacian for
compact Riemannian manifolds, Toéhoku Math. J., 35 (1983), 155-172.

B. Colbois and G. Courtois, A note on the first nonzero eigenvalue of the Laplacian
acting on p-forms, Manuscripta math., 68 (1990), 143-160.

Y. Colin de Verdiere, Sur la multiplcit¢ de la premicre valeur propre non nulle du
Laplacien, Comm. Math. Helv., 61 (1986), 254-270.

J. Dodziuk, Nonexistence of universal upper bounds for the first positive eigenvalue of the
Laplace-Beltrami operator, Contemporary Math., 173 (1994), 109-114.

J. Eells and L. Lemaire, Selected topics in harmonic maps, Conference Board of Math.
Sci., 50, AMS (1983).

S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles
d’une variété riemannienne, J. Math. pures appl., 54 (1975), 259-284.

G. Gentile and V. Pagliara, Riemannian metrics with large first eigenvalue on forms of
degree p, Proc. Amer. Math. Soc., 123 (1995), 3855-3858.

J. McGowan, The p-spectrum of the Laplacian on compact hyperbolic three manifolds,
Math. Ann., 279 (1993), 729-745.

T. Nagano, On the minimum eigenvalues of the Laplacians in Riemannian manifolds,
Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 11 (1961), 177-182.

S. Tachibana and S. Yamaguchi, The first proper space of A4 for p-forms in compact
Riemanian manifolds of positive curvature operator, J. Diff. Geom., 15 (1980), 51-60.
J. Takahashi, The first eigenvalue of the Laplacian on p-forms and metric deformations,
J. Math. Sci. Univ. Tokyo, 5 (1998), 333-344.

S. Tanno, The first eigenvalue of the Laplacian on spheres, Tohoku Math. J., 31 (1979),
179-185.

———  Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of
Riemannian Manifolds, Kaigai Publications, Tokyo, (1983), 115-128.

H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous
Riemannian manifold, Compositio Math., 59 (1986), 57-71.

———, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer.
Math. Soc., 301 (1987), 557-589.




320 J. TAKAHASHI

Junya TAKAHASHI

Graduate School of Mathematical Sciences

The University of Tokyo

3-8-1 Komaba, Meguro, Tokyo 153-8914, JAPAN
E-mail: junya@ms.u-tokyo.ac.jp



	1. Introduction.
	THEOREM 1.1. ...
	THEOREM 1.2. ...
	THEOREM 1.3. ...

	2. The decompositions ...
	3. Proof of Theorem 1.1.
	3.1 The proof using the ...
	THEOREM 3.1. ...

	3.2. The proof using the ...

	4. Proof of Theorem 1.2.
	5. Gap and stability of ...
	References

