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Abstract. In this paper, we shall prove in Theorem 1 that Gauss’ famous
closed formula for the values of the digamma function at rational arguments is
equivalent to the well-known finite expression for the L(1, x), which in turn gives
rise to the finite expression for the class number of quadratic fields. We shall also
prove several equivalent expressions for the arithmetic function N(g) introduced
by Lehmer and reveal the relationships among them.

1. Introduction and the main theorem.

Dirichlet’s celebrated class number formula has two stages. To state them we
introduce the notation. Let k= Q(v/d) be a quadratic field with discriminant d
and let h = hy, be its class number. Let (¢) be the Kronecker character associated
to k, which is known to be a primitive Dirichlet character mod |d|. In general,
let x be a Dirichlet character to the modulus ¢ and let L(s, x) be the Dirichlet
L-function (L-series) associated to x:

(s =3 X

s
n=1 n

where the series on the right is absolutely convergent for o := Res > 1 and is
conditionally convergent for o > 0 for non-principal x. The value L(1, x) for non-
principal x is therefore meaningful and a fortiori for the Kronecker character (‘—l)
Let (x(s) be the Dedekind zeta-function of k. Then, decomposing (i(s) into h
equivalent classes, we are led to considering the corresponding Epstein zeta-

2000 Mathematics Subject Classification. Primary 11R29, 33B15; Secondary 11R11.

Key Words and Phrases. Gauss formula for the digamma function, Dirichlet class number
formula, Hurwitz zeta-function, Lehmer’s arithmetic function, orthogonality of characters.

This research was supported in part by Grant-in-Aid for Scientific Research (No. 17540050).


http://dx.doi.org/10.2969/jmsj/06010219

220 M. HASHIMOTO, S. KANEMITSU and M. TODA
function, and the residue is known to be ([10, p.182])

27h 2h1
T for d<0 and 08¢

won/1d] N

where w and ¢ signify the number of roots of unity contained in the field and the
funcdamental unit, usually so denoted. On the other hand, (x(s) has the product

decomposition
(s ()

which gives the residue L(1, (%)), where ((s) is the Riemann zeta-function
defined by

for d >0,

C(s)zi;, o>1, (1.1)

and L(s7 (4)) is the L-series. Equating these residues, we obtain the first stage of
the Dirichlet class number formula.

The second stage consists in finite expressions for L(1,x), where the
underlying philosophy is that since h is finite, so is L(1, x) to be (which is given
in its inception as an infinite series).

The most well-known finite expressions for L(1,x) are

() --am n@n(@) a0 ue

and

L<1, <d>) :_G(ti)) :zj(j) 1og(231n37r>, d>0, (1.3)

where B (z) = x — § signifies the first (periodic) Bernoulli polynomial and G(x) is
the normalized Gauss sum defined by (x(-) = (%))

Gho= 3 xla)em. (1.4)

a mod |d|
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(1.2) and (1.3) depend on the relation

Lo = -2 S, (%), (15)

where x is a primitive Dirichlet character mod ¢ and I;(x) is the polylogarithm
(function) of the complex exponential argument

2minz

zs(x):ie L o>1 (1.6)

s
n=1 n

(also referred to as the Lerch zeta-function [14]). Its limiting case s =1, x ¢ Z
li(z) = Ai(z) —miBi(z), O0<z<l1 (1.7)
gives (1.2) and (1.3), where A;(x) signifies the first Clausen function A;(z) =

—log(2sinmx) ([17], [19)).
Polylogarithm functions are relatives of the Hurwitz zeta-function defined by

o0 1
((s,2) =) ———=, o>1, >0, 1.8
(s,2) ; et o T (1.8)

which for = 1 reduces to the Riemann zeta-function defined by (1.1).

The polylogarithm function and the Hurwitz zeta-function are interrelated
by the functional equation (sometimes referred to as Lerch’s formula)

C(l - S,I) =

4 (e*%"szs(x) +e(1— 1:)). (1.9)

As suggested by (1.9), there is a counterpart of (1.5), which is a
decomposition into residue classes mod ¢:

1

1 <« a
Do) = o 3 a1 (1.10)
= q
being valid for any Dirichlet character mod ¢, not necessarily primitive.
Recall the Laurent expansion for (s, ),
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C(s,m)zs_%—z/)(x)ﬁ—()(s—l), s—1, (1.11)

where 9(z) signifies the Euler digamma function

/

$(a) = 1 () = (105 T(2))" (1.12)

Also recall the orthogonality of characters

a - 0, if X 7é X0,
> x(a) = {sO(q), . (1.13)

= if x = xo,

where xo and ¢(g) stand for the principal character mod ¢ and the Euler function
defined by ¢(q) = > 1<4<q (g1 1, respectively.

From (1.10), (1.11) and (1.13) we obtain

1

> x(a) ( )—i—O(s—l) s—1

7=

and a fortiori

—_%zlx o). (114)

For the values of ¢(§>, there is a remarkable formula of Gauss (1 < p < ¢):

P T P ! 2pk k
w( >——’y—logq—cot7r+Zcos7rlog<2sin7r>
q 2 q pa q q
(1.15)

71' 2pk k
= —7—logq—icotgﬁ—i—2Zcosi7rlog(251n—ﬂ'>,
q q

4
k<d

where ~ is the Euler constant (1(1) = —v) and where the second equality is a
consequence of Lemma 1 below ([2], [4], [9]).

It was D. H. Lehmer [15] who first used (1.15) in his study of the generalized
Euler constant y(p, q) for an arithmetic progression p mod ¢. Using [15, (11)] and
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the relation [15, Theorem 7] between ~y(p,q) and w(z_;)’ he deduced (1.15), and
stated ([15, p.135]) “Our proof via finite Fourier series indicates that Gauss’
remarkable result has a completely elementary basis.”

Our main purpose is to elaborate on this statement of Lehmer and, on
streamlining the argument, to show that (1.15) has a purely number-theoretic
basis and that v is a number-theoretic function. As a converse to this, we shall
also put into practice the statement of Deninger [6, p.180], to the effect that (1.15)
can be used to evaluate L(1, x). Indeed, Funakura was on these lines (cf. [8, (1)])
but he appealed to the integral representation of Legendre and applied Lehmer’s
argument of using —log(1 — e*™*), 0 < 2 < 1.

We may now state our main theorem.

THEOREM 1.  Gauss’ formula (1.15) is equivalent to finite expressions for
L(1, x):

L) = — 3 xla)cot 2x (1.16)
2q ~ q
for x odd and
1 &4
L(l,x)=——)» Xl(a)log (2 sin—ﬂ') (1.17)
q a=1

for x even, where

=3 qx(@e‘m’f?"' (1.18)

is the finite Fourier transform of x.

The finite Fourier transform of x is intimately related to the generalized
Gauss sum G(a, x), see (2.3) below.

COROLLARY 1.  For primitive x, (1.16) and (1.17) reduce, respectively, to

L(1, Xoad) = — GZO Z::y(a)Bl (g) (1.16)

and
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1 qil_ . a ,
L(1, Xeven) = f@;)((a) log(Q SIHET(), (1.17)

and a fortiori, finite expressions (1.2) and (1.3) are consequences of Gauss’
formula (1.15).

REMARK 1. (i) On symmetry grounds, (1.16) may be stated as

o L a
L(1,X0ad) = ——= > X(a)B (—), (1.16)"
\/a a=1 q

which can be explicitly computed to be (1.16) (cf. e.g. [8]).

We note that both Funakura [8] and Ishibashi-Kanemitsu [12] treated
the case of periodic functions f(n) of period ¢, and obtained generalizations of
the formulas (1.16)” and (1.17), but they are already implicit in Yamamoto’s
work [19], depending on (1.5) and (1.7).

(ii) The last statement of Corollary 1 follows, on recalling that the Kronecker
characters (¢) are primitive odd or even characters mod |d|, according as d < 0 or

d > 0, respectively.

In the course of proof of Theorem 1, we shall encounter an interesting
number-theoretic function N(g) = N, defined by log Ny = —3", (u(d)logd)d
which eventually cancels out in view of (1.20) below. We believe this function
deserves wider attention and we state

THEOREM 2. For ¢ > 1, the number-theoretic function log N(q) = log N,
admits the following expressions.

d
log N, = —qZ%logd (1.19)

(1.20)

= A(d)g,(g) | (1.21)

=) osp ; (1.22)
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where the last sum is extended over all prime divisors p of q, and where p and A
signify the Mobius function and the von Mangoldt function, respectively.

2. Proof of the theorems.

Let f(n) be an arithmetic periodic function of period ¢:
[iZ—Ci fln+q) =), neZ

We define the parity of f as follows: f is called even if f(—n) = f(n) and odd if
f(=n) = —f(n).

We prepare some lemmas, of which Lemma 1 is repeatedly used in what
follows, without notice.

LEMMA 1. If f is odd, then

and if f is even, then

& 1+ (-1)
> s =2 @+ (3)

a=1 a<%

In particular, if f and x mod q are of opposite parity, then

while if f and x are of the same parity and q > 2, then

q—1

Y xl(a)f(a) =23 x(a)f(a)

a=1 a<d

— 23" x(a)f(a).

g
a<y

LEMMA 2. The ¢ function satisfies Gauss’ multiplicative formula or the
modified Kubert identity
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q

w(o) = logg+ w(*) (2.1)

q

a
LEMMA 3. Let x denote a Dirichlet character modq, ¢ > 3. Then

0 if n# +1 (modyq),
> x(m) =1 ¢l

if n=+1 (modgq),

X even 9
and
0 if n# +£1 (modgq),
el
=4 5 if n=1 (modg),
XZ:‘M elg)
- if n=—-1 (modyq),

where the sum is extended over all even and odd characters, respectively.

PROOF. For ¢ > 3, the set {£1} forms a subgroup of the reduced residue
class group G = (Z/qZ)" of index 2. Hence the factor group G/{%1} has order
@. Since the group of all even characters may be identified with the character
group of G/{£1}, it follows, from the orthogonality of characters, that

doxtm= Y x(n

X even XEG//{El}
0 if n#1in G/{£1},

=19 (@)

which proves the first assertion. The second assertion follows from the first and
the orthogonality relation

Z (n) = { 0 if n # 1 (mod gq) 22)

- ©(q) if n=1(modq).

This completes the proof of Lemma 3. O
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It is instructive to give a proof of Corollary 1 first. We introduce the
generalized Gauss sum

g-1 "
Gk, x) =Y _ x(a)e’™d"
a=1

(2.3)
= Vax(=1x(k)
(cf. (1.18)) and note that it decomposes into
Gk, x) = X(F)G(x) (2.4)

if and only if x is primitive, where G(x) = G(1, x) is the normalized Gauss sum
(1.4) ([1], [5]). We derive (1.16)" by appealing to Eisenstein’s formula

q—1 k )
Z lo () e = By — gB, (p)
q

= \4

or rather its converse (cf. [16], [11], [18])

q—1 k ]
Z Bl <—> €2m§k = —lo <]—)> —-1- Bl
q

k=1 q . (2.5)
= — ! cot d .
2 q
Substituting (2.5) into (1.16), we find that
i L k
q 974 q

Using (2.2) and other known facts

GX) =x(-1)G(K), G’ =q,

we conclude (1.16)".
We may deduce (1.17)" from (1.17) in a similar way. Substituting (1.18) into
(1.17), we obtain
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1 k| &2 2k
L(1l,x) = ~y E log (2 sinqw) E x(a) cos%a (2.6)
k=1 a=1

whose inner sum is again G(k, x). Therefore for x primitive, we have
k
L(1,x) = 7& x(k) log<281n7r>,
q

whence (1.17)' follows in the same way. This completes the proof of Corollary 1.
We now turn to

PROOF OF THEOREM 1.  That (1.15) implies (1.16) and (1.17) is immediate.
Indeed, substituting (1.15) in (1.14) and using Lemma 1, we obtain (1.16) for x
odd and (2.6) for x even, which is the same as (1.17).

Now we are to prove the converse, i.e. we are to deduce (1.15) from (1.16)
and (1.17).

With p, (p,q) = 1, we multiply (1.14) by x(p~!) and sum over x mod ¢, x # Xxo
to obtain

> x(pHL(,x)

Xo#X mod ¢
1 a N
— () e @
q a=1 q Xo7#x mod ¢
=51+ 85y,
say, where
1L a 4
Si===>"9(=) > x(a™)
q a=1 q x mod ¢
and
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By the orthogonality (2.2) of characters,

The sum S is

-1
a-18()

q a=1

the star on the summation sign indicating that the sum runs over all a’s, relatively
prime to g, (a,q) = 1. This last condition may be replaced by introducing the sum
> d|(ag) 1(d). Expressing the condition dl(a, q) as d|g, a = a’d < ¢ — 1, we have

—

5= 13 () w(%)
d

4 ayg a=

whose inner sum is

q_
| _ 9,1 4
V| — =—gleg oty

by Lemma 2. Hence

logq 1 (g
Sy =— . ©(q) — glog Ny — %% (2.9)

where log N, is defined by (1.19).
Substituting (2.8) and (2.9) in (2.7), we conclude that

—1 _@ _ B o _LO B
Xo#xmoqu(p =5, <w(q) 0B g o8 7)' (2.10)

It remains to calculate the left-hand side of (2.10), which can be done by
dividing the sum into two parts:

Z and Z

Xo7#X even x odd
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substituting therewith (1.17) and (1.16), respectively.
First, by (1.17),

> x(HL(,x)

Xo7#x mod q
1 =t L a -
=_—— Zlog (2 sm7r> Z X(p)x(a)
\/a a=1 q Xo#X even (211)
1 &8 . a o N~
=—— Zlog<2 sm7r> ( Z X(p)x(a) — Xo(p)XO(@)>
\/a a=1 q X even
=T + 1,
say, where, by (1.18),
1 &4 L a _ 1 —omika
T = —%ZIOg 251n57r Z X(p) % Z x(k)e " (2.12)
a=1 X even k mod ¢
and
H = — ogl|2sin—7 | — Xolr)e : :
\/C—I a=1 q \/C—I k mod ¢

The inner double sum of 77 is

% Z e—Qm%a Z X(/ﬂp_l)
k.

mod ¢ X even
_ L ©(q) (efmfi]a n eznga)
q 2
_plq) ( P )
= ——=cos| 27—a
q q
by Lemma 3, and so
o) & p . a
Tl———Zcos 2=an ) log| 2sin—m |, (2.14)
q = q q
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while the inner sum for 75,

ik
2 : o 2‘mqa7

k mod ¢

is the Ramanujan sum, which is equal to

by Holder’s result (cf. e.g. [15, p.133]).
Hence

q— ,“( d )
50 (a,q)
= ( sin — 7() .

but this is f—logN by (1.20), i
1
T5 = ——log N,.
q

Substituting (2.14) and (2.15) in (2.11), we obtain

XoFX even q

On the other hand, by (1.16) and Lemma 3,

i
DXL X) =2y eot—m Y x(ap™)
x odd q a=1 x odd
T (ple) . p  wle b
= [ cotZm— ZHeot—
2q \ 2 q 2 q
mo(q)  p
= cot—m
2q q

Combining (2.16) and (2.17) implies

-
Z x(pHL(,x) = —LZ cos 2w = awlog<2s1n ﬂ') — —logN.
¢ = q q

231

(2.15)

(2.16)

(2.17)
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> x(pHL(,x)

Xo#x mod ¢
4
_— L Z <2 a7r> log (2 sin — ¢ 71') (2.18)
q = q

©(q) p

1
— —log N, + ——mcot—m.
q 2q

Equating (2.10) and (2.18) and eliminating the terms involving log N,, we
conclude (1.15). This completes the proof. O
Before giving a proof of Theorem 2, we make the following

REMARK 2. Lehmer [15] and Briggs [3] were the first who studied the
generalized Euler constant 7(r,q) for an arithmetic progression r mod ¢ (cf.
also [7], [14]), defined by

1
~(r,q) = lim Z 1-— glogx

Tr—00
nle

n=r (mod q)

Lehmer considered the sum ®(q) =7 _,*y(a,q) and expressed it in the closed
form in [15, Theorem 3]:

a®(q) = v¢(q) + log Ny, (2.19)

where N, is some rational number. Then in [15, Theorem 4] he proves

()
N, =[Ja T,

dlq

which is (1.19) after exponentiation.
Then comparing (2.19) and [15, (16)], we have (1.22). Comparing then (1.22)
with [15, Theorem 6] we obtain

q
log N, = @109;2 -2 w;q) Z u(““”)
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to which we may apply Lemma 1 to deduce (1.20). Thus, Lehmer’s argument,
ingenious as it is, is rather rounding with respect to formulas (1.19) and (1.20)
which are relevant to us.

Moreover, in Lehmer’s consideration, formula (1.21) is missing, which is the
key linking (1.19), (1.20) and (1.22) most naturally.

We now give a sketch of proof of Theorem 2, which consists of a set of
instructive number-theoretic identities.

PROOF OF THEOREM 2. First we prove that (1.19) and (1.21) are
equivalent. Recall the well-known generating functions (o > 1)

1 iu(n) C(S—l):i<ﬁ(n)

s) i ome T Ls) Emow
CI B 00 A(’ﬂ)
_Z(S)_; -
x|
((s) =Y 80,
n=1 n

etc. Then (1.19) amounts to

(@)'«s 1=y

whose left-hand side is

which is (1.21).

To prove (1.20), it is the easiest to transform [15, (11)] rather than to follow
the lines of proof of Lehmer mentioned in Remark 2.

[15, (11)] reads
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T T
qy(r, q) =’y+log2+§cotf7r
q

o .
-2 Z cos (ﬂ 7r) log (sin J 77) ,
q q

<3
which, by Lemma 1, amounts to

T r
qy(r,q) ='y+log2—|—5cot(—]7r

Now noting that

g—1 i
(logZ)ZCOSﬂﬂ'Z —log2,
q

=L

we may absorb the term log2 in the sum:

T T
qy(r,q) =v+ scot—m
2 q

&2 i
—Zcos—wlog 2sin=m .
; q q

J=1

The rest is the same as in Lehmer: summing over r, (r,q) =1 and applying
Holder’s result (cf. the statement immediately after (2.14)) leads to (1.20) on
appealing to (2.19).
The most interesting part of the proof is the deduction of (1.22) from (1.21).
We recall that ¢(p®) = p® — p*~! = p° (1 - %) for p a prime and that ¢ is
multiplicative. Denote by a,(n) the highest exponent of p that divides n: ™| |n.
Then by (1.21),

ay(n)
log N, => > A(ﬁ”)w(f%)

pln a=1

ay(n)
_ Z(logp) Z © (pmv<n)a p(}:l(n)>

pln a=1
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ay(n)

n
— Ing % p‘%(")*a © ( )
Stos) 3 o)
a,(n)—1
" - o(n) w(n)
= > (logp) o(pr M=)
IZV; a=1 Sﬁ(p””(”)) (p(p%("))

770

where we used the definition of A(n) to be logp if n = p™ and 0 otherwise.

Factoring ¢(n) out and substituting the explicit expression for p(p™), we get

a,(n)—1
P 1 1
log N, = ¢(n) Y (logp)| Y <—) +,W(p_1) ’

(e%
pln a1 \P

the geometric series summing to p® (™~ /(p®™ (p — 1)), and (1.22) follows.

235

Since (1.22) implies (1.20) as is explained in Remark 2, we complete the proof

of Theorem 2.

O
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