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Abstract. Suppose that � is a regular uncountable cardinal. It has been known

that the club filter on P!1
� can be presaturated. In this paper we extend the result to the

case of P��, where � is a regular uncountable cardinal � �. This involves suitably

weakening the notion of presaturation. A new reflection principle for stationary sets in

P�� plays a key role.

1. Introduction.

In [5] Foreman, Magidor and Shelah established the following:

THEOREM 1. The club filter on !1 is presaturated in the extension by the Levy

collapse of a supercompact cardinal to !2.

Goldring [10] extended and refined Theorem 1 as follows:

THEOREM 2. Suppose that ! < � < �, � is regular and � is a Woodin cardinal.

Then the club filter on P!1
� is presaturated in the extension by the Levy collapse

Colð�; �Þ.

Let us review the relevant notions quickly. See Section 2 for a more detailed

exposition and [13] for background. Suppose that � � � < � are all regular uncountable

cardinals. For a set A the set of all subsets of A of size less than � is denoted by P�A.

The club filter is the filter generated by the closed and unbounded sets. Supercompact-

ness and Woodinness are two of the major large cardinal notions, with the former much

stronger than the latter.

We abbreviate a partially ordered set as a poset. Each poset gives rise to generic

extensions of the ground model (of ZFC set theory). The Levy collapse Colð�; �Þ is the
standard poset by which every � < � has size at most � in the extension.

Suppose that F is a filter on P��. We say that a subset S of P�� is F -positive if

S \X 6¼ ; for every X 2 F . The set of all F -positive sets is denoted by Fþ. We always

view Fþ as the poset whose ordering is defined by:

T � S iff T \X � S for some X 2 F:
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The setup enables us to weaken the notion of an ultrafilter:

DEFINITION. F is presaturated if and only if every set of ordinals of size j�j in the

extension by Fþ can be covered by some set of size � in the ground model.

Originally Baumgartner and Taylor [1] defined presaturation as ‘‘precipitousness

plus preservation of �þ as a cardinal’’. In general this is weaker than our ‘‘covering’’

property. However the new definition is more natural as a combinatorial property and is

more common in the recent literature.

It is easy to see that the club filter is not an ultrafilter. In fact Shelah [21] proved that

the club filter on P!1
� is not even 2�-saturated if � > !1 (see also [26]). In this case

presaturation is the strongest property known to date that the club filter on P!1
� can

have. In contrast Woodin [29] established that the club filter on !1 can be even !1-dense.

In this paper we extend Theorem 2 further to the case ofP��. This involves suitably

weakening the notion of presaturation. Indeed, extending a result of Shelah [20], Burke

and Matsubara [3] showed that the club filter on P�� is not presaturated if !1 < � < �.

DEFINITION. F is weakly presaturated if and only if every countable set of

ordinals in the extension by Fþ can be covered by some set of size � in the ground model.

It is easy to see that weak presaturation coincides with presaturation for a filter

on P!1
�. It turns out that weak presaturation has been called !1-presaturation [9] or

!-presaturation [29] as well.

Here is the main result of this paper:

THEOREM 3. Suppose that ! < � � � < �, � and � are both regular, and � is 2�-

supercompact. Then the club filter on P�� is weakly presaturated below the set

fx 2 P�� : cf supx ¼ !g in the extension by Colð�; �Þ.

Here cf � is the cofinality of an ordinal � under the canonical well-ordering.

We prove Theorem 3 in Section 5. The key element of the proof is a new reflection

principle for stationary sets in P��. Here � is a cardinal > �. Recall from [5] the

following:

DEFINITION. Stationary Reflection inP!1
� holds if and only if for every stationary

S � P!1
� there is !1 � A � � of size !1 such that S \P!1

A is stationary in P!1
A.

In what follows we write SR for Stationary Reflection.

In [5] it was shown that SR in P!1
� holds for every � > !1 in the model of Theorem

1. Todorčević proved in effect that SR in P!1
� with � large enough implies the

presaturation of the club filter on !1 (see [2]). Extending both results in Section 3, we

reprove Theorem 2 under the stronger hypothesis that � is supercompact.

Our proof of Theorem 3 follows the same pattern. It is more involved though. One

reason is the lack of definitive ‘‘SR in P��’’ in the case !1 < � < �. Indeed it was shown

in [22] that the most natural version of ‘‘SR in P��’’ fails in this case. Consequently the

new reflection principle is somewhat awkward. See Section 4 for the precise statement of

the principle.
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It is known by the results of [7], [9] that the club filter on an inaccessible cardinal or

on the successor of a regular cardinal can be weakly presaturated. We do not know

whether the club filter on P�� can be weakly presaturated in the case !1 < � < �. We

do know, however, that Theorem 3 is optimal with respect to the size of the covering

sets. This is proved in Section 6.

2. Preliminaries.

Throughout the paper � is a regular uncountable cardinal and � is a cardinal � �.

Suppose f : ½��<! ! P!1
�. Here ½��<! is the set of all finite subsets of �. Define

CðfÞ ¼ fx � � : f ‘‘½x�<! � PðxÞg:

For x � � the closure of x under f is denoted by clf x. A set of the form P�� \ CðfÞ
is called �-club in P��. The �-club filter on P�� is the filter generated by the �-club

sets in P��. It is denoted by C �
��. It is easy to see that C �

�� is countably complete

and is fine, i.e. fx 2 P�� : � 2 xg 2 C �
�� for every � < �. Moreover C �

�� is closed

under diagonal intersections, i.e. if fX� : � < �g � C �
��, then 4fX� : � < �g ¼

fx 2 P�� : 8� 2 xðx 2 X�Þg 2 C �
��. We call such a filter normal. It is easy to see that

C �
�� is the smallest filter on P�� that is normal in this sense.

The club filter on P�� is the filter generated by the �-club filter on P�� together

with the set fx 2 P�� : x \ � 2 �g. This is not the original definition of the club filter

but is equivalent to it. For a proof see e.g. [23]. The club filter on P�� is denoted

by C ��. It is easy to see that C �� is the smallest normal �-complete filter on P��.

In particular C !1� ¼ C �
!1�

.

The prototype of Lemma 4 can be found in the proof of Shelah [19] that Chang’s

conjecture holds in the model of Theorem 1. It has been exploited quite extensively in

the subsequent works including [2], [4], [5], [10], [11], [14], [17], [22], [26], [28].

LEMMA 4. Suppose that ! < � < � < � ¼ 2�, � is regular and D is �-club in P�2
�.

List all functions from � to P!1
� as fe� : � < �g. Then there is a map d : ½2��<! ! P!1

2�

such that

. P�2
� \ CðdÞ � D and

. if z 2 CðdÞ and � < �, then

cldðz [ f�gÞ \ � ¼
S
fe�ð�Þ : � 2 z \ �g ¼ cldððz \ �Þ [ f�gÞ \ �.

PROOF. By recursion on n < ! define

dn : ½2��<! ! P!1
2� and �n : ½2��<! ! �

so that the following hold:

(1) P�2
� \ Cðd0Þ � D \ fz 2 P�2

� : 8� 2 z \ �ðe�‘‘ðz \ �Þ � PðzÞÞg,
(2) e�nðaÞ ¼ hcldnða [ f�gÞ \ � : � < �i and
(3) dnþ1ðaÞ ¼ dnðaÞ [ f�nðaÞg for every a 2 ½2��<!.
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Define d : ½2��<! ! P!1
2� by

dðaÞ ¼
[

n<!
dnðaÞ:

We claim that d is as desired.

By the definition of d and (1) we have P�2
� \ CðdÞ � P�2

� \ Cðd0Þ � D. Suppose

next z 2 CðdÞ and � < �. It suffices to show that

cldðz [ f�gÞ \ � �
[

fe�ð�Þ : � 2 z \ �g � cldððz \ �Þ [ f�gÞ \ �:

For the first inclusion it suffices to show that

cldðz [ f�gÞ \ � ¼
[

fcldnðz [ f�gÞ \ � : n < !g

¼
[

fcldnða [ f�gÞ \ � : n < ! ^ a 2 ½z�<!g

¼
[

fe�nðaÞð�Þ : n < ! ^ a 2 ½z�<!g

�
[

fe�ð�Þ : � 2 z \ �g:

The first equality follows from the definition of d and (3). The third equality follows

from (2). For the last inclusion, fix n < ! and a 2 ½z�<!. It suffices to show that

�nðaÞ 2 dnþ1ðaÞ � dðaÞ � z:

These follow from (3), the definition of d and z 2 CðdÞ respectively.
For the second inclusion, fix � 2 z \ �. It suffices to show that

e�ð�Þ � cldððz \ �Þ [ f�gÞ:

Note that cldððz \ �Þ [ f�gÞ 2 CðdÞ � Cðd0Þ by the definition of d. Since �; � 2
cldððz \ �Þ [ f�gÞ, we get the desired inclusion by (1). �

Suppose that � is a regular uncountable cardinal � �. Recall that a C ��-positive set

is called stationary in P��. Likewise a C �
��-positive set is called �-stationary in P��. It

is easy to see that a �-stationary subset of P�� is �-stationary in P��. The following

facts are invoked without further mention:

. If T � P�� is �-stationary, then fx \ � : x 2 Tg is �-stationary in P�� and

fsupðx \ �Þ : x 2 Tg is stationary in �.

. If S � P�� is �-stationary, then fx 2 P�� : x \ � 2 Sg is �-stationary.

. If S � f� < � : cf � < �g is stationary, then fx 2 P�� : supðx \ �Þ 2 Sg is sta-

tionary.

Suppose that F is a normal filter on P��. A subset A of Fþ is called an antichain

in Fþ ifX \ Y 62 Fþ for everyX 6¼ Y from A. We say that an antichain is maximal if it is

so with respect to inclusion.
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Suppose that fX� : � < �g � Fþ. The least upper bound of fX� : � < �g in Fþ is

denoted by
P

fX� : � < �g. It is well-known that
P

fX� : � < �g is given by the

diagonal union of fX� : � < �g defined by:

5fX� : � < �g ¼ fx 2 P�� : 9� 2 xðx 2 X�Þg:

The following characterization of weak presaturation from [9] is useful:

PROPOSITION 5. F is weakly presaturated if and only if the following holds:

Suppose that S 2 Fþ and fAn : n < !g is a set of maximal antichains in Fþ. Then there

is S� � S such that jfX 2 An : S� \X 2 Fþgj � � for every n < !.

With Proposition 5 one can see that if F is weakly presaturated, then the generic

ultrapower by Fþ is wellfounded (i.e. F is precipitous) and is closed under countable

sequences. For S 2 Fþ we say that F is weakly presaturated below S if the filter

generated by F [ fSg is weakly presaturated.

For a set A of ordinals Colð�;AÞ denotes the Levy collapse adjoining a surjection

from � to each � 2 A. It is easy to see that Colð�;AÞ is a �-closed poset, i.e. a poset in

which every descending sequence of length < � has a lower bound. If � > � is

inaccessible, then � ¼ �þ in the extension by Colð�; �Þ.
We say that � is �-supercompact if there is a normal �-complete ultrafilter on P��.

This is equivalent to saying that there are a transitive class M and an elementary

embedding j from the universe V of all sets to M such that jj� is the identity, jð�Þ > �

and M is closed under sequences of length �.

3. SR and the presaturation of the club filter.

As a warmup we prove in this section two special cases of Theorem 3 by adapting

Todorčević’s argument from [2] in the case of !1. More specifically we prove the (weak)

presaturation of the club filter from the following extension of SR:

DEFINITION. Stationary �-Reflection in P!1
� holds if and only if for every

stationary S � P!1
� there is � � A � � of size � such that S \P!1

A is stationary in

P!1
A.

In what follows we write �-SR for Stationary �-Reflection. Note that !1-SR is just

the original SR from [5].

PROPOSITION 6. Suppose that � < � < � and � is �-supercompact. Then �-SR in

P!1
� holds in the extension by Colð�; �Þ.

Proposition 6 was proved in effect in [5]. The proof is obtained by replacing

Lemma 9 in the proof of Proposition 11 by the following lemma of Shelah [19]:

LEMMA 7. Every stationary set in P!1
� remains stationary in the extension by a

countably closed poset.

Here is the main result of this section:
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THEOREM 8. Assume �-SR in P!1
� with � large enough. Then the following hold:

(1) The club filter on P!1
� is presaturated.

(2) The club filter on � is weakly presaturated below the set f� < � : cf � ¼ !g.

PROOF. (1) Set � ¼ 2�
!

and � ¼ 2�. Fix a stationary S � P!1
� and for each n < !

a maximal antichain fXn
� : � < �g in Cþ

!1�
. It suffices to give a stationary S� � S such

that jf� < � : S� \Xn
� 2 Cþ

!1�
gj � � for every n < !.

Define

�SS ¼ fy 2 P!1
� : 8n < !9� 2 y \ �ðy \ � 2 S \Xn

� Þg:

MAIN CLAIM. �SS is stationary.

PROOF. Fix f : ½��<! ! P!1
�. It suffices to show that �SS \ CðfÞ 6¼ ;.

List all functions from ½��<! to P!1
� as ff	 : 	 < 2�g. Define

D ¼ fz 2 P!1
2� : 8	 2 zðz \ � 2 CðfÞ \ Cðf	ÞÞg:

It is easy to see that D is club. By Lemma 4 there is a map d : ½2��<! ! P!1
2� such that

. P!1
2� \ CðdÞ � D and

. if z 2 CðdÞ and � < �, then cldðz [ f�gÞ \ � ¼ cldððz \ �Þ [ f�gÞ \ �.

For each n < ! define

Cn ¼ fy 2 P!1
� : 9� < �ðcldðy [ f�gÞ \ � ¼ y \ � 2 Xn

� Þg:

CLAIM. Cn has a club subset.

PROOF. Fix a stationary T � P!1
�. It suffices to give y 2 T \ Cn.

By �-SR in P!1
� there is � � A � � of size � such that T \P!1

A is stationary in

P!1
A. Fix a bijection 
 : �! A. Since fy 2 P!1

A : 
‘‘ðy \ �Þ ¼ yg is club, fy 2 T \
P!1

A : 
‘‘ðy \ �Þ ¼ yg is stationary in P!1
A. Hence

T � ¼ fy \ � : 
‘‘ðy \ �Þ ¼ y 2 T \P!1
Ag

is stationary in P!1
�.

Since fXn
� : � < �g is a maximal antichain in Cþ

!1�
, there is � < � such that T � \Xn

�

is stationary in P!1
�. Hence fz 2 P!1

2� : z \ � 2 T � \Xn
� g is stationary. Thus there is

z 2 P!1
2� \ CðdÞ such that � 2 z, 
‘‘ðz \ �Þ � z and z \ � 2 T � \Xn

� . Since z \ � 2 T �,

there is y 2 T such that 
‘‘ðy \ �Þ ¼ y and y \ � ¼ z \ �. It remains to prove that y 2 Cn.

Since y \ � ¼ z \ � 2 Xn
� , it suffices to show that

y \ � � cldðy [ f�gÞ \ � � z \ �:
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For the second inclusion note that y ¼ 
‘‘ðy \ �Þ ¼ 
‘‘ðz \ �Þ � z. Hence y [ f�g � z by

� 2 z. Since z 2 CðdÞ, we have cldðy [ f�gÞ � z, as desired. �(Claim)

Therefore
T
n<! Cn has a club subset. Take 	 < 2� so that

P!1
� \ Cðf	Þ �

\
n<!

Cn:

By recursion on n < ! we define

zn 2 P!1
2� \ CðdÞ

so that

. 	 2 z0, z0 \ � 2 S,

. zn � znþ1,

. zn \ � 2 Xn
� for some � 2 znþ1 \ � and

. zn \ � ¼ znþ1 \ �.

Since S is stationary in P!1
�, fz 2 P!1

2� : z \ � 2 Sg is stationary. Hence there is

z0 2 P!1
2� \ CðdÞ such that 	 2 z0 and z0 \ � 2 S. Suppose next we have defined zn as

above. Since 	 2 z0 � zn 2 P!1
2� \ CðdÞ � D, we have zn \ � 2 P!1

� \ Cðf	Þ � Cn.

Hence there is � < � such that

cldððzn \ �Þ [ f�gÞ \ � ¼ zn \ � 2 Xn
� :

Set

znþ1 ¼ cldðzn [ f�gÞ:

Then zn [ f�g � znþ1 2 P!1
2� \ CðdÞ. Since zn 2 CðdÞ and � < �, we have

znþ1 \ � ¼ cldðzn [ f�gÞ \ � ¼ cldððzn \ �Þ [ f�gÞ \ �

by the choice of d. Hence znþ1 \ � ¼ cldððzn \ �Þ [ f�gÞ \ � ¼ zn \ �, as desired.
Set

z ¼
[

n<!
zn:

We show that z \ � 2 �SS \ CðfÞ, which completes the proof of Main Claim.

To see that z \ � 2 �SS, note that z \ � ¼ z0 \ � 2 S and that for every n < ! there

is � 2 znþ1 \ � such that z \ � ¼ zn \ � 2 Xn
� . To see that z \ � 2 CðfÞ, note that

fzn : n < !g � D is increasing and that D is club in P!1
2�. Since z 2 D, we get

the desired result. �(Main Claim)

By �-SR in P!1
� there is � � B � � of size � such that �SS \P!1

B is stationary in

P!1
B. Fix a bijection 
 : �! B. Since fy 2 P!1

B : 
‘‘ðy \ �Þ ¼ yg is club, fy 2 �SS \
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P!1
B : 
‘‘ðy \ �Þ ¼ yg is stationary in P!1

B. Hence

S� ¼ fy \ � : 
‘‘ðy \ �Þ ¼ y 2 �SS \P!1
Bg

is stationary in P!1
�. Note that y \ � 2 S for every y 2 �SS. Hence S� � S. We claim that

S� is as required above.

Fix n < !. First we show that

S� � 5fXn

ð�Þ : � 2 B�g ¼

X
fXn


ð�Þ : � 2 B�g;

where B� � � is defined by 
‘‘B� ¼ B \ �.
Fix x 2 S�. It suffices to give � 2 B� \ x such that x 2 Xn


ð�Þ. Since x 2 S�,

there is y 2 �SS \P!1
B such that 
‘‘ðy \ �Þ ¼ y and y \ � ¼ x. Since y 2 �SS, there is � 2

y \ � such that y \ � 2 Xn
� . Set � ¼ 
�1ð�Þ. Since � 2 y \ � � B \ �, we have

� ¼ 
�1ð�Þ 2 
�1‘‘ðB \ �Þ ¼ B� and � ¼ 
�1ð�Þ 2 
�1‘‘y ¼ y \ � ¼ x:

Moreover we have x ¼ y \ � 2 Xn
� ¼ Xn


ð�Þ, as desired.

Since 
 : �! B is a bijection, we have

S� �
X

fXn

ð�Þ : � 2 B�g ¼

X
fXn

� : � 2 B \ �g:

Since fXn
� : � < �g is a maximal antichain in Cþ

!1�
, we have

f� < � : S� \Xn
� 2 Cþ

!1�
g � B \ �:

Since jBj ¼ �, we have jf� < � : S� \Xn
� 2 Cþ

!1�
gj � �, as desired. This completes the

proof of (1).

(2) Set � ¼ 2� and � ¼ 2�. Fix a stationary S � f� < � : cf � ¼ !g and for each

n < ! a maximal antichain fXn
� : � < �g in Cþ

� . Here C � is the club filter on �. It suffices

to give a stationary S� � S such that jf� < � : S� \Xn
� 2 Cþ

� gj � � for every n < !.

Define

�SS ¼ fy 2 P!1
� : 8n < !9� 2 y \ �ðsupðy \ �Þ 2 S \Xn

� Þg:

MAIN CLAIM. �SS is stationary.

PROOF. Fix f : ½��<! ! P!1
�. It suffices to show that �SS \ CðfÞ 6¼ ;.

List all functions from ½��<! to P!1
� as ff	 : 	 < 2�g. Define

D ¼ fz 2 P!1
2� : 8	 2 zðz \ � 2 CðfÞ \ Cðf	ÞÞg:

It is easy to see that D is club. By Lemma 4 there is a map d : ½2��<! ! P!1
2� such that

1052 M. SHIOYA



. P!1
2� \ CðdÞ � D and

. if z 2 CðdÞ and � < �, then cldðz [ f�gÞ \ � ¼ cldððz \ �Þ [ f�gÞ \ �.

For each n < ! define

Cn ¼ fy 2 P!1
� : 9� < �ðsupðcldðy [ f�gÞ \ �Þ ¼ supðy \ �Þ 2 Xn

� Þg:

CLAIM. Cn has a club subset.

PROOF. Fix a stationary T � P!1
�. It suffices to give y 2 T \ Cn.

By �-SR in P!1
� there is � � A � � of size � such that T \P!1

A is stationary in

P!1
A. Fix a bijection 
 : �! A. Since fy 2 P!1

A : 
‘‘ðy \ �Þ ¼ yg is club, fy 2 T \
P!1

A : 
‘‘ðy \ �Þ ¼ yg is stationary in P!1
A. Hence

T � ¼ fsupðy \ �Þ : 
‘‘ðy \ �Þ ¼ y 2 T \P!1
Ag

is stationary in �.

Since fXn
� : � < �g is a maximal antichain in Cþ

� , there is � < � such that T � \Xn
� is

stationary in �. Hence fz 2 P�2
� : z \ � 2 T � \Xn

� g is stationary. Thus there is z 2
P�2

� \ CðdÞ such that � 2 z, 
‘‘ðz \ �Þ � z and z \ � 2 T � \Xn
� . Since z \ � 2 T �, there

is y 2 T such that 
‘‘ðy \ �Þ ¼ y and supðy \ �Þ ¼ z \ �. It remains to prove that y 2 Cn.

Since supðy \ �Þ ¼ z \ � 2 Xn
� , it suffices to show that

supðy \ �Þ � supðcldðy [ f�gÞ \ �Þ � z \ �:

For the second inclusion note that y ¼ 
‘‘ðy \ �Þ � 
‘‘ supðy \ �Þ ¼ 
‘‘ðz \ �Þ � z. Hence

y [ f�g � z by � 2 z. Thus cldðy [ f�gÞ � z by z 2 CðdÞ. Since z \ � ¼ supðy \ �Þ is a limit

ordinal, we have supðcldðy [ f�gÞ \ �Þ � supðz \ �Þ ¼ z \ �, as desired. �(Claim)

Therefore
T
n<! Cn has a club subset. Take 	 < 2� so that

P!1
� \ Cðf	Þ �

\
n<!

Cn:

By recursion on n < ! we define

zn 2 P!1
2� \ CðdÞ

so that

. 	 2 z0, supðz0 \ �Þ 2 S,

. zn � znþ1,

. supðzn \ �Þ 2 Xn
� for some � 2 znþ1 \ � and

. supðzn \ �Þ ¼ supðznþ1 \ �Þ.

Since S � f� < � : cf � ¼ !g is stationary, fz 2 P!1
2� : supðz \ �Þ 2 Sg is stationary.

Hence there is z0 2 P!1
2� \ CðdÞ such that 	 2 z0 and supðz0 \ �Þ 2 S. Suppose next
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we have defined zn as above. Since 	 2 z0 � zn 2 P!1
2� \ CðdÞ � D, we have

zn \ � 2 P!1
� \ Cðf	Þ � Cn. Hence there is � < � such that

supðcldððzn \ �Þ [ f�gÞ \ �Þ ¼ supðzn \ �Þ 2 Xn
� :

Set

znþ1 ¼ cldðzn [ f�gÞ:

Then zn [ f�g � znþ1 2 P!1
2� \ CðdÞ. Since zn 2 CðdÞ and � < �, we have

znþ1 \ � ¼ cldðzn [ f�gÞ \ � ¼ cldððzn \ �Þ [ f�gÞ \ �

by the choice of d. Hence supðznþ1 \ �Þ ¼ supðcldððzn \ �Þ [ f�gÞ \ �Þ ¼ supðzn \ �Þ, as
desired.

Set

z ¼
[

n<!
zn:

We show that z \ � 2 �SS \ CðfÞ, which completes the proof of Main Claim.

To see that z \ � 2 �SS, note that supðz \ �Þ ¼ supðz0 \ �Þ 2 S and that for every

n < ! there is � 2 znþ1 \ � such that supðz \ �Þ ¼ supðzn \ �Þ 2 Xn
� . To see that

z \ � 2 CðfÞ, note that fzn : n < !g � D is increasing and that D is club in P!1
2�.

Since z 2 D, we get the desired result. �(Main Claim)

The rest of the proof is essentially the same as before. �

REMARK. By Proposition 6 with � ¼ 2� the model of Theorem 3 satisfies �-SR in

P!1
2� with � ¼ 2�

!
. Hence by Theorem 8 (1) the club filter on P!1

� is presaturated in

the model. Thus we get a much simpler proof of Theorem 2 under the stronger

hypothesis that � is 2�-supercompact.

As one might notice, Main Claim of the proof of Theorem 8 could have been that

the set fy \ � : y 2 �SSg is stationary in P!1
�. This modification allows us to reduce the

strength of �-SR that was applied to �SS. This would not, however, reduce the strength of

�-SR that was applied to prove Main Claim. Even if the current Main Claim is modified,

Claim of the proof should remain the same because the subsequent recursion uses

Lemma 4 together with the current Claim.

In [7] Gitik established that the club filter on an inaccessible cardinal can be

presaturated. It has been unknown, however, whether the club filter on a supercompact

cardinal can be weakly presaturated. Theorem 8 (2) gives a partial answer. Indeed,

starting from a model with two supercompact cardinals and forcing with the poset

from [15] and then with the Levy collapse, we get one in which the club filter on a

supercompact cardinal � is weakly presaturated below the set f� < � : cf � ¼ !g.
In [16] Matsubara conjectured that the club filter on !1 should be presaturated if
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for some large enough � there is a normal filter F on P!2
� such that Fþ is strategically

countably closed. Together with Theorem 3 of [17], Theorem 8 with � ¼ !1 proves the

conjecture. See [26] for further applications of �-SR.

4. Reflecting �-stationary sets in P��.

This section introduces a new reflection principle for stationary sets in P��.

Suppose that � is a regular cardinal > �. Recall that Hð�Þ is the set of all sets

hereditarily of size < �. In [5] the notion of internal approachability was introduced. The

set of all internally approachable sets is denoted by IA. It was shown that IA is

stationary in P�Hð�Þ and a stationary subset of IA remains stationary in the extension

by a �-closed poset.

In [5] a superset of IA was also introduced, which was denoted by IA� in [11].

Here we introduce an analogue of IA� in the context of P��. For the rest of this section

we assume �<� ¼ � and fix a bijection ’ : <�P��! �. Define

S’ð�; �Þ ¼
n
x 2 P�� : 9 < �9t :  ! P��

x �
[

ran t ^ f� <  : ’ðtj�Þ 2 xg is unbounded in 
� �o

:

It is easy to see that S’ð�; �Þ is �-stationary in P��. If  : <�P��! � is another

bijection, then S’ð�; �Þ and S ð�; �Þ agree on the set fx 2 P�� : ð � ’�1Þ‘‘x ¼ xg,
which is �-club. In what follows we write Sð�; �Þ for S’ð�; �Þ.

Here is an analogue of Lemma 7 in the context of P��:

LEMMA 9. Every �-stationary subset of Sð�; �Þ remains �-stationary inP�� in the

extension by a �-closed poset.

PROOF. Let p be a condition forcing _ff : ½��<! ! P!1
�. It suffices to give a �-club

D � P�� such that Sð�; �Þ \D � fx 2 P�� : 9q � pðq � x 2 Cð _ffÞÞg.
Since our poset is �-closed, we can define by recursion on the length of t 2 <�P��

pt � p and ft :
[

ran t
h i<!

! P!1
�

so that

(1) pt � ps if s � t, and

(2) pt forces ft ¼ _ff j½
S
ran t�<!.

Define

D ¼ x 2 P�� : 8t 2 <�P�� ’ðtÞ 2 x! ft‘‘ x \
[

ran t
h i<!

� PðxÞ
� �n o

:

It is easy to see that D is �-club. We claim that D is as required above.

Fix x 2 Sð�; �Þ \D. Take  < � and t :  ! P�� that witness x 2 Sð�; �Þ. It suffices

to show that pt forces x 2 Cð _ffÞ.
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Fix a 2 ½x�<!. Since x �
S
t‘‘ and f� <  : ’ðtj�Þ 2 xg is unbounded, there is � < 

such that a �
S
t‘‘� and ’ðtj�Þ 2 x. Then ptj� forces _ffðaÞ ¼ ftj�ðaÞ � x by (2) and x 2 D.

Since pt � ptj� by (1), pt forces _ffðaÞ � x, as desired. �

In [4] it was shown that IA has a club subset in the extension by Colð�; fjHð�ÞjgÞ.
Let us prove an analogue of this fact in the context of P��:

PROPOSITION 10. Sð�; �Þ has a �-club subset in the extension by Colð�; f�gÞ.

PROOF. We work in the extension by Colð�; f�gÞ. Fix a bijection 
 : �! �. Note

that the set <�P�� remains the same after forcing with Colð�; f�gÞ. Hence we can define

f : �! � by fð�Þ ¼ ’ðh
‘‘� : � < �iÞ. Define

C ¼ fx 2 P�� : f‘‘ðx \ �Þ � x ¼ 
‘‘ðx \ �Þg:

It is easy to see that C is �-club. It suffices to show that C � Sð�; �Þ.
Fix x 2 C. Set  ¼ supðx \ �Þ < �. Define t :  ! P�� by tð�Þ ¼ 
‘‘�. Then

x ¼ 
‘‘ðx \ �Þ � 
‘‘ ¼
S
ran t. Since x 2 C, we have ’ðtj�Þ ¼ fð�Þ 2 x for every

� 2 x \ �. Hence f� <  : ’ðtj�Þ 2 xg is unbounded in , as desired. �

We are now ready to state our reflection principle:

DEFINITION. �-Stationary Reflection in P�� holds if and only if for every �-

stationary S � Sð�; �Þ there is � � A � � of size � such that S \P�A is �-stationary in

P�A.

In what follows we write �-SR for �-Stationary Reflection.

PROPOSITION 11. Suppose that � < � < �, �<� ¼ � and � is �-supercompact. Then

�-SR in P�� holds in the extension by Colð�; �Þ.

PROOF. Let j : V !M witness that � is �-supercompact. Fix a V -generic

G � ColV ð�; �Þ. In V ½G� fix a �-stationary S � Sð�; �Þ. It suffices to give � � A � � of

size � such that S \P�A is �-stationary in P�A.

Fix a V ½G�-generic H � ColV ð�; jð�Þ � �Þ. Then G�H is isomorphic to a V -generic

filter over ColV ð�; jð�ÞÞ ¼ ColMð�; jð�ÞÞ ¼ jðColV ð�; �ÞÞ, which is denoted by jðGÞ.
Henceforth we work in V ½jðGÞ�. Note that j‘‘G ¼ G by G � ColV ð�; �Þ � V�. Hence

we can extend j to an elementary embedding from V ½G� toM½jðGÞ�, which is also denote

by j. Thus it suffices to show that in M½jðGÞ� there is jð�Þ � A � jð�Þ of size jð�Þ such
that jðSÞ \Pjð�ÞA is �-stationary in Pjð�ÞA.

Note that jð�Þ ¼ � � j‘‘� � jð�Þ, jj‘‘�jM½jðGÞ� ¼ � and PM½jðGÞ�
� j‘‘� ¼ P�j‘‘�. Hence it

suffices to show that jðSÞ \P�j‘‘� is �-stationary in P�j‘‘�.

Since ColV ð�; �Þ is �-closed in V , ColV ð�; jð�Þ � �Þ remains �-closed in V ½G�. Hence

S is �-stationary in P�� by Lemma 9. Since jj� : �! j‘‘� is a bijection, fj‘‘x : x 2 Sg is

�-stationary in P�j‘‘�. Note that j‘‘x ¼ jðxÞ for every x 2 V ½G� of size < �. Hence

fj‘‘x : x 2 Sg ¼ j‘‘S � jðSÞ. Thus we get the desired result. �

Propositions 11 and 12 entail Proposition 6 in the case �<� ¼ �. Note that even the
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weaker form of Proposition 6 suffices for proving Theorem 8.

PROPOSITION 12. Assume �<� ¼ �. Then �-SR in P�� implies �-SR in P!1
�.

PROOF. Fix a bijection ’ : <�P��! �. Define

C ¼ fx 2 P!1
� : ’‘‘<!ð½x�<!Þ � xg:

It is easy to see that C is club. We claim that C � Sð�; �Þ.
Fix x 2 C. Since x is countable, there is t : !! ½x�<! such that x ¼

S
ran t. Since

x 2 C, we have ’ðtjnÞ 2 x for every n < !. Hence t witnesses x 2 Sð�; �Þ, as desired.
To see �-SR in P!1

�, fix a stationary S � P!1
�. Since C is club in P!1

�, we can

assume S � C. Hence S � Sð�; �Þ by the previous paragraph. Since S is stationary in

P!1
�, it is �-stationary in P��. By �-SR in P�� there is � � A � � of size � such that

S \P�A is �-stationary in P�A. Note that S \P�A ¼ S \P!1
A by S � P!1

�. Hence

S \P!1
A is stationary in P!1

A, as desired. �

5. Main Theorem.

In this section we prove Theorem 13 and deduce Theorem 3 as a corollary.

THEOREM 13. Assume �-SR in P�2
22

<�

. Then the �-club filter on P�� is weakly

presaturated below the set fx 2 P�� : cf supx ¼ !g.

PROOF. Set � ¼ 22
<�

and � ¼ 2� . Fix a �-stationary S � fx 2 P�� : cf supx ¼ !g
and for each n < ! a maximal antichain fXn

� : � < �g in ðC �
��Þ

þ. It suffices to give a

�-stationary S� � S such that jf� < � : S� \Xn
� 2 ðC �

��Þ
þgj � � for every n < !.

Since �<� ¼ �, there is a bijection ’ : <�P��! �. Define

�SS ¼ fy 2 Sð�; �Þ : 8n < !9� 2 y \ �ðy \ � 2 S \Xn
� Þg:

MAIN CLAIM. �SS is �-stationary in P��.

PROOF. Fix f : ½��<! ! P!1
�. It suffices to show that �SS \ CðfÞ 6¼ ;.

List all functions from � to P!1
� as fe� : � < �g and those from ½��<! to P!1

� as

ff	 : 	 < 2�g. Define g : �� � ! � so that for every s 2 <�P�� and � < �

gð’ðsÞ; �Þ ¼ ’
[

fe�ð�Þ : � 2 sð�Þg : � 2 dom s
D E� �

;

and h : �2 ! � so that for every s; t 2 <�P��

hð’ðsÞ; ’ðtÞÞ ¼ ’ðs [ ðtjðdom t� dom sÞÞÞ:

Define

D ¼ fz 2 P�2
� : 8� 2 z \ �ðe�‘‘ðz \ �Þ � PðzÞÞ ^ 8	 2 zðz \ � 2 Cðf	ÞÞ^

z \ � 2 CðfÞ ^ g‘‘ððz \ �Þ � ðz \ �ÞÞ � z ^ h‘‘ðz \ �Þ2 � zg:
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It is easy to see thatD is �-club. By Lemma 4 there is a map d : ½2��<! ! P!1
2� such that

. P�2
� \ CðdÞ � D and

. if z 2 CðdÞ and � < �, then

cldðz [ f�gÞ \ � ¼
S
fe�ð�Þ : � 2 z \ �g ¼ cldððz \ �Þ [ f�gÞ \ �.

For each n < ! define

Sn ¼ fy 2 P�� : 9� < �ðcldðy [ f�gÞ \ � ¼ y \ � 2 Xn
� Þg:

CLAIM 1. There is a �-club Cn � P�� such that Sð�; �Þ \ Cn � Sn.

PROOF. Fix a �-stationary T � Sð�; �Þ. It suffices to give y 2 T \ Sn.
By �-SR in P�� there is � � A � � of size � such that T \P�A is �-stationary in

P�A. Fix a bijection 
 : �! A. Since fy 2 P�A : 
‘‘ðy \ �Þ ¼ yg is �-club, fy 2 T \
P�A : 
‘‘ðy \ �Þ ¼ yg is �-stationary in P�A. Hence

T � ¼ fy \ � : 
‘‘ðy \ �Þ ¼ y 2 T \P�Ag

is �-stationary in P��.

Since fXn
� : � < �g is a maximal antichain in ðC �

��Þ
þ, there is � < � such that T � \

Xn
� is �-stationary in P��. Hence fz 2 P�2

� : z \ � 2 T � \Xn
� g is �-stationary. Thus

there is z 2 P�2
� \ CðdÞ such that � 2 z, 
‘‘ðz \ �Þ � z and z \ � 2 T � \Xn

� . Since

z \ � 2 T �, there is y 2 T such that 
‘‘ðy \ �Þ ¼ y and y \ � ¼ z \ �. It remains to prove

that y 2 Sn.

Since y \ � ¼ z \ � 2 Xn
� , it suffices to show that

y \ � � cldðy [ f�gÞ \ � � z \ �:

For the second inclusion note that y ¼ 
‘‘ðy \ �Þ ¼ 
‘‘ðz \ �Þ � z. Hence y [ f�g � z by

� 2 z. Since z 2 CðdÞ, we have cldðy [ f�gÞ � z, as desired. �(Claim 1)

Therefore
T
n<! Cn is �-club in P��. Take 	 < 2� so that

P�� \ Cðf	Þ �
\

n<!
Cn:

Define

E ¼
n
z 2 P�2

� \ CðdÞ : 	 2 z ^ 9t : supðz \ �Þ ! P�2
� \ CðdÞ

t is increasing ^ z �
[

ran t ^ 8 2 z \ �ð’ðhtð�Þ \ � : � < iÞ 2 zÞ
� �o

:

For each t :  ! P�2
� with  < �, define t� :  ! P�� by

t�ð�Þ ¼ tð�Þ \ �:
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It is easy to see that if t witnesses z 2 E, then t� witnesses z \ � 2 Sð�; �Þ.

CLAIM 2. fz \ � : z 2 Eg has a subset �-club in P��.

PROOF. Define an increasing map t : �! P�2
� \ CðdÞ recursively so that

f	; �; ’ððtj�Þ�Þg � tð�Þ:

Set

Y ¼
[

ran t:

Then � [ f’ððtj�Þ�Þ : � < �g [ f	g � Y � 2�. Since t : �! P�2
� \ CðdÞ is increasing,

we have Y 2 CðdÞ and jY j ¼ �. Note that for every � 2 Y there is � < � such that

� 2 tð�Þ. Define

C ¼ fz 2 P�Y \ CðdÞ : 	 2 z ^ 8� 2 z9� 2 z \ �ð� 2 tð�ÞÞ ^ 8 2 z \ �ð’ððtjÞ�Þ 2 zÞg:

It is easy to see that C is �-club in P�Y . Hence fz \ � : z 2 Cg has a subset �-club in

P��. Thus it suffices to show that C � E.

Fix z 2 C. By definition 	 2 z 2 P�2
� \ CðdÞ. It remains to show that tj supðz \ �Þ

witnesses z 2 E.

By construction tj supðz \ �Þ : supðz \ �Þ ! P�2
� \ CðdÞ is increasing. Since z 2 C,

we have z �
S
ftð�Þ : � 2 z \ �g �

S
ftð�Þ : � 2 supðz \ �Þg ¼

S
ranðtj supðz \ �ÞÞ and

’ðhtð�Þ \ � : � < iÞ ¼ ’ððtjÞ�Þ 2 z for every  2 z \ �, as desired. �(Claim 2)

By recursion on n < ! we define

zn 2 E and tn : supðzn \ �Þ ! P�2
� \ CðdÞ

so that

. z0 \ � 2 S,

. zn � znþ1,

. zn \ � 2 Xn
� for some � 2 znþ1 \ �

. zn \ � ¼ znþ1 \ �

. tnð�Þ � tnþ1ð�Þ for every � 2 dom tn and

. tn witnesses zn 2 E.

Since S is �-stationary in P��, there is z0 2 E such that z0 \ � 2 S by Claim 2.

Take t0 that witnesses z0 2 E. Suppose next we have defined zn and tn as above. Since

zn 2 E, we have zn \ � 2 Sð�; �Þ and 	 2 zn 2 P�2
� \ CðdÞ � D. Hence zn \ � 2

Sð�; �Þ \ Cðf	Þ � Sð�; �Þ \ Cn � Sn. Thus there is � < � such that

cldððzn \ �Þ [ f�gÞ \ � ¼ zn \ � 2 Xn
� :
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Set

znþ1 ¼ cldðzn [ f�gÞ:

Then zn [ f�g � znþ1 2 P�2
� \ CðdÞ. Hence 	 2 znþ1 by 	 2 zn. Since zn 2 CðdÞ and

� < �, we have

znþ1 \ � ¼ cldðzn [ f�gÞ \ � ¼ cldððzn \ �Þ [ f�gÞ \ �

by the choice of d. Hence znþ1 \ � ¼ cldððzn \ �Þ [ f�gÞ \ � ¼ zn \ �.
Define tnþ1 : supðznþ1 \ �Þ ! P�2

� \ CðdÞ by

tnþ1ð�Þ ¼ cldðtnð�Þ [ f�gÞ:

Note that dom tnþ1 ¼ dom tn by znþ1 \ � ¼ zn \ �. By definition tnð�Þ � tnþ1ð�Þ for every
� 2 dom tn. It remains to prove the following:

CLAIM 3. tnþ1 witnesses znþ1 2 E.

PROOF. Since tn is increasing, so is tnþ1. Next we show that

znþ1 ¼ cldðzn [ f�gÞ � cld
[

ran tn [ f�g
� �

¼
[

fcldðtnð�Þ [ f�gÞ : � 2 dom tng

¼
[

ran tnþ1:

The first inclusion follows from zn �
S
ran tn. Since tn is increasing, we get the second

equality. For last equality, recall the definition of tnþ1.

Finally it suffices to show that for every  2 znþ1 \ �

’ðt�nþ1jÞ ¼ ’
[

fe�ð�Þ : � 2 t�nð�Þg : � < 
D E� �

¼ gð’ðt�njÞ; �Þ
2 cldðzn [ f�gÞ ¼ znþ1:

For the first equality, it suffices to show that for every � < 

t�nþ1ð�Þ ¼ tnþ1ð�Þ \ � ¼ cldðtnð�Þ [ f�gÞ \ �

¼
[

fe�ð�Þ : � 2 tnð�Þ \ �g

¼
[

fe�ð�Þ : � 2 t�nð�Þg:

Since tnð�Þ 2 CðdÞ and � < �, we get the third equality by the choice of d.

For the second equality, recall the definition of g. For the membership, note

1060 M. SHIOYA



that tn witnesses zn 2 E. Hence ’ðt�njÞ 2 zn by  2 znþ1 \ � ¼ zn \ �. Since cldðzn [
f�gÞ 2 P�2

� \ CðdÞ � D, cldðzn [ f�gÞ \ � is closed under g. Hence we get the

desired result. �(Claim 3)

This completes the description of the recursion.

Set

z ¼
[

n<!
zn:

We show that z \ � 2 �SS \ CðfÞ, which completes the proof of Main Claim.

To see that z \ � 2 �SS, note that z \ � ¼ z0 \ � 2 S and that for every n < ! there is

� 2 znþ1 \ � such that z \ � ¼ znþ1 \ � 2 Xn
� . It remains to show the following:

CLAIM 4. z \ � 2 Sð�; �Þ.

PROOF. Set  ¼ supðz \ �Þ < �. Since z \ � 2 S � fx 2 P�� : cf sup x ¼ !g, we

have cf  ¼ !. Take an unbounded f�n : n < !g � z \ � so that �n < �nþ1. Recall that

dom tn ¼ supðzn \ �Þ ¼ supðz \ �Þ ¼ .

Define t :  ! P�2
� by

tð�Þ ¼ tnð�Þ;

where n ¼ minfi < ! : � < �ig. It suffices to show that t� :  ! P�� witnesses

z \ � 2 Sð�; �Þ.
To see that z \ � �

S
ran t�, it suffices to show that for every n < !

zn �
[

ran tn ¼
[
tn‘‘ð � �nÞ �

[
t‘‘ð � �nÞ �

[
ran t:

For the first inclusion, note that tn witnesses zn 2 E. Since tn is increasing, we get the

equality. For the second inclusion, note that tnð�Þ � tmþ1ð�Þ ¼ tð�Þ if n � m < ! and

� 2 �mþ1 � �m.

To see that f� <  : ’ðt�j�Þ 2 z \ �g is unbounded in , it suffices to show by

induction on n < ! that ’ðt�j�nÞ 2 zn.

For n ¼ 0, note that t0 witnesses z0 2 E. Since �0 2 z \ � ¼ z0 \ �, we have

’ðt�0j�0Þ 2 z0, as desired. Next assume ’ðt�j�nÞ 2 zn. It suffices to show that

’ðt�j�nþ1Þ ¼ ’ðt�j�n [ t�nþ1jð�nþ1 � �nÞÞ
¼ hð’ðt�j�nÞ; ’ðt�nþ1j�nþ1ÞÞ 2 znþ1:

The first equality follows from tj�nþ1 ¼ tj�n [ tnþ1jð�nþ1 � �nÞ. For the second equality,

recall the definition of h. For the membership, note that tnþ1 witnesses znþ1 2 E.

Since �nþ1 2 z \ � ¼ znþ1 \ �, we have ’ðt�nþ1j�nþ1Þ 2 znþ1. Also ’ðt�j�nÞ 2 zn � znþ1.

Since znþ1 2 P�2
� \ CðdÞ � D, znþ1 \ � is closed under h. Thus we get the desired

result. �(Claim 4)
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To see that z \ � 2 CðfÞ, note that fzn : n < !g � D is increasing and that D is

�-club in P�2
�. Since z 2 D, we get the desired result. �(Main Claim)

By �-SR in P�� there is � � B � � of size � such that �SS \P�B is �-stationary in

P�B. Fix a bijection 
 : �! B. Since fy 2 P�B : 
‘‘ðy \ �Þ ¼ yg is �-club, fy 2 �SS \
P�B : 
‘‘ðy \ �Þ ¼ yg is �-stationary in P�B. Hence

S� ¼ fy \ � : 
‘‘ðy \ �Þ ¼ y 2 �SS \P�Bg

is �-stationary in P��. Note that y \ � 2 S for every y 2 �SS. Hence S� � S. We claim

that S� is as required above.

Fix n < !. First we show that

S� � 5fXn

ð�Þ : � 2 B�g ¼

X
fXn


ð�Þ : � 2 B�g;

where B� � � is defined by 
‘‘B� ¼ B \ �.
Fix x 2 S�. It suffices to give � 2 B� \ x such that x 2 Xn


ð�Þ. Since x 2 S�,

there is y 2 �SS \P�B such that 
‘‘ðy \ �Þ ¼ y and y \ � ¼ x. Since y 2 �SS, there is � 2
y \ � such that y \ � 2 Xn

� . Set � ¼ 
�1ð�Þ. Since � 2 y \ � � B \ �, we have

� ¼ 
�1ð�Þ 2 
�1‘‘ðB \ �Þ ¼ B� and � ¼ 
�1ð�Þ 2 
�1‘‘y ¼ y \ � ¼ x:

Moreover we have x ¼ y \ � 2 Xn
� ¼ Xn


ð�Þ, as desired.

Since 
 : �! B is a bijection, we have

S� �
X

fXn

ð�Þ : � 2 B�g ¼

X
fXn

� : � 2 B \ �g:

Since fXn
� : � < �g is a maximal antichain in ðC �

��Þ
þ, we have

f� < � : S� \Xn
� 2 ðC �

��Þ
þg � B \ �:

Since jBj ¼ �, we have jf� < � : S� \Xn
� 2 ðC �

��Þ
þgj � �, as desired. This completes the

proof of Theorem 13. �

PROOF OF THEOREM 3. By Proposition 11 with � ¼ 2� the model of Theorem 3

satisfies �-SR in P�2
� with � ¼ 22

<�
. Hence by Theorem 13 the �-club filter on P�� is

weakly presaturated below the set fx 2 P�� : cf supx ¼ !g in the model.

Fix a regular uncountable cardinal � � �. Note that the �-club filter on P�� is

identical to the �-club filter on P�� below the set P��. Hence the �-club filter on P��

is weakly presaturated below the set fx 2 P�� : cf supx ¼ !g. Therefore the club filter

on P�� is weakly presaturated below the set fx 2 P�� : cf sup x ¼ !g. �

REMARK. Work of Steel [27] strongly suggests that we need to assume in

Theorem 3 that � is a Woodin cardinal. It is likely that Theorem 3 can be proved
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directly under the weaker hypothesis. However the direct proof should be much more

involved. (Compare the proof of Theorem 8 (1) with that of Theorem 2 from [10].)

In [28] Woodin introduced the stationary tower forcing P<�. He proved that if � is a

Woodin cardinal, then the generic ultrapower by P<� is wellfounded and is closed under

sequences of length < � (see [14]). In view of [4] it is natural to wonder if P<� parallels

the �-club filter on P�� in the extension by Colð�; �Þ. More specifically one may ask

whether the �-club filter on P�� is presaturated in the model of Theorem 3. The answer

is positive just in the case � ¼ !1. This follows from Theorem 1 and the results of [3],

[20] mentioned in Section 1. We do not know, however, whether the �-club filter on P��

is weakly presaturated in the model if � > !1. For more on the problem see Section 6.

6. Concluding remarks.

In [11] Goldring established the following:

THEOREM 14. Suppose that ! < � < �, � is regular and � is supercompact. Then

the �-club filter on P�� is precipitous in the extension by Colð�; �Þ.

In particular the club filter on P�� is precipitous for every regular uncountable

cardinal � � �. The latter result had been proved in [5] below some stationary set. The

stationary set is the projection of IA to P��. In the same paper IA� was introduced

and was shown in effect to project to a club set in P��. Goldring [11] showed that the

proof of [5] went through with IA replaced by IA�.

In Section 5 Theorem 3 was proved as a corollary to Proposition 11 and Theorem

13. Likewise Theorem 14 follows from Proposition 11 and the following:

THEOREM 15. Assume �-SR in P�2
22

<�

. Then the �-club filter on P�� is

precipitous.

Theorem 15 is proved in effect by the proof of Theorem 13, although the former

is not literally a corollary of the latter. Let us see this in more detail. Recall from [12]

that a filter F is precipitous if and only if the following holds: Suppose that S 2 Fþ and

fAn : n < !g is a set of maximal antichains below S such that Anþ1 refines An for every

n < !. Then there is a descending sequence hXn : n < !i in Fþ such that Xn 2 An andT
n<! Xn 6¼ ;. Hence in the notation of the proof of Theorem 13 the claim �SS 6¼ ; entails in

effect that the �-club filter on P�� is precipitous. In particular Theorem 15 is proved by

the proofs of Claims 1–3. In other words, in the proof of Theorem 13 the restriction to

the set fx 2 P�� : cf sup x ¼ !g was invoked only to prove Claim 4.

Fix a regular cardinal � with � � � � �. Set

S��� ¼ fx 2 P�� : cf supðx \ �Þ ¼ !g:

Suppose that F is a normal filter on P�� and S��� 2 Fþ. For each x 2 S��� fix an

unbounded f�xi : i < !g � x \ �. For each i < ! and 	 < � set

S	i ¼ fx 2 S��� : �
x
i ¼ 	g:
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The prototype of Lemma 16 can be found in [6]. See [24], [25] for further applications of

these lemmas.

LEMMA 16. Suppose that S � S��� in Fþ. Then there is i < ! such that the set

f	 < � : S \ S	i 2 Fþg is unbounded in �.

PROOF. If not, then for each i < ! there is �i < � such that for every 	 2 � � �i
there is C	

i 2 F with S \ S	i \ C
	
i ¼ ;. Set

� ¼ supi<! �i and C ¼
\

i<!
4fC	

i : 	 2 � � �ig:

Since � > ! is regular and F is normal, we have � < � and C 2 F . Since S � S���, there is

x 2 S \ C such that � < supðx \ �Þ and cf supðx \ �Þ ¼ !. Since f�xi : i < !g is un-

bounded in x \ �, there is i < ! such that � < �xi . Set 	 ¼ �xi . Then x 2 S	i by definition.

Since �i � � < 	 ¼ �xi 2 x 2 C, we have x 2 C	
i . This contradicts that S \ S	i \ C

	
i ¼ ;,

as desired. �

By Proposition 17 with � ¼ � ¼ � we get a countable set of ordinals in the extension

by ðC �
��Þ

þ below the set S��� ¼ fx 2 P�� : cf sup x ¼ !g that cannot be covered by any

set of size < � in the ground model. This shows that Theorem 13 is optimal with respect

to the size of the covering sets.

PROPOSITION 17. S��� 2 Fþ forces cf � ¼ !.

PROOF. By definition S�i \ S	i ¼ ; if � < 	 < � and i < !. Hence we can define a

Fþ-name _gg of a map from ! to � so that S	i forces _ggðiÞ ¼ 	 if S	i 2 Fþ. It suffices to show

that S��� forces that _gg is cofinal.

Fix S � S��� from Fþ and � < �. By Lemma 16 there are i < ! and 	 2 � � � such

that S \ S	i 2 Fþ. Then S \ S	i forces _ggðiÞ ¼ 	 � �, as desired. �

In [8] Gitik and Shelah observed that F is precipitous if Fþ is proper. In fact F is

weakly presaturated if Fþ is proper. This is because every countable set of ordinals in

the extension by a proper poset can be covered by a countable set in the ground model.

Matsubara and Shelah [18] proved that Fþ is not proper if F is a normal �-complete

filter on P�� and fx 2 P�� : cfðx \ �Þ ¼ �g 2 Fþ for some � with �þ < �. Proposition

17 shows that Fþ is not proper if F is a normal filter on P�� and S��� 2 Fþ for some �.
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