On vanishing of L^2 -Betti numbers for groups

By Jang Hyun JO

(Received Dec. 19, 2006)

Abstract. We show that if a group G admits a finite dimensional contractible G-CW-complex X then the vanishing of the L^2 -Betti numbers for all stabilizers G_{σ} of X determines that of the L^2 -Betti numbers for G. We also give a relation among the L^2 -Euler characteristics for X as a G-CW-complex and those for X as a G_{σ} -CW-complex under certain assumptions. Finally, we present a new class of groups satisfying the Chatterji-Mislin conjecture which amounts to putting Brown's formula within the framework of L^2 -homology.

1. Introduction.

Let G be an arbitrary discrete group. In 1998, Lück [9], [10] defined the L^2 -Betti numbers for an arbitrary G-space X using the extended von Neumann dimension of the $\mathcal{N}(G)$ -modules $H_p^G(X, \mathcal{N}(G))$, motivated by Farber's work [7]. These L²-Betti numbers extend the classical notion of L^2 -Betti numbers for free G-CW-complexes of finite type. The L^2 -Betti numbers for an arbitrary group G are defined as that of the classifying space EG. There are many results of the L^2 -Betti numbers for an arbitrary G-spaces and groups. Notably, Cheeger and Gromov [5], [11] showed that the L^2 -Betti numbers $b_p^{(2)}(G)$ for a group G which possess an infinite amenable normal subgroup vanish for all $p \ge 0$. Recently, Schafer [12, Corollary 3.11] extended this result for the case of groups G when G is the fundamental group of a graph of infinite amenable groups. The purpose of this paper is to give a vanishing result for a certain class of groups and its applications. Using the argument of Schafer, we show that if a group G admits a finite dimensional contractible G-CW-complex X for which the L^2 -Betti numbers $b_p^{(2)}(G_{\sigma})$ for all stabilizers G_{σ} of X vanish for $0 \leq p \leq n$ then so does the L^2 -Betti numbers $b_p^{(2)}(G)$ for G, where n is a nonnegative integer or ∞ (Theorem 3.5). Also we obtain a relation among the L²-Euler characteristics for X as a G-CW-complex and those for X as a G_{σ} -CW-complex under certain assumptions (Corollary 3.8). These results extend those of Schafer [12, Corollaries 3.11, 3.14] and Chatterji and Mislin [4, Lemma 2.4].

On the other hand, there is another interesting application of the above L^2 -Euler characteristics formula between a group G acting on a finite-dimensional cocompact contractible G-CW-complex and stabilizers G_{σ} . In [4], Chatterji and Mislin gave a class of groups which satisfy their new conjecture [4, Conjecture 1] which is a generalization of Brown's formula [3]. Based on the idea due to Chatterji and Mislin, we give a new class of groups satisfying Chatterji-Mislin conjecture using Corollary 3.8 (Theorem 4.4, Remark 4.7).

²⁰⁰⁰ Mathematics Subject Classification. Primary 55N99; Secondary 20F65, 46L99.

Key Words and Phrases. amenable, L^2 -Betti number, L^2 -Euler characteristic, \mathscr{C} -exact, weak \mathscr{C} -exact.

2. Preliminaries.

In this section, we briefly recall the notion of L^2 -Betti numbers and L^2 -Euler characteristics for arbitrary G-spaces and groups [9], [10], [11]. We also review the definition of \mathscr{C} -exact and weak \mathscr{C} -exact sequences of $\mathscr{N}(G)$ -modules which was given by Schafer [12] and the Chatterji-Mislin conjecture and related facts [4]. For more details, we recommend each reference.

1. Let G be a discrete group. Let $l^2(G)$ be the Hilbert space of formal sums $\sum_{g \in G} \lambda_g \cdot g$ with complex coefficient λ_g such that $\sum_{g \in G} |\lambda_g|^2 < \infty$. The group von Neumann algebra $\mathscr{N}(G)$ is the C^{*}-algebra $B(l^2(G))^G$ of G-equivariant bounded operators from $l^2(G)$ to $l^2(G)$.

Note that the von Neumann algebra $\mathscr{N}(G)$ is flat over CG if G is virtually cyclic, i.e., G is finite or contains Z as a normal subgroup of finite index and conjecturally these are the only ones [11, Conjecture 6.49]. Note also that if G is amenable, then the von Neumann algebra $\mathscr{N}(G)$ is dimension-flat over CG, namely, for each CG-module M

$$\dim_{\mathcal{N}(G)}(\operatorname{Tor}_{p}^{CG}(\mathcal{N}(G), M)) = 0 \quad \text{if } p \ge 1.$$

It is also conjectured whether the property of dimension-flat of the von Neumann algebra $\mathcal{N}(G)$ characterizes the amenability of G [11, Conjecture 6.48].

For any $\mathscr{N}(G)$ -module M, there is the extended von Neumann dimension function $\dim_{\mathscr{N}(G)}(M)$ which takes values in $[0, \infty]$, which is a priori defined for finitely generated projective $\mathscr{N}(G)$ -modules and is uniquely determined by Additivity, Cofinality and Continuity [11]. Due to this extended dimension function, the notion of L^2 -Betti numbers for an arbitrary G-space X can be defined as follows. For an arbitrary G-space X, its p-th L^2 -Betti number is defined by

$$b_p^{(2)}(X) := \dim_{\mathscr{N}(G)}(H_p^G(X, \mathscr{N}(G))),$$

where $H_p^G(X, \mathscr{N}(G))$ is the homology of the $\mathscr{N}(G)$ -chain complex $\mathscr{N}(G) \otimes_{\mathbb{Z}G} C^{sing}_*(X)$. The L^2 -Euler characteristic of an arbitrary G-space X is defined by

$$\chi^{(2)}(X;G) = \chi^{(2)}(X) := \sum_{p \ge 0} (-1)^p \cdot b_p^{(2)}(X)$$

provided that $h^{(2)}(X) := \sum_{p \ge 0} b_p^{(2)}(X) < \infty$. A *G*-space *X* is called L^2 -finite if $h^{(2)}(X) < \infty$. Thus the condition of being L^2 -finite ensures that the L^2 -Euler characteristic of a *G*-space *X*, $\chi^{(2)}(X)$ converges absolutely. We define for any discrete group *G* its *p*-th L^2 -Betti number by $b_p^{(2)}(G) := b_p^{(2)}(EG)$. The L^2 -Euler characteristic of *G* is defined by $\chi^{(2)}(G) := \chi^{(2)}(EG)$ provided that $h^{(2)}(G) := h^{(2)}(EG) < \infty$.

2. Let \mathscr{C} denote the class of $\mathscr{N}(G)$ -modules of dimension zero. Notice that the class of $\mathscr{N}(G)$ -modules \mathscr{C} contains the zero module and if $0 \to A \to B \to C \to 0$ is exact, then $B \in \mathscr{C}$ if and only if $A \in \mathscr{C}$ and $C \in \mathscr{C}$. A sequence of $\mathscr{N}(G)$ -modules $\cdots \xrightarrow{\partial_{n+2}} M_{n+1} \xrightarrow{\partial_{n+1}} M_n \xrightarrow{\partial_n} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots$ is called \mathscr{C} -exact if for each pair of consecutive maps ∂_{n+1} and ∂_n , the

following two conditions hold:

- (a) $\partial_n \circ \partial_{n+1} = 0.$
- (b) $\ker \partial_n / \operatorname{im} \partial_{n+1} \in \mathscr{C}$.

A sequence of $\mathscr{N}(G)$ -modules $\cdots \xrightarrow{\partial_{n+2}} M_{n+1} \xrightarrow{\partial_{n+1}} M_n \xrightarrow{\partial_n} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots$ is called weak \mathscr{C} -exact if there exist $\mathscr{N}(G)$ -modules M'_n such that (1) For all n, M_n is \mathscr{C} -isomorphic to M'_n and (2) There exists an exact sequence of $\mathscr{N}(G)$ -modules $\cdots \to M'_{n+1} \to M'_n \to M'_{n-1} \to \cdots$.

Notice that if $\dots \to M_n \to M_{n-1} \to \dots \to M_1 \to M_0 \to \dots$ is a weak \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules then the following holds: $\dim_{\mathscr{N}(G)}(M_{i+1}) = \dim_{\mathscr{N}(G)}(M_{i-1}) = 0$ implies $\dim_{\mathscr{N}(G)}(M_i) = 0$.

3. For a group G, we denote the Hattori-Stallings Trace (cf. [4]) as follows:

$$\mathrm{HS}: K_0(\mathbf{C}G) \to HH_0(\mathbf{C}G) = \bigoplus_{[G]} \mathbf{C}.$$

Here $K_0(CG)$ is the projective class group of CG, $HH_0(CG)$ is the Hochschild homology of CG and [G] means the set of conjugacy classes of elements in G. If P is a finitely generated projective CG-module and $[P] \in K_0(CG)$ the corresponding element, then we write

$$\operatorname{HS}(P) := \operatorname{HS}([P]) = \sum_{[s] \in [G]} \operatorname{HS}(P)(s) \cdot [s] \in \bigoplus_{[G]} C,$$

where HS(P)(s) depending only on the conjugacy class [s] of $s \in G$.

Let G be a group of type FP over C, i.e., C admits a projective resolution over CG

 $P_*: 0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to C,$

where each P_i is finitely generated projective over CG. For a group of type FP over C, the complete Euler characteristic E(G) of G is defined by an alternating sum of the Hattori-Stallings rank of finite generated projective modules. Thus E(G) is a finite linear combination of the conjugacy classes [s] of elements of G. Denote by E(G)(s) the coefficient of the conjugacy class [s] of an element $s \in G$. Notice that E(G)(1) = e(G) is the Euler characteristic of G in the sense of Bass [1] and Chiswell [6]. The element $W(G) := \sum_i (-1)^i [P_i] \in K_0(CG)$ depends only on G and is called the Wall element. Under the Hattori-Stallings Trace, the Wall element W(G) is mapped to the complete Euler characteristic of G, $E(G) = \sum_{[s] \in [G]} E(G)(s) \cdot [s]$. In [3], Brown conjectured under suitable finiteness conditions for G the following formula:

$$E(G)(s) = \begin{cases} e(C_G(s)) & \text{if } s \text{ has finite order} \\ 0 & \text{otherwise,} \end{cases}$$

and proved it in many cases. Brown's assumptions require in particular $C_G(s)$ to be of type FP over C. In [4], Chatterji and Mislin proposed the following conjecture which amounts to putting Brown's formula within the framework of L^2 -homology and proved

it for a class of groups containing all G admitting a cocompact $\underline{E}G$, the classifying space for proper action.

CONJECTURE A (Chatterji and Mislin [4]). Let G be a group of type FP over C such that the centralizer of every element of finite order in G has finite L^2 -Betti numbers. Then for every $s \in G$,

$$E(G)(s) = \chi^{(2)}(C_G(s)).$$
 (*)

Notice that if $C_G(s)$ is of type FP over C, then Conjecture A implies Brown's formula [4]. Notice also that if G satisfies Conjecture A, then

$$\chi(G) = \sum_{[s] \in [G]} \chi^{(2)}(C_G(s)),$$

where $\chi(G) := \Sigma(-1)^i \dim_{\mathbb{C}} H_i(G, \mathbb{C})$ [4, Corollary 4.5]. Thus if K(G, 1) is a finite complex, then this formula implies the well-known result: $\chi(G) = \chi^{(2)}(G)$ (cf. [11]).

3. Vanishing results for L^2 -Betti numbers for groups.

Throughout this paper, we employ the following conventions: G is a discrete group and $\mathbb{Z}G$ is its group ring. We denote tensor product over $\mathbb{Z}G$ by $-\otimes_G -$. The notation $-\otimes$ - means tensor product over \mathbb{Z} .

DEFINITION 3.1 ([11, Definition 7.1]). Let *n* be a non-negative integer or ∞ . Define \mathscr{B}_n to be the class of groups *G* whose L^2 -betti numbers $b_p^{(2)}(G)$ vanish for $0 \leq p \leq n$, i.e.,

$$\mathscr{B}_n := \{ G \mid b_n^{(2)}(G) = 0, \ 0 \le p \le n \}.$$

Notice that \mathscr{B}_0 is the class of infinite groups and \mathscr{B}_∞ contains the Thompson group and all groups which contain an infinite amenable normal subgroup [11].

Consider the class of groups G which admit a finite-dimensional contractible G-CW-complex for which all stabilizers belongs to the class of groups \mathscr{B}_n . It is clear that this class contains \mathscr{B}_n . In Theorem 3.5, we will show that in fact these two classes are equal. Until we prove that these two classes of groups coincide, we use the temporary notation \mathscr{C}_n for the above class of groups, where $0 \le n \le \infty$.

Note that if G is the fundamental group of a graph of infinite amenable groups then there exists an 1-dimensional contractible G-CW-complex X with infinite amenable stabilizers [13]. Thus \mathscr{C}_{∞} contains the class of groups which are the fundamental group of a graph of infinite amenable groups.

LEMMA 3.2. Let G be an arbitrary group. For any $\mathcal{N}(G)$ -module M and Z-module N,

$$\dim_{\mathcal{N}(G)}(M \otimes N) = \dim_{\mathcal{N}(G)}(M) \cdot \dim_{\mathcal{C}}(\mathcal{C} \otimes N)$$

with the convention $0 \cdot \infty = \infty \cdot 0 = 0$.

PROOF. It follows directly from a special case of [11, Theorem 6.104 (2)].

In what follows, we denote the cellular chain complex of a *G*-CW complex *X* as $C_*(X)$. Recall that $C_i(X) \cong \bigoplus_{\sigma \in \sum_i} \mathbb{Z}(G/G_{\sigma}) \cong \bigoplus_{\sigma \in \sum_i} \mathbb{Z}G \otimes_{\mathbb{Z}_{G_{\sigma}}} \mathbb{Z}$, where G_{σ} is the stabilizer of σ and \sum_i is a set of representatives for the *G*-orbits of *i*-cells.

PROPOSITION 3.3. Suppose that a group G admits a finite-dimensional contractible G-CW-complex Y and X is a G-CW-complex for which all stabilizers are amenable. Then there exists a \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_{m}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_{G} C_{*}(X) \to \bigoplus_{\sigma \in \sum_{m-1}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_{G} C_{*}(X)$$
$$\to \cdots \to \bigoplus_{\sigma \in \sum_{0}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_{G} C_{*}(X) \to \mathscr{N}(G) \otimes_{G} C_{*}(X) \to 0,$$

where $m = \dim Y$, G_{σ} is the stabilizer of $\sigma \in Y$ and \sum_{i} is a set of representatives for the G-orbits of *i*-cells of Y.

PROOF. Let $C_*(Y)$ be the cellular chain complex of Y. Then there exists an exact sequence of $\mathbb{Z}G$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_m} \mathbf{Z}(G/G_{\sigma}) \xrightarrow{\partial_m} \cdots \xrightarrow{\partial_1} \bigoplus_{\sigma \in \sum_0} \mathbf{Z}(G/G_{\sigma}) \to \mathbf{Z} \to 0,$$

and tensoring this with $\mathcal{N}(G)$ over Z we obtain the exact sequence of $\mathcal{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_{m}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \xrightarrow{\partial_{m}} \cdots \xrightarrow{\partial_{1}} \bigoplus_{\sigma \in \sum_{0}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \xrightarrow{\varepsilon} \mathscr{N}(G) \to 0.$$

Here $1 \otimes \partial_m$ $(1 \otimes \varepsilon)$ is denoted by ∂_m (ε , respectively) by a slight abuse of notation. Consider first the exact sequence of $\mathcal{N}(G)$ -modules

$$0 \to \ker \varepsilon \to \bigoplus_{\sigma \in \sum_0} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \xrightarrow{\varepsilon} \mathscr{N}(G) \to 0.$$

Tensoring this exact sequence with $C_*(X)$ over $\mathbb{Z}G$ we have the exact sequence

$$\cdots \to \operatorname{Tor}_{2}^{G}(\mathscr{N}(G), C_{*}(X)) \to \operatorname{Tor}_{1}^{G}(\ker \varepsilon, C_{*}(X))$$

$$\to \operatorname{Tor}_{1}^{G}\left(\bigoplus_{\sigma \in \sum_{0}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X)\right)$$

$$(3.1)$$

$$\to \operatorname{Tor}_{1}^{G}(\mathscr{N}(G), C_{*}(X)) \to \ker \varepsilon \otimes_{G} C_{*}(X)$$
$$\to \bigoplus_{\sigma \in \sum_{0}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(X) \to \mathscr{N}(G) \otimes_{G} C_{*}(X) \to 0.$$

Since all stabilizers of X are amenable, we deduce from [12, Proposition 3.1] that

$$\dim_{\mathscr{N}(G)}(\operatorname{Tor}_{2}^{G}(\mathscr{N}(G), C_{*}(X))) = \dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\mathscr{N}(G), C_{*}(X))) = 0.$$

Thus the following sequence

$$0 \to \ker \varepsilon \otimes_G C_*(X) \to \bigoplus_{\sigma \in \sum_0} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_G C_*(X)$$

$$\to \mathscr{N}(G) \otimes_G C_*(X) \to 0$$
(3.2)

is \mathscr{C} -exact. Since $\mathbf{Z}(G/G_{\sigma})$ is \mathbf{Z} -flat, we have

$$\operatorname{Tor}_{1}^{G}(\mathscr{N}(G)\otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X)) \cong \operatorname{Tor}_{1}^{G}(\mathscr{N}(G), C_{*}(X))\otimes \mathbf{Z}(G/G_{\sigma}).$$

By Lemma 3.2, we have

$$\dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X)))$$

=
$$\dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\mathscr{N}(G), C_{*}(X)) \otimes \mathbf{Z}(G/G_{\sigma}))$$

=
$$\dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\mathscr{N}(G), C_{*}(X))) \cdot \dim_{\mathbf{C}}(\mathbf{C} \otimes \mathbf{Z}(G/G_{\sigma}))$$

=
$$0$$

and thereby

$$\dim_{\mathscr{N}(G)} \left(\operatorname{Tor}_{1}^{G} \left(\bigoplus_{\sigma \in \sum_{0}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X) \right) \right)$$

= $\dim_{\mathscr{N}(G)} \left(\bigoplus_{\sigma \in \sum_{0}} \operatorname{Tor}_{1}^{G}(\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X)) \right)$
= $\sum_{\sigma \in \sum_{0}} \dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}), C_{*}(X)))$
= 0.

Since $\dim_{\mathscr{N}(G)}(\operatorname{Tor}_2^G(\mathscr{N}(G), C_*(X))) = 0$, we deduce from the exact sequence (3.1) that

 L^2 -Betti numbers for groups

$$\dim_{\mathscr{N}(G)}(\operatorname{Tor}_{1}^{G}(\ker \varepsilon, C_{*}(X))) = 0.$$

Now consider the following short exact sequence

$$0 \to \ker \partial_1 \to \bigoplus_{\sigma \in \sum_1} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \to \ker \varepsilon \to 0.$$

Tensoring this exact sequence with $C_*(X)$ over $\mathbf{Z}G$ we have the exact sequence

$$\operatorname{Tor}_{1}^{G}(\ker \varepsilon, C_{*}(X)) \to \ker \partial_{1} \otimes_{G} C_{*}(X)$$
$$\to \bigoplus_{\sigma \in \sum_{1}} \mathscr{N}(G) \otimes \mathbb{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(X)$$
$$\to \ker \varepsilon \otimes_{G} C_{*}(X) \to 0.$$

Since $\dim_{\mathscr{N}(G)}(\operatorname{Tor}_1^G(\ker \varepsilon, C_*(X))) = 0$, we have the \mathscr{C} -exact sequence

$$0 \to \ker \partial_1 \otimes_G C_*(X) \to \bigoplus_{\sigma \in \sum_1} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_G C_*(X)$$

$$\to \ker \varepsilon \otimes_G C_*(X) \to 0.$$
(3.3)

Splicing the two \mathscr{C} -exact sequences (3.2) and (3.3), we have the following \mathscr{C} -exact sequence

$$0 \to \ker \partial_1 \otimes_G C_*(X) \to \bigoplus_{\sigma \in \sum_1} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_G C_*(X)$$
$$\to \bigoplus_{\sigma \in \sum_0} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_G C_*(X) \to \mathscr{N}(G) \otimes_G C_*(X) \to 0$$

Continuing this process, we have the desired result.

LEMMA 3.4. Let G be an arbitrary group and X be an arbitrary G-CW-complex. Then for any stabilizer G_{σ} of X,

$$H^G_*(X, \mathcal{N}(G) \otimes \mathbf{Z}(G/G_\sigma)) \cong \mathcal{N}(G) \otimes_{\mathcal{N}(G)s} H^{G_\sigma}_*(X, \mathcal{N}(G)s).$$

PROOF. It can be proved by the same method as used in the proof of [12, Theorem 3.10].

THEOREM 3.5. Let n be a non-negative integer or ∞ . If a group G belongs to the class \mathscr{C}_n of groups, then $b_p^{(2)}(G) = 0$ for all $0 \le p \le n$. Hence the classes \mathscr{B}_n and \mathscr{C}_n of groups coincide.

1037

PROOF. Since $G \in \mathcal{C}_n$, there is a finite-dimensional contractible G-CW-complex Y for which all stabilizers of Y belong to the class B_n of groups. It follows from Proposition 3.3 that there exists a \mathcal{C} -exact sequence of $\mathcal{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_{m}} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_{G} C_{*}(EG)$$

$$\stackrel{\partial_{m}}{\to} \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(EG) \xrightarrow{\partial_{m-1}} \cdots$$

$$\stackrel{\partial_{1}}{\to} \bigoplus_{\sigma \in \sum_{0}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(EG) \xrightarrow{\partial_{0}} \mathscr{N}(G) \otimes_{G} C_{*}(EG) \to 0,$$

where $m = \dim Y$. Consider first the \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(EG)$$
$$\stackrel{\partial_{m}}{\to} \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(EG) \to \operatorname{im}\partial_{m-1} \to 0$$

From Lemma 3.4 and [12, Proposition 3.6] it follows that there is the weak \mathscr{C} -exact sequence

$$\cdots \to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n}^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma}))$$

$$\to \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n}^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma})) \to H_{n}(\operatorname{im}\partial_{m-1})$$

$$\to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n-1}^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma})) \to \cdots$$

$$\to \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{0}^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma})) \to H_{0}(\operatorname{im}\partial_{m-1}) \to 0.$$

$$(3.4)$$

Notice that for any stabilizer G_{σ} of Y, EG is a model for EG_{σ} . Since $b_p^{(2)}(G_{\sigma}) = 0$ for $0 \leq p \leq n$, we have $\dim_{\mathscr{N}(G)}(H_p(\operatorname{im}\partial_{m-1})) = 0$ for $0 \leq p \leq n$ by the weak \mathscr{C} -exact sequence (3.4).

Now consider the \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \operatorname{im} \partial_{m-1} \to \bigoplus_{\sigma \in \sum_{m-2}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G_{\sigma}} C_{*}(EG) \to \operatorname{im} \partial_{m-2} \to 0.$$

Repeated application of Lemma 3.4 and [12, Proposition 3.6] deduces that there is the weak \mathscr{C} -exact sequence

 L^2 -Betti numbers for groups

$$\cdots \to H_n(\operatorname{im}\partial_{m-1}) \to \bigoplus_{\sigma \in \sum_{m-2}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_n^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma}))$$

$$\to H_n(\operatorname{im}\partial_{m-2}) \to H_{n-1}(\operatorname{im}\partial_{m-1}) \to \cdots$$

$$\to \bigoplus_{\sigma \in \sum_{m-2}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_0^{G_{\sigma}}(EG, \mathscr{N}(G_{\sigma})) \to H_0(\operatorname{im}\partial_{m-2}) \to 0.$$

$$(3.5)$$

Since $b_p^{(2)}(G_{\sigma}) = 0$ and $\dim_{\mathscr{N}(G)}(H_p(\operatorname{im}\partial_{m-1})) = 0$ for $0 \le p \le n$, we have $\dim_{\mathscr{N}(G)}(H_p(\operatorname{im}\partial_{m-2})) = 0$ for $0 \le p \le n$. Continuing this process, we can conclude that $b_p^{(2)}(G) = 0$ for all $0 \le p \le n$.

Recall that the Bredon cohomological dimension $\underline{cd} G$ is the cohomological dimension of \underline{Z} in the category of functors $Mod_{\mathscr{F}}G$. For more details, see [2], [8].

COROLLARY 3.6. Let n be a non-negative integer or ∞ and let $1 \to N \to G \to Q \to 1$ be a short exact sequence of groups. If N belongs to the class \mathscr{B}_n of groups and $\underline{cd}Q < \infty$, then G belongs to the class \mathscr{B}_n of groups.

PROOF. Suppose first that $N \in \mathscr{B}_n$ and $\underline{cd}Q < \infty$. Since $\underline{cd}Q < \infty$, there exists a finite-dimensional contractible proper Q-complex X. Let G act on X via the quotient map $G \to Q$. Then X is a finite-dimensional contractible G-complex whose all stabilizers are of the form of extension of N by F, where F is a finite subgroup of Q. It follows from [11, Exercise 7.7] that all stabilizers of X belong to the class of groups \mathscr{B}_n . Hence Gbelongs to the class \mathscr{B}_n of groups by Theorem 3.5.

REMARK 3.7. It was known from [11, Theorem 7.2] that Corollary 3.6 holds without any additional assumption on the quotient group Q. However under the assumption that $\underline{cd}Q < \infty$, our proof is new.

COROLLARY 3.8. Suppose that a group G admits an m-dimensional cocompact contractible G-CW-complex Y and X is a G-CW-complex for which all stabilizers are amenable. If X is L^2 -finite with respect to all stabilizers G_{σ} of Y, then X is L^2 -finite with respect to G and

$$\chi^{(2)}(X;G) = \sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} \chi^{(2)}(X;G_{\sigma}).$$

PROOF. From Proposition 3.3, it follows that there is a weak \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_m} (\mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma})) \otimes_G C_*(X)$$

$$\stackrel{\partial_m}{\to} \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_G C_*(X) \stackrel{\partial_{m-1}}{\to} \cdots$$
$$\stackrel{\partial_1}{\to} \bigoplus_{\sigma \in \sum_0} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_G C_*(X) \stackrel{\partial_0}{\to} \mathscr{N}(G) \otimes_G C_*(X) \to 0,$$

where $m = \dim Y$. Consider first the \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(X)$$

$$\stackrel{\partial_{m}}{\to} \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G} C_{*}(X) \to \operatorname{im}\partial_{m-1} \to 0.$$

From Lemma 3.4 and $[\mathbf{12},$ Proposition 3.6] it follows that there is a weak $\mathscr C\text{-exact}$ sequence

$$\cdots \to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n}^{G_{\sigma}}(X, \mathscr{N}(G_{\sigma}))$$

$$\to \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n}^{G_{\sigma}}(X, \mathscr{N}(G_{\sigma})) \to H_{n}(\operatorname{im}\partial_{m-1})$$

$$\to \bigoplus_{\sigma \in \sum_{m}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{n-1}^{G_{\sigma}}(X, \mathscr{N}(G_{\sigma})) \to \cdots$$

$$\to \bigoplus_{\sigma \in \sum_{m-1}} \mathscr{N}(G) \otimes_{\mathscr{N}(G_{\sigma})} H_{0}^{G_{\sigma}}(X, \mathscr{N}(G_{\sigma})) \to H_{0}(\operatorname{im}\partial_{m-1}) \to 0.$$

By taking the alternating sum of $L^2\text{-}\mathsf{Betti}$ numbers in the weak $\mathscr C\text{-}\mathsf{exact}$ sequence above, we have

$$\sum_{i\geq 0} (-1)^i \dim_{\mathcal{N}(G)} (H_i(\operatorname{im}\partial_{m-1}))$$
$$= \sum_{\sigma \in \sum_{m-1}} \chi^{(2)}(X; G_{\sigma}) - \sum_{\sigma \in \sum_m} \chi^{(2)}(X; G_{\sigma}).$$

Now consider the \mathscr{C} -exact sequence of $\mathscr{N}(G)$ -modules

$$0 \to \operatorname{im} \partial_{m-1} \to \bigoplus_{\sigma \in \sum_{m-2}} \mathscr{N}(G) \otimes \mathbf{Z}(G/G_{\sigma}) \otimes_{G_{\sigma}} C_*(X) \to \operatorname{im} \partial_{m-2} \to 0.$$

By the same method as used above, we obtain

$$\sum_{i\geq 0} (-1)^i \dim_{\mathcal{N}(G)}(H_i(\operatorname{im}\partial_{m-2}))$$

=
$$\sum_{\sigma \in \sum_{m-2}} \chi^{(2)}(X; G_{\sigma}) - \sum_{i\geq 0} (-1)^i \dim_{\mathcal{N}(G)}(H_p(\operatorname{im}\partial_{m-1})).$$

Thus we have

$$\sum_{i\geq 0} (-1)^i \dim_{\mathcal{N}(G)}(H_i(\operatorname{im}\partial_{m-2}))$$

= $\sum_{\sigma\in\sum_{m-2}} \chi^{(2)}(X;G_{\sigma}) - \sum_{\sigma\in\sum_{m-1}} \chi^{(2)}(X;G_{\sigma}) + \sum_{\sigma\in\sum_m} \chi^{(2)}(X;G_{\sigma}).$

Iterating this process, we have the desired formula.

4. New examples of groups satisfying the Chatterji-Mislin conjecture.

In this section, we will give a new class of groups satisfying the Chatterji-Mislin conjecture. We start with the following lemma.

LEMMA 4.1. Suppose that a group G admits an m-dimensional contractible cocompact G-CW-complex X for which all stabilizers G_{σ} are amenable. If X is L^2 finite with respect to all stabilizers G_{σ} , then X is L^2 -finite with respect to G and

$$\chi^{(2)}(G) = \chi^{(2)}(X;G)$$

= $\sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} \chi^{(2)}(X;G_{\sigma})$
= $\sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} \chi^{(2)}(G_{\sigma}).$

PROOF. Notice that $EG \times X$ is a model for EG, since X is contractible. Notice also that if G_{σ} is infinite amenable, then $b_p^{(2)}(G_{\sigma}) = 0$ for all $p \ge 0$ ([5] or Theorem 3.5). Thus by [11, Theorem 6.80 (4)], we have $\chi^{(2)}(G) = \chi^{(2)}(EG \times X) = \chi^{(2)}(X)$. The result now follows from Corollary 3.8.

Notice that for a group G which admits a finite-dimensional contractible cocompact G-CW-complex X, if each stabilizer G_{σ} of X is of type FP over C, then so is G ([3, Exercise VII.6.8]).

LEMMA 4.2. Suppose that a group G admits an m-dimensional contractible cocompact G-CW-complex X all of whose stabilizers G_{σ} are of type FP over C. Then the complete Euler characteristic of G is given by

$$E(G) = \sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} j_{*}^{\sigma} E(G_{\sigma}),$$

where $j^{\sigma}: G_{\sigma} \hookrightarrow G$.

PROOF. Let $C_*(X; C)$ be the cellular chain complex of X over the complex numbers C. Notice that

$$C_p(X; \mathbf{C}) \cong \bigoplus_{\sigma \in \sum_p} \mathbf{C}(G/G_{\sigma}).$$

Since X is contractible, we have an exact sequence of CG-modules

$$0 \to \bigoplus_{\sigma \in \sum_m} C(G/G_{\sigma}) \to \cdots \to \bigoplus_{\sigma \in \sum_0} C(G/G_{\sigma}) \to C \to 0.$$

For each stabilizer G_{σ} of σ , let $P_*^{\sigma}: 0 \to P_n^{\sigma} \to \cdots \to P_0^{\sigma} \to \mathbb{C} \to 0$ be a projective resolution of type FP over \mathbb{C} . Then there is a following projective resolution of type FP over \mathbb{C} of an induced module $\mathbb{C}(G/G_{\sigma})$:

$$\widetilde{P}^{\sigma}_*: 0 \to \widetilde{P}^{\sigma}_n \to \dots \to \widetilde{P}^{\sigma}_0 \to C(G/G_{\sigma}) \to 0,$$

where $\widetilde{P}_k^{\sigma} = C(G/G_{\sigma}) \otimes P_k^{\sigma}$ is projective over CG. Thus the Wall element for G is given by

$$W(G) = \sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} [\boldsymbol{C}(G/G_{\sigma})],$$

where $[C(G/G_{\sigma})] = \sum_{k=0}^{n} (-1)^{k} [\widetilde{P}_{k}^{\sigma}] = j_{*}^{\sigma} W(G_{\sigma}) \in K_{0}(CG)$. Hence the complete Euler characteristic of G is given by

$$E(G) = \sum_{i=0}^{m} (-1)^{i} \sum_{\sigma \in \sum_{i}} j_{*}^{\sigma} E(G_{\sigma}).$$

DEFINITION 4.3. Let G be a discrete group which admits a finite-dimensional contractible cocompact G-CW-complex X such that for each finite subgroup H of G, the fixed point complex X^H is contractible. We say that G satisfies Condition (F) if for any element of finite order $s \in G$, all stabilizers $H \leq C_G(s)$ appearing on the fixed point complex $X^{\langle s \rangle}$ are amenable and L^2 -finite, where $\langle s \rangle$ is the finite cyclic group generated by s.

THEOREM 4.4. Let G be a discrete group which admits a finite-dimensional contractible cocompact G-CW-complex X such that for each finite subgroup H of G, the fixed point complex X^{H} is contractible. Suppose that G satisfies the Condition (F). Then the following hold.

- (1) If all stabilizers G_{σ} satisfy formula (*) at all elements of infinite order, then so does G.
- (2) If all stabilizers G_{σ} are of type FP over C and satisfy formula (*) at all elements of finite order, then so does G.

PROOF.

(1) Let $s \in G$ be an element of infinite order. Then $\langle s \rangle$ is an infinite cyclic normal subgroup of $C_G(s)$ and thereby $\chi^{(2)}(C_G(s)) = 0$ by Cheeger-Gromov's result [5] or Theorem 3.5. The result now follows from Lemma 4.2 and the assumption on the G_{σ} 's.

(2) Let σ be an *i*-dimensional cell of X. Denote $[s, G_{\sigma}]$ be the conjugacy classes of elements in G_{σ} which are G-conjugate to s. From Lemma 4.2, it follows that for an element of finite order $s \in G$, we have

$$E(G)(s) = \sum_{i=0}^{m} (-1)^{i} \sum_{[x] \in [s, G_{\sigma}]} E(G_{\sigma})(x)$$

$$= \sum_{i=0}^{m} (-1)^{i} \sum_{[x] \in [s, G_{\sigma}]} \chi^{(2)}(C_{G_{\sigma}}(x)),$$
(4.1)

where $m = \dim X$. Consider the G_{σ} 's as representatives for the stabilizers of the Gaction on X so that a general stabilizer will have the form $gG_{\sigma}g^{-1}$. Since $\langle s \rangle$ is a finite (cyclic) group, $X^{\langle s \rangle}$ is contractible. Note that $C_G(s)$ acts on $X^{\langle s \rangle}$ via the restriction of the G-action on X and the stabilizer of $\sigma \in X^{\langle s \rangle}$ is of the form $C_G(s) \cap gG_{\sigma}g^{-1}$, where $s \in$ $gG_{\sigma}g^{-1}$ so that $C_G(s) \cap gG_{\sigma}g^{-1} \cong C_{G_{\sigma}}(g^{-1}sg)$. Since G satisfies the condition (F), $\chi^{(2)}(C_{G_{\sigma}}(g^{-1}sg))$ is well defined and so is $\chi^{(2)}(C_G(s))$ by Lemma 4.1. Moreover, by Lemma 4.1 again, we have

$$\chi^{(2)}(C_G(s)) = \sum_{p=0}^m (-1)^i \sum_{x \in \sum_i^s} \chi^{(2)}(C_{G_\sigma}(x)),$$

where \sum_{i}^{s} is a set of representatives for the $C_{G_{\sigma}}$ -orbits of *i*-cells of $X^{\langle s \rangle}$. Note that the index set \sum_{i}^{s} corresponds bijectively to conjugacy classes of elements x in the $[G_{\sigma}]$'s which are G-conjugate to s. Hence the last line of the equation (4.1) is equal to $\chi^{(2)}(C_{G}(s))$. This completes the proof.

COROLLARY 4.5. Let G be a discrete group which admits a finite-dimensional contractible cocompact G-CW-complex X satisfying that for each finite subgroup H of G, the fixed point complex X^H is contractible. If each stabilizer G_{σ} satisfies formula (\star) at all elements of infinite order, then G satisfies formula (\star) at all elements of infinite order. Moreover, $E(G)(s) = 0 = \chi^{(2)}(C_G(s))$ for an element $s \in G$ of infinite order. PROOF. From Cheeger-Gromov's result [5] or Theorem 3.5 it follows that $\chi^{(2)}(C_G(s)) = 0$. By Theorem 4.4, E(G)(s) = 0.

THEOREM 4.6. Let G be a discrete group which admits a finite-dimensional contractible cocompact G-CW-complex X satisfying that for each finite subgroup H of G, the fixed point complex X^H is contractible. Suppose that G satisfies the Condition (F). If each stabilizer G_{σ} is of type FP over C and satisfies Conjecture A, then G is of type FP over C and satisfies Conjecture A.

PROOF. This follows from [3, Exercise VII.6.8] and Theorem 4.4.

REMARK 4.7. In [4, Theorem 4.4], Chatterji and Mislin constructed the class \mathscr{B} of groups satisfying Conjecture A. One can obtain more examples coming from interesting closure properties of \mathscr{B} and Theorem 4.6.

References

- [1] H. Bass, Euler characteristics and characters of discrete groups, Invent. Math., 35 (1976), 155–196.
- [2] N. Brady, I. J. Leary, and B. E. A. Nucinkis, On algebraic and geometric dimensions for groups with torsion, J. London Math. Soc., 64 (2001), 489–500.
- [3] K. S. Brown, Cohomology of groups, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [4] I. Chatterji and G. Mislin, Hattori-Stallings trace and Euler characteristics for groups, preprint.
- [5] J. Cheeger and M. Gromov, L²-cohomology and group cohomology, Topology, 25 (1986), 189–215.
- [6] I. Chiswell, Euler characteristics of discrete groups, Groups: topological, combinatorial and arithmetic aspects, London Math. Soc. Lecture Note Ser., 311 (2004), 106–254.
- [7] M. S. Farber, Homological algebra of Nobikov-Shubin invariants and Morse inequalities, Geom. Funct. Anal., 6 (1996), 628–655.
- [8] G. Mislin, Equivariant K-homology of classifying spaces for proper actions, Proper group actions and the Baum-Connes conjecture, Adv. Courses Math. CRM Barcelona, (2003), 1–78.
- [9] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and L²-Betti numbers, I, Foundations, J. Reine Angew. Math., 495 (1998), 135–162.
- [10] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and L²-Betti numbers, II, Applications to Grothendieck groups, L²-Euler characteristics and Burnside groups, J. Reine Angew. Math., 496 (1998), 213–236.
- [11] W. Lück, L²-invariants : Theory and Applications to Geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, A Series of Modern Surveys in Mathematics, 44, Springer-Verlag, Berlin, 2002.
- [12] J. A. Schafer, Graph of groups and von Neumann dimension, J. Pure Appl. Algebra, 180 (2003), 285– 297.
- [13] J. P. Serre, Trees, Translated from the French original by John Stillwell., Corrected 2nd printing of the 1980 English translation, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

Jang Hyun JO

School of Mathematics Korea Institute for Advanced Study (KIAS) 207-43 Cheongryangri 2-dong Dongdaemun-gu Seoul 130-722, Korea E-mail: jhjo@kias.re.kr