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Abstract. We consider one-dimensional generalized diffusion processes
(ODGDPs for brief), where both boundary points are accessible or asymptotically
accessible. For such ODGDPs we consider stochastic processes induced by conditioning
on hitting or asymptotical hitting the right boundary point before hitting or asymptotical
hitting the left boundary point. The induced stochastic processes are again ODGDPs
when the right boundary point is either accessible with the absorbing boundary condition
or asymptotically accessible. However the probability distributions of the induced
stochastic processes do not satisfy the Chapman-Kolmogorov equation when the right
boundary point is accessible with the reflecting or elastic boundary condition.

1. Introduction.

For some one-dimensional diffusion processes on the interval [0,1] that are related
to diffusion models in population genetics, Ewens [3] considered induced stochastic
processes by conditioning on hitting the boundary point 1 before hitting the other
boundary point 0. The boundary points 0 and 1 are accessible and absorbing boundaries
for the diffusion processes that he considered and the induced stochastic processes are
again diffusion processes. Then the induced stochastic processes are referred to as the
conditional diffusion processes by Ewens [3] (see also [7]). The boundary points of one-
dimensional diffusion processes in population genetics, however, can be other kinds of
boundaries such as regular boundary in general (see [4]). If a boundary point is regular
boundary the reflecting boundary condition has been posed usually in population
genetics though other boundary conditions may be possible (see [1], [4], [11] and [14]).

In this paper, we are concerned with one-dimensional generalized diffusion
processes (ODGDPs for brief) on an open interval (Ij,l2). We consider stochastic
processes induced by conditioning on hitting or asymptotical hitting the right boundary
point Iy before hitting or asymptotical hitting the left boundary point l;. The right
boundary point l; is assumed to be absorbing or reflecting or elastic boundary for the
original ODGDPs when it is accessible. We will show that the induced stochastic
processes are again ODGDPs when the boundary point [y is either accessible with the
absorbing boundary condition, or asymptotically accessible. Next we will consider the
case where the boundary point I; is accessible with the reflecting or elastic boundary
condition. It will be shown that the probability distributions of the induced stochastic
processes do not satisfy the Chapman-Kolmogorov equation. Hence the induced
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stochastic processes can not be Markov processes in this case. In Section 2 we state our
results more precisely. Section 3 is devoted to their proofs.

2. Main results.

Let S = (I1,l3) be an open interval, where —oco < 1l; < ly < 00, and s(z) and m(x)
be real valued functions on S such that s(z) is continuous and increasing, and m(x) is
right continuous and increasing. We denote by ds(z) and dm(z) the induced measures.
Given a function u(z) on S, we set u(l;) =limg_y sesu(z), i =1,2, and ut(z) =
lim.jp{u(x +¢€) —u(z)}/{s(z +¢) — s(x)}, if there exist the limits.

Let D=[X(t):¢t>0,P,:z € 5] be an ODGDP with the generator & = -L 4
where S* = SU{l; : [s(l;)] + |m(l;)] < oco0,i=1,2}. If [s(l;)| + |m(l;)| < oo, then we set
one of the following boundary conditions (2.1) and (2.2) at ;.

u(ls) = (2.1)
Hiu(li) + (—1)iu+(li) =0, (2.2)

e

where 0;, i = 1,2, are nonnegative numbers. When (2.1) [resp. (2.2)] is posed at [;, it is
called to be absorbing [resp. elastic]. Note that the condition (2.2) with 6; = 0 is reduced
to the reflecting boundary condition, that is, u*(l;) = 0. Let o, be the first hitting time
at a, that is, o, = inf{t > 0: X(¢) = a}. It is known that

s(z) — s(b)

Py(o, <o) = m,

anNb<z<aVb, (2.3)
for x € S*,a,b € [l,1l5], a # b (cf. [6]), where a A b=min{a,b}, a Vb= max{a,b}. It is
also known that there exists the transition probability density p(t, z,y) with respect to
dm(y), that is,

P.(X(t) e A) = /p(t,x,y) dm(y), t>0, z€ 85", Ae B,
A

where 4 is the set of all Borel measurable subset of S (cf. [6], [12]). We note that p(¢, x,y)
is positive and continuous on (0,00) x S x S (cf. [6], [12]). We fix ¢ € S arbitrarily and
set

Iz)= [ dsy) [ dm(z), J(x)= [ dm(y) [ ds(z), ze€S,
(C‘,I] ((5711/] ((5?17] (Cvil/]

where the integral f(a ] is read as —f(b o if a > b. Following [5], we call the boundary I; to
be

(s,m)-regular if I(l;) <oco and J(I;) < oo,
(s, m)-exit if I(l;) <oo and J(I;) = oo,
(s,m)-entrance if I(l;)=oc0 and J(I;) < oo,
(s,m)-natural if I(l;)=o00 and J(I;) = oc.
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Note that
|s(l;)] < oo and |m(l;)| < oo if l; is (s, m)-regular,
|s(l;))] < oo and |m(l;)] =00 if l; is (s, m)-exit,
|s(l;)] =00 and |m(l;)] <oo if l; is (s, m)-entrance,
|s(li))]=00 or |m(l})| =00 ifl;is (s,m)-natural.

The boundary I; is accessible [resp. asymptotically accessible] if it is (s, m)-regular or exit
[resp. natural with |s(l;)| < oo]. Throughout this paper we assume that

s(lg) < o0. (2.4)

This assumption implies that 5 is accessible or asymptotically accessible. We set

s(z) — s(ly )
ha) = { s sy T T ca g, 25)
1, if s(ly) = —o0,

Let D, and D, be the stopped processes of D such that Dy = [X(t Aoy, Aoy,) 1t >0, P, :
ze S and D, =[X(tANoy):t>0,P,: x € S*]. Let denote by p.(t,z,y) and p.(t,z,y)
the transition probability densities of D, and D, with respect to m, respectively. Then
we see that

P.(X(t)eA t<oy, Noy) = /Ap.(t,x,y) dm(y),

P(X(t)eA, t<o,)= /Apo(t,w,y) dm(y),

for t>0, z€S5, Ae B. We note that p.(t,z,y) and p.(t,x,y) are positive and
continuous on (0,00) x S x S. Let D" be the h-transform of D, with h given by (2.5).
Namely, D" is an ODGDP with the generator 4" = ﬁ %, where dm"(z) = h(z)? dm(x)

and ds"(z) = h(z) *ds(z). It is known that the transition probability density p"(t,z,y)
of D" with respect to m” is given by

p'(t,2,y) = pa(t, z,y) /h(x)h(y), t>0, 2,y €S, (2.6)

(see [9], [10]). We define a nonnegative function ¢(t,z,y) as follows: For ¢t > 0 and
z,y €S,

q(t,x,y) = % {p.(t:my)h(y) + ql(tvxvy) + CD(t,f&y)}, (27)

where
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/ P.(01, € du, o1, < 07,)ps(t — u, 12, y)
(0,t)

a(t,z,y) = (2.8)

if Iy is (s, m)-regular and elastic,
0 otherwise,

@(t z,y)

/ P.(oy, € du, a;, < 0y,)
(0.t)

_ /< Pl € dplt ==,y (2.9)
0,t—u

if both of I; and Iy are (s,m)-regular and elastic,

0 otherwise.

Let {£,}, and {n,}, be the sequences satisfying

& =11 (ne€ N) if Iy is (s,m)-regular or exit,
& €S (neN), & |l iflis (s,m)-entrance or natural,
My =1z (n€ N) if Iy is (s, m)-regular or exit,

€S (neN), n,1ly iflyis (s,m)-natural.

By virtue of (2.3) and (2.4),

h(z) = lim P:c(a'n,l < 0'5,,), x € S

n—oo

Let us consider the following function Q(t,x, A).

Q(t,z,A) = lim P,(X(t) € Aloy, < o¢,), (2.10)

fort > 0,z € Sand A € A. Following the same argument as in the proof of Theorem 2.1
of [9], we easily see that there exists the limit in the right-hand side of (2.10), and

Q(t,xz,A) = / q(t,z,y)dm(y), t>0, x€S, A€ B. (2.11)
A

If s(l;) = —o0, then (2.11) is obviously reduced to

Q(t,z,A) = P,(X(t) € A).

We are interested in the case s(l;) > —oco which implies that Il; is accessible or
asymptotically accessible. The aim of the present paper is to show the following
theorems.

THEOREM 2.1.  Assume that s(ly) > —oo and ly is (s, m)-regular with the absorbing
boundary condition or exit or natural. Then Q defined by (2.10) is the transition
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probability of the ODGDP D". If the boundary l; is (s,m)-reqular or exit, then it is
(s",m")-entrance. If Iy is (s,m)-natural, then it is (s",m")-natural. The boundary ly is
(s",m")-regular or exit or natural according to (s,m)-regular or exit or natural.
Especially ly is absorbing if it is (s", m")-regular.

For the special case of one-dimensional diffusion processes, the assertions of
Theorem 2.1 and their application to population genetics models were obtained by
Maeno [9].

As in Remark 3.1 below, Theorem 2.1 can be extended to the case that S(m) # 0,
where S(m) is the support of the measure dm. Hence the assertions hold true for birth
and death processes, too.

THEOREM 2.2.  Assume that s(ly) > —oo and ly is (s, m)-regular with the elastic
boundary condition. Then Q defined by (2.10) does not satisfy the Chapman-Kolmogorov
equation.

3. Proofs.

3.1. Proof of Theorem 2.1.
We assume that s(l;) > —oo and [y is (s, m)-regular with the absorbing boundary
condition or exit or natural. Then (2.11) is reduced to

Qt, 2, A) = % / pe(t, 2, »)h(y) dm(y). (3.1)
By means of (2.6) and (3.1),

Q(t.x.A) = / Pt 2, y) dm (y), (3.2)

A

which shows that Q is the transition probability of the ODGDP D”". The rest of the
theorem follows from (3.2) and the results of [10]. O

REMARK 3.1. Suppose that m(z) is nondecreasing, and hence S(m) is not
necessarily identical with S. We assume that S(m) # 0. Then (2.11) holds true. Since
the results of [10] are valid under the assumption S(m) # (§, we also obtain (3.2). Thus
Theorem 2.1 can be extended to the case that S(m) # (.

3.2. Proof of Theorem 2.2.

We assume that s(l;) > —oo and Iy is (s,m)-regular and elastic, that is, (2.2) is
satisfied for ¢ = 2.

First we note the following.

LEMMA 3.2.

(1) Fort>0 andx € S, q(t,x,y) is continuous iny € S.
(2) Fort>0andly <a<b<ly, sup,eg, a<y<p 4(t; T,y) < 00.



976 M. T1ZUKA, M. MAENO and M. TOMISAKI

PROOF. Let I} <a <b<ly. We have that sup,.op(t,a,b) < co. Combining this
with Theorem 4.2 of [12], we obtain that

sup p(t,z,y) < 0. (3.3)
t>0, h<z<a, b<y<ly

Note that (3.3) holds true replacing p(-,-,-) by pe(-,+,*) or ps(-,,-) or pt(-,-,-). Since
the transition probability densities p(t,z,y), pe(t,z,y), and p.(t,x,y) are continuous
in (¢,z,y), the first assertion follows from (2.7), (2.8), (2.9) and (3.3).

We will show the second assertion. By means of (2.3), (2.5), (2.8), (2.9), and (3.3),
we see that

sup gt x,y)/h(z) <oco, t>0,i=1,2. (3.4)
zeS, a<y<b

It is obvious that

sup pe(t,x,y) < oo, t>0.
z,y€es

Combining this with (3.3) replacing p(-,-,-) by p"(-,-,-), we see that

sup  pe(t,z,y)h(y)/h(z) < oo, t>0. (3.5)
z€S, a<y<b
The second assertion follows from (3.4) and (3.5). O

For a« >0 and i=1,2, let g;(-,) be a positive and continuous function on S
satisfying the following properties.

91(+, @) is nondecreasing and go(-, «) is nonincreasing on S. (3.6)
gi(li,a) =0 if [; is (s, m)-regular with the boundary (3.7)
condition (2.1) or exit or natural.
0ii(li; ) + (=1)'gf (i, @) = 0 (3.8)
if I; is (s, m)-regular with the boundary condition (2.2).
gi(x, @) = gi(e,a) + g/ (¢, a){s(x) — s(c)}
(3.9)

+ a/ {s(z) — s(y)}gi(y, &) dm(y), =z €S,
(c.z]

where ce€ S is fixed arbitrarily and ¢ (z,a)=lim.o{gi(z+ ¢, ) — gi(z, )}/
{s(z +¢) — s(x)}. It is known that there exist such functions g¢;(-, ), i = 1,2 (see [6]).
We set W(a) = g (2, )g2(z, ) — g1(z, ) gy (z, ). Note that W(«) is a positive number
independent of z € S. We put

G(a’ €T, y) = G(Ot, Y, J?) = W(a)_lgl ($, a)Q? (yv a)7

for « >0 and [} <z <y <ly, which is the Green function corresponding to the
generator ¢. It is known that
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Glayz,y) = / (e, y) di, (3.10)
0

for @« > 0 and z,y € S (see [6]). We denote by ¥4, and ¥, the generators of D, and D,
respectively. We denote by Ge(a,7,y), g.;(7,a) [resp. Go(a,x,y), g.:;(x, )] the
quantities corresponding to ¥, [resp. ¥,]. For Go(a,z,y) [resp. Go(a, x,y)], (3.10) with
p(t, z,y) replaced by p.(t,z,y) [resp. po(t,x,y)] holds true. We set

H(o,z,y) = / e “q(t,x,y) dt,
0

[o¢]
Hi(avxay) = / e_atqi(tvxvy) dt7
0

fora >0, z,y€ S and ¢« = 1,2. It is easy to see that

1
" h(x)
Hi(a,z,y) = E le" "0, < 0,|Go(a, 1o, y),
E.[e ;0 < o] EL[e” ]G (e, 11, y)

Hy(a,z,y) = if {1 is (s, m)-regular and elastic,

H(Oz,x,y) {G.(a,x,y)h(y) + H1(04,.Z‘,y) + HQ(O&,.Z‘,y)},

0 otherwise,

for « > 0 and z,y € S, where E,[e %;0), < 0y,] = f<0 o € P.(oy, € du, oy, < oy,).
Now we assume that @ satisfies the Chapman-Kolmogorov equation, that is,

Q(s+t,z,A) = /SQ(s,x,dz)Q(t, z,A),
for s,t >0, x € S and A € A. By virtue of (2.11) and Lemma 3.2, we obtain that
q(s +t,z,y) = /Sq(s,x,z)q(t,z, y)dm(z), s,t>0, x,y€S. (3.11)
Integrating (3.11) by the measure e~*(*%) dsdt on (0,00) x (0,00), we see that
é{H(a, z,y) — HQ2a,z,y)} = /SH(a, x, 2)H(2a, z,y) dm(2), (3.12)

fora >0 and z,y € S.

Suppose that Iy is (s, m)-regular with the absorbing boundary condition or exit or
natural. Letting = 1ly and y 71y in (3.12), by means of the monotone convergence
theorem we see that
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1
— {Hl(Oé, lg, lg) — H1 (204, lQ, lQ)} = / H1 (a, lQ, z)h(z)_lHl(Qoz, Z, l2) dm(z),
(0% S

and hence

1
a {Go(aa l?a lz) - G0(2a’ l?a 12)}
= / Gola, Iy, 2)h(2) ' E. [e72%%: 0y, < 01,] Go (20, I, o) dm(2).
5

Since Iy is (s,m)-regular, the left-hand side (and hence the right-hand side) is finite.
We note the resolvent equation for the Green function, that is,

Gla,z,y) — G(B,z,y) + (a—f) /S G(a,z, 2)G(0, z,y) dm(z) =0, (3.13)

for o, 8> 0 and z,y € S*. This holds true replacing G(-,-,-) by G(-,-,-). Therefore
/ Go(aa l?a Z)GO(2aa Z, l?) dm(z)
s

(3.14)
=/Go(a,12,Z)h(z)_lEz[eﬁwlzaalz < 01, Go (20, Iy, Iy) dm(2).
s

We may take go1(z,a) = E,[e ;0 <oy], © €S (see [6]). Therefore (3.14) is
reduced to

/goﬁl(z, ) go1 (2, 2a) dm(z) :/goyl(z, a)h(z)flgovl(zﬂa) dm(z). (3.15)
s s

However (3.15) does not hold true since 0 < h(z) < 1, z € S. Thus it does not happen
that Iy is (s, m)-regular with the absorbing boundary condition or exit or natural.

Next we assume that [y is (s,m)-regular and elastic, that is, (2.2) is satisfied for
i =1. Letting x 1 Iy in (3.12), we see that

1
~{Gel0boy) + BLle )Gl )

— G (20,19, y) — E, [6720‘”‘1}61‘(204, Iy, y)}
= /{Go(a,lz,z) + B, [e’“"“]G(aJl,z)} (3.16)
s
x h(2) " { G20, 2, 9)h(y) + Bx[e %501, < 0] Go 20, ,y)

+ E, [672&072 jop, < 011]E12 [672&0" ] G(2a,ly, y)} dm(z).
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We note that there exist finite limits Go(z,y) = lim,jo Ge(o, z,y) and Go(z,y) =
lim, o Go(ev, z,y). We may take that

go1(2) = go1(x) = s(x) = s(lr),  gaa(2) = 5(lr) — 5(2), (3.17)
where go () = limgy| goi(x, @) and go;(x) = limgo goi(x, @), i = 1,2 (see [6]).

First we consider the case ¢ + 6, > 0. Then there exists a finite limit G(z,y) =
limg o G(o, z,y) and we may take

g1()
92()

O1{s(x) —s(l1)} + 1, (3.18)
go2(x) = O2{s(la) — s(x)} + 1, (3.19)

where g;(x) = lim,0 ¢;(z, @), i = 1,2 (see [6]). By virtue of (3.13) for G(-,,-) or Go(-,-, "),
we see that

the left-hand side of (3.16)
z/Go(a,lg,z)Go(Qa,z,y) dm(z)
s

o B — 150, < sclGlanh.1)
—a B, [e7 — 1500, < 00| G(2er, 11, y)

+Pulon < 00) [ Glaniy, 2620,z 0) dm(2),
s
Therefore letting « | 0 in (3.16) leads us to the following.

/ Golla, 2)Golz, ) dm(2) + Enlon; o1, < 00lG(l1, )
S

+ P, (01, < 50) /S Gy, 2)C(z y) dm(2)

= /S {Gello ) + Pulon, < )G, 2)} (3.20)
x h(z) " {Gulz)h(y) + h(2)Gulla, )
+h(2) P (1, < 5)G(l1,9) | dm(2).
It is known that P, (o7, < 00) = ga(l2)/g2(l) (see [6]). We note that
Ey 01,500, < 00] = go(l1) > /5 Go1(2)g2(2)” dm(2). (3.21)

We will give the proof of (3.21) in Appendix. Assume 6 > 0. Letting y | I; in (3.20)
leads us to the following.



980 M. T1ZUKA, M. MAENO and M. TOMISAKI

{mmun+®}Lguvmxﬁwmuwﬁém@fmma
={a@an+%}AQM@mewﬁLm@Mmu»

This identity is not true since go(z) > 1 for z € S. Thus 65 = 0, so that 6; > 0. Letting
y 1l in (3.20), we find that

6 [0 dm(e) 01 [ goa()am) + [ () dm(z)
= {01g<>71(12) + 1} /{91g0?1(z) + 1} dm(z),
S
from which
= 6? 2)% dm(z 1 o1(2) dm(z 1(2) dm(z
0—%L%M)d()+9494)d()+ég(m ()
— {019071(12) + 1} /Sgl(z) dm(z)
<%B%%ﬂ%ﬂﬁh@—d@ﬂﬂ@+ﬁﬁ@@—d@ﬂm@
—&@@%wm»/mw@—dmwﬂwmw
S
:aé@@—xmwm@—amm—qmnmm—mm»

This contradicts the fact that the last term is negative. Thus it does not happen that
0, + 6> > 0.
We consider the case 6; = 6o = 0. In this case we have that

liﬂ)l aG(a,r,y) = M1,

uniformly in z,y € S*, where M =m(lz) —m(l) (cf. [8], [13], [15]). We denote by 0,
the right derivative in s(y), that is, 9 G(a, x,y) = lim. o {G(a, 2,y + €) — G(a, 7,y)}/
{s(y+¢€) —s(y)}. By means of 6, =0 and (3.8),

emeJhwz—uwwwlmm¢wj (s c)dm(a),
,%12

and hence

h?ol 3 Gla,l,y) = =M {m(ly) — m(y)}.

It is easy to see that
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l(%l@yG (ol y) =1,

lim 5 G, 2,y) = —h(2) 1) (2) + {1 = A2y (2),

where 15(z) = 1if z € A, and = 0if 2 ¢ A. Multiply (3.16) by «, operate 9, and let « | 0.
Then we obtain the following.

0= [ 270 {1 ARG + 1) (1= HEH)
+Gxawwww—amr*+ma—humr%mwwﬂmmﬁdmu»
By virtue of (3.17),
Gu(z,9){5(l2) — s(1)} ™" = —h(2)h(y) + ()1, () + BB L0 (2)

By using this and h(z) < 1,

0= /S{2h(y)h(z)*11(y’,2)(z) — 20(y) + 10,4(2) + 1

— M7 (m(l) = m(y)) } dm(2)
> 2h(y){m(l2) —m(y)} — 2h(y) M +m(y) —m(l) + M
mily) +m(y)
= 2{m(y) - m(l) {1 - h(y)},

which is contradicting the fact that the last term is positive. Thus it does not happen
that Iy is (s, m)-regular and elastic.
Therefore @ does not satisfy the Chapman-Kolmogorov equation. |

Appendix

It is known that the ODGDP D is identical in law with a time changed process of
the Brownian motion. By using this fact we show (3.21). Assume that both of [; and Is
are regular and the boundary condition (2.2) is satisfied for ¢ = 1,2. We may assume
that the scale function is natural, that is, s(x) = z, x € S, without loss of generality. We
set, Tl =1 — 67" and E =1y + 65!, where 1/0 = co. Further we set

—00, X S217

m(ly), l~1 <z <l,
m(z) =< m(z), L <x<l,
m(ly), Lh<z< l~27

0, I < x.
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Let B=[B(t):t>0, PB:x € R] be the Brownian motion and t(t,£), ¢t >0, be the
local time at £&. We set f(t) = f(fliz) t(t,€) dm(€), t > 0, and denote by f*(¢) the inverse
function. Then the time changed process [B(f(t)) :t >0, PB:z € S*] is identical in
law with D (see [6], [8], [15]). Denoting by ¢Z the hitting time at a of the Brownian

motion, we obtain that

Ey, o101, < oo] = E’f [f(af); Uf < O'f:|
B[,/ B B B| ;~ (A-1)
= /(Z .Z)Elz [t(gzlaf%% < ‘772} dm(§).
Let a,b > 0. By using Eg[e’““"f’(’)] = (1+aa)”" (cf. [6]) and the strong Markov
property of the Brownian motion, we obtain that

Ef [e_”t<”"B’0); af < ai} =b(aab+a+ b)_l7

from which

EP[t(cB,0);08 < o8] = ab®(a + b)~>.

Therefore
/~~ Ef [t(af,{);af < O’iB] dm(&)
(l,l2) 2

= /SEgB [t(aﬁ,@;aﬁ < Uiﬂ dm(§)

= /SE(])B [t(agll,O);agll < agﬂ dm(§)

= /S(ﬁ — )l — &*(l — 1) dm($)

=221 [ 90a(Oe) dm(e),

s

where we used (3.17) and (3.19). Combining this with (A.1), we obtain (3.21). O
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