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Abstract. We give a necessary and su‰cient condition for a given point on the

unit normal bundle of a closed submanifold N of a 2-dimensional complete Riemannian

manifold M to be a di¤erentiable point of the distance function to the cut locus of N.

Let N be a closed submanifold of a complete Riemannian manifold M and

p : Un ! N denote the unit sphere normal bundle over N. A unit speed geodesic

segment g : ½0; a� ! M emanating from N is called an N-segment if t ¼ dðN; gðtÞÞ

on ½0; a�, where dðN; �Þ denotes the Riemannian distance function from N. In

[8], two functions r and l1 on Un are defined by

rðvÞ :¼ supft > 0; gvj½0; t� is an N-segmentg;

which is called the distance function to the cut locus of N and

l1ðvÞ :¼ supft > 0; gvj½0; t� has no focal point of Ng;

where gv is the geodesic in M with _ggvð0Þ ¼ v. The cut locus CN of N is defined

by

CN :¼ fexpðrðvÞvÞ; v A Un; rðvÞ < yg;

where exp denotes the exponential map on the tangent bundle over M. Each

point of the cut locus is called a cut point of N. Note that gvðl1ðvÞÞ is the first

focal point of N (cf. [1] or [10]) along gv, when l1ðvÞ is finite. Some properties of

these functions were investigated in the paper [8]. For example, it was proved

that the function r on Un is locally Lipschitz where r is finite. Therefore, from
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Rademacher’s theorem (cf. [2] and [9]) it follows that the function minðr; rÞ is

di¤erentiable almost everywhere for each r > 0, but this theorem does not tell us

whether a given point is a di¤erentiable one of r or not. It is well-known that r

is di¤erentiable at v0 if expðrðv0Þv0Þ is a normal cut point, i.e., a cut point q of

N is called normal if there exist exactly two N-segments through q, which is not

a focal point along either of these two N-segments. In this article, we give a

necessary and su‰cient condition for a given point of Un to be a di¤erentiable

point of r in the case where the manifold M is 2-dimensional.

Main Theorem. Let N be a closed smooth ðCyÞ submanifold of a com-

plete 2-dimensional smooth Riemannian manifold M and Un the unit sphere normal

bundle over N. A point v A Un with rðvÞ < y is a di¤erentiable one of the dis-

tance function r to the cut locus of N if and only if gvðrðvÞÞ is a focal point of N

along gv or there exist at most two N-segments through gvðrðvÞÞ.

Remark. Under the same assumption in the Main Theorem, the set of all

normal cut points is open and dense in each component of CN , unless the com-

ponent consists of a single point. This Main Theorem was motivated by Kok-

kendor¤ ’s conjecture ([13]), which was in turn a result of experimentation with

the software tool ‘‘Loki’’.

We refer some basic tools in Riemannian geometry to [1] or [10]. From

now on let ðM; gÞ denote a complete 2-dimensional smooth Riemannian manifold

with Riemannian metric g. We need the detailed structure of the cut locus of N

(cf. [4], [5], [6], [7], [11], [8] and [12]) to prove our Main Theorem. Notice that

we may assume that each connected component of N is 1-dimensional, because

if N contains an isolated point q, then the point q and the distance function r

to the cut locus can be replaced by the distance circle fexpðevÞ j v A Un; pðvÞ ¼ qg

and re, where reð _ggwðeÞÞ :¼ rðwÞ � e for each w A UnV p�1ðqÞ, respectively by

taking a su‰ciently small positive e. Therefore we prove the Main Theorem by

assuming that each connected component of N is 1-dimensional.

From the Gauss-Bonnet theorem and the Rauch comparison theorem, we get

Lemma 1. Let sðp q rÞ be a geodesic triangle in an open ball Bðp; d0Þ

centered at a point p with radius d0. If the Gaussian curvature G of M satisfies

�a2aGa a2 on the open ball Bðp; d0Þ for some positive number a and if d0 is

less than the convexity radius at p, then

ð2� cosh 2ad0Þff qa p� ff p

holds, where ff p and ff q denote the inner angle of the triangle at the vertices p and

q respectively.

The following four lemmas on the cut loci are fundamental.
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Lemma 2. The inequality l1b r holds on Un, and l1 is smooth where l1 is

finite. Furthermore, if l1ðv0Þ ¼ rðv0Þ < y, then the di¤erential dl1 of l1 is zero

at v0.

For convenience we introduce a smooth Riemannian metric on Un. The

following two lemmas follow from Lemmas 2.4 and 2.5 in [8] respectively.

Lemma 3. Let wðtÞ be a unit speed smooth curve in Un with rðwð0ÞÞ < y.

Then there exist positive constants d and C1 such that

C1jt� sja ffð _ggwðtÞðrðwðtÞÞÞ; _ggwðsÞðrðwðsÞÞÞÞ

holds for any s; t A ½�d; d� with gwðtÞðrðwðtÞÞÞ ¼ gwðsÞðrðwðsÞÞÞ. Here

ffð _ggwðtÞðrðwðtÞÞÞ; _ggwðsÞðrðwðsÞÞÞÞ

denotes the angle made by the two tangent vectors _ggwðtÞðrðwðtÞÞÞ and _ggwðsÞðrðwðsÞÞÞ.

Lemma 4. Let wðtÞ be a unit speed smooth curve in Un with rðwð0ÞÞ ¼

l1ðwð0ÞÞ < y. Then for any e > 0 there exists a positive number d such that for

any t A ½�d; d�, gwð0Þ½rðwð0ÞÞ � e; rðwð0ÞÞ þ e� and gwðtÞ½rðwðtÞÞ � e; rðwðtÞÞ þ e� have

a common point.

Let p be a cut point of N and d a positive number less than the injectivity

radius at p. Each component of Bðp; dÞn6
g AGp

g½dðN; pÞ � d; dðN; pÞ�, where Gp

denotes the set of all N-segments through p, is called a sector at p. It was

proved in [5] (cf. also [12]) that for any cut point p of N and any neighborhood

U around p, there exists a neighborhood V HU around p such that for any

x; y A V VCN , x and y can be joined by a unique rectifiable Jordan arc, i.e., an

arc homeomorphic to a closed interval, in V VCN . This property was proved by

making use of a sector. The following lemma is proved in [12].

Lemma 5. Let S be a sector at a cut point p of N and m : ½0; 1� !

fpgU ðCN VSÞ a Jordan arc issuing from p ¼ mð0Þ. Then the curve m bisects the

sector S at p. Furthermore, let fan : ½0; ln� ! CNg denote an infinite sequence of

arcs in CN VS with anð0Þ B m½0; 1� such that each an is the unit speed minimal arc

in CN from anð0Þ to m½0; 1� and limn!y anð0Þ ¼ p. Then there exists a sequence

fSng of sectors Sn at the cut point qn :¼ anðlnÞ A m½0; 1�, which is the nearest point

on m½0; 1� from anð0Þ, satisfying the following four properties.

1. qn 0 p for any n and limn!y qn ¼ p.

2. anð0Þ A Sn for any su‰ciently large n.

3. The sequence of the inner angles of the sectors Sn at qn converges to zero.

4. The two N-segments gvn and g~vvn , which determine Sn, bound a disk domain

DðSnÞ together with the subarc of N cut o¤ by these two N-segments, if n is

sufficiently large.
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Let vðtÞ be a unit speed smooth curve on Un with l1ðvð0ÞÞ ¼ rðvð0ÞÞ < y.

For simplicity, we put

rðtÞ :¼ rðvðtÞÞ; lðtÞ :¼ l1ðvðtÞÞ; p :¼ expðrð0Þvð0ÞÞ:

By Lemma 2, we have

lim inf
t!þ0

rðtÞ � rð0Þ

t
a lim sup

t!þ0

rðtÞ � rð0Þ

t
a dl1ð _vvð0ÞÞ ¼ 0ð1Þ

and

0 ¼ dl1ð _vvð0ÞÞa lim inf
t!�0

rðtÞ � rð0Þ

t
a lim sup

t!�0

rðtÞ � rð0Þ

t
:ð2Þ

We assume that there exists a monotone decreasing sequence ftng of positive

numbers convergent to zero such that

lim
n!y

rð0Þ � rðtnÞ

tn
¼: k

is positive and each pn :¼ expðrðtnÞvðtnÞÞ is a normal cut point. Thus lðtnÞ >

rðtnÞ for each n. Let d be a positive number less than the convexity radius

at p. Without loss of generality, we may assume that the Gaussian curvature

G of M satisfies jGja 1 on Bðp; dÞ. Choose a positive number d0 < d with

cosh 2d0 < 2. For each q A Bðp; d0Þnfpg, let yðqÞ denote the angle made by

� _ggvð0Þðrð0ÞÞ and exp�1ðqÞ, where exp�1 denotes the local inverse mapping of

expp on Bðp; d0Þ. Let gn denote the unit speed minimal geodesic joining p ¼

gnð0Þ to pn.

Lemma 6. There exists a positive constant C7 such that yðpnÞaC7tn for

any n.

Proof. Since

lim
n!y

rð0Þ � rðtnÞ

tn

is positive, for any su‰ciently large n there exists a unique point rn on the geo-

desic segment gvð0Þjð0;rð0ÞÞ which is the nearest point on the segment from pn.

Fix any su‰ciently large n, so that rn is defined and lðtÞ < y on the interval

½0; tn�. Then, by definition,

dðpn; rnÞa

ð tn

0

kYNðrðtnÞ; vðtÞÞk dt;ð3Þ

where YNðt; vðtÞÞ is the N-Jacobi field along the geodesic gvðtÞ defined by
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YNðt; vðtÞÞ :¼
q

qt
expðtvðtÞÞ;ð4Þ

and

kYNðrðtnÞ; vðtÞÞk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðYNðrðtnÞ; vðtÞÞ;YNðrðtnÞ; vðtÞÞÞ
p

:

Since YNðlðtÞ; vðtÞÞ ¼ 0, there exists a positive constant C3, which is independent

of n, such that

kYNðrðtnÞ; vðtÞÞkaC3jrðtnÞ � lðtÞj:ð5Þ

Since r is locally Lipschitz and l 0ð0Þ ¼ 0, there exists a positive constant

C4, which is independent of n, such that

jrðtnÞ � rð0ÞjaC4tn; jlð0Þ � lðtÞjaC4t
2:

Thus by the triangle inequality, we get

jrðtnÞ � lðtÞjaC4ðtn þ t2Þ:ð6Þ

Combining (3), (5) and (6), we obtain

dðpn; rnÞaC3C4t
2
n 1þ

tn

3

� �

< C3C4t
2
nð1þ tnÞ:ð7Þ

Without loss of generality, we may assume that the two points rn and pn are in the

ball Bðp; d0Þ and

k

2
a

rð0Þ � rðtnÞ

tn
:ð8Þ

Hence we get the geodesic triangle hðp rn pnÞ all whose edges are in Bðp; d0Þ.

From the Rauch comparison theorem and the Toponogov comparison theorem

(e.g., cf. Theorems 2.5 and 4.2 in [10]), there exists a geodesic triangle hðp rn pnÞ

in the 2-dimensional sphere S2ð1Þ of constant Gaussian curvature 1 with same

side lengths such that yn :¼ yðpnÞ is not greater than the inner angle yn of the

triangle hðp rn pnÞ at the vertex p. From the law of sines (or equivalently

Clairaut’s relation), we have

sin yn sin dðp; pnÞa sin dðpn; rnÞ:ð9Þ

By the equations (7) and (8), we may assume that yn is less than p=2. Since

sin xa xa
p

2
sin x

on the interval ½0; p=2�, we get by (9)
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yna yna
p2

4

dðpn; rnÞ

dðp; pnÞ
:ð10Þ

On the other hand, from the triangle inequality,

jrð0Þ � rðtnÞja dðp; pnÞ:ð11Þ

By the equations (7), (8), (10) and (11), we have

yna
p2C3C4

2k
ð1þ tnÞtn:

Hence the proof is complete. r

Lemma 7. There exists a positive constant C8 such that

xn � ynaC8yðpnÞ

for any n. Here xn; yn denote the maximum and the minimum of

ft > 0; expðrðtÞvðtÞÞ ¼ png respectively.

Proof. At first, suppose that there exists a sector S at p whose boundary

contains a subarc of gvð0Þ. Choose a cut point pn1 from p 0
ns in such a way that

the minimal arc m : ½0; 1� ! CN joining p to pn1 lies in S. From Lemma 5,

the curve m bisects the sector at p containing itself. On the other hand,

limn!y yðpnÞ ¼ 0 by Lemma 6. Thus, pn does not lie on the curve m for

any su‰ciently large n. Choose any su‰ciently large n satisfying pn A SV

Bðp; d0Þnm½0; 1� and fix it. Let an : ½0; ln� ! CN be a unit speed minimal arc in

CN joining pn ¼ anð0Þ to m½0; 1�. For each t A ð0; ln�, let S�ðanðtÞÞ denote the

sector at anðtÞ such that

S�ðanðtÞÞI anðt� d; tÞ

for a small d > 0. Note that Sn :¼ S�ðanðlnÞÞ forms a sequence of sectors sat-

isfying the four properties in Lemma 5. Since pn is a normal cut point, we may

define the sector S�ðanð0ÞÞ at anð0Þ if we extend an to ð�d; 0� for some d > 0.

Furthermore we may assume the sector Sn satisfies the property 4 in Lemma 5.

Let 0a t1a t2a ln, and let u1 < ~uu1 (respectively u2 < ~uu2) denote the parameter

values of vðtÞ such that gvðu1Þ; gvð~uu1Þ (respectively gvðu2Þ; gvð~uu2Þ) are the N-segments

determining the sector S�ðanðt1ÞÞ (respectively S�ðanðt2ÞÞ). Since the disc

domain DðSnÞ ¼ DðS�ðanðlnÞÞÞ contains both sectors S�ðanðt1ÞÞ and S�ðanðt2ÞÞ,

DðS�ðanðt1ÞÞÞ is a subset of DðS�ðanðt2ÞÞÞ. Here DðSÞ denotes the disc domain

bounded by the two N-segments determining the sector S together with the

subarc of N cut o¤ by these two N-segments. In particular, p � v½u1; ~uu1� is a

subarc of p � v½u2; ~uu2�. Thus, from Lemma 3,

~uu1 � u1aC�1
1 xðS�ðanðt2ÞÞÞð12Þ
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for any 0a t1a t2a ln. Here xðS�ðanðtÞÞÞ denotes the inner angle of S�ðanðtÞÞ

at anðtÞ. Let bn be the maximal number of flnb tb 0; yðanðtÞÞ ¼ yng, where

yn :¼ yðpnÞ. Since the set of all normal cut points is open and dense in CN ,

we may assume anðbnÞ is a normal cut point of N. Hence ðy � anÞ
0ðbnÞ is non-

negative, since yðanðlnÞÞ > yn if n is su‰ciently large. Since an bisects the sector

S�ðanðtÞÞ at anðtÞ for each t, we get

1

2
xðS�ðanðbnÞÞÞa ffð _ggnðdðp; anðbnÞÞÞ;� _ggvðunÞðrðunÞÞÞ;ð13Þ

where un :¼ minft > 0; expðrðtÞvðtÞÞ ¼ anðbnÞg. Since ðy � anÞ
0ðbnÞb 0 and

xðS�ðanðbnÞÞÞ is small, we may assume ðy � gvðunÞÞ
0ðrðunÞÞ > 0. Thus from

Lemma 4, we get a geodesic triangle hðp anðbnÞ gvð0Þðrð0Þ þ enÞÞ, where en > 0,

in the convex ball Bðp; d0Þ. Therefore, from Lemma 1, we get

ffð _ggnðdðp; anðbnÞÞÞ;� _ggvðunÞðrðunÞÞÞaC6yn;ð14Þ

where C6 :¼ ð2� cosh 2d0Þ
�1. Therefore by (12), (13) and (14), we obtain

yn � xnaC�1
1 xðS�ðanðbnÞÞÞa 2C�1

1 C6yn;ð15Þ

if there exists a sector S at p whose boundary contains a subarc of gvð0Þ. Sup-

pose that there is no sector at p whose boundary contains a subarc of gvð0Þ.

This case actually occurs (e.g. see the example constructed by Gluck and Singer

in [3]). For each n let Sn be the sector at p containing pn. By (7), the sequence

fSng shrinks to a subarc of gvð0Þ as n goes to infinity. Thus for any su‰ciently

large n, the two N-segments gvðunÞ; gvð~uunÞ determining Sn, bound a disk domain

together with p � v½un; ~uun�. Choose any such n and fix it. Let bn : ½0; ln� ! CN

denote the unit speed minimal arc joining pn ¼ bnð0Þ to p. Let S�ðpnÞ denote

the sector at pn disjoint from bnð0; ln�. Since DðSnÞ contains DðS�ðpnÞÞ, we get

yn � xnaC�1
1 xðSnÞ by Lemma 3. Here xðSnÞ denotes the inner angle of Sn

at p. Thus we may assume that yn < ð1=2ÞxðSnÞ, otherwise we get yn � xna

2C�1
1 yn. By Lemma 5, yðbnðtÞÞ > ð1=2ÞxðSnÞ for any t < ln su‰ciently close to

ln. Therefore there exists a maximum bn in flnb tb 0; yðbnðtÞÞ ¼ yng. By the

similar argument to the first case, we have the equation (15). This completes the

proof. r

Theorem 8. Let N be a closed smooth submanifold of a complete 2-

dimensional smooth Riemannian manifold M. For any unit speed smooth curve

wðtÞ on Un,

lim
t!0

r � wðtÞ � r � wð0Þ

t
¼ 0;

if rðwð0ÞÞ ¼ l1ðwð0ÞÞ < y.
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Proof. Suppose that

lim inf
t!þ0

r � vðtÞ � r � vð0Þ

t
0 0

for some unit speed smooth curve vðtÞ on Un with rðvð0ÞÞ ¼ l1ðvð0ÞÞ < y.

Thus, by the equation (1), there exists a monotone decreasing sequence ftng of

positive numbers convergent to zero such that

lim
n!y

rðvð0ÞÞ � rðvðtnÞÞ

tn

is positive. For simplicity, we put rðtÞ :¼ rðvðtÞÞ, lðtÞ :¼ l1ðvðtÞÞ. Since r

is locally Lipschitz, we may assume pn :¼ expðrðtnÞvðtnÞÞ is a normal cut

point. If xn and yn denote the maximum and minimum of the set ft > 0;

expðrðvðtÞÞvðtÞÞ ¼ png respectively, gvðxnÞ and gvðynÞ bound a disk domain Dn

together with the subarc p � vj½yn;xn� of N for any su‰ciently large n. Since

CN VDn is a tree for any su‰ciently large n, CN VDn has an endpoint qn :¼

expðrðsnÞvðsnÞÞ, sn A ðyn; xnÞ, which is a focal point of N along any N-segment

through qn. Furthermore, for any su‰ciently large n, rðsnÞ < rðtnÞ. In fact, let

cn : ½0; 1� ! CN denote the minimal arc joining qn ¼ cnð0Þ to pn and S�ðcnðtÞÞ

the sector at cnðtÞ such that

S�ðcnðtÞÞI cnðt; t� dÞ

for a small d > 0. Choose any su‰ciently large n, so that the inner angle at

cnðtÞ of the sector S�ðcnðtÞÞ is less than p=2. Thus, from the first variational

formula, dðN; cnðtÞÞ is monotone increasing. This implies rðsnÞ ¼ dðN; qnÞ <

rðtnÞ ¼ dðN; pnÞ. Therefore, from Lemmas 6 and 7, it follows that

rð0Þ � rðtnÞ

tn
a ðC7C8 þ 1Þ

lð0Þ � lðsnÞ

sn
:ð16Þ

By Lemma 2 and the equation (16), we get

lim
n!y

rð0Þ � rðtnÞ

tn
a 0;

which is a contradiction. Hence

lim inf
t!þ0

rðvðtÞÞ � rðvð0ÞÞ

t
¼ 0

for any unit speed smooth curve vðtÞ on Un with rðvð0ÞÞ ¼ l1ðvð0ÞÞ < y. If wðtÞ

denotes a smooth unit speed curve in Un with l1ðwð0ÞÞ ¼ rðwð0ÞÞ < y, then we

have
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lim inf
t!þ0

r � wðtÞ � r � wð0Þ

t
¼ lim inf

t!þ0

r � wðtÞ � r � wð0Þ

t
¼ 0;

where wðtÞ ¼ wð�tÞ. Since

0 ¼ lim inf
t!þ0

r � wðtÞ � r � wð0Þ

t
¼ � lim sup

t!�0

r � wðtÞ � r � wð0Þ

t
;

we get

lim inf
t!þ0

r � wðtÞ � r � wð0Þ

t
¼ lim sup

t!�0

r � wðtÞ � r � wð0Þ

t
¼ 0:

Thus, by (1) and (2),

lim
t!0

r � wðtÞ � r � wð0Þ

t
¼ 0: r

Proof of Main Theorem. Let wðtÞ be a smooth unit speed curve in

Un. From Theorem 8, r is di¤erentiable at wð0Þ, if l1ðwð0ÞÞ ¼ rðwð0ÞÞ < y.

Suppose that l1ðwð0ÞÞ > rðwð0ÞÞ. Then there exist two sectors Sþ and S� at

expðrðwð0ÞÞwð0ÞÞ such that for su‰ciently small d > 0,

SþI fexpðrðwðtÞÞwðtÞÞ; 0 < t < dg

and

S�I fexpðrðwðtÞÞwðtÞÞ; 0 > t > �dg:

Let 2yþ and 2y� be the inner angles of Sþ and S� at expðrðwð0ÞÞwð0ÞÞ respec-

tively. From Lemma 2.1 and Proposition 2.2 in [8], it follows that

lim
t!þ0

r � wðtÞ � r � wð0Þ

t
¼ �kYðrðwð0ÞÞÞk cot yþð17Þ

and

lim
t!�0

r � wðtÞ � r � wð0Þ

t
¼ kYðrðwð0ÞÞÞk cot y�;ð18Þ

where Y ðtÞ :¼ YNðt;wð0ÞÞ denotes the N-Jacobi field along gwð0ÞðtÞ defined in the

equation (4) by the unit speed curve wðtÞ in Un. If there exist exactly two N-

segments through expðrðwð0ÞÞwð0ÞÞ, then yþ ¼ p� y�. Otherwise yþ < p� y�.

Therefore the proof is complete. r

The following two corollaries are ones to the Main Theorem.
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Corollary 9. Let ~cc : ða; bÞ ! Un be a smooth unit speed curve such that

each cut point expðrð~ccðtÞÞ~ccðtÞÞ admits at most two sectors. If r � ~cc is di¤erentiable

on ða; bÞ, then ðr � ~ccÞ 0 :¼ ðd=dtÞðr � ~ccÞ is continuous on ða; bÞ. Hence, if there

exist at most two N-segments through expðrð~ccðtÞÞ~ccðtÞÞ for each t A ða; bÞ, then the

curve expðrð~ccðtÞÞ~ccðtÞÞ, t A ða; bÞ, is C1.

Proof. If l1ð~ccðtÞÞ > rð~ccðtÞÞ, then from (17) and (18), we get

ðr � ~ccÞ 0ðtÞ ¼ �kY1ðrð~ccðtÞÞÞk cot yðtÞ:ð19Þ

Here Y1ðtÞ :¼ YNðt; ~ccð0ÞÞ and 2yðtÞ denotes the inner angle of a sector at cðtÞ :¼

expðrð~ccðtÞÞ~ccðtÞÞ. Note that cðtÞ is a normal cut point of N for each di¤erentiable

point t of r � ~cc if l1ð~ccðtÞÞ > rð~ccð0ÞÞ. Thus it is clear from (19) that ðr � ~ccÞ 0 is

continuous at t if l1ð~ccðt0ÞÞ > rð~ccðt0ÞÞ. Suppose that l1ð~ccðt0ÞÞ ¼ rð~ccðt0ÞÞ. From

Theorem 8, it follows that

ðr � ~ccÞ 0ðt0Þ ¼ 0:ð20Þ

Let fang be a monotone sequence of points in ða; bÞ convergent to t0 such that

l1ð~ccðanÞÞ > rð~ccðanÞÞ. By Lemma 3 there exists a positive constant C1 such that

jan � t0jaC1yðanÞ:ð21Þ

Here 2yðanÞ denotes the minimum of all the inner angles of the two sectors at

cðanÞ. Since Y1ðrð~ccðt0ÞÞÞ ¼ 0, there exists a positive constant C3 such that

kY1ðrð~ccðanÞÞÞkaC3jrð~ccðanÞÞ � rð~ccðt0ÞÞj:ð22Þ

From the equations (19), (20), (21) and (22), we get limn!yðr � ~ccÞ 0ðanÞ ¼ 0.

Hence

lim
t!t0

ðr � ~ccÞ 0ðtÞ ¼ 0 ¼ ðr � ~ccÞ 0ðt0Þ:

Therefore ðr � ~ccÞ 0 is continuous on ða; bÞ. r

Corollary 10. The function r is di¤erentiable on fv A Un; rðvÞ < yg except

a countable subset.

Proof. From the Main Theorem, if vðt0Þ is a non-di¤erentiable point of

r, where vðtÞ, t A ða; bÞ, denotes a unit speed smooth curve on Un such that

rðvðtÞÞ < y on ða; bÞ, then l1ðvðt0ÞÞ > rðvðt0ÞÞ, and expðrðvðt0ÞÞvðt0ÞÞ admits at

least three sectors or there exists a non-constant curve wðsÞ, s A ða; bÞ, in Un

such that expðrðwðsÞÞwðsÞÞ ¼ expðrðvðt0ÞÞvðt0ÞÞ, for any s A ða; bÞ. The set S of

all such cut points is a countable set (cf. [12]). Furthermore, for each q A S,

AðqÞ :¼ fv A Un; expðrðvÞvÞ ¼ q; rðvÞ < l1ðvÞg is countable. Thus 6
q AS

AðqÞ is

also countable. r
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