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Abstract. In this paper we prove that the maximal operator Mg, the singular
integral operator T, and the maximal singular integral operator 7,5 with rough kernels
are all bounded operators from L?(v) to L?(u) for the weight functions pair (u,v).
Here the kernel function Q satisfies a size condition only; that is, Q € L4(S" 1), ¢ > 1,
but has no smoothness on S"!.

§1. Introduction.

Suppose that S"~! is the unit sphere of R” (n > 2) equipped with normalized
Lebesgue measure do(x’). If Q(x) is a homogeneous function of degree zero on
R", then the maximal operator My, the singular integral operator Tp, and the
maximal singular integral operator T, are defined respectively by

Maf()=sup= |l =1/ ()]s

r>0 r"

Taf () =pa. | DAy

n

and

Tof(x) = sup [T f(x)| = sup (y)dy|.

e>0 e>0

J Qx=y)

|x—y|>e |X - y|n

In 1990, Watson proved that if Qe LY(S"!), ¢ > 1, and Q has average
zero on S"~!, then the operators T and T, are both bounded on the weighted
spaces L”(w) for 1 < p < oo, where the weight function w(x) is in the Muck-
enhoupt weights class (see below for the definition). In 1993, using a method
different from the one in [W], Duoandikoetxea [D] obtained independently the
same weighted results of the operators Tp and T as in . Moreover, the
weighted L? boundedness of the maximal operator Mo was also given in [D].
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In this paper we shall consider the weighted norm inequalities for the
operators Mo, T, and T, with different weight functions. To state our results,
let us recall the definitions of 4, weight class, 4, weights pair, and S, weights
pair for 1 < p < 0.

DerINITION 1. A locally integrable nonnegative function o i1s said to belong
to A, if there is a constant C > 0 such that

S“p<!Q|J ()dx> <|Q|J ”(x)_l/(p_l)dxflgc’

where and below, Q denotes a cube in R" with its sides parallel to the coordinate
axes and the supremun is taken over all cubes.

DErFINITION 2. A locally integrable nonnegative functions pair (u,v) is said
to belong to A, if there is a constant C >0 such that

S“p(|Q|J ”"") (@J “<X)_l/(p_l)d">p_1“'

DEerFINITION 3. A locally integrable nonnegative functions pair (u,v) is said
to belong to S if there is a constant C >0 such that for any cube Qe R”,

J [M(v_l/(f’_l))(Q)]pu(x)dxé CJ o(x) V7Y gy,

0 0

where y,(x) denotes the characteristic function of Q and M is the Hardy-
Littlewood maximal operator.

Now let us state precisely our results as follows. In this paper, we always
denote p'=p/(p—1) for 1 <p < 0.

TaeoREM 1. Suppose that Q(x')e L4(S"'), ¢ > 1, is homogeneous of
degree zero on R". If p,q and the weights pair (u,v) satisfy one of the following
conditions:

(@) 1<q¢' <p<oo, (uv)eS; / ,

by 1<p<q, (077 u'") €Ay, in addition ()7 u(x)? €Ay g,
then Mg is bounded from LP(v) to LP(u); that is, there is a constant C >0
independent of f such that

(1.1) (J [Maf (5)Pu(x) dx)l/p < c(j el dx)l/p.

THEOREM 2. Suppose that Q(x')e L4(S"™ '), q>1, is homogeneous of
degree zero on R" and has average zero on S"~'. If p,q and the weights pair
(u,v) satisfy one of the following conditions:
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(a) 1<q'<p< oo,/ (u, v)/e A;/q,, in addition u(x),v(x)/ € Ap/q,;/
b) l<p<gq, W7,u'7)e Ay in addition o(x)" 7 u(x)' " e Ay gy
then Tgq is bounded operator from L (v) to LP(u); that is, there is a constant C > 0

independent of f such that

(1.2) (J | Tof (@) ux) dx)l/p < c(j FIPo(x) dx)l/”.

THeorReM 3. Under the same conditions as in Theorem 2, the operator T, is
bounded operator from LP(v) to LP(u); that is, there is a constant C > 0 inde-
pendent of f such that

l/p

w3 ([ mrerw) <e([ ywpia)”

To prove the above theorems, we need to use the weighted inequality for
the vector-valued Hardy-Littlewood maximal operator M with a weight func-
tion pair. However, the result itself is very interesting, since it is an extension of
known results obtained by Andersen and John in 1980.

Suppose that f (x) = {fi(x)}", is a sequence of locally integrable functions

on R", M(f)(x) = {Mfi(x)}" and for 1 <r < oo, [ £(x)|;r = (Cyez filx)[)"".
We have the following result.

THEOREM 4. Let 1 <r <oco. If 1 <p< oo, (u,v) €A, and u(x),v(x) € 4,
then there is a constant C, , independent of f such that

0a ([ o) < o[ 17eiwas)

RemaArk 1. Notice that if u = v, then the results of Theorems 1 through 4
are identical with the related conclusions in [W], [D] and [AJ].

The paper is organized as follows. Section 2 contains some elementary
properties of the weight classes 4),, 4,, and S;. The proof of Theorem 1 is
given in Section 3. The proof outlines of Theorems 2 and 3 can be found in
Section 4. Finally, in Section 5 we give the proof of Theorem 4.

§2. Some elementary facts.
Let us begin by giving some properties of the weight classes 4,, 4, and S.

The elementary properties of 4, (1 <p < o0).
(2.1) A4, cA4,, if 1 <pi <py< .
(2.2) w(x)e A, if and only if w(x)'? €Ay.



212 Y. DING and C.-C. LIN

(2.3) If o(x) € Ay, then there is an & >0 such that p—¢&>1 and w(x) e
A,

(2.4) If w(x) € Ay, then there is an ¢ >0 such that w(x)"" € A,.

(2.5) If w(x) € Ay, then there are C >0 and & > 0 such that for any cube
QeR"

|1§|JQ () dx < C<ﬁ JQCO(X) dx)Hg.

See [GR, Chapter IV] for the proofs of (2.1)—(2.5).

The elementary properties of A4 (I <p< )
(2.6) (u,v) € A, if and only if RN
(2.7) S, =4, for 1 <p< oo
(2.8) If (u,v) € 4, then for any 0 <e <1, (u’,v°) € S,.

(2.9) If u(x),v(x)e A, and (u,v) € A}, then there is an &> 0 such that
(ul—i-e,vH—S) EA; and (U(l—p’)(l—i-s)’u(l—p’)(1+s)) EA;,.

(2.10)  If u(x),v(x) € Ay and (u,v) € A, then (u,v) €S, and (W' u'") e
Sy

2.11) If (u,v) € 4, then for any r > p, (u,v) € 4;.

(2.12) If u(x),v(x) € 4, and (u,v) € A, then there is an &¢>0 such that

p—e>1 and (u,v)ed, ..

eA;,.

Proor. The result (2.6) can be deduced from the definition of 47, and
can be found in [GR, p. 433]. On the other hand, (2.8) is just a Corollary in [N,
p. 644]. Now let us prove (2.9). Since u(x) € 4,, by (2.5) there are Ci,e; >0
such that for any Qe R"

(2.13) é J . u(x) dx < (ﬁ JQ u(x) dx)lm.

It follows from v(x) € 4, and (2.2) that o(x)' e Ay Using (2.5) again, there
are Cy,& > 0 such that for any Q € R"

LJ v(x)(l—p’)(l-i-flz) dXSC2<LJ v(x)l_p/ dx>1+ez.
101 19l )o
that 1s,
! ~(1+e2)/(p-1) ! e g )
(2.14) — | v(x) dx < G| —| v(x) dx :
10l o Q1o

Thus, there are C = max{C), C,} and ¢ = min{¢;, &} such that [2.13) and (2.14)
hold at the same time. Hence by (u,v) € 4, we have
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(g1 000 (g e )
el ) e

(2.15) ('™, 0'%) e 45,

that 1is,

From and (2.6), we can get (pU=P)0+e) 4(1=p))(1+2)) € Ay Thus we
proved (2.9). In order to prove (2.10) we take 6 =1/(1 +¢). Then 0 <0 < 1.
By and (2.8) we get (u,0) = (u""9° (1¥9%) € §* . On the other hand, by
and (2.6) we have (o170 4, (1+2)1=20) e 4, As above, if we take
0=1/(1+¢) <1, then (v' 7", u'7)e S* which proves (2.10).

Using Holder’s inequahty, we may easﬂy obtain (2.11).

Now let us give the proof of (2.12). By (2.9) we know that there is
an 7> 0 such that (pU=2)0+7) 4 (1=p)(141)) Ay, Taking e=n(p—1)/(1+n),
then we can easily see that eé>0 and 1 <p—e<p. Hence we have
p'<(p—e¢) and (v(l‘”')“*’?),u(l"")(””))eAE‘[H)/ by (2.11). From (2.6) we
get  (u(1=Pn)I=(p=e)] 4, (1=p")(Ln)I=(p=e)ly g A;_,. However, (1—=p"(1+7)-
[1—(p—¢)] =1 Thus we have (u,v) €4, ,. O

In the proof of theorems in this paper, we need still the following conclusion.

LemMmA 1. Let p,q > 1. If the weights pair (u,v) satisfies one of the fol-
lowing conditions:

(i) for p'>q', (0", u'" )EA;/ ,and v(x)"" u(x)'? S

(i) for p>q' (u,v) €Ay , and u(x),v(x) € Ay,
then u(x),v(x) € 4, and (u,v) € S,.

Proor. We show the case (i) only; the proof of case (ii) is similar. Since
p'/q' <p', we have u(x)l_”,,v(x)l_”, € Ayy < Ap by (2.1). From (2.2) we get
u(x),v(x) € 4,. On the other hand, since (0!, u'="") €ed,,, and p'/q" <p’,
using (2.11) we obtain (v'?',u' ") € 4%,. From this and (2.6) we get (u,v) € 43,
Note that u(x),v(x) € 4, proved above, using (2.10) we obtain (u,v) €S,. [

Finally, let us recall the well known Sawyer’s result about weighted norm
inequality of the Hardy-Littlewood maximal operator M for a weights pair,
which will be used in the proof of our results.

THEOREM A ([Sa, Theorem B]). For 1 < p < oo, M is bounded from L?(v) to
LP(u) if and only if the weights pair (u,v) € S,.
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§3. Proof of Theorem 1.

The case for the condition (a) is simple. In fact by Mgf(x) <
CIM(|f1)(x)]", 1 < p/qg' < o0, and Theorem A, we obtain the conclusion of
for the condition (a) immediately.

We now turn to the proof of Theorem 1 for the condition (b). First let us
introduce some notations. For je Z we denote

K_QJ(X) = Q( ) 21 27+ ( )/|X|
Qx—y)

Tauf (9 =Keyeft9=| S0
and
1/2
3.1) gg(f)(X)<ZTg,jf(x)2> .
JjeZ

It is easy to see that there is a C > 0 such that

(3.2) Mof(x) < C Sup Ty ;(1/1)(x)-

We denote  Qy(x) = [Q(x)| - |@Ql|;/IS""], where [|Q]; = [g, 1 [Q(x")]da(x’).
Then it is easy to check that €, is also homogencous of degree zero on R”",
Qo e L1(S""), and [, , Qo(x")do(x’) = 0. By [3.2], we thus have the following
pointwise inequality

|20 —y)|
< |x—y|<27+1 |x "

(3.3) Mo f(x) < C sup L )l dy

J

=Csup(L D=2 (1)) dy

j J<|x—y|<2/+1 |x — y|

mCly 10 )

|Sn—1| 27 <|x—y|<2it! |X - y|

< Cga, |/ D(x) + CMf (x).

The proof of [Theorem 1 for the case (b) will be completed by a bootstrapping
argument. According to the range of ¢, let us establish several propositions.

PROPOSITION 1. Suppose that Q(x') e L1(S™') is homogeneous of degree
zero on R", and q > max{p,2} and (v'?",u'"") €A, in addition AR AN T =
Aprjqr. Then there is a constant C > 0 independent of f such that ||Mgf||
CllA .o

Pu_
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In order to prove [Proposition 1, by (3.3) it is sufficient to show that, under
the conditions of [Proposition 1|,

(3.4) lga, (1fDIlp,u < ClIA,, .
and
(3:5) IMfl,. < CIfl, e

where go, (1/1)(x) = (X ez Ta,.;(1/)(x)]*)!/* by [30].  Obviously, by
and Theorem A we can obtain immediately. Hence it remains to verify
to finish the proof of [Proposition 1. For any a sequence &= {g;} with
¢ =+1 or —1, we define a linear operator by

Toof(x) =) &(Ka, = f)(x).

jeZ

Thus by using the argument related to Rademacher functions [K, Theorem 4.2],
the proof of is reduced to verify that, under the condition of [Proposition I,
there is a constant C > 0, independent of f and {e}, such that

1/p

co ([ mareraa) <] i )

However, may be obtained from the following and [Cemma 3.

LEMMA 2. Suppose that Q(x') e LY(S™ ') is homogeneous of degree zero on
R" and has average zero on S"'. If ¢’ <p, ¢ > 2 and (u,v) € Ay in addition
u(x),v(x) € Ap/qr, then there is a constant C > 0, independent of f and {¢;}, such

that | Ty.of|l, . < CIf1,..-

Proor. We make a new decomposition of 7, . Choose a radial real
function e C;°(R") satisfying 0 <y <1, supp(y) = {xe R": 1/2 < |x] <2},
and 3, _,¥*(2%x) =1 for any x #0. Define Sy by (Sif)(¢) = W2k f(8),
then for any f e #(R"), 3 .., Stf(x) = f(x). Hence for f e #(R") we have

(3.7 Tuof(x)=) &Ko * )x) =) &Ko+ <Z(Sj2+kf ) (X)>

jeZ jeZ keZ

— Z Z &iSitk (Ko, j* Sipif)(x)

keZ jeZ

= Z T:glfgf('x%

keZ
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where T, f(x) =37 &Si1k(Ka,j * Sjtxf)(x). By Plancherel’s Theorem we
get

2

ITiaf 1B = [ |3 68iee(Kay = S0 d

R"|jcz

< Ol X [ 150a(Kay = Sa N0 d

jeZ

Ko, (&) ()] dé.

<C)

jeZ Lf“ <|¢[ <27k

On the other hand, by [DR, pp. 551-552] we know that there are C > ( and
0 >0 such that for any jeZ, Ko (¢)] < Cmin{27¢’,27¢]"}. Hence for
k >0, we have

2
1TSS < )

oo PP @ dE < 2171
jez S <e <ok

If k<0, the estimate |Kp ;(¢)| < C|2/¢]™’, implies ||T},f]l; < C272CR) 7|3,
Thus there are C,0 > 0, independent of f and {e;}, such that

(3.8) |75 /1l < 2K ], for any ke Z.

Below we prove that, under the conditions of [Lemma 2, there is C > 0,
independent of f and {e}, such that

(3.9) 17 f N < CIf N, for any ke Z.

In fact, by (i) we know that u(x)e d,. Using the weighted
Littlewood-Paley theory [K, Theorem 2.1], there is a C > 0, independent of f and
{¢}, such that

14 1/p
1T o 1. = (J Y Sik(Ka # Spif) ()] u(x) dX>
R"|jcz
12
< Cl{e} - - (Z Sk (Ko, j * Sj+kf)(')2>
jeZ
p,u

1/2 p 1/p
< c(JRn{<Z |Kg,j*&+kf<x)2> }u(x) dx) -
jeZ
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For fixed k, denote hj(x) = Sjixf(x). Then we have
1/q o\
Q(x — )| J i (y)|
Ko ixSiaf(x)] < ————dy —dy
| Q,j j+k ( 2/<|x —y|<2i! ‘X y| 27 <|x—y|<2/+! \x—y!
< C[M ([ ") ()7
Thus

1/p

'/ 04
|75 N, < C jR”KZ[M(W’)(@JW) ] u(x) dx

jeZ

= ClIM YOl

Since (u,v) €A,

, and u(x),v(x) € 4,,, by [Theorem 4 we have

1750 o < CIM U YOl |08, < CHN Ol [0

| ()

By [Lemma 1 we know v(x) € 4,. Using the weighted Littlewood-Paley theory
again, we get

1217
|75 1] 0 < C j {(Zsﬁkf ) ]v(x)dx

jeZ

1/p
<c(] i)
and (3.9) follows.

To complete the proof of Lemma 2, we still need to use Stein-Weiss’s
interpolation theorem with change of measures [SW, Theorem 2.11]. Let us
discuss by dividing into the following three cases.

(i) The case for p > 2.

Since u(x),v(x) € Ay and (u,v) €4, ., by (2.9) and (2.4), there is

a ¢ >0 such that (u'*7,v!%7) €A, and u(x )7 0(x) 7 e 4,
neously time. Choose p; satisfying (p; —p)/(p—2) =a. We then have p; > p,

(u'to v1*) e A5, and u(x)7, o(x) " e Ay /4 by (2.11) and (2.1), respectively.

From the proof of (3.9) we can get
(3.10) 1T S Ny, e < CLllf N, s

P 1/p
v(x) dx

1/p

» hold simulta-
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where C; > 0 independent of any k € Z and f. Now we let 1 =p, /(1 +0o)p. It
is easy to check that 0 < ¢ <1 and 1/p=(1—1)/2+t/p;. Therefore, using the

interpolation theorem with change of measures between (3.8) and (3.10), w
obtain

(3.11) 1T o f Nl < Cr27 M1 0

where C;,0 >0 and y > 0 are independent of any ke Z and f.

(i) The case for p < 2.

Since u(x),v(x) € 4,/, and (u,v) € A, by (2.9) and (2.4), there is an ¢ > 0
such that (u'*%,0'*) e 47, and u(x )" v(x)""* € 4, hold simultaneously. By
(2.12) and (2.3), we can choose an / satisfying ¢’ < / < p such that (u'*¢,v!%%) €
45, and u(x) T u(x) e Ay hold at the same time. By the choice of ¢ and
/, we may obtain ¢ and p, satisfying 0 <o <¢ and ¢’ </ < po < p such that

= (p—p0)/Q2=p), (@70 ) e Ay, and w(x)7 ()" € Ay g

In fact, if e=(p—7¢)/(2—p), then let 6 =¢ and py=/. Thus ¢ and pg
are just ones we need. If e < (p—7¢)/(2—p), then take o =¢ and / < py <p
such that ¢ = (p —po)/(2—p). Thus, we still have (u'*? ') €ed, . and
u(x)7 v(x) " e A, e by (2.11) and (2.1). Ife> (p—7)/(2 - p), we may take
0<o<e¢and pg=7 such that = (p—po)/(2—p). Thus, by Holder’s inequal-
ity, it is easy to see that (u'*? v!19) ed, . and u(x)"7 v(x) e 4

As the proof of (3.9), we have

(3.12) I oS Nppurir < Callf g, o1

where C; >0 is independent of any keZ and f. Let t=po/(l+a)p,
then 0 <¢<1land 1/p=(1—1)/2+4t/py. Using the interpolation theorem with
change of measures between (3.8) and [3.12), we obtain

(313) ” _Qf“p u =< C 2- or |k‘||f||p,va

where C,,0 >0 and y’ > 0 are independent of any ke Z and f.
(iii) The case for p = 2.
Since u(x),v(x) € A5/, and (u,v) €45, by (2.9) and (2.4) there is a 0 >0

such that (u'*7,0'*%) € 45, and u(x )" "7, 0(x)""" € Ay, hold simultaneously. It
follows from the process of proving (3.9), we can get

(3.14) 1T o I urie < C3llf g g1

Let t=1/(1+0). Using the interpolation theorem with change of measures
between (3.8) and (3.14), we obtain

(3.15) 1T o < €527 £l

Po/q’

where C3,0 >0 and »” > 0 are independent of any k€ Z and f.
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We set C =max{Cj,Cy,Cs3}, n=min{y,y’,9"}. Then, for p>¢’ and
q>2,

(3.16) 1T o N < C27OMN 111,
by [(3.11), {3.13) and [3.15). Thus Lemma 2 follows from (3.7) and (3.16). []

LEMMA 3. Suppose that Q(x') e L4(S" 1) is homogeneous of degree zero on
" and has average zero on S""'. If ¢ > max{p,2} and (v'"" u'""") €Ay, in
addition v(x)""" u(x)" e Ay g, then there is a constant C > 0, independent of f

and {g;}, such that |T. of1l,, < CIIf1], -

Proor. Clearly we have |[T.ofl,, = sup,| Jg: Te.af (x)g(x)dx|, where
the supremum is taken over all g(x) with ||g[, v <1. On the other hand,
let (7, )" be the adjoint operator of T, o, which means (7, q)" = T, o+ with
Q*(x) = Q(—x). We thus have

J n T, of (x)g(x)dx| =

J SN Te0) 9(x) dx| < S0 1(Te) gl 0

Obviously Q* has also the same properties as Q. Since (v! 7', u'?") e Ay, and
o(x)" 7 u(x)' 7 € Ay /g, with the choice of ¢ ylelds
1 Te2f . < 1110 Su1f>||( Te0) gllp w1 < ClUS o O

It follows from that, under the assumptions of [Proposition 1, [(3.6)
holds and hence follows. We now are going to extend the range of
g to the case of ¢ > max{p,4/3}.

PROPOSITION 2. Suppose that Q(x')e L1(S""') is homogeneous of
degree zero on R", and q > max{p,4/3} and (0" u'~"?") €A, in addition
o) u(x)' € Ay g Then there is a constant C > 0 independent of f such
that |Mafll, ., < ClIfll,.

Note that if we divide the region of ¢ into ¢ > 2 and max{p,4/3} < ¢ <2,
then the case ¢ > 2 is covered by [Proposition 1. Thus, to show
2 it suffices to consider the case max{p,4/3} < ¢ <2. Following the proof of
IProposition I, we see that the key of proving |[Proposition 2| for this case is to
establish the following lemma.

LemMa 4. Suppose that Q(x') eLq(S”‘l) is homogeneous of degree zero

on R" and has average zero on S" 1. For q' <p and 4/3 < q <2, if (u,v) € A

and u(x),v(x) € Ay, then there is a constant C > 0, independent of f and {g;},
such that || To of ||, < Clf 1.

However, the proof of depends heavily on the following lemma.
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LEMMA 5. Under the conditions of Lemma 4, we have | T} f ||, , < CIIf|,..
where the constant C >0 is independent of f,k, and {¢;}.

Proor. Let us first consider the case 4/3 < ¢ <2. In this case we have
2<q' <p. Denote Ko j(x)=|Kg, j(x)|2*q. Then Holder’s inequality implies

3170 Kayso(P < (| 1Kasr-nitar) (| 1Kastr- 0o i)

< C2UIR g 5+ (1g1%) (%)

and
_ 2-q
(319 Koyelie < | (ﬁﬁiiﬂ) h(y)| dy
27 < |x—y|<27t] |X _y|
<cam | e ) dy
o=y <27

< C277 D M oy h(x).

By we know that u(x),v(x) € 4, and (u,v) € S;. Using the weighted
Littlewood-Paley theory and (3.17), we get

p 2/p

u(x) dx)

2
7&ﬂw(j
Rl’l

1/2]|2
< Cl{&}I7 - (Z |4k (Ka,j * Sj+kf)(')|2>

jeZ

Y &Sik(Ka, * Sjinf) (%)
jeZ

p,u
1/2]|?

<C (Z [(Kq,j * S/+kf)()2>

jeZ P

12|

<C (Z 2R g % Sj+kf2(')>

jeZ piu

»/2 2/p
= J 22"'(”_"‘1)1?9,/' #|Sa S 1P(0)| ulx) dx
" jeZ

Y

= C sup
h

(Z 2/ R Sj+kf2(x)>h(x) dx
Jr

jeZ




L? boundedness of some rough operators 221

where the supremum is taken over all A(x) with |[A[|, 5 27 < 1. By
we get

J ) (Z 2j(n—nq)]?g7j * Sj+kf2(x)>h(x) I

jeZ

J S 20|, £ () (Ray + ) (x) d

jeZ

<] SIS () Mo b

jeZ

»/2 2/p
< c(j ,,<Z Sf+kf<x>2> o() dx)
R jeZ

" 1/(p/2)!
X (J (M gaoh(x)] P/ p(x)! ~ (/2 dx) .

We claim that the following weighted norm inequality holds:
(3.19) | M p2-sh

(o2 -t < ClNayr o

Since 4/3 < g <2, if denote r:q/(2—q) (thus r :q’/Z), it is easy to see
that Q7 e L"(S" "), r > max{(p/2)’,2}, and (p/2)/r' =p/q’. It follows from
(u,v) € A, and u(x),v(x) € 4,/ that

_ M1—(p/2 - '11-(p/2 *
(PRI o R O € Al

1-(p/2)'11=(p/2 B 1=
[H(X) (p/ )] (p/2) EA(p/Z)/r’ and [U(X)l (p/2) ]1 (p/2) EA(p/z)/r/'

Pluging r,(p/2)" and weight pair (u'~(»/2 p!=(2/2") in [Proposition 1, we get
3.19).

By v(x) € 4,/ = A, and using the weighted Littlewood-Paley theory again
and (3.19), we get

|| .Qf”p u < C Sup ||h|| p/2 ul=(p12)’ ( (Z |S]+kf ) U(X) dx)

jeZ

1/2
<c|(Siswror) | <.

jeZ
pv

Thus we prove for the case 4/3 < ¢ < 2.
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We now consider the case of ¢ =2. In this case 2=¢q' <p, (u,v) €4, /2
and u(x),v(x) € 4y5. Hence by (2.12) and (2.3) we can choose a o >0 such
that

i) 2-0) <p

(i) (u,v)€e A,

(iii)) 4/3<(2-0)<2;

(3 20) /(270_)/ and u(.X), U(X) € Ap/(Z*O'),;

(iv) QeL*(§" ) cL*>s" .

The above (3.20) shows that, for (2 —0),p and the weights pair (u,v), we
may apply the conclusion proved in the case 4/3 < ¢ <2. We thus still have
||T:P,l,€!2f||p,u < C|fl,, for ¢=2. This completes the proof of [Lemma 3  []

As in the proof of [Lemma 2, using Stein-Weiss’s interpolation theorem with
change measures between (3.8) and the conclusion of [Lemma 3, we can prove
[Lemma 4. Then by and using the method of proving [Lemma 3, we
may obtain the conclusion of [Proposition 2. We omit the details here.

By a similarly inductive method, it is not difficult to see that if the conclusion
of [Proposition 2 holds for the ¢ > max{p,2™!/(2™=! — 1)}, m > 2, then it also
holds for ¢ > max{p,2"/(2" —1)}. More precisely, we have the following
general conclusion.

PROPOSITION 3. Suppose that Q(x')e L1(S""') is homogeneous of
degree zero on R", and g > max{p,2"/2™ —1)}, me N, m>2. Moreover,
(Ul_plaul_p,)EA;,/q/ and v(x)lfpl,u(x)lfp/eAp//q/. Then there is a constant
C >0, independent of f, such that ||[Mof], , < C|fl,.,-

Finally, let us finish the proof of for the condition (b). If
p > 2, then follows from [Proposition 1. If p <2, then there exists
meN, m>2, such that 2"/(2" — 1) <p<2"!/2m 1 —-1). Thus ¢>p is
equivalent to ¢ > max{p,2” /(2™ —1)}. In this case [Proposition 3 is applied to
get the conclusion of for the condition (b) when ¢ > p.

§4. Outline of proof for Theorems 2 and 3.

The outline of proving [Theorem 2. In fact the process of proving
for the condition (b) implies the proof of [Theorem 2 Let us first consider
Theorem 2 for the case (a). Using the notations and decomposition introduced
in the proof of for the condition (b), we have the following equality.
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(4.1) Tof(x) =) Koj* (Z +kf)(x)>

jeZ keZ
Y SpilKa g+ S0 = Y ThS ().
keZ jeZ keZ

By Plancherel’s theorem, it is easy to see that the conclusion of (3.8) still holds
if we replace T EI’CQ by Th. That is, there are C,0 > 0, independent of k € Z and
f, such that

(4.2) 175/ 1> < €27 M1 £1l,.

If we can prove that, under the condition (a) of Theorem 2, there is a C > 0 such
that for any ke Z and f,

(4.3) 1T i < ClLf Mo

then, by using Stein-Weiss’s interpolation theorem with change of measures
between and [4.3), we may obtain the conclusion of Theorem 2 for the case
a) by [4.1]. However, from the process of proving [Lemma 2, we know that if
q > 2, then holds. On the other hand, when ¢ < 2 (thus p > ¢’ > 2), using
the notations and method in [Cemma 3, we have

J ) (Z 2](n—nq)K'Q7j % Sj+kf2(x)> h(x) dx

jeZ

p/2 2p
=¢ (J Zsj+kf<x>2> v(x)dx)

jeZ

(44) T8/l <C sup

: o AV
X sup( [M -y h(x))' P/ p(x) '~ P/ dx) ,
h JR"

where the supremum is taken over all A(x) with [|A[[, 5 -2 < 1.

Since ¢ <2, we have r=¢q/(2—¢q) > (p/2)', (p/2)/r =p/q’, and Q* €
L"(S"™1). As done in the proof of [Lemma 3, it is easy to check that under the
condition (a) of Theorem 2, r, (p/2)" and weight pair (u!=(2/2)" p1=(2/2)") satisfy
the condition (b) of _ Hence [3.19) holds. Thus, for ¢ < 2,
follows from (4.4), ), and the weighted thtlewood Paley theory [K, Theorem
2.1].

The treatment for the case ¢ = 2 is the same as one in the proof of
5. We omit the details here. We thus prove [Theorem 2 for the case (a).
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By applying the duality property of T and the method of proving
(to remove the restriction ¢ > 2), the conclusion of under the con-
dition (b) easily follows from the conclusion of for the case (a).

The outline of proving [Theorem 3. We follow the idea of proving Theorem
E in [DR]. For any ¢ > 0, there is k € Z such that 2% <& < 2K, Tt is easy to
see that

TS (x)] < CMof (x) + T2 f(x)].

Now we choose a Schwartz function satisfying 0 < ¢(x) <1, supp(4)
{xeR":|x| <2}, and §(x) =1 when |x| <1. We also write ¢, (x) = $(2%x)
and denote @, (¢) = ¢,(¢). By [DR, p. 548] we know that

0

(6— D) Y Tif

=

IT3'f(x)] < CM(Tqf) + CMf +

)

where T;f(x) = Ko j*f(x) is defined in §3 and J is the Dirac function. Thus,

(4.5)

Tof(x) < C(Maf(x) + M(Tof)(x) + Mf(x)) + zug

(0 — Dy) * iKQ,j * f(x)

j=k

After we use and apply the weighted boundedness with weight pair

(u,v) for Mg (Theorem 1), M (Theorem A), and T, (Theorem 2) to (4.5), the
proof of is reduced to verify

(4.6) sup|(d — @) * ZKQJ  f < C|If I,
Obviously
(4.7) sup|(0 — D) * ZK_QJ x f(x)| < Z sup |(0 — Dx) * Ko jrk * f(x)].

By [DR, pp. 551-552] there are C,0 > 0 such that, for any j ke Z,
Ko j#(€)] < Cmin{[2/t¢)", 1274¢ ).

Applying Plancherel’s theorem to the j-th term of the summation, we may get
an L’>-norm of the order 27% with o > 0. On the other hand we have

sup (0 = Pi) % Ko jyi x f(X)] < C(Maf(x) + M(Maf)(x)).



L? boundedness of some rough operators 225

By Mheorem 1, Lemma 1, and the weighted L” boundedness with one weigh
function in A,, we know that under the conditions of

Sllp(& — ¢k) * KQ,j—O—k *f

sup < C(IMafll, .+ IMMaf)ll,.) < Clf .

pu

Using Stein-Weiss’s interpolation theorem with change of measures, we obtain

from (4.7) and hence finish the proof of [Theorem 3.

§5. Proof of Theorem 4.

We shall follow the basic idea in [AJ]. In the proof of Theorem 4, we need
to use two weighted vector-valued interpolation theorems, which are analogues of
the Marcinkiewicz interpolation theorem.

Let S denote the linear space of sequences f = { fi}{ of the form:  fi(x) is
a simple function on R" and fi(x) =0 for all sufficiently large k. Then S is
dense in LZ(I"), 1 <p,r < oo.

LEMMA 6. Let u(x),v(x) >0 be locally integrable on R" and 1 <r < oo,
1 <pi<owo (i=0,1). Suppose that T is a sublinear operator defined on S sat-

isfying
u({xeR": | T(f)(x)|, >2}) < Ci P J IF o) Zv(x) dx  for i=0,1 and feS,
o

where and below, u(A) = [, u(x)dx for a set A. Then T can be extended to a
bounded operator from LP(I")(R") to LL(I")(R"); that is,

Al <l 1Fikia)
(, ) =<,

where 1/p=(1—=0)/po+0/p and 0 < 0 < 1.

LemMa 7. Let u(x),v(x) >0 be locally integrable on R" and 1<
ri,pi< oo (i=0,1). Suppose that the sublinear operator T satisfies

NT ) u(x) dx . <G| IF@Io) dx /pi
( )]

for i=0,1 andfeS.
Then T can be extended to a bounded operator from LP(I")(R") to LE(I")(R");

that is,
(] 1rdeigue dx)l/p <ciecl(] i

where (1/p,1/r) = (1 —=0)(1/po,1/ro) +60(1/p1,1/r1) and 0 <6 < 1.

1/p
Po(x) dx) :
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Using the same methods as in [BCP], [BP] and [CZ], we may obtain [Lemmal
6 and (see also [AJ, p. 21]). Now let us turn to the proof of
4. We divide the proof of into three steps.

Case 1: p=r. Note that under the conditions of Theorem 4, we have
(u,v) € S; by (2.10). Applying Theorem A we get

s ([ mpawa) <] 1wiwa)

Case 2: 1 <p<r. In this case we first prove that, under the conditions of
Mheorem 4, there is a C > 0 such that, for any 4 >0,

(5:2) u({xeR": M)l > 2}) < Ci" JRH 1) o) d.

Using the Calderon-Zygmund decomposition (see [St, p. 17, Theorem 4|), for

I f (x)||;» and 42 > 0, we get a sequence of non-overlapping cubes {Q;} such that
= o0
(5.3) |f(x)]l;» <4, for almost everywhere x¢ E = | ) 0},
=1
1 -
(5.4) /1<—J |l f(x)]] dx <2"4, j=1,2,3,....
‘QJ| 0;

Since (u,v) € 45, by and Holder’s inequality, we have
i p
u(Q;) = J u(x)dx < A? —J £ (x)|;- dx J u(x) dx
0; [ 90; 0;

p—1
—p _)x Po(x) dx L Ux_l/(p_l) X L HAX) ax
< (JQj 1/ )Hl" (x)d > (QJ'lJQf (x) d ) (QJ'JQ/ ) )

<t 17w

Po(x) dx.

The cubes Q; are non-overlapping, so we get

Po(x) dx.

(5:5) oE) =3 u(0;) < Ci7 | I

Denote f(x) =f'(x)+/"(x), where f'(x)={f/(x)};2, and f/(x)=
Je(X)x(rm gy (X). By Minkowski’s inequality we have

(5.6) M) < UMY+ M)
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Since (u,v) € 4, and u(x),v(x) € 4,, by (2.1) and (2.11) we have (u,v)€ 4]
and u(x),v(x) € A,. Thus holds if we replace f by f', and Chebyshev’s
inequality yields

(5.7) u({xeR": [|M(f) ()l > 2}) < Ci” Ln 1 (%)

By (5.3) we have || //(x)ll < 27|/ (x)

;0(x) dx.

7, which combined with implies

(5.8) u({x e R": [|M(f)X)ll, > 2}) < Ci” JRn 1FColfro(x) dx

Hence, by [5.6) and [5.8), the proof of is reduced to the verification of the
following inequality.

(5.9) u({x e R": | M(f")(x)

o> 1)<t | e ds

To prove (5.9), as done in [FS, p. 109] we let f: (£}, where
fk(x):{ (1/19)1) jQ [fe(y)| dy, forxe.Qj,j:1,2,37._.7
0, otherwise.

Since u(x) € A, there is a C >0 such that, for any Q0 = R", u(20) < Cu(Q)
(see [GR, p. 396, Lemma 2.2]). If denote Q; =2nQ; and E = U]. Q;, then by

we get
(5.10)  u(E) < Yu(Q) < CYu(Q) < Ch | 7ot d

On the other hand, for xe Q;, j=1,2,..., Minkowski’s inequality and

yield
2 1 "\ 1 >
. , = _ d -
(5.11)  [lf ), (; (Q,-JQJ £ (¥)] y) ) < |Q,|JQ, 1/ (»)
Obviously || ]? (x)
A, = A,, we have

dy < 2"

=0 for x¢E. Using for the case u(x)=rov(x)e

(5.12) u({xeR": [M(f)(x)

> A}

<77 | MA@ ) ds
< €2 [ 1wl ds

< Cu(E) < cwj 17 () [20(x) .
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By [FS, p. 110] we know that M(f")(x) < CM(f,)(x) for x ¢ E, where C is
independent of f;. We thus get from (5.10) and {5.12), and hence prove

(5.2).

Now let us complete the proof of for case 2. Since 1 <p <,
(u,v) € A, and u(x),v(x) € 4,, by (2.3) and (2.12) we may choose an ¢ > 0 sat-
isfying 1 <p—¢e<p and
(5.13) (w,v)ed, , and u(x),v(x) € Ap—.

We write po = p — ¢ and take p; such that p < p; <r. Then by (2.1) and (2.11)
we have

(5.14) (u,v) € 4, and u(x),v(x) € 4p,.

By (5.13) and (5.14) we know that still holds if we replaced p by po and
p1, respectively. Hence we apply Lemma @ to get the conclusion of [Theorem 4
for case 2.

Case 3: 1 <r<p< oo. Before giving the proof of Theorem 4, let us recall the
following well known Fefferman-Stein’s result.

Lemma 8 ([FS, Lemma 1]). Let g(x) and ¢(x) be two real-valued functions
on R". If' 1 < q < o, then there is a constant C. ,, independent of g and ¢, such
that

[ g 16015 < €, [ 017 m1900)

Now let us return to the proof of MTheorem 4 for case 3. Since (u,v) € 43
and u(x),v(x) € 4y, by (2.12) and (2.3) we may take a ry arbitrarily close to 1
satisfying 1 < ry <r < p/ro < p such that

(5.15) (u,0) € 4,,, and u(x),v(x) € Ay,
Denote po =p/ro. By (5.15), (2.10), and Theorem A, we get

s19 ([ mpemaa)” s o] 1fwimea)

On the other hand, by ry <r < po, there is a 0 satisfying 0 <60 <1 such
that 1/r=(1—-0)/po+ 6/ro. For this 0§, we may take a p; such that 1/p =
(1 —=0)/po+0/p1. Since ry > 1 closed enough to 1, we have p; > p. It follows
from (5.15), (2.11), and (2.1) that (u,v) e 4], and u(x),v(x) € 4y, /..
Set ¢ =p1/ro. Then
)q/pl

1/p1
Pou(x) dx) = | sup
¢

SUNINIGE B gxu(x) dv

[MLGE
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where the supremum is taken over all ¢(x) with ||¢[|,,, < 1. Since (u,v) € A4
and u(x),v(x) € 4,5, by (2.2) and (2.6) we have '

(5.18) W) el and u(x)"7,o(x)' ! €4,

Thus, by (5.18) and (2.10) we have (v'~7,u'"") e S,- Using Theorem A and
noting the choice of ¢, we get

(5.19) <J n[M(¢u)(x)]qlv(x)l_q/ dx) gc(JRn () u(x)| T u(x)' "7 dx)l/qlsc.

Applying and (5.19), we have

5200 || 1MW Hut)

<[ 1T M0/l x) d
< c(h | @)lIF e d )Uq<Ln[M((ﬁu)(x)/v(x)]q/v(x) dx>w
< (] Wt )dx)l/q.

By (5.17) and (5.20), we get

s ([ MG fzu<x>dx>l/plsc(j FIE <>dx)l/pl.

If we apply to (5.16) and (5.21), then the conclusion of for
case 3 follows.
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