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Abstract. In this paper we prove that the maximal operator MW, the singular

integral operator TW, and the maximal singular integral operator T �
W
with rough kernels

are all bounded operators from LpðvÞ to LpðuÞ for the weight functions pair ðu; vÞ.
Here the kernel function W satisfies a size condition only; that is, W A LqðS n�1Þ, q > 1,

but has no smoothness on S n�1.

§1. Introduction.

Suppose that S n�1 is the unit sphere of Rn ðnb 2Þ equipped with normalized

Lebesgue measure dsðx 0Þ. If WðxÞ is a homogeneous function of degree zero on

R
n, then the maximal operator MW, the singular integral operator TW, and the

maximal singular integral operator T �
W

are defined respectively by

MW f ðxÞ ¼ sup
r>0

1

rn

ð

jx�yj<r

jWðx� yÞj j f ðyÞj dy;

TW f ðxÞ ¼ p:v:

ð

R
n

Wðx� yÞ

jx� yjn
f ðyÞ dy;

and

T �
W
f ðxÞ ¼ sup

e>0

jT e

W
f ðxÞj ¼ sup

e>0

ð

jx�yj>e

Wðx� yÞ

jx� yjn
f ðyÞ dy

�

�

�

�

�

�

�

�

�

�

:

In 1990, Watson [W] proved that if W A LqðS n�1Þ, q > 1, and W has average

zero on S n�1, then the operators TW and T �
W

are both bounded on the weighted

spaces LpðoÞ for 1 < p < y, where the weight function oðxÞ is in the Muck-

enhoupt weights class (see below for the definition). In 1993, using a method

di¤erent from the one in [W], Duoandikoetxea [D] obtained independently the

same weighted results of the operators TW and T �
W

as in [W]. Moreover, the

weighted Lp boundedness of the maximal operator MW was also given in [D].
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In this paper we shall consider the weighted norm inequalities for the

operators MW, TW, and T �
W with di¤erent weight functions. To state our results,

let us recall the definitions of Ap weight class, A�
p weights pair, and S �

p weights

pair for 1 < p < y.

Definition 1. A locally integrable nonnegative function o is said to belong

to Ap if there is a constant C > 0 such that

sup
Q

1

jQj

ð

Q

oðxÞ dx

� �

1

jQj

ð

Q

oðxÞ�1=ð p�1Þ
dx

� �p�1

aC;

where and below, Q denotes a cube in R
n with its sides parallel to the coordinate

axes and the supremun is taken over all cubes.

Definition 2. A locally integrable nonnegative functions pair ðu; vÞ is said

to belong to A�
p if there is a constant C > 0 such that

sup
Q

1

jQj

ð

Q

uðxÞ dx

� �

1

jQj

ð

Q

vðxÞ�1=ð p�1Þ
dx

� �p�1

aC:

Definition 3. A locally integrable nonnegative functions pair ðu; vÞ is said

to belong to S �
p if there is a constant C > 0 such that for any cube Q A R

n,

ð

Q

½Mðv�1=ð p�1ÞwQÞ�
p
uðxÞ dxaC

ð

Q

vðxÞ�1=ð p�1Þ
dx;

where wQðxÞ denotes the characteristic function of Q and M is the Hardy-

Littlewood maximal operator.

Now let us state precisely our results as follows. In this paper, we always

denote p 0 ¼ p=ðp� 1Þ for 1 < p < y.

Theorem 1. Suppose that Wðx 0Þ A LqðS n�1Þ, q > 1, is homogeneous of

degree zero on R
n. If p; q and the weights pair ðu; vÞ satisfy one of the following

conditions:

(a) 1a q 0 < p < y, ðu; vÞ A S �
p=q 0 ;

(b) 1 < p < q, ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 , in addition vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 ,

then MW is bounded from LpðvÞ to LpðuÞ; that is, there is a constant C > 0

independent of f such that

ð

R
n

½MW f ðxÞ�puðxÞ dx

� �1=p

aC

ð

R
n

j f ðxÞjpvðxÞ dx

� �1=p

:ð1:1Þ

Theorem 2. Suppose that Wðx 0Þ A LqðS n�1Þ, q > 1, is homogeneous of

degree zero on R
n and has average zero on S n�1. If p; q and the weights pair

ðu; vÞ satisfy one of the following conditions:

Y. Ding and C.-C. Lin210



(a) 1a q 0 < p < y, ðu; vÞ A A�
p=q 0 , in addition uðxÞ; vðxÞ A Ap=q 0 ;

(b) 1 < p < q, ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 , in addition vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 ,

then TW is bounded operator from LpðvÞ to LpðuÞ; that is, there is a constant C > 0

independent of f such that

ð

R
n

jTW f ðxÞjpuðxÞ dx

� �1=p

aC

ð

R
n

j f ðxÞjpvðxÞ dx

� �1=p

:ð1:2Þ

Theorem 3. Under the same conditions as in Theorem 2, the operator T �
W
is

bounded operator from LpðvÞ to LpðuÞ; that is, there is a constant C > 0 inde-

pendent of f such that

ð

R
n

½T �
W
f ðxÞ�puðxÞ dx

� �1=p

aC

ð

R
n

j f ðxÞjpvðxÞ dx

� �1=p

:ð1:3Þ

To prove the above theorems, we need to use the weighted inequality for

the vector-valued Hardy-Littlewood maximal operator M with a weight func-

tion pair. However, the result itself is very interesting, since it is an extension of

known results obtained by Andersen and John [AJ] in 1980.

Suppose that ~ff ðxÞ ¼ f fkðxÞg
y

1 , is a sequence of locally integrable functions

on R
n, Mð~ff ÞðxÞ ¼ fMfkðxÞg

y

1 and for 1 < r < y, k~ff ðxÞkl r ¼ ð
P

k AZ j fkðxÞj
rÞ1=r.

We have the following result.

Theorem 4. Let 1 < r < y. If 1 < p < y, ðu; vÞ A A�
p and uðxÞ; vðxÞ A Ap,

then there is a constant Cr; p independent of ~ff such that

ð

R
n

kMð~ff ÞðxÞkp
l ruðxÞ dx

� �1=p

aCr; p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx

� �1=p

:ð1:4Þ

Remark 1. Notice that if u ¼ v, then the results of Theorems 1 through 4

are identical with the related conclusions in [W], [D] and [AJ].

The paper is organized as follows. Section 2 contains some elementary

properties of the weight classes Ap, A�
p, and S �

p . The proof of Theorem 1 is

given in Section 3. The proof outlines of Theorems 2 and 3 can be found in

Section 4. Finally, in Section 5 we give the proof of Theorem 4.

§2. Some elementary facts.

Let us begin by giving some properties of the weight classes Ap, A
�
p, and S �

p .

The elementary properties of Ap ð1 < p < yÞ.

(2.1) Ap1 HAp2 if 1 < p1a p2 < y.

(2.2) oðxÞ A Ap if and only if oðxÞ1�p 0

A Ap 0 .
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(2.3) If oðxÞ A Ap, then there is an e > 0 such that p� e > 1 and oðxÞ A

Ap�e.

(2.4) If oðxÞ A Ap, then there is an e > 0 such that oðxÞ1þe

A Ap.

(2.5) If oðxÞ A Ap, then there are C > 0 and e > 0 such that for any cube

Q A R
n

1

jQj

ð

Q

oðxÞ1þe

dxaC
1

jQj

ð

Q

oðxÞ dx

� �1þe

:

See [GR, Chapter IV] for the proofs of (2.1)–(2.5).

The elementary properties of A�
p ð1 < p < yÞ.

(2.6) ðu; vÞ A A�
p if and only if ðv1�p 0

; u1�p 0
Þ A A�

p 0 .

(2.7) S �
p HA�

p for 1 < p < y.

(2.8) If ðu; vÞ A A�
p, then for any 0 < e < 1, ðue; veÞ A S �

p .

(2.9) If uðxÞ; vðxÞ A Ap and ðu; vÞ A A�
p, then there is an e > 0 such that

ðu1þe; v1þeÞ A A�
p and ðvð1�p 0Þð1þeÞ; uð1�p 0Þð1þeÞÞ A A�

p 0 .

(2.10) If uðxÞ; vðxÞ A Ap and ðu; vÞ A A�
p, then ðu; vÞ A S �

p and ðv1�p 0
; u1�p 0

Þ A

S �
p 0 .

(2.11) If ðu; vÞ A A�
p, then for any r > p, ðu; vÞ A A�

r .

(2.12) If uðxÞ; vðxÞ A Ap and ðu; vÞ A A�
p, then there is an e > 0 such that

p� e > 1 and ðu; vÞ A A�
p�e

.

Proof. The result (2.6) can be deduced from the definition of A�
p, and (2.7)

can be found in [GR, p. 433]. On the other hand, (2.8) is just a Corollary in [N,

p. 644]. Now let us prove (2.9). Since uðxÞ A Ap, by (2.5) there are C1; e1 > 0

such that for any Q A R
n

1

jQj

ð

Q

uðxÞ1þe1 dxaC1
1

jQj

ð

Q

uðxÞ dx

� �1þe1

:ð2:13Þ

It follows from vðxÞ A Ap and (2.2) that vðxÞ1�p 0

A Ap 0 . Using (2.5) again, there

are C2; e2 > 0 such that for any Q A R
n

1

jQj

ð

Q

vðxÞð1�p 0Þð1þe2Þ dxaC2
1

jQj

ð

Q

vðxÞ1�p 0

dx

� �1þe2

;

that is,

1

jQj

ð

Q

vðxÞ�ð1þe2Þ=ð p�1Þ
dxaC2

1

jQj

ð

Q

vðxÞ�1=ð p�1Þ
dx

� �1þe2

:ð2:14Þ

Thus, there are C ¼ maxfC1;C2g and e ¼ minfe1; e2g such that (2.13) and (2.14)

hold at the same time. Hence by ðu; vÞ A A�
p we have
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sup
Q

1

jQj

ð

Q

uðxÞ1þe
dx

� �

1

jQj

ð

Q

vðxÞ�ð1þeÞ=ð p�1Þ
dx

� �p�1

aC sup
Q

1

jQj

ð

Q

uðxÞ dx

� �

1

jQj

ð

Q

vðxÞ�1=ð p�1Þ
dx

� �p�1
 !1þe

< y;

that is,

ðu1þe; v1þeÞ A A�
p:ð2:15Þ

From (2.15) and (2.6), we can get ðvð1�p 0Þð1þeÞ; uð1�p 0Þð1þeÞÞ A A�
p 0 . Thus we

proved (2.9). In order to prove (2.10) we take d ¼ 1=ð1þ eÞ. Then 0 < d < 1.

By (2.15) and (2.8) we get ðu; vÞ ¼ ðuð1þeÞd; vð1þeÞdÞ A S �
p . On the other hand, by

(2.15) and (2.6) we have ðvð1þeÞð1�p 0Þ; uð1þeÞð1�p 0ÞÞ A A�
p 0 . As above, if we take

d ¼ 1=ð1þ eÞ < 1, then ðv1�p 0
; u1�p 0

Þ A S �
p 0 which proves (2.10).

Using Hölder’s inequality, we may easily obtain (2.11).

Now let us give the proof of (2.12). By (2.9) we know that there is

an h > 0 such that ðvð1�p 0Þð1þhÞ; uð1�p 0Þð1þhÞÞ A A�
p 0 . Taking e ¼ hðp� 1Þ=ð1þ hÞ,

then we can easily see that e > 0 and 1 < p� e < p. Hence we have

p 0 < ðp� eÞ 0 and ðvð1�p 0Þð1þhÞ; uð1�p 0Þð1þhÞÞ A A�
ð p�eÞ 0

by (2.11). From (2.6) we

get ðuð1�p 0Þð1þhÞ½1�ð p�eÞ�; vð1�p 0Þð1þhÞ½1�ð p�eÞ�Þ A A�
p�e. However, ð1� p 0Þð1þ hÞ �

½1� ðp� eÞ� ¼ 1. Thus we have ðu; vÞ A A�
p�e. r

In the proof of theorems in this paper, we need still the following conclusion.

Lemma 1. Let p; q > 1. If the weights pair ðu; vÞ satisfies one of the fol-

lowing conditions:

(i) for p 0 > q 0, ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 and vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 ;

(ii) for p > q 0 ðu; vÞ A A�
p=q 0 and uðxÞ; vðxÞ A Ap=q 0 ,

then uðxÞ; vðxÞ A Ap and ðu; vÞ A S �
p .

Proof. We show the case (i) only; the proof of case (ii) is similar. Since

p 0=q 0 < p 0, we have uðxÞ1�p 0

; vðxÞ1�p 0

A Ap 0=q 0 HAp 0 by (2.1). From (2.2) we get

uðxÞ; vðxÞ A Ap. On the other hand, since ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 and p 0=q 0 < p 0,

using (2.11) we obtain ðv1�p 0
; u1�p 0

Þ A A�
p 0 . From this and (2.6) we get ðu; vÞ A A�

p.

Note that uðxÞ; vðxÞ A Ap proved above, using (2.10) we obtain ðu; vÞ A S �
p . r

Finally, let us recall the well known Sawyer’s result about weighted norm

inequality of the Hardy-Littlewood maximal operator M for a weights pair,

which will be used in the proof of our results.

Theorem A ([Sa, Theorem B]). For 1 < p < y, M is bounded from LpðvÞ to

LpðuÞ if and only if the weights pair ðu; vÞ A S �
p .
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§3. Proof of Theorem 1.

The case for the condition (a) is simple. In fact by MW f ðxÞa

C½Mðj f jq
0

ÞðxÞ�1=q
0

, 1 < p=q 0 < y, and Theorem A, we obtain the conclusion of

Theorem 1 for the condition (a) immediately.

We now turn to the proof of Theorem 1 for the condition (b). First let us

introduce some notations. For j A Z we denote

KW; jðxÞ ¼ WðxÞw½2 j ;2 jþ1ÞðxÞ=jxj
n;

TW; j f ðxÞ ¼ KW; j � f ðxÞ ¼

ð

2 jajx�yj<2 jþ1

Wðx� yÞ

jx� yjn
f ðyÞ dy;

and

gWð f ÞðxÞ ¼
X

j AZ

jTW; j f ðxÞj
2

 !1=2

:ð3:1Þ

It is easy to see that there is a C > 0 such that

MW f ðxÞaC sup
j

TjWj; jðj f jÞðxÞ:ð3:2Þ

We denote W0ðxÞ ¼ jWðxÞj � kWk1=jS
n�1j, where kWk1 ¼

Ð

S n�1 jWðx 0Þj dsðx 0Þ.

Then it is easy to check that W0 is also homogeneous of degree zero on R
n,

W0 A LqðS n�1Þ, and
Ð

S n�1 W0ðx
0Þ dsðx 0Þ ¼ 0. By (3.2), we thus have the following

pointwise inequality

MW f ðxÞaC sup
j

ð

2 jajx�yj<2 jþ1

jWðx� yÞj

jx� yjn
j f ðyÞj dyð3:3Þ

¼ C sup
j

�
ð

2 jajx�yj<2 jþ1

W0ðx� yÞ

jx� yjn
j f ðyÞj dy

þ
kWk1
jS n�1j

ð

2 jajx�yj<2 jþ1

j f ðyÞj

jx� yjn
dy

�

aCgW0
ðj f jÞðxÞ þ CMf ðxÞ:

The proof of Theorem 1 for the case (b) will be completed by a bootstrapping

argument. According to the range of q, let us establish several propositions.

Proposition 1. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of degree

zero on R
n, and q > maxfp; 2g and ðv1�p 0

; u1�p 0
Þ A A�

p 0=q 0 , in addition v1�p 0
; u1�p 0

A

Ap 0=q 0 . Then there is a constant C > 0 independent of f such that kMW f kp;ua

Ck f kp; v.

Y. Ding and C.-C. Lin214



In order to prove Proposition 1, by (3.3) it is su‰cient to show that, under

the conditions of Proposition 1,

kgW0
ðj f jÞkp;uaCk f kp; vð3:4Þ

and

kMf kp;uaCk f kp; v;ð3:5Þ

where gW0
ðj f jÞðxÞ ¼ ð

P

j AZ jTW0; jðj f jÞðxÞj
2Þ1=2 by (3.1). Obviously, by Lemma 1

and Theorem A we can obtain (3.5) immediately. Hence it remains to verify

(3.4) to finish the proof of Proposition 1. For any a sequence e ¼ fejg with

ej ¼ þ1 or �1, we define a linear operator by

Te;W0
f ðxÞ ¼

X

j AZ

ejðKW0; j � f ÞðxÞ:

Thus by using the argument related to Rademacher functions [K, Theorem 4.2],

the proof of (3.4) is reduced to verify that, under the condition of Proposition 1,

there is a constant C > 0, independent of f and fejg, such that

ð

R
n

jTe;W0
f ðxÞjpuðxÞ dx

� �1=p

aC

ð

R
n

j f ðxÞjpvðxÞ dx

� �1=p

:ð3:6Þ

However, (3.6) may be obtained from the following Lemma 2 and Lemma 3.

Lemma 2. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of degree zero on

R
n and has average zero on S n�1. If q 0 < p, q > 2 and ðu; vÞ A A�

p=q 0 , in addition

uðxÞ; vðxÞ A Ap=q 0 , then there is a constant C > 0, independent of f and fejg, such

that kTe;W f kp;uaCk f kp; v.

Proof. We make a new decomposition of Te;W. Choose a radial real

function c A Cy

0 ðRnÞ satisfying 0aca 1, suppðcÞH fx A R
n
: 1=2a jxja 2g,

and
P

k AZ c2ð2kxÞ ¼ 1 for any x0 0. Define Sk by ðSk f Þ̂ ðxÞ ¼ cð2kxÞ f̂f ðxÞ,

then for any f A SðRnÞ,
P

k AZ S2
k f ðxÞ ¼ f ðxÞ. Hence for f A SðRnÞ we have

Te;W f ðxÞ ¼
X

j AZ

ejðKW; j � f ÞðxÞ ¼
X

j AZ

ejKW; j �
X

k AZ

ðS2
jþk f ÞðxÞ

 !

ð3:7Þ

¼
X

k AZ

X

j AZ

ejSjþkðKW; j � Sjþk f ÞðxÞ

:¼
X

k AZ

T k
e;W f ðxÞ;
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where T k
e;W f ðxÞ ¼

P

j AZ ejSjþkðKW; j � Sjþk f ÞðxÞ. By Plancherel’s Theorem we

get

kT k
e;W f k22 ¼

ð

R
n

X

j AZ

ejSjþkðKW; j � Sjþk f ÞðxÞ

�

�

�

�

�

�

�

�

�

�

2

dx

aCkfejgkly
X

j AZ

ð

R
n

jSjþkðKW; j � Sjþk f ÞðxÞj
2
dx

aC
X

j AZ

ð

2�j�k�1ajxja2�j�kþ1

jK̂KW; jðxÞj
2j f̂f ðxÞj2 dx:

On the other hand, by [DR, pp. 551–552] we know that there are C > 0 and

y > 0 such that for any j A Z, jK̂KW; jðxÞjaCminfj2 jxjy; j2 jxj�yg. Hence for

k > 0, we have

kT k
e;W f k22a

X

j AZ

ð

2�j�k�1ajxja2�j�kþ1

j2 jxj2yj f̂f ðxÞj2 dxaC2�2ykk f k22 :

If ka 0, the estimate jK̂KW; jðxÞjaCj2 jxj�y, implies kT k
e;W f k22aC2�2yð�kÞk f k22 .

Thus there are C; y > 0, independent of f and fejg, such that

kT k
e;W f k2aC2�yjkjk f k2 for any k A Z:ð3:8Þ

Below we prove that, under the conditions of Lemma 2, there is C > 0,

independent of f and fejg, such that

kT k
e;W f kp;uaCk f kp; v for any k A Z:ð3:9Þ

In fact, by Lemma 1 (ii) we know that uðxÞ A Ap. Using the weighted

Littlewood-Paley theory [K, Theorem 2.1], there is a C > 0, independent of f and

fejg, such that

kT k
e;W f kp;u ¼

ð

R
n

X

j AZ

ejSjþkðKW; j � Sjþk f ÞðxÞ

�

�

�

�

�

�

�

�

�

�

p

uðxÞ dx

 !1=p

aCkfejgkly �
X

j AZ

jSjþkðKW; j � Sjþk f Þð�Þj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

p;u

aC

ð

R
n

X

j AZ

jKW; j � Sjþk f ðxÞj
2

 !1=2
8

<

:

9

=

;

p

uðxÞ dx

0

@

1

A

1=p

:
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For fixed k, denote hjðxÞ ¼ Sjþk f ðxÞ. Then we have

jKW; j � Sjþk f ðxÞja

ð

2 jajx�yj<2 jþ1

jWðx� yÞjq

jx� yjn
dy

 !1=q
ð

2 jajx�yj<2 jþ1

jhjðyÞj
q 0

jx� yjn
dy

 !1=q 0

aC½Mðjhjj
q 0

ÞðxÞ�1=q
0

:

Thus

kT k
e;W f kp;uaC

ð

R
n

X

j AZ

½Mðjhj j
q 0

ÞðxÞ�2=q
0

 !q 0=2
2

4

3

5

p=q 0

uðxÞ dx

8

>

<

>

:

9

>

=

>

;

1=p

¼ C
�

�kMðjhj j
q 0

Þð�Þkl 2=q 0
�

�

1=q 0

p=q 0;u
:

Since ðu; vÞ A A�
p=q 0 and uðxÞ; vðxÞ A Ap=q 0 , by Theorem 4 we have

kT k
e;W f kp;uaC

�

�kMðjhjj
q 0

Þð�Þkl 2=q 0
�

�

1=q 0

p=q 0;u
aC

�

�k jhjj
q 0

ð�Þkl 2=q 0
�

�

1=q 0

p=q 0; v

¼ C

ð

R
n

X

j AZ

jSjþk f ðxÞj
2

 !1=2
2

4

3

5

p

vðxÞ dx

8

<

:

9

=

;

1=p

:

By Lemma 1 we know vðxÞ A Ap. Using the weighted Littlewood-Paley theory

again, we get

kT k
e;W f kp;uaC

ð

R
n

X

j AZ

jSjþk f ðxÞj
2

 !1=2
2

4

3

5

p

vðxÞ dx

8

<

:

9

=

;

1=p

aC

ð

R
n

j f ðxÞjpvðxÞ dx

� �1=p

;

and (3.9) follows.

To complete the proof of Lemma 2, we still need to use Stein-Weiss’s

interpolation theorem with change of measures [SW, Theorem 2.11]. Let us

discuss by dividing into the following three cases.

(i) The case for p > 2.

Since uðxÞ; vðxÞ A Ap=q 0 and ðu; vÞ A A�
p=q 0 , by (2.9) and (2.4), there is

a s > 0 such that ðu1þs; v1þsÞ A A�
p=q 0 and uðxÞ1þs; vðxÞ1þs

A Ap=q 0 hold simulta-

neously time. Choose p1 satisfying ð p1 � pÞ=ðp� 2Þ ¼ s. We then have p1 > p,

ðu1þs; v1þsÞ A A�
p1=q 0 , and uðxÞ1þs; vðxÞ1þs

A Ap1=q 0 by (2.11) and (2.1), respectively.

From the proof of (3.9) we can get

kT k
e;W f kp1;u1þsaC1k f kp1; v1þs ;ð3:10Þ
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where C1 > 0 independent of any k A Z and f . Now we let t ¼ p1=ð1þ sÞp. It

is easy to check that 0 < t < 1 and 1=p ¼ ð1� tÞ=2þ t=p1. Therefore, using the

interpolation theorem with change of measures between (3.8) and (3.10), we

obtain

kT k
e;W f kp;uaC12

�ygjkjk f kp; v;ð3:11Þ

where C1; y > 0 and g > 0 are independent of any k A Z and f .

(ii) The case for p < 2.

Since uðxÞ; vðxÞ A Ap=q 0 and ðu; vÞ A A�
p=q 0 , by (2.9) and (2.4), there is an e > 0

such that ðu1þe; v1þeÞ A A�
p=q 0 and uðxÞ1þe; vðxÞ1þe

A Ap=q 0 hold simultaneously. By

(2.12) and (2.3), we can choose an l satisfying q 0 < l < p such that ðu1þe; v1þeÞ A

A�
l=q 0 and uðxÞ1þe; vðxÞ1þe

A Al=q 0 hold at the same time. By the choice of e and

l, we may obtain s and p0 satisfying 0 < sa e and q 0 < la p0 < p such that

s ¼ ðp� p0Þ=ð2� pÞ; ðu1þs; v1þsÞ A A�
p0=q 0 , and uðxÞ1þs; vðxÞ1þs

A Ap0=q 0 .

In fact, if e ¼ ðp� lÞ=ð2� pÞ, then let s ¼ e and p0 ¼ l. Thus s and p0
are just ones we need. If e < ðp� lÞ=ð2� pÞ, then take s ¼ e and l < p0 < p

such that s ¼ ðp� p0Þ=ð2� pÞ. Thus, we still have ðu1þs; v1þsÞ A A�
p0=q 0 and

uðxÞ1þs; vðxÞ1þs
A Ap0=q 0 by (2.11) and (2.1). If e > ð p� lÞ=ð2� pÞ, we may take

0< s< e and p0 ¼ l such that s¼ ðp� p0Þ=ð2� pÞ. Thus, by Hölder’s inequal-

ity, it is easy to see that ðu1þs; v1þsÞ A A�
p0=q 0 and uðxÞ1þs; vðxÞ1þs

A Ap0=q 0 .

As the proof of (3.9), we have

kT k
e;W f kp0;u1þsaC2k f kp0; v1þs ;ð3:12Þ

where C2 > 0 is independent of any k A Z and f . Let t ¼ p0=ð1þ sÞp,

then 0 < t < 1 and 1=p ¼ ð1� tÞ=2þ t=p0. Using the interpolation theorem with

change of measures between (3.8) and (3.12), we obtain

kT k
e;W f kp;uaC22

�yg 0jkjk f kp; v;ð3:13Þ

where C2; y > 0 and g 0 > 0 are independent of any k A Z and f .

(iii) The case for p ¼ 2.

Since uðxÞ; vðxÞ A A2=q 0 and ðu; vÞ A A�
2=q 0 , by (2.9) and (2.4) there is a s > 0

such that ðu1þs; v1þsÞ A A�
2=q 0 and uðxÞ1þs; vðxÞ1þs

A A2=q 0 hold simultaneously. It

follows from the process of proving (3.9), we can get

kT k
e;W f k2;u1þsaC3k f k2; v1þs :ð3:14Þ

Let t ¼ 1=ð1þ sÞ. Using the interpolation theorem with change of measures

between (3.8) and (3.14), we obtain

kT k
e;W f k2;uaC32

�yg 00jkjk f k2; v;ð3:15Þ

where C3; y > 0 and g 00 > 0 are independent of any k A Z and f .
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We set C ¼ maxfC1;C2;C3g, h ¼ minfg; g 0; g 00g. Then, for p > q 0 and

q > 2,

kT k
e;W f kp;uaC2�yhjkjk f kp; vð3:16Þ

by (3.11), (3.13) and (3.15). Thus Lemma 2 follows from (3.7) and (3.16). r

Lemma 3. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of degree zero on

R
n and has average zero on S n�1. If q > maxfp; 2g and ðv1�p 0

; u1�p 0
Þ A A�

p 0=q 0 , in

addition vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 , then there is a constant C > 0, independent of f

and fejg, such that kTe;W f kp;uaCk f kp; v.

Proof. Clearly we have kTe;W f kp;u ¼ supgj
Ð

R
n Te;W f ðxÞgðxÞ dxj, where

the supremum is taken over all gðxÞ with kgkp 0;u1�p 0 a 1. On the other hand,

let ðTe;WÞ
� be the adjoint operator of Te;W, which means ðTe;WÞ

� ¼ Te;W � with

W�ðxÞ ¼ Wð�xÞ. We thus have

ð

R
n

Te;W f ðxÞgðxÞ dx

�

�

�

�

�

�

�

�

¼

ð

R
n

f ðxÞðTe;WÞ
�
gðxÞ dx

�

�

�

�

�

�

�

�

a k f kp; v � kðTe;WÞ
�
gkp 0; v1�p 0 :

Obviously W� has also the same properties as W. Since ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 and

vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 , Lemma 2 with the choice of g yields

kTe;W f kp;ua k f kp; v � sup
g

kðTe;WÞ
�
gkp 0; v1�p 0 aCk f kp; v: r

It follows from Lemma 3 that, under the assumptions of Proposition 1, (3.6)

holds and hence Proposition 1 follows. We now are going to extend the range of

q to the case of q > maxfp; 4=3g.

Proposition 2. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of

degree zero on R
n, and q > maxfp; 4=3g and ðv1�p 0

; u1�p 0
Þ A A�

p 0=q 0 , in addition

vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 . Then there is a constant C > 0 independent of f such

that kMW f kp;uaCk f kp; v.

Note that if we divide the region of q into q > 2 and maxfp; 4=3g < qa 2,

then the case q > 2 is covered by Proposition 1. Thus, to show Proposition

2 it su‰ces to consider the case maxfp; 4=3g < qa 2. Following the proof of

Proposition 1, we see that the key of proving Proposition 2 for this case is to

establish the following lemma.

Lemma 4. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of degree zero

on R
n and has average zero on S n�1. For q 0 < p and 4=3 < qa 2, if ðu; vÞ A A�

p=q 0

and uðxÞ; vðxÞ A Ap=q 0 , then there is a constant C > 0, independent of f and fejg,

such that kTe;W f kp;uaCk f kp; v.

However, the proof of Lemma 4 depends heavily on the following lemma.
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Lemma 5. Under the conditions of Lemma 4, we have kT k
e;W f kp;uaCk f kp; v,

where the constant C > 0 is independent of f ; k, and fejg.

Proof. Let us first consider the case 4=3 < q < 2. In this case we have

2 < q 0 < p. Denote KW; jðxÞ ¼ jKW; jðxÞj
2�q. Then Hölder’s inequality implies

jKW; j � gðxÞj
2
a

ð

R
n

jKW; jðx� yÞjq dy

� �

�

ð

R
n

jKW; jðx� yÞj2�qjgðyÞj2 dy

� �

ð3:17Þ

aC2 jðn�nqÞKW; j � ðjgj
2ÞðxÞ

and

KW; j � jhjðxÞa

ð

2 jajx�yj<2 jþ1

jWðx� yÞj

jx� yjn

� �2�q

jhðyÞj dyð3:18Þ

aC2�jnð2�qÞ

ð

jx�yj<2 jþ1

jWðx� yÞj2�qjhðyÞj dy

aC2�jðn�nqÞM
W

2�qhðxÞ:

By Lemma 1 we know that uðxÞ; vðxÞ A Ap and ðu; vÞ A S �
p . Using the weighted

Littlewood-Paley theory and (3.17), we get

kT k
e;W f k2p;u ¼

ð

R
n

X

j AZ

ejSjþkðKW; j � Sjþk f ÞðxÞ

�

�

�

�

�

�

�

�

�

�

p

uðxÞ dx

 !2=p

aCkfejgk
2
ly �

X

j AZ

jSjþkðKW; j � Sjþk f Þð�Þj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

p;u

aC
X

j AZ

jðKW; j � Sjþk f Þð�Þj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

p;u

aC
X

j AZ

2 jðn�nqÞKW; j � jSjþk f j
2ð�Þ

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

p;u

¼ C

ð

R
n

X

j AZ

2 jðn�nqÞKW; j � jSjþk f j
2ðxÞ

�

�

�

�

�

�

�

�

�

�

p=2

uðxÞ dx

0

@

1

A

2=p

¼ C sup
h

ð

R
n

X

j AZ

2 jðn�nqÞKW; j � jSjþk f j
2ðxÞ

 !

hðxÞ dx

�

�

�

�

�

�

�

�

�

�

;
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where the supremum is taken over all hðxÞ with khkð p=2Þ 0;u1�ð p=2Þ 0 a 1. By (3.18)

we get

ð

R
n

X

j AZ

2 jðn�nqÞKW; j � jSjþk f j
2ðxÞ

 !

hðxÞ dx

¼

ð

R
n

X

j AZ

2 jðn�nqÞjSjþk f ðxÞj
2ðKW; j � hÞðxÞ dx

aC

ð

R
n

X

j AZ

jSjþk f ðxÞj
2
M

W
2�qhðxÞ dx

aC

ð

R
n

X

j AZ

jSjþk f ðxÞj
2

 !p=2

vðxÞ dx

0

@

1

A

2=p

�

ð

R
n

½M
W

2�qhðxÞ�ð p=2Þ
0

vðxÞ1�ð p=2Þ 0
dx

� �1=ð p=2Þ 0

:

We claim that the following weighted norm inequality holds:

kM
W

2�qhkð p=2Þ 0; v1�ð p=2Þ 0 aCkhkð p=2Þ 0;u1�ð p=2Þ 0 :ð3:19Þ

Since 4=3 < q < 2, if denote r ¼ q=ð2� qÞ (thus r 0 ¼ q 0=2), it is easy to see

that W2�q
A LrðS n�1Þ, r > maxfð p=2Þ 0; 2g, and ðp=2Þ=r 0 ¼ p=q 0. It follows from

ðu; vÞ A A�
p=q 0 and uðxÞ; vðxÞ A Ap=q 0 that

ð½u1�ð p=2Þ 0 �1�ð p=2Þ; ½v1�ð p=2Þ 0 �1�ð p=2ÞÞ A A�
ð p=2Þ=r 0 ;

½uðxÞ1�ð p=2Þ 0 �1�ð p=2Þ
A Að p=2Þ=r 0 and ½vðxÞ1�ð p=2Þ 0 �1�ð p=2Þ

A Að p=2Þ=r 0 :

Pluging r; ð p=2Þ 0 and weight pair ðu1�ð p=2Þ 0 ; v1�ð p=2Þ 0Þ in Proposition 1, we get

(3.19).

By vðxÞ A Ap=q 0 HAp and using the weighted Littlewood-Paley theory again

and (3.19), we get

kT k
e;W f k2p;uaC sup

h

khkð p=2Þ 0;u1�ð p=2Þ 0

ð

R
n

X

j AZ

jSjþk f ðxÞj
2

 !p=2

vðxÞ dx

0

@

1

A

2=p

aC
X

j AZ

jSjþk f ð�Þj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

p; v

aCk f k2p; v:

Thus we prove Lemma 5 for the case 4=3 < q < 2.
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We now consider the case of q ¼ 2. In this case 2 ¼ q 0 < p, ðu; vÞ A A�
p=2

and uðxÞ; vðxÞ A Ap=2. Hence by (2.12) and (2.3) we can choose a s > 0 such

that

ðiÞ ð2� sÞ 0 < p;

ðiiÞ ðu; vÞ A A�
p=ð2�sÞ 0

and uðxÞ; vðxÞ A Ap=ð2�sÞ 0 ;

ðiiiÞ 4=3 < ð2� sÞ < 2;

ðivÞ W A L2ðS n�1ÞHL2�sðS n�1Þ:

ð3:20Þ

The above (3.20) shows that, for ð2� sÞ; p and the weights pair ðu; vÞ, we

may apply the conclusion proved in the case 4=3 < q < 2. We thus still have

kT k
e;W f kp;uaCk f kp; v for q ¼ 2. This completes the proof of Lemma 5. r

As in the proof of Lemma 2, using Stein-Weiss’s interpolation theorem with

change measures between (3.8) and the conclusion of Lemma 5, we can prove

Lemma 4. Then by Lemma 4 and using the method of proving Lemma 3, we

may obtain the conclusion of Proposition 2. We omit the details here.

By a similarly inductive method, it is not di‰cult to see that if the conclusion

of Proposition 2 holds for the q > maxfp; 2m�1=ð2m�1 � 1Þg, mb 2, then it also

holds for q > maxfp; 2m=ð2m � 1Þg. More precisely, we have the following

general conclusion.

Proposition 3. Suppose that Wðx 0Þ A LqðS n�1Þ is homogeneous of

degree zero on R
n, and q > maxfp; 2m=ð2m � 1Þg, m A N , mb 2. Moreover,

ðv1�p 0
; u1�p 0

Þ A A�
p 0=q 0 and vðxÞ1�p 0

; uðxÞ1�p 0

A Ap 0=q 0 . Then there is a constant

C > 0, independent of f, such that kMW f kp;uaCk f kp; v.

Finally, let us finish the proof of Theorem 1 for the condition (b). If

pb 2, then Theorem 1 follows from Proposition 1. If p < 2, then there exists

m A N , mb 2, such that 2m=ð2m � 1Þa p < 2m�1=ð2m�1 � 1Þ. Thus q > p is

equivalent to q > maxfp; 2m=ð2m � 1Þg. In this case Proposition 3 is applied to

get the conclusion of Theorem 1 for the condition (b) when q > p.

§4. Outline of proof for Theorems 2 and 3.

The outline of proving Theorem 2. In fact the process of proving Theorem 1

for the condition (b) implies the proof of Theorem 2. Let us first consider

Theorem 2 for the case (a). Using the notations and decomposition introduced

in the proof of Theorem 1 for the condition (b), we have the following equality.
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TW f ðxÞ ¼
X

j AZ

KW; j �
X

k AZ

ðS2
jþk f ÞðxÞ

 !

ð4:1Þ

¼
X

k AZ

X

j AZ

SjþkðKW; j � Sjþk f ÞðxÞ :¼
X

k AZ

T k
W
f ðxÞ:

By Plancherel’s theorem, it is easy to see that the conclusion of (3.8) still holds

if we replace T k
e;W by T k

W
. That is, there are C; y > 0, independent of k A Z and

f , such that

kT k
W
f k2aC2�yjkjk f k2:ð4:2Þ

If we can prove that, under the condition (a) of Theorem 2, there is a C > 0 such

that for any k A Z and f ,

kT k
W
f kp;uaCk f kp; v;ð4:3Þ

then, by using Stein-Weiss’s interpolation theorem with change of measures

between (4.2) and (4.3), we may obtain the conclusion of Theorem 2 for the case

(a) by (4.1). However, from the process of proving Lemma 2, we know that if

q > 2, then (4.3) holds. On the other hand, when q < 2 (thus p > q 0 > 2), using

the notations and method in Lemma 5, we have

kT k
W
f k2p;uaC sup

h

ð

R
n

X

j AZ

2 jðn�nqÞKW; j � jSjþk f j
2ðxÞ

 !

hðxÞ dx

�

�

�

�

�

�

�

�

�

�

ð4:4Þ

aC

ð

R
n

X

j AZ

jSjþk f ðxÞj
2

 !p=2

vðxÞ dx

0

@

1

A

2=p

� sup
h

ð

R
n

½M
W

2�qhðxÞ�ð p=2Þ
0

vðxÞ1�ð p=2Þ 0
dx

� �1=ð p=2Þ 0

;

where the supremum is taken over all hðxÞ with khkð p=2Þ 0;u1�ð p=2Þ 0 a 1.

Since q < 2, we have r ¼ q=ð2� qÞ > ðp=2Þ 0, ðp=2Þ=r 0 ¼ p=q 0, and W
2�q

A

L rðS n�1Þ. As done in the proof of Lemma 5, it is easy to check that under the

condition (a) of Theorem 2, r; ð p=2Þ 0 and weight pair ðu1�ð p=2Þ 0 ; v1�ð p=2Þ 0Þ satisfy

the condition (b) of Theorem 1. Hence (3.19) holds. Thus, for q < 2, (4.3)

follows from (4.4), (3.19), and the weighted Littlewood-Paley theory [K, Theorem

2.1].

The treatment for the case q ¼ 2 is the same as one in the proof of Lemma

5. We omit the details here. We thus prove Theorem 2 for the case (a).
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By applying the duality property of TW and the method of proving Lemma 3

(to remove the restriction q > 2), the conclusion of Theorem 2 under the con-

dition (b) easily follows from the conclusion of Theorem 2 for the case (a).

The outline of proving Theorem 3. We follow the idea of proving Theorem

E in [DR]. For any e > 0, there is k A Z such that 2k
a e < 2kþ1. It is easy to

see that

jT e
W f ðxÞjaCMW f ðxÞ þ jT 2k

W f ðxÞj:

Now we choose a Schwartz function satisfying 0a fðxÞa 1, suppðfÞH

fx A R
n
: jxj < 2g, and fðxÞ ¼ 1 when jxj < 1. We also write fkðxÞ ¼ fð2kxÞ

and denote F̂FkðxÞ ¼ fkðxÞ. By [DR, p. 548] we know that

jT 2k

W f ðxÞjaCMðTW f Þ þ CMf þ ðd�FkÞ �
X

y

j¼k

Tj f

�

�

�

�

�

�

�

�

�

�

;

where Tj f ðxÞ ¼ KW; j � f ðxÞ is defined in §3 and d is the Dirac function. Thus,

ð4:5Þ

T �
W f ðxÞaCðMW f ðxÞ þMðTW f ÞðxÞ þMf ðxÞÞ þ sup

k AZ

ðd�FkÞ �
X

y

j¼k

KW; j � f ðxÞ

�

�

�

�

�

�

�

�

�

�

:

After we use Lemma 1 and apply the weighted boundedness with weight pair

ðu; vÞ for MW (Theorem 1), M (Theorem A), and TW (Theorem 2) to (4.5), the

proof of Theorem 3 is reduced to verify

sup
k AZ

ðd�FkÞ �
X

y

j¼k

KW; j � f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p;u

aCk f kp; v:ð4:6Þ

Obviously

sup
k AZ

ðd�FkÞ �
X

y

j¼k

KW; j � f ðxÞ

�

�

�

�

�

�

�

�

�

�

a

X

y

j¼0

sup
k AZ

jðd�FkÞ � KW; jþk � f ðxÞj:ð4:7Þ

By [DR, pp. 551–552] there are C; y > 0 such that, for any j; k A Z,

jK̂KW; jþkðxÞjaCminfj2 jþkxjy; j2 jþkxj�yg:

Applying Plancherel’s theorem to the j-th term of the summation, we may get

an L2-norm of the order 2�aj with a > 0. On the other hand we have

sup
k AZ

jðd�FkÞ � KW; jþk � f ðxÞjaCðMW f ðxÞ þMðMW f ÞðxÞÞ:
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By Theorem 1, Lemma 1, and the weighted Lp boundedness with one weigh

function in Ap, we know that under the conditions of Theorem 3

sup
k AZ

ðd�FkÞ � KW; jþk � f

�

�

�

�

�

�

�

�

p;u

aCðkMW f kp;u þ kMðMW f Þkp;uÞaCk f kp; v:

Using Stein-Weiss’s interpolation theorem with change of measures, we obtain

(4.6) from (4.7) and hence finish the proof of Theorem 3.

§5. Proof of Theorem 4.

We shall follow the basic idea in [AJ]. In the proof of Theorem 4, we need

to use two weighted vector-valued interpolation theorems, which are analogues of

the Marcinkiewicz interpolation theorem.

Let S denote the linear space of sequences ~ff ¼ f fkg
y

1 of the form: fkðxÞ is

a simple function on R
n and fkðxÞ1 0 for all su‰ciently large k. Then S is

dense in Lp
v ðl

rÞ, 1a p; r < y.

Lemma 6. Let uðxÞ; vðxÞb 0 be locally integrable on R
n and 1 < r < y,

1a pi < y ði ¼ 0; 1Þ. Suppose that T is a sublinear operator defined on S sat-

isfying

uðfx A R
n
: kTð~ff ÞðxÞkl r > lgÞaCil

�pi

ð

R
n

k~ff ðxÞkpi
l r vðxÞ dx for i ¼ 0; 1 and ~ff A S;

where and below, uðAÞ ¼
Ð

A
uðxÞ dx for a set A. Then T can be extended to a

bounded operator from Lp
v ðl

rÞðRnÞ to Lp
u ðl

rÞðRnÞ; that is,

ð

R
n

kTð~ff ÞðxÞkp
l ruðxÞ dx

� �1=p

aCy

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx

� �1=p

;

where 1=p ¼ ð1� yÞ=p0 þ y=p1 and 0 < y < 1.

Lemma 7. Let uðxÞ; vðxÞb 0 be locally integrable on R
n and 1 <

ri; pi < y ði ¼ 0; 1Þ. Suppose that the sublinear operator T satisfies

ð

R
n

kTð~ff ÞðxÞkpi
l ri uðxÞ dx

� �1=pi

aCi

ð

R
n

k~ff ðxÞkpi
l ri vðxÞ dx

� �1=pi

for i ¼ 0; 1 and ~ff A S:

Then T can be extended to a bounded operator from Lp
v ðl

rÞðRnÞ to Lp
u ðl

rÞðRnÞ;

that is,
ð

R
n

kTð~ff ÞðxÞkp
l ruðxÞ dx

� �1=p

aC 1�y

0 C y

1

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx

� �1=p

;

where ð1=p; 1=rÞ ¼ ð1� yÞð1=p0; 1=r0Þ þ yð1=p1; 1=r1Þ and 0a ya 1.
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Using the same methods as in [BCP], [BP] and [CZ], we may obtain Lemma

6 and Lemma 7 (see also [AJ, p. 21]). Now let us turn to the proof of Theorem

4. We divide the proof of Theorem 4 into three steps.

Case 1: p ¼ r. Note that under the conditions of Theorem 4, we have

ðu; vÞ A S �
p by (2.10). Applying Theorem A we get

ð

R
n

kMð~ff ÞðxÞkr
l ruðxÞ dx

� �1=r

aCr

ð

R
n

k~ff ðxÞkr
l rvðxÞ dx

� �1=r

:ð5:1Þ

Case 2: 1 < p < r. In this case we first prove that, under the conditions of

Theorem 4, there is a C > 0 such that, for any l > 0,

uðfx A R
n
: kMð~ff ÞðxÞkl r > lgÞaCl�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:ð5:2Þ

Using the Calderón-Zygmund decomposition (see [St, p. 17, Theorem 4]), for

k~ff ðxÞkl r and l > 0, we get a sequence of non-overlapping cubes fQ jg such that

k~ff ðxÞkl ra l; for almost everywhere x B E ¼ 6
y

j¼1

Q j;ð5:3Þ

l <
1

jQ jj

ð

Q j

k~ff ðxÞkl r dxa 2nl; j ¼ 1; 2; 3; . . . :ð5:4Þ

Since ðu; vÞ A A�
p, by (5.4) and Hölder’s inequality, we have

uðQ jÞ ¼

ð

Q j

uðxÞ dxa l�p 1

jQ jj

ð

Q j

k~ff ðxÞkl r dx

 !p
ð

Q j

uðxÞ dx

a l�p

ð

Q j

k~ff ðxÞkp
l rvðxÞ dx

 !

1

jQ j j

ð

Q j

vðxÞ�1=ð p�1Þ
dx

 !p�1
1

jQ jj

ð

Q j

uðxÞ dx

 !

aCl�p

ð

Q j

k~ff ðxÞkp
l rvðxÞ dx:

The cubes Q j are non-overlapping, so we get

uðEÞ ¼
X

y

j¼1

uðQ jÞaCl�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:ð5:5Þ

Denote ~ff ðxÞ ¼~ff 0ðxÞ þ~ff 00ðxÞ, where ~ff 0ðxÞ ¼ f f 0
k ðxÞg

y
k¼1 and f 0

k ðxÞ ¼

fkðxÞwfR nnEgðxÞ. By Minkowski’s inequality we have

kMð~ff ÞðxÞkl ra kMð~ff 0ÞðxÞkl r þ kMð~ff 00ÞðxÞkl r :ð5:6Þ
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Since ðu; vÞ A A�
p and uðxÞ; vðxÞ A Ap, by (2.1) and (2.11) we have ðu; vÞ A A�

r

and uðxÞ; vðxÞ A Ar. Thus (5.1) holds if we replace ~ff by ~ff 0, and Chebyshev’s

inequality yields

uðfx A R
n
: kMð~ff 0ÞðxÞkl r > lgÞaCl

�r

ð

R
n

k~ff 0ðxÞkr
l rvðxÞ dx:ð5:7Þ

By (5.3) we have k~ff 0ðxÞkr
l ra l

r�pk~ff 0ðxÞkp
l r , which combined with (5.7) implies

uðfx A R
n
: kMð~ff 0ÞðxÞkl r > lgÞaCl

�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:ð5:8Þ

Hence, by (5.6) and (5.8), the proof of (5.2) is reduced to the verification of the

following inequality.

uðfx A R
n
: kMð~ff 00ÞðxÞkl r > lgÞaCl

�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:ð5:9Þ

To prove (5.9), as done in [FS, p. 109] we let
~~ff~ff ¼ f ~ffkg

y
1 , where

~ffkðxÞ ¼
ð1=jQ jjÞ

Ð

Q j
j fkðyÞj dy; for x A Q j; j ¼ 1; 2; 3; . . . ;

0; otherwise.

�

Since uðxÞ A Ap, there is a C > 0 such that, for any QHR
n, uð2QÞaCuðQÞ

(see [GR, p. 396, Lemma 2.2]). If denote ~QQj ¼ 2nQ j and ~EE ¼ 6
j
~QQj, then by

(5.5) we get

uð ~EEÞa
X

j

uð ~QQjÞaC
X

j

uðQ jÞaCl
�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:ð5:10Þ

On the other hand, for x A Q j, j ¼ 1; 2; . . . ; Minkowski’s inequality and (5.4)

yield

k
~~ff~ff ðxÞkl r ¼

X

k

1

jQ jj

ð

Q j

j fkðyÞj dy

 !r !1=r

a
1

jQ j j

ð

Q j

k~ff ðyÞkl r dya 2n
l:ð5:11Þ

Obviously k
~~ff~ff ðxÞkl r ¼ 0 for x B E. Using (5.1) for the case uðxÞ ¼ vðxÞ A

Ap HAr, we have

uðfx A R
n
: kMð

~~ff~ff ÞðxÞkl r > lgÞð5:12Þ

a l
�r

ð

R
n

kMð
~~ff~ff ÞðxÞkr

l ruðxÞ dx

aCl
�r

ð

E

k
~~ff~ff ðxÞkr

l ruðxÞ dx

aCuðEÞaCl
�p

ð

R
n

k~ff ðxÞkp
l rvðxÞ dx:
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By [FS, p. 110] we know that Mð f 00
k ÞðxÞaCMð ~ffkÞðxÞ for x B ~EE, where C is

independent of fk. We thus get (5.9) from (5.10) and (5.12), and hence prove

(5.2).

Now let us complete the proof of Theorem 4 for case 2. Since 1 < p < r,

ðu; vÞ A A�
p and uðxÞ; vðxÞ A Ap, by (2.3) and (2.12) we may choose an e > 0 sat-

isfying 1 < p� e < p and

ðu; vÞ A A�
p�e and uðxÞ; vðxÞ A Ap�e:ð5:13Þ

We write p0 ¼ p� e and take p1 such that p < p1 < r. Then by (2.1) and (2.11)

we have

ðu; vÞ A A�
p1

and uðxÞ; vðxÞ A Ap1 :ð5:14Þ

By (5.13) and (5.14) we know that (5.2) still holds if we replaced p by p0 and

p1, respectively. Hence we apply Lemma 6 to get the conclusion of Theorem 4

for case 2.

Case 3: 1 < r < p < y. Before giving the proof of Theorem 4, let us recall the

following well known Fe¤erman-Stein’s result.

Lemma 8 ([FS, Lemma 1]). Let gðxÞ and fðxÞ be two real-valued functions

on R
n. If 1 < q < y, then there is a constant Cr; p, independent of g and f, such

that
ð

R
n

ðMgðxÞÞqjfðxÞj dxaCr; p

ð

R
n

jgðxÞjqMfðxÞ dx:

Now let us return to the proof of Theorem 4 for case 3. Since ðu; vÞ A A�
p

and uðxÞ; vðxÞ A Ap, by (2.12) and (2.3) we may take a r0 arbitrarily close to 1

satisfying 1 < r0 < r < p=r0 < p such that

ðu; vÞ A A�
p=r0

and uðxÞ; vðxÞ A Ap=r0 :ð5:15Þ

Denote p0 ¼ p=r0. By (5.15), (2.10), and Theorem A, we get

ð

R
n

kMð~ff ÞðxÞkp0

l p0uðxÞ dx

� �1=p0

aC

ð

R
n

k~ff ðxÞkp0

l p0 vðxÞ dx

� �1=p0

:ð5:16Þ

On the other hand, by r0 < r < p0, there is a y satisfying 0 < y < 1 such

that 1=r ¼ ð1� yÞ=p0 þ y=r0. For this y, we may take a p1 such that 1=p ¼

ð1� yÞ=p0 þ y=p1. Since r0 > 1 closed enough to 1, we have p1 > p. It follows

from (5.15), (2.11), and (2.1) that ðu; vÞ A A�
p1=r0

and uðxÞ; vðxÞ A Ap1=r0 .

Set q ¼ p1=r0. Then

ð

R
n

kMð~ff ÞðxÞkp1
l r0 uðxÞ dx

� �1=p1

¼ sup
f

ð

R
n

kMð~ff ÞðxÞkr0
l r0fðxÞuðxÞ dx

�

�

�

�

�

�

�

�

 !q=p1

;ð5:17Þ
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where the supremum is taken over all fðxÞ with kfk
L

q 0

u
a 1. Since ðu; vÞ A A�

q

and uðxÞ; vðxÞ A Aq, by (2.2) and (2.6) we have

ðv1�q 0

; u1�q 0

Þ A A�
q 0 and uðxÞ1�q 0

; vðxÞ1�q 0

A Aq 0 :ð5:18Þ

Thus, by (5.18) and (2.10) we have ðv1�q 0
; u1�q 0

Þ A S �
q 0 . Using Theorem A and

noting the choice of f, we get

ð

R
n

½MðfuÞðxÞ�q
0

vðxÞ1�q 0

dx

� �1=q 0

aC

ð

R
n

jfðxÞuðxÞjq
0

uðxÞ1�q 0

dx

� �1=q 0

aC:ð5:19Þ

Applying Lemma 8 and (5.19), we have

ð

R
n

kMð~ff ÞðxÞkr0
l r0fðxÞuðxÞ dx

�

�

�

�

�

�

�

�

ð5:20Þ

aC

ð

R
n

k~ff ðxÞkr0
l r0 ½MðfuÞðxÞ=vðxÞ�vðxÞ dx

aC

ð

R
n

k~ff ðxÞkp1
l r0 vðxÞ dx

� �1=q ð

R
n

½MðfuÞðxÞ=vðxÞ�q
0

vðxÞ dx

� �1=q 0

aC

ð

R
n

k~ff ðxÞkp1
l r0 vðxÞ dx

� �1=q

:

By (5.17) and (5.20), we get

ð

R
n

kMð~ff ÞðxÞkp1
l r0uðxÞ dx

� �1=p1

aC

ð

R
n

k~ff ðxÞkp1
l r0 vðxÞ dx

� �1=p1

:ð5:21Þ

If we apply Lemma 7 to (5.16) and (5.21), then the conclusion of Theorem 4 for

case 3 follows.
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