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Abstract. In this article we study the inverse of the period map for the family % of
complex algebraic curves of genus 6 equipped with an automorphism of order 5 having
5 fixed points. This is a family with 2 parameters, and is fibred over a Del Pezzo
surface. Our period map is essentially same as the Schwarz map for the Appell
hypergeometric differential equation F;(3/5,3/5,2/5,6/5).

This differential equation and the family & are studied by G. Shimura (1964),
T. Terada (1983, 1985), P. Deligne and G. D. Mostow (1986) and T. Yamazaki and
M. Yoshida (1984). Based on their results we give a representation of the inverse of
the period map in terms of Riemann theta constants. This is the first variant of the
work of H. Shiga (1981) and K. Matsumoto (1989, 2000) to the co-compact case.

0. Introduction.

We consider the configuration space
X°(2,5) = ((P')’ = 4)/ PGLy(C)
where
A={(4)e P )= 4j for some i # j}.

Since every point A = (41,...,45) € X°(2,5) can be represented by (0, o0, 1,x, y),
the space can be seen as an open set in C?:

X°(2,5) 2 A={(s,) e C? : st(s — 1)(t — 1)(s — 1) # 0}.
Let # be the family of algebraic curves
(0.1) C(s,0):y° =x(x—1)(x—s)(x—1)

of genus 6 parameterized by 4. The curve C(s,¢) has also an expression of the
form
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5

C,:y° = H(x— 2i);
i=1
by using a general representative 4 = (4;,...,4s) of a point in X°(2,5).
The period
dz
N=1|—
n(s, 1) L 3

of C(s,t) satisfies the system of differential equations

s(1 — 5)(0%u/0s?) + 1(1 — s)(0%u/ds0t) + (6/5 — (11/5)s)(0u/ds)

(0
(0.2) — (3/5)¢(0u/ot) — (9/5)u = 0,
| (0%u/0t?) + s(1 — t)(0*u/dsot) + (6/5 — 2¢)(0u/dr)
il

2/5)s(0u/ds) — (6/5)u = 0.

This is the system for the Appell hypergeometric function F,(3/5,3/5,2/5,6/5;
s,t), and the dimension of the solution space at a generic point is equal to 3.
According to the works of T. Terada [14], P. Deligne and G. D. Mostow
and T. Yamazaki and M. Yoshida the following properties are already
known:
1. Let {#n;,m,1;} be a basis of the solutions of (0.2). The image of the
Schwarz map (s,1) — [17,(s,1) : 7,(s, 1) : 5(s,£)] € P> is an open dense
subset of a 2-dimensional ball B,.
2. The monodromy group G is a congruence subgroup of the Picard
modular group for k = Q(e?*/%). The quotient space B,/G is compact.
3. Let S5 be the symmetric group of permutations of {1, 4y, A3, A4, s}, it
causes a natural action on X°(2,5). There is a compactification X (2,5)
of X°(2,5) so that we have S5 < Aut(X). Yoshida showed X is a Del
Pezzo surface of degree 5.
4. The inverse of the Schawarz map is single valued.
Based on these established results we give an explicit expression of the
inverse of the period map for #. We obtain the results by the following steps.
We find a realization of the compactified configuration space X(2,5) in P!
by using 12 extended crossratios. We construct the period matrix Q = Q(4) of
C,, it gives an embedding p of the period domain for % into the Siegel space
S6. We fix a basis {#,7,,7;3} of the solutions for (0.2). It is a system of
periods for appropriate 1-cycles y;,7,,7; on C; coupled with the differential
dz/w?. By the method originally used by Picard we can determine the image of
the Schwarz map from the Riemann period relation. That is given by B, =
{neP?:'jHy < 0} with H = diag(1,1, (1 —/5)/2).

t(1-1)
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We give an explicit generator system of the monodromy group G for (0.2).
The theta constants on S with characteristics in (Z/10Z)° determine a system of
holomorphic functions on the period domain B, via the embedding p. By using
the transformation formula for the theta constants we can examine their behavior
under the monodromy transformations. We know that many of them vanish on
B, and that there are essentially 13 theta constants those are not constantly zero
there. One of them is the Riemann constant, and the rest give the 12 coor-
dinates of the configuration space in P!' with the elevation to the 5-th power.
This is our main theorem and the exact statement is given in [Theorem 6.1.

Our method is essentially the same used in and [8], but we could obtain
the result applied to the co-compact case for the first time.

As a byproduct of the main theorem, in we give an expression
of the inverse Schawarz map of the Gauss hypergeometric differential equation
for ,F1(1/5,2/5,4/5,x). In this case we have the arithmetic triangle group of
co-compact type 4(5,5,5) as the monodromy group, and it is the case mentioned
by Shimura [12]. As another application, in Theorem 6.2 we give the explicit
generator system for the graded ring of the automorphic forms with respect to
the unitary group U(2,1;0;) over (.

The author wishes to express many thanks to the referee for his kind sug-
gestions to complete the revised version.

1. Realization of the configuration space X(2,5).

Here we summarize the fundamental facts on X(2,5). For precise argu-
ments, see [18, Chapter V]. Let us consider ordered distinct five points on P':

A= (01,2, 3,04, 25) € (P1)° — 4
where, 4 i1s given by
A={()e(P) : k= 4j for some i #j}.
A projective transformation g € PGL,(C) acts on (P')’ as
g (41,5 4s) = (g(41),-- -, 9(4s)).
The configuration space X°(2,5) is defined by the quotient space
X°(2,5) = ((P')” = 4)/PGLy(C).
It has a compactification
X(2,5)=X°(2,5) = ((P')’ - 4")/PGLx(C)

where
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A/:{(/II)E(PI)SILZ/@:M for some i #j # k # i}.
There exist ten lines on X(2,5) of the form
L(ij) = {(4) € (P') : & = 4} /PGLy(C) = P'.

By definition it holds L(ij)NL(jk) =¢ (i #j # k #i). Notice that X(2,5) —
X°(2,5) is just the union of these ten lines, and that X(2,5) is isomorphic to the
blow-up of P? at four points. We can see the blow down 7 : X(2,5) — P? by
the following way: for a point on X(2,5), we take the specialized representative
(A1,72,23,0,00) and regard [4; : /s : A3] as a point on P>. Then we obtain the
following correspondence;

Pi=1[1:0:0]=n(L(15)), P,=[0:1:0]=n(L(25)),
Py=1[0:0:1]=n(L(35)), Ps=][l:1:1]=n(L(45)),
and
n(X°(2,5) ={[l:da: 3] eP i # 4y (i #)),i,j=1,2,3,4},

For five distinct numbers i, j, k,/,m in {1,2,3,4,5}, we define a divisor
D(ijklm) on X(2,5) by

D(ijklm) = L(ij) + L(jk) + L(kl) + L(Im) + L(mi).
As easily shown, every D(ijklm) is linearly equivalent to the divisor
3n*H — L(15) — L(25) — L(35) — L(495),

where H is a line on P2, This is anti-canonical and very ample. In fact, we
have the following proposition by direct calculations.

ProposITION 1.1.  For twelve (ijkim), set
J (Giklm) (2) = dij(2)di(2)dia (2) i (X) i () (di(2) = abi — aiby),

where [a; : b] is the projective coordinate for J; € P'. Then the equation J(ijkim) -
(A) =0 defines the divisor D(ijklm) and the map

J:X2,5) =P JA)=1[-:J(ikim)(A) ;-]
is an embedding.

REMARK 1.1. In terms of affine coordinates 4; = b;/a;, we have

J(kim)(2) (A — 4) (4 — Ac) (e — 40) (A = An) (A — 4i)

T(pgrst)(2)  (Zp = 2q)(Ag = ) (A = 2s) (As = 20) (A = 4p) -

We use this notation in following sections.
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2. The family of pentagonal curves and the periods.
Let us consider the algebraic curve
Ci 2y = (x = A1) (x = A2)(x = 43)(x — Za)(x — As),
A= (A1, %, 23,04, 45) € (P1) — 4.

Set # ={C,: e X°(2,5)}. We regard C; as a five sheeted cyclic covering over
P! branched at J; by the projection

n:C,— P!, (x,y)— x.

By the Hurwitz formula, the genus of C; is six. We have the following basis of
H’(C;, QY):
2.1) dx dx xdx dx xdx x? dx
. =7, ¥y = —=, O3 =—=, Vs =7, Vs = ——7—, Pe = .
1 yz 2 y3 3 y3 4 y4 5 )/4 6 )/4

Let p denotes the automorphism of order five:

p:Cr— Gy (x,p) = (x,0) (= exp(2nvV—1/5))

on C;.
NotATION 2.1. Throughout this article { stands for exp(2zv—1/5).

Next, we construct a symplectic basis of H;(C), Z).

Let 2" = (40,29, 43,2, 42) € X°(2,5) be a real point with A < --- < 12, and
let Cy be the corresponding curve. Take a point xy € P! with Im(xy) < 0, and
make a line segment /; connecting xo and /1? (i=1,...,5). Then 2 = P! — U [;
is simply connected and we can choose an isomorphism

v: XX Z/5Z — 1)

such that the fiber coordinate k € Z/5Z satisfies v(x,k+ 1) = p(v(x,k)). Let
a(i, j) be the open interval (/1?,/1]9) c Rc 2. We obtain five arcs
ar (i, j) = v(a(i, j),k) (k=1,...,5)
in Cy. Let us consider 1-chains
(22) (i ) = (0 ) U (a7 (3,72 G0} (k=1,....5)
with the common boundary du(i, ) =7 '(A)) — 7 1(2)). We define cycles

]
V1,72, 73 on Cp combining these chains;

no=o(1,2) + (2, 1),
(23) V2 = 4 (3’4) + 062(4, 3);
y3=o1(1,3) + 0(3,4) + a3(4,2) + a2(2,1).
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We set
Av=p1, A=y, A3 =73, As=p>(n), As=p(1), 4s=p*(13),
(24) S Bi=p()+p (1), Ba=p(a)+0 (), Bs=p(ys) +p*(3),
By=p(1), Bs=p (), Bs=p(r3).
The intersection numbers of these cycles are given by
Al"Aj:Bl"Bj:O, Alszéy

So, {4;,B;} is a symplectic basis of H;(Cy,Z).

Let / be a point on X°(2,5), and suppose an arcr from A” to A. Since the
family 7 is locally trivial as a topological fiber space over X°(2,5), by using this
trivialization along r, we obtain the systems {ox (i, j)(4)}, {y;(4)} and the sym-
plectic basis {A4;(4), Bi(4)} on C,. We have the relation (2.4) between {y,(41)}
and {4;(4), B;(1)} also. We note that {4;(4), B;(1)} depend on the homotopy
class of r.

Now, we consider the period matrix of Cj:

Loov o Lo Jgor - Jpon

The normalized period matrix Q(1) = Q = Z;!'Z, belongs to the Siegel upper
half space of degree 6:

S ={Qe GLs(C) : 'Q = Q, Im(Q) is positive definite}.

The automorphism p acts on H°(C;,Q') and H,(C;,Z). So we have the
representation matrices R € GL¢(C) and M € GL;5(Z) of p with respect to
the bases {¢;} and {A4;, B;}, respectively. It holds RII = [IM where R =

diag(C37 Cza 4’2’ C7 C; C) Put

o5 e (2 (28

Then the matrix ¢ belongs to the symplectic group

0 I
Spia(Z) ={ge GL(Z): 'gJg=J}, J= (_16 (f)

and it holds
Q= (4Q+ B)(CQ+ D).
By the definition (2.4) of A4;, B;, we have
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(2.6) II = (a,b,c,R*a,R*h,R*c,(R+ R¥)a,(R+ R*)b,(R+ R*)c,R*a, R*b, Re),

where we denote

t t t
a_<J (plu"'uJ ¢6>7 b_<J ¢17"'7J (p6>7 C_<J (017---7J (06)
N 71 72 72 73 73

According to (2.4),

p(A1) = p(») = (p(y) +p° (1) = P’ (1) = B1 — Bs.

By the same way, we can describe p(4;),...,p(Bs) in terms of {4;, B;}. So we
can determine M, and obtain

10 0 0 0 0 -1 0 0 0 0 0
0 10 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 -1 0 0 -1 0 0 -1
10 0 0 0 0 -1 0 0 -1 0 0
0 -1 0 0 0 0 0 -1 0 0 —1 0
0o 0 1 0 0 -1 0 0 0 0 0 0
@D =11 9 010 0 0 0 0 0 0 0
0o 1 0 0 -1 0 0 0 0 0 0 0
0o 0 0 0 0 1 0 0 0 0 0 0
o 0 0 1 0 0 0 0 0 0 0 0
0o 0 0 0 1 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 1 0 0 0
Put

1) = I (2) - ma(2) ()] € P mw:j o, nzwzj o1, m() = j o

71 72 73

These are multi-valued analytic functions of A. The Riemann period relation
for (2.6) induces

1-+/5

2
2 ’7]3’ < 07

2 2
| ” 4 o] ™ +

namely, # = (1,,7,,%;) belongs to the complex ball

: 1 -5
(2.8) B, = {yeP?: 'jHn < 0}, H—dlag(l,l, f)

2

Next, we express Q2 in terms of # explicitly. Write a = (4;), b = (b;) and ¢ = (¢;).
Then, the Riemann bilinear relation I7J'IT = 0 induces the following equations:
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e = —(C+O)Naay +biby)fe1, 3= —(C 4 C)aaz + bibs)/cr.

By substituting them for Z;,Z, in II we can proceed the calculation of Q =
Z'Z, (using a computer). Hence we have the following:

LEmMMA 2.1. Let A = ;712 + ;73 — 53(1 + ()n%. The period matrix Q = (Q;) is
given by

Qu= =D +0+Cm +n)/4, Qu= =Ci+n = (1 +0m3)/4,
Q= =)+ +n+u3)/4, Qss= =C(Cni +m5 = (1+0n3)/4,
Q5 = =D+ =Cn/4, Q= =Cli+m - (1+m3)/4,
Qi = (& =Omm/4, Qus = (& =)ymmy/ 4,
Q15 = (& =Omm/4, Qu= (& = Omim/ 4,
Qi3 = (1= s /4, Qn = (1= nans /4,
Qus = (& =Omms /4, Qs6 = (&* = Qmans/ 4,
Q16 = (& =Omns /4, Q= (& = Omons /4,
Qs = (1= Cymms /4, Q35 = (1= Cnans /4,

Qi = [+ )i +n3 = C(1+ )3 /4.
Now we define our period map
D:X°(2,5) = By, A [1i(4) 1 1ma(4) 1 m3(A)];

that is multi-valued analytic. The above Lemma says that the original period
map 4 +— Q(A) factors as

X°(2, 5) — Bz — 66.

Throughout this paper, we denote the matrix in by Q(n).

3. The monodromy group and reflections.

The multi-valuedness of @ induces a unitary representation of the funda-
mental group

(3.1) Vim(X°(2,5) = I = {g e GL:(Z[)) : 'gHg = H}.
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We call Im(y) the monodromy group of @. The group I acts on B, (left
action). The structures of our monodromy group is studied in [16]. Set

I't-{)={gel:g=1 modl — (}.

THeOREM 3.1 (T. Yamazaki, M. Yoshida [16]). (1) The monodromy group of
the period map @ coincides with I'(1 —{) and the quotient I'/(+1)['(1 —{) is
isomorphic to the symmetric group Ss.

(2) The quotient By/I'(1 — () is biholomorphically equivalent to the blow up
of P? at four points.

REMARK 3.1 (see [16]). There are ten (—1)-curves on B,/I'(1 —{), and Ss
acts transitively on them.

According to and [16], it is proved that I" and I'(1 — () are reflection
groups and generator systems are given also. We expose those generator system
in a form adapted for our calculation in the later sections.

Let us take the reference point A° € X°(2,5) again. Now we define the half
way monodromy transformation ¢, induced from the permutation of /1? and /13.
Let us consider a continuous arc Rj» in X°(2,5) starting from A:

(3'2) }“(Z) = (/ll(t)vi2(t)7’1(3)7’127’12)7 (0 sI= 1)
such that (Figure 1)
L) =20 L)=2), 0<Im(i(r) <Im(L(r) (0<t<1).

ﬂz(l)
f—_"il(l‘)
0 0 e 0 0 R
A /) 23 2 As
Figure 1.
Let n(¢) = n(4(t)) be the corresponding periods. Recall the definition [2.3). We
get 15(1) = 2(0),75(1) = 75(0) and (1) = —p(y,(0)). Hence,
(1) =0 0\ [m(0)
m) = 0 1 0 1,(0)
75(1) 0 0 1) \7(0

The matrix in the right hand side belongs to I, and we denote it by g;,. We
define g; (1 <i<j<5) by the same manner. Set h; = 95
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ProrosITION 3.1 (see [17]). The monodromy group of @ is generated by

(33) Mo, s, g, o, B
Let us define two reflections on B, with respect to a root o as
5 t=
. 3, ‘aHn B aHn
L) =n-(1+8) oa R =n—(1+0 5o

Then we see that
LemmA 3.1.  Set
op = (1,0,0), o3 = (C,1,—(1+0)), o34 =(0,1,0), ous=(0,1,0),
oy = (1, =1,14+0), g =(1,0,1+9).
Then we have g; =Ty, hj =Ry, and g; is of order ten, hy is of order five.
REMARK 3.2. The group I' is generated by {gi2, 923,934,945} and +1.

The deformation of the curve C;, along Ris in induces a symplectic
basis {A4;(t),B;(t)} onit. So {4;(1),B;(1)} is again a symplectic basis on C,o.
Hence we obtain a symplectic transformation

(Bi(1),...,Bs(1), 41(1) ..., 46(1)) = §12"(B1(0), . .., Bs(0), 41(0) ..., 46(0)).

A B
F b =
() ( C D
Recall R;, induces the change of cycles (y;,75,73) — (=p(y1),72,73). Together
with (2.4), we obtain:

>> we have Q(y(1)) = (42(1(0)) + B)(CQ(0) + D).

S O = O O =
S O = O O O o o o

=2
—

|
—_—
S O O O O o oo o o~ O
S O O O O O o o o = o O
S O O O o o o = O O o O
S O O O O O = O O o o O
S O O O O O O oo =, O o =
S O O O = O O O O o o o
S O O = O O O O o o o o
S O O O O O o o = O O O
S = O O O O O o o o o o
—_ O O O O O O o o o o o

o O O o O

By the same consideration, we obtain the following:
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—1

923

(3.5)

000 0O0O0O0

0

0

0

0 0 0 O

1
0000 O0O0O0
000 0O0O0O0

0

0
0

0

0 0 0

0

000 0O0O
00 0 00

1

0

0 1
0 0
0

0
0

0 0 00
1
0 00O

0 0

1

1

0
0

0 0
0
0
-1
0

—1

0

0 00 0 0 0
1
0 0 0 O

0
0

0

0

1

0 0 O
0

0

000 0 O0 01

0

934

(3.6)

-1 0 0 -1 1
0

0
1

1
1

0
0

-1 0 0
0 0

-1

0
0

—1

A

945 =

(3.7)
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By sending g;; to g;, we define a homomorphism
I = Aut(H((Cy0, Z)) = Spia(Z), g+ 4.
ReEMARK 3.3. Since we have the relations
ho= (1) ha=(9)" hu=(gu)
his = (g23) " (912)°923,  Tua = (923930) " (912) 923934,

we can obtain Ay, hy3, hig, Moz, hag.

4. Degenerate loci.

According to and the result of T. Terada ([14]) the period map
@ induces a biholomorphic equivalence X°(2,5) = B5/I'(1 —{) (B =Im®),
moreover it has the unique extension

@:X(2,5 = By/I(1-0),

the projection By — B,/I'(1 —{), and let /(ij) denote n~!(®D(L(ij))).
Now we consider a degenerate curve

P = (= 2) (= Ja)(x — Aa)(x = 2s)

with (A1, 41,43, 44, 45) € L(12), and putting A" = (41, 43,44, 45) we denote it by
C,. Let C, denote the non-singular model of C,. It is a curve of genus
4. Set 71, be the totality of C,. For the parameter (1°)' = (A}, 13,43, 49)
the cycle y, vanishes onNCN‘( 205 but p, and p; are still alive. So we can define
A, B; (i=2,3,5,6) on C; by the same argument as for C;,. Hence we obtain
a basis {4;,B;} (i=2,3,5,6) of Hi(C;,Z). By putting A’ =(0,1,7,0) the
period

and ) L(ijj) = X(2,5) — X°(2,5) corresponds to (B, — B5)/I'(1 —{). Let n be
(

(4.1) J xBx—1)Px=-0"dx, (yeH|(Cy,2Z))

on C‘,«L/ gives a solution for the Gauss hypergeometric differential equation
E271(1/5,2/5,4/5)Z

d®u /4 8\du 2
(42) l(l—l)ﬁﬁ—(g—gl‘)E—gu—O.

The corresponding monodromy group is the triangle group A4(5,5,5) (see [13],
(17], [18, p. 138]). Set

B, ={neB,:n =0},
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it is the mirror of the reflection gi,. By using the system {y,,7;} we define a
multi-valued map

@12 . L(IZ) — Bl, A [O . 772(1) . 773(/1)]

It induces the restriction @) L2+ By the same manner we obtain that ?| LG 18
the mirror of the reflection g;. Suppose 4€ L(12) and set n = 5(l) = @12(4).
By putting 7, =0 in [Lemma 2.1, we see that

o 0 , oy Q -1 2+
w9 ew=(gn gr) e (o ot)=n= (515 )

with a certain element Q'(5) € ;. Moreover, in case 7, =1[0:0:1]e/(12)N
/(34) we have

Q1 914) (922 st) <Q33 -Q36>
44) Q = @ @ =70 D19 D 79.
(4.4) Q) <Q41 Qa4 Qs Qss Qa3 Qe O

5. Theta functions.

5.1. Invariant theta characteristics.

We recall several basic facts on the Riemann theta function (see [4] and [9]).
For a characteristic (a,b) € (RY)*, the theta function O 4,5)(2,2) on CI x S is
defined by the series

O,p(z,Q) = Z exp[nV—1'(n+ a)Q(n+ a) + 2nvV—1'(n + a)(z + b)).

neZ?
This function satisfies the following relations
(5.1) Oup)(z +m, Q) = exp(2nV/—1'ma)@ , 1 (z, Q),
(5.2) B (z+Qm, Q) = exp(—aV—1'mQm — 2nv/~1"m(z + 5))6 . ) (z, Q)
for me Z9. For nyme ZY, we have
(5.3) O asn bim) (2, Q) = exp(2nV/—1'am) O, ) (z, Q),
and it holds
(54) O (_a,-1)(2,2) = Oy 1) (—2, Q).
The theta constant @, 4)(2) = 6,4, (0,2) satisfies the following transformation

B
) € Spr(Z), set

formula (see [4, pl76]) as function on &,. For g= <C D
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(5.5) gQ = (42 + B)(CQ + D)™
(5.6) g(a,b) = (Da — Cb,—Ba + Ab) + % ((C'D)y, (A'B),)

1 1
(57)  Punlg) =—- 3 (‘a’DBa —2'a'BCh + 'b' CAb) + 3 (‘a'D —'b'C)(A'B),

where (A4), stands for the diagonal vector of a matrix 4. Then we have
(58)  Oyan)(9R) = K(9) exp(2nv'~14, ,(9)) det(CQ + D) ?6y, 1) (@)
where, x(g) is a certain 8-th root of 1 depending only on g.
ReEmARrk 5.1. By definition, we have
Oun)(2, Q) = exp(nV—1'aQa + 2nV~1'a(z + b))O .0 (z + Qa + b, Q),
so we often identify a characteristic (a,b) e (RY)* with Qa+be C?. For

A B
c D € Spyy(Z), we have

Q'(Da — Cb) + (—Ba + Ab) = '(CQ + D) ' (Qa + b),
where Q' = (4Q + B)(CQ+ D).
Henceforth we consider only the characteristics (a,b) € ((1/10)Z°)%,

LemMA 5.1. Let o be the matrix in (2.7) and write a = (a;), b = (b;).
(1) We have o(a,b) = (a,b) mod Z if and only if

1
Sa) = 7 da=a, by = =2a1, by = —a
1
Say = 2 as =ay, by=-2ay, bs=-a modZ.
1
5(13 = 5, as = as, b3 = —2613, b6 = —a3
(2) Let (a,b) be the characteristic with the above condition. Then we have

g(a,b) = (a,b) modZ for all ge I'(1 —1).

Proor. (1) Using the exact form (2.7) we can describe o(a,b). Then we
deduce the assertion.

(2) The transformation (a,b) — g(a,b) in (5.6) define a group action of the
symplectic group on (R/Z) % (see [4]). We can check that the equality for every
member of the generator system {/;} of I'(1 —{). O
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NotaTION 5.1. We denote an element (a,b) € ((1/10)Z%")* of the form
1

a:mt(C”,az’...,an,a17a27"'7an)’
b:Et(_zal’—zaz,...,—zan,—a],_az,...,_an)a (ala-.'aan EZ)
by [[al,..-,dn]]-

DermNniTION 5.1, Let (a,b) be a characteristic satisfying the condition in
Lemma 5.1 (1). Then we have (a,b) = [[a1,a2,a3]] (mod Z) with odd integers
ai,ay,a3. We call [[a1,a,a3]] of this type a “‘g-invariant” characteristic, and
we set

9[[611,612,613“ = {77 €B;: @[[m,az,asﬂ(‘g(ﬂ)) = 0}

REMARK 5.2. By the transformation formula (5.8) and [Lemma 3.1, we see
that

@[[a17a27a3ﬂ(gg(77)) = (a unit function) X @Halﬂzﬁa]](g(n))

for a g-invariant characteristic [[a;,a»,a3]] and g e I'(1 — (). Hence if we have
n e HNar,az,as3)], then the I'(1 — {)-orbit of » is contained in I[|a,ar,as]].

LEMMA 5.2. Let [[a1,a2,a3]] be a a-invariant characteristic. If 2a? + 2a3 +
ag ¢ SZ, then Oy, 4.4y vanishes on B.

ProOF. We apply the transformation formula (5.8) for g = ¢*. Using the

A B )
) we obtain

explicit form of g = ¢* = (C D

1
B (0°) = 35 201 +203 + a3), det(CQAn) + D) = 1

for all # € B,. By (5.3), we may put
@04[[a1,a2,a3]](‘g) = exp[27zv —IZCZWI]@Hal’az’a}H(.Q)

for a certain m € Z°. Returning to the explicit form of o*[[a;, ay,as]] we should
get m. We check that exp[2zv—1'am| =1 by a computer aided calculation.
Hence we have

|
@[[017027Q3H(Q(;7)) = K(U4) exp 2_0” \% _1(2a12 + 2“5 + a%) @[[al,az,ag}](g(’?))

for all #n e B,. This implies our assertion since x(¢*) is an 8-th root of 1. []
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We consider odd integers aj,a,,a; modulo 10Z. There exist 25 representatives
of the g-invariant characteristic [[a;, a2, a3]] satisfying the condition 2a} + 243 +
2 )

ay € 52

(11, 1 4] 0L 1910 {11, 9, 1, {19, 141, 118, 3, 510 111, 7, 511,

(5.9)
3, 1,5]], (7, 1, 5]}, (13, 3, 311, [[3, 3, 711, [[3, 7, 3]}, [[7, 3, 3],

and [[5,5,5]] together with the inverses [[9,9,9]] = —[[1,1,1]],....

REMARK 5.3.  The characteristic [[5, 5, 5]] is an odd half integer characteristic
(see [9]), hence Oys s 5(L2) vanishes identically.

By using the explicit form of g; in [3.4}{3.7), we obtain gy,[[ai,as, as]].
Consequently we have

LemMa 5.3.  Let [[a1,ay,a3]] be a member of the system (5.9). The group I’
acts transitively on the set of twelve 9[[ay,a,as]].

5.2. The zero loci of twelve theta functions.

Here we state Riemann’s theorem. Let C be an algebraic curve of genus
g, let {4;, B;} be a symplectic basis of H;(C,Z) such that 4;- B; =J;, and let
{w;} be the basis of H°(C, Q") such that [, w; =d;. Then Q = ([, w;) belongs
to &,. We denote ([ w1,..., [,a,) by [ o.

THEOREM 5.1 (see [9], pl49). Let us fix a point Pye C. Then there is a
vector A€ CY, such that for all z € C?, multi-valued function

P

f(P) =0, (z—I—J co,Q) (Pe ()

Py

on C either vanishes identically, or has g zeros Qi,...,Q, with

9 0
ZJ =-—z+4+4 modQZ9+ Z9.
i=1 7P

REMARK 5.4 (see [9]). (1) The vector 4 in the theorem is called the Riemann
constant, and depends on the symplectic basis {A4;, B;} and the base point Py.
Once {A4;, B;} and P, are fixed, then A is uniquely determined as a point of the
Jacobian J(C) = CY/(QZ7 + ZY) by the property of the theorem.

(2) If we take Py such that the divisor (2g — 2)Py is linearly equivalent to
the canonical divisor, then we have 4 € (1/2)QZ + (1/2)Z.

CorOLLARY 5.1 (see [9]). Under the same situation as the theorem,
Ou(2) =0 if and only if there exist Qy,...,Q, € C such that
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91 0
A—(Qa+Db)= ZJ o.
i=1 7P
Now, let us return to our case. Let 1°e X °(2,5) and Cj be as in Section 2
and wy,...,ws be the basis of H’(Cy, Q') such that JAI» w; = d;;. We denote the
ramified points over A? e P' by P,e Cy. Let us take a base point P, arbitrarily
among {P,...,Ps} and let 4y be the Riemann constant with respect to {4;, B;}
and Py.

LemMmA 5.4. The Riemann constant Ay corresponds to the characteristic
15,5, 3]].

ProOF. The divisor of the holomorphic 1-form (x—/l?)zdx/y“ is 10P;.
Hence 4 is a half integer characteristic (see Remark 5.4). For z=Qa+b

A B
(a,beR®) and o = (C D)’ applying (5.8) we have

(5.10) Op(4,--)(2) = (a unit function) x Oy, -(Q),
since 02 = Q. By (5.6) and Remark 5.1, we have

o(do —2) = ady — '(CQ+ D) 'z.
Hence it holds

@aAo—’(CQ—l—D)"z(‘Q) =0& @AO,Z(.Q) =0

S (9
== ZJ w for 3Ql,...,Q5€C()

i=1 JPo

by [Corollary 5.1. Namely, putting w = "(CQ + D)*lz we have

5.0
@MO_W(Q):O@)’(CQJFD)WE ZJ o for 3Ql,...,QseCo.
i=1 JPo

Let us recall that ¢ is the symplectic representation matrix of p with respect to
the basis {4;, B;} of H{(Cy,Z). And we have

(1 Q)(;g :j):(f(cgﬂ)) (42 + B) = (CQ+D)(I Q),

so '(CQ+ D) is the representation matrix of p with respect to the basis
{wi,...,w¢} of H(Cy,2'). Hence it holds

Opsty(Q) =0 w = iJQi(pl)*w = XS:J

i=1 9 Po i=1
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Recalling Remark 5.4 (1), this implies that g4, is the Riemann constant, that is
agdy = Ap. Hence we have 4y = [[5, 5, 5]], since [[5, 5, 5]] is the unique o-invariant
half integer characteristic. ]
Next, let us consider the oriented arcs oy (i, j) defined by (2.2) and the integrals
vr we (i j) @

LEMMA 5.5.  The integral fak(i j) @ is a five torsion point on C°/(QZ°+ Z°).
In an explicit way, we have

Lk(l,z) o = [[6,0,0]], Lkm) o =[[8,2,6]], Lk<1,4> w = [[8,8,6]], Lka,s) w = [[8,0,8]]

mod QZ°® + Z°

under the identification referred in Remark 5.1 (Note that any oy (i, j) is written as
a combination of o (1,2), ax(1,3), ox(1,4) and ax(1,5)).

Proor. Since Dj; = o;(1,5) — «;(1,5) is a cycle, we see that fa,(l 5 @
Lo 5@ mod QZ° + Z°. And we have

¢1:(2—52—C3)J ?1-

o =|
JD12+D15 : 20(1(175)—062(1,5)—065(1,5) 061(1,5)

By the same calculation, we see that

<2—¢—§4>j o (k=123

D,+D;s
J P =
061(1,5)

1

S J[2—/)2—P3](1)12+D15)

| — | —

<2—¢2—c3>j o (k=4.56)

Dy>+Dis

?f-

Calculating intersection numbers, we have the following equality
[2 —p2 — ,03](1)12 + D15) =24, +2A43+ A4+ A¢ +4B1 +4B3 — By — Bg

as homology classes. Hence it holds

| o
061(1,5)

1
- (0]
5 241+2A3+A4+A¢+4B1+4B3;—By—Bg

1

ol o =[8,0,§]
—60A4,—6A5—8A44—8A¢+8B1+8B3+8B4s+8B¢

By the same way, we obtain the results for oy(1,2), ax(1,3) and ox(1,4). [
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Let C; (A€ X°(2,5)) be any element of our family #. We defined in Section 2
the systems {ox (i, j)(4)}, {7;,(4)} and {4;(4), B;(4)} on C, depending on the arcr.
The point Py has always the same meaning. So and 5.5 are true
for C, using these notations. Let A4 =[[5,5,5]] denote the Riemann constant
on C;.

Now, recall that B; and /(i) stand for ®(X°(2,5)) and n~'(®(L(ij))),
respectively (see Section 4).

PropoSITION 5.1.  Let [[a1,ay,a3]] be a a-invariant characteristic in (5.9).
Then we have 9[[ay,as,a3]] N B; = ¢.

Proor. Let us consider a curve C=C; (A€ X°(2,5)) and its period
Q=2Q;. We assume that Oy 1(2) =0. According to [Corollary 5.1, there
exist points Qi,...,Q0s € C such that

5

Qi
S| o=a-in10= 144

i=1

On the other hand, by [Lemma 3.3, we have

JwaWAMLJZwEWﬂﬂL

Hence 1t holds
Oi Py P3

Z J w = 2J w + J .
=1 JPs Ps Py

By Abel’s theorem, the divisor Y./ Q; is linearly equivalent to the divisor
D =2P, + P; — P4+ 3Ps, and we have

(5.11) dim H°(C, ¢(D)) —dimH°<c,@<§g: Q,-)) > 1.
i=1

For the effective divisor D' = D + P4, we have
dimH’(C,0(D")) = dimH°(C,Q'(-D")) + 1

by the Riemann-Roch. We claim that dimH%(C,Q'(-D’)) =0. In fact, the
basis {¢,;} is written as

PL=00, 0=V, O3=XVp, P4=0, P5s=X0, @g=X0

o by T
(695%, f(X)H(X—/Ii)>,

i=1
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and we have following vanishing orders;
ordp,(y) =1, ordp(x—4;) =5; ordp(p)=0 (i,j=1,...,5).
Because any holomorphic 1-form is written in the form
(quadratic polynomial of x, y) x ¢,
we see that there is no holomorphic 1-form ¢ such that
ordp (&) =2, ordp, (&) =1, ordp (&) > 3.

Hence we have dimH°(C, (D)) = 1, that is, H’(C,0(D')) contains only con-
stant functions. This contradicts (5.11), since H(C, ¢(D)) < H*(C,0(D")) and
D is not effective. So we have [[1,1,1]]NB; = ¢. Now the assertion follows
from Lemma 5.3. ]

Hence §[a;,as,a3]] is a union of several /(ij)’s.

LemMA 5.6. Let ny be the point [0:0:1] € By, and let [[a1,a2,a3]] be a
member of (5.9). If ay,ay,a3 € {1,9}, then we have @Hal,az,ag]}(g(’?o)) # 0.

Proor. We have
(5.12)
(-1 CZ+C3)
g+ ¢

(see (4.4), Notation [5.I]). So our assertion is reduced to the inequality
Oy (t0) # 0, since O is a constant multiple of @y. Set (a,b) = [[1]],
n="(n;,ny) and

f(n1,m7) = exp[rv=1("(n + a)to(n + @) + 2'(n + a)b)].

Olla1,a2,a:)) (2(10)) = O] (70) O]} (70) Oas)) (T0), 70 = <

By definition, @j(v0) =>_, ,,cz.f(m,m). For simplicity, we denote n+a by
m = (my,m;). By elementary calculation, we see that

. (2
| (n1,m2)| = exp l—nsm (g) {m? + (3 — V/Symim; + mg}] .
In case mymy >0, we have

|f(n1,m)| < exp l—n sin <2§) {m12 + m% ]

In case mymy < 0, we have
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[ 27\, , 5
|f(n1,m)| < exp|—mnsin 5 {mi +mymy +mj3}

[ 2 1 1
= exp|—7nsin (g) {E(mf +m3) + §(m1 + mz)ZH

[ 2
< exp —g sin <?7z> {(m? + mg}] :

. (2
lnm)| <o (= exp| S sin ()]

for any n;,mye Z. Set

Consequently,

Dy ={(n,m)eZ*: -10<n;,n <10}, D, =Z>—- Dy,

and consider the summations
Si=> flmm), Si=> flu,m).
D D,

Using a computer, we can evaluate |S;| and |S,|. We have an approximate value
|S1] = 1.13746.. .,

by Mathematica. On the other hand, we have

1So] < Y Iy m)| < amitm,
D2 D2

The last term is very small. For example,

m?+m? n n OCIO 1 . -7
Z o 1+2<<Zo¢1><2a2><1_a)(l_a)—,5.40545x10 ,

n1>10,n,>0 n>10 ny >0

and the same calculations shows |[Si| > [S2|. This implies (7o) =
S1+ 8, #0. ]

Lemma 5.7. (1) If we have ay = 3,7 mod 10, then O 4 4 vanishes on
£(12).
(2) If we have ay = 3,7 mod 10, then O, 4 4y vanishes on £(34).

A B
PROOF. Set g =g, = ( > and set Q = Q(n) with n =1[0: 7, : 3] € B,.

c D
By the computation same as the one in the proof of Lemma 3.2, we have
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L

g2 = Q, det(CQ + D) =(, ¢[[a1,a2,a3ﬂ(g) = %ala @g[[al,a27a3]} (‘Q) = @[[a17az,a3ﬂ(g)'

Hence it holds
2
Ollay.ar,0) (2)° = exp lgﬂv —1(af - 1)] Ofar,ar,ax) (2)°.

Therefore O, 4,,4,)(L2(77)) vanishes on the mirror of gi» provided a; =3,7
mod 10. This implies assertion (1). The assertion (2) follows from the same

argument with g = g34 and # = [, : 0 : i53] € Bs. O

PROPOSITION 5.2.  We have Table 1 for the vanishing loci of twelve theta
constants coming from the system (5.9). In the table, “v” implies that O, 4, a])
vanishes along the corresponding divisor /(ij), and the blank implies Oy, 4, 4 i
not identically zero there. For example, Oy ) vanishes on /(13) and is not
identically zero on /(12).

[la1,az,a3]] || £(12) | £(13) | £(14) | £(15) | £(23) | £(24) | £(25) | £(34) | £(35) | £(45)
[1,1,1]] v v v v v
[1,1,9]] v v v v v
[1,9,1 v v v v v
19,1,1]] v v v v v
1, 3, 5]] v v v v v

1,7,5] v v v v v
(3,1, 5]] v v v v v
(17,1, 5]] v v v v v
[[3,3,3]] v v v v v

3,3,7 v v v v v
[3,7,3 v v v v v
[[7,3,3]] v v v v v

Table 1.

Proor. By [Lemma 3.7,
Oprs, Ouusy Opsss Opsrs Opras Opss)
vanish on /(12), and
Onss Onasys Opssy Opars Oprss Opss)
vanish on 7(34). By [Lemma 3.6,
Oy O Oy, O
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are not identically zero on /(12) and on /(34), since 7, =[0:0:1]e/(12)N
/(34). The result is obtained by applying the transformation formula (5.8) for
the above theta constants and g;. For example, we have

@gu%“ahaz,aﬂ](g12g459) = (a unit function) X Ollay, a, 3] (Q).

Since §129as([1,3,5]] = [[9,9,1]] and g12945(£(12)) = /(12), we see that Oy 35 is
not identically zero on /(12). O

5.3. Automorphic factor.

We study the automorphic factor appeared in the transformation formula
(5.8) with respect to I'(1 —{) and Q@ =Q(y). Let Q be the diagonal matrix
diag(1,1, -3 (1 4+¢)). We denote nQn by {n,5>. Set

-2

for geI" and n € B,. Obviously, we have the following lemma.

Lemma 5.8.  F,(n) satisfies the cocycle condition with respect to I'.  That is,

Fyg,(n) = Fy (92m)Fy, (),  g1,92€ 1.
PROPOSITION 5.3. There exists a non trivial character
ol —ps={1,¢...,¢Y
such that

det(CQ(n) + D) = x(9)Fy(n) (1 € By)

A
for g e I', where the matrix ( C D> is the symplectic representation § of g¢.

PrOOF. According to the case by case calculation, we have
det(CQ(n) + D) = CFy(n)  (n¢€ By)

for g = 912,923,934, 945. Since det(CQ(y) + D)/F,(n) satisfies the cocycle con-
dition, we obtain the result. ]

Now let (a,b) =[ai,a»,as])] be an invariant characteristic, and set (a,,b,) =
g(a,b) for ge I'(1 —{). Since (ay4,b,) = (a,b) mod Z, we have

Oja,p)(R2) = O4,,5,)(R) = O, —ata,b,~b+5) () = exp2nV —1"a(by — b)]|O 4 1) (2)

by (5.3). Set



188 K. KOIKE

¢[/[a1,a2,a3]] (g) = ¢[[a1,a2,a3ﬂ(é) - la(bg - b)

Then we can write the transformation formula (5.8) as

(5.13)
@Ha1,a2,a3]](‘g(g77)) ( )exp(2n\/—¢ [[a1, a2, a3] ( ))[X(g)Fg(””lﬁ@[[m,aza3ﬂ(‘Q(’7))a

where x(g) is a 8-th root of 1 depending only on g.
LemMA 5.9. Let g be in I'(1 —={). Then, the values

[exp(2nV'=1¢1, 10 0 (@)
are the same for all twelve characteristics [[ay,a,as]] in (5.9).

Proor. By direct calculation, we have

- 1 - 3 - 1
5¢[/[a1,a2,a3]](h12) = ]’ 5¢[,[a1,a2,a3]](h13) = 4’ 5¢[/[a1,a2,a3]](h14) = 3

- 3
’ 5¢[/[a1,a2,a3]](h34) = Z (mOd Z)

| =

5¢[/[a1,a2,a3” (i123) =
for the twelve [[a1,a»,a3]). According to [Lemma 3.8, the equality (5.13) shows
that

K(g) eXp[zTC v _1¢[/[a1,a2,a3]](gA)]
is a character on I'(1 —{). So we obtain the result for all ge I'(1 —{). [

CoOROLLARY 5.2. Let [[aj,ay,a3]] and [[b1,by,b3]] be in (5.9). Then, the
function

Ollar,as,05 (2(1))
Olfs, s, 1) (2(1))°

is well-defined as a meromorphic function on B,/I'(1 — ().

Let Q = Q, be the period matrix of a curve C; (1€ X°(2,5)), Py be a ramified
point of C — P

PROPOSITION 5.4. Let [laj,ay,a3]] and [[by, by, bs]] be in (5.9). The function
P 5
@Hal,az,%]](ulﬂpo W, Q)
P 5
Oy, by, 15 ([ p, @5 2)

is a single-valued meromorphic function on C,, where the paths of integrations in
the numerator and the denominator are chosen to be the same.

f(P)= (Pe ()
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Proor. Note that [Proposition 5.1 asserts

Py
@[[dl,dz,a3ﬂ <JP @, .Q> = const. X @[[al,a27a3ﬂ(0,9) # 0,
0

where the constant depends on the path of integration. So the numerator is
not identically zero, and the same argument goes for the denominator. By the
assumption we have

2
lar, as, as]] — [[br, ba, bs]] € Gzﬁ) |

By using the formula (5.1} and (5.2) we can check that

/

P 5 P 5
@Halﬁa27a3” (IPO @ + Qm + n’ Q) @[[al,az,agﬂ (IPO CO? Q)

P - P
Oy b b)) (Jp, @ + @+ 1,2)° Oy, ([, 0, 2)°

for m,ne Z°. This implies single-valuedness of f. ]
Let us consider the meromorphic function
P 5
_Opay(fp Q)
- P 5
O33.7)(Jp, @, 2)
on C,. By [Lemma 3.5, we have

f(P)

P P Py

a-mi=@#ad) =2 o+3] or| o
Jp, Jp, Jp
P> P Py

4-13,3,7]=1[2,2,8]=3| o+2| o+]| o
Jp, Jp, Jp

By [Corollary 5.1, the zero divisor of @[[1,171]](112 ,Q) and @[[37377”(151 w,Q) are
2P, +3P3; + P4 and 3P, + 2P; + P4 respectively. Hence we can write

where x(P) is the coordinate function x e Clx, y]/(»° — [[(x —4;)) and ¢ # 0 is
a certain constant. By [Lemma 3.3,

Jm w = [[0,0,0]], J: w = [[8,0,8]].

Py

Substitutes P = Py, Ps in the above form, then we obtain
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Ou1,1,1([0,0,01,2)°  A—25  Opy([8.0,8],2)°  Js—is

=c : =c .
Op,37([0,0,0,2)° A=A Opsq([8.,0,8],2)° 4~ A

Set [[8,0,8]] = Q&' +¢”. By elementary and patient calculation, we have
O1.1.17([18,0,8]), 2)° = —Pexp[-5nv—1'e'Qe’ — 10nv/—1'e'e")0y1 5 1(2)°
Os.5.7([[8,0,8]],2)° = exp[—Sav—1'e'Qe' — 10nv/—1'e'e"|O3.5(R2)°.
Eliminating ¢, we have the following equality

O.111(2)°0p555(R)° (= 23) (s — )

O3,3,7)(2)7O1.9,1(2)° (21— 22)(As — 43)”

Note that we can regard the above equality as that of meromorphic functions on
B,/I'(1 —{) =~ X(2,5). By the above equality and [Proposition 5.2, we see that
1. The vanishing order of @[[171,1]}(9(;7))5 on ®(L(13)) is 1,
2. The vanishing order of @[[1,375“(9(77))5 on @(L(25)) is 1,
3. The vanishing order of O3 3 7;(2(1))> on S(L(12)) is 1,
4. The vanishing order of @[[17971”([2(;7))5 on ®(L(35)) is 1.
Because " acts transitively on the set of g-invariant characteristics (see
5.3), we obtain the following result.

PROPOSITION 5.5. Let [[ai,az,as]] be a o-invariant characteristic. If the
multi-valued function 9[[a1,a2,a3ﬂ(9(77))5 on By/I'(1 —{) vanishes identically on
D(L(if)) = /(i) /T (1 =), then the vanishing order is 1.

6. Conclusion.

Now we state our results.

—The Schwarz inverse for the Appell HGDE F,(3/5,3/5,2/5,6/5)—

Recall the embedding J : X(2,5) — P! in [Proposition 1.] and the extended
period map @ in Section 4.

THEOREM 6.1. We have a commutative diagram:

X(2,5) e B,/I'(1-{)

Pll
Figure 2.
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(6.1)
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[clz---:c6:d1:---:d6]:[1:—1:1:1:C3:C3:—C:C:C:—C:—l:—I]EPH.

Moreover the map O is an embedding.

ProoF. By [Proposition 5.2 and [Proposition 5.5, the zero divisor of the i-th
component of @ coincides with that of the i-th component of J via the iso-

morphism @. Hence the assertion is obvious except determination of the ratios
of constants ¢;, d;.
The ratios are obtained by elementary (but complicated) calculation.

we omit it, for the details see [5].

Let Ky be the canonical class of X = X(2,5).

COROLLARY 6.1.

n=0

We have an isomorphism of C-algebras

ClOur.0n)(20m)°] = @ HX, Ox(—nKy)),

Here

]

where the left hand side is the C-algebra of the functions on B, generated by the

twelve theta functions in Theorem 6.1.

{01,005 (R(n))°} coincides with H* (X, Ox(—Ky)).

Especially the C-vector space spanned by

ProorF. The map J is essentially the anti-canonical map (see Section 1).

Hence the assertion follows from [Theorem 6.1.

]
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ReEMARK 6.1. By the Riemann-Roch theorem, we obtain

dlmHO(X, (QX(—I’ZKX)) = (—nKx) . (—I’ZKX — KX) + 1

nn+1)+1,

D N —

since (—Ky)-(—=Kx)=5. So we have dimH’(X,0x(—Ky)) =6, and twelve
theta constants {@[[al,az,a3ﬂ(g(77))5 } satisfy 6 independent linear equations. It is
known that the image of X in P> by the anti-canonical map is determined by the
system of quadratic equations (see [2, Chapter 5]).

—The graded ring of Automorphic forms—
Recall the automorphic factor F,(n) in [Lemma 5.8. We consider the auto-
morphic function f(x) on B, in the sense that we have

(6.2) flgn) = F,(n)"f () for ge I'(1-20),

where k 1s a non negative integer. Let us denote the vector space of holo-
morphic functions satisfying (6.2) by Ax(F,).

PROPOSITION 6.1.  Let [[a},ay,a3]] and [[by, b, b3|| be members of the system
in (5.9), then it holds

@[[al,a27a3]](‘Q(q))S@[[bthsz(Q(ﬂ))s € AS(FQ)'
Proor. By (5.13) and [Lemma 5.9, we have
(63) @[[al,az,m”(‘Q(gﬂ))sg[[bl,bz,/nﬂ(‘Q(gr]))s

= K(g) 10 eXp(27Z v _1¢[/[a17a27a3ﬂ(g))10Fg(’7)5

X Olar 42,05 (1)) Oy 1,0 (Rg))
for ge I'(1 —{). We must show
(6.4) 1(9) expQav/ =14y, 4y 0 (9))]" = 1
for ge I'(1 —{). Let 5, be the point
(the mirror of Aj2) N (the mirror of h3s) =[0:0: 1] € Bs.

Then 7, is fixed by hjy and h3s. Moreover, Fy(n) = for hj; and hss. So we
have

@[[1,1,1]](9(’70))10 = [x(g) exp(2n\/——1¢[’[171,1”(g))]10@“17171“([2(170))10 (9 = M2, h34)
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by [6.3). Since Oy 1,1(2(1)) # 0 (see Proposition 5.6), we obtain for Ay
and /3. By the same way, we see that holds for any member /; of the

generator system of /(1 —{). Hence it holds for all ge I'(1 —{). ]

THEOREM 6.2. (1) We have an isomorphism of the C-algebras:

D Asu(Fy) = ClO1a; ay.a1 (1) Ottty by 55 (R(1))°)]
n=0

~ é H°(X, Ox(—2nKy)).
n=0

(2) A,(F;)) ={0} for ne N, n=1,2,3,4 mod 5.

Proor. By [Proposition 6.1, f € As(F,) defines a meromorphic function

S ()
Oyp1,1,1(R(n)) "

on B,/I'(1-{). So, by [Theorem 6.1, we have the isomorphism of C-vector
spaces:

Asy(F)) = HY(X,0x(~2nKy)) for neN.

Hence we have the assertion (1).

Next let us recall that X is the blow up of P? at 4 points. We denote this
blow up by 7: X — P?>. Then the Neron-Severi group NS(X) has a system of
free generator E, E», E3, E4 and 7n* H, where {E;} are the exceptional curves with
respect to 7, and H is a general line on P>. For n ¢ 5Z, there is no divisor
D on X such that 5D = —2nKy, since —Ky =3n*H — E; — E, — E5 — E4. This
implies the assertion (2), since

A, (F))° < Asy(F)) =~ H(X, Oy (—2nKy)). O

—The Schwarz inverse for the Gauss HGDE E, ;(1/5,2/5,4/5)—
Let us consider the 1-dimensional disk

B, ={neB,:n =0},

and the degenerate period map
@ :L(12) =P - B, t— [0:] a):J a)]
72 73

w=x*"x-1)(x-0" dx,
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as in Section 4 (the parameter A is specialized as (4;,...,4s) = (0,0,1,¢, c0)).
Set

Ir(1-0,={g9erl(1-{):g(B1)= Bi}.

As we mentioned in Section 4, this is the triangle group 4(5,5,5) up to the
center. Recall those are the Schwarz map and the monodromy group for Gauss
hypergeometric differential equation E» (1/5,2/5,4/5) (see [4.2)).

THEOREM 6.3. The map
01 :B/T(1-0), =P, 5 [0p1Q1) : =619 (Q1)]

is an isomorphism, and this is the inverse map of the Schwarz map

&P — B/ T(1-0),, [1:1~ {O:J a):J w]
72 73
Proor. By [Theorem 6.1, the restriction of the meromorphic function
O1,1,91(2(n))°

Op11.1(R(n))°

on L(12) is of degree 1. In fact, L(12)NL(13) = L(12)NL(14) =L(12)N
L(15) = ¢, so the numerator vanishes at only L(12)N L(35) with order 1, the
denominator vanishes at only L(12)N L(45) with order 1, and L(12) N L(35) #
L(12) N L(45) (see Section 1). Hence the map ©;, is an isomorphism.
Moreover, by [Theorem 6.1, we have the equality

Op1.1.9)(2(n))° (= A8)(hs — As)(As — A) (Ao — Aa) (A4 — A1)
Op1 (@) (4 —23)(As = 22)(l2 — Aa)(Aa — A5)(4s — A1)

on By/I'(1 —{) = X(2,5), and this induces the equality

O111,1,9)(R(n))° _ (= 4s) (24 — 1)
O Q) (=)A= 4s)

on L(12). Putting (41, 43,44,45) = (0,1,¢,00), we obtain

(43 = 4s)(Aa — A1)
(A3 =) (e — 45)

Let us consider a holomorphic function f on B; satisfying the condition:

flgn) = Fy()*f(n) for ge I(1-0),,

and we denote the C-vector space of such functions by M (F).
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COROLLARY 6.2. (1) We have an isomorphism of C-algebras:
@ Ms, (F g)
n=0

= ClOp.1 (M), Op1.1.11(21) O1.1.9y(R2())7, O 1oy (R(m)) "]

~ C[xg, xoxl,xﬂ

o0

@ HO(Pl, @Pl (—I/IKPI)),
n=0

12

where [xo : x1] is homogeneous coordinates of P'.
(2) M,(F;) ={0} for ne N, n=1,2,3,4 mod 5.

Proor. The assertion (1) is a direct consequence of [Corollary 6.2 and
Theorem 6.3. The assertion (2) is obtained by the same argument as the proof
of [Theorem 6.2 ]
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