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On commuting canonical endomorphisms of subfactors
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Abstract. In the Jones Index theory, Longo’s sector theory has been a powerful
approach to the analysis for inclusions of factors and canonical endomorphisms have
played an important role. In this paper, two topics on commuting canonical endo-
morphisms are studied: For a composition of two irreducible inclusions of depth 2
factors, the commutativity of corresponding canonical endomorphisms is shown to be
the condition for the ambient irreducible inclusion to be of depth 2, that is, to give a
finite dimensional Kac algebra. And an equivalent relation between the commuting
co-commuting square condition and the existence of two simultaneous commuting
canonical endomorphisms is discussed.

1. Introduction.

In the Jones index theory ([10]), we have recognized the notion of com-
muting squares ([18], [2], etc.) is very important from the beginning. In par-
ticular, we have studied commuting co-commuting (or non-degenerate commut-
ing) squares ([21], [20]). On the other hand, Longo’s sector theory ([14], [6],
etc.) has got a precious position in index theory for inclusions of properly infinite
factors, and canonical endomorphisms have played an important role. In this
article, we would like to study two kinds of inclusions of factors via “commuting
canonical endomorphisms”.

In §2, we study the commutativity of canonical endomorphisms appearing
in a composition of inclusions of factors: let L be a properly infinite factor with
P15, € End(L), and we assume that each of the inclusions

Lop(Ly=M and M >pp,(L)=:N

is an irreducible one with finite index and of depth 2 ([17]). Then we show that
the following are equivalent:

(1) The inclusion L o N is irreducible and of depth 2.

(2) dimHom(p;p;,p,p;) =1 and the canonical endomorphisms p;p, and
p,p, commute in Sect(L).
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Izumi and Kosaki make an intensive study on the classification of finite
dimensional Kac algebras and they give several concrete examples via this kind
of compositions of two inclusions ([7], [8]).

In §3, we recall basic facts on commuting co-commuting squares, in par-
ticular, the existence of a simultaneous canonical endomorphism for a com-
muting co-commuting square shown by Guido and Longo in [3]. We show that
these two simultaneous canonical endomorphisms for a commuting co-commuting
square have the commutativity to give several properties of extensions. After
that, we see an equivalent relation between the commuting square condition and
the existence of two simultaneous canonical endomorphisms.

Our approach in this article depends heavily on Longo’s sector theory and
we shall freely use standard notations and well-known facts on the sector theory
(4], [6], [13], etc.).

The author would like to express his sincere gratitude to Professor Roberto
Longo for the hospitality in Tor Vergata university where the second half of
this work was almost completed. He is also grateful to the referee for fruitful
comments.

2. Commuting canonical endomorphisms appearing in a composition of
depth 2 inclusions of factors.

Let L be a properly infinite factor with p,, p, € End(L), and we set y; := p, ;.
In this section, we assume that each of the inclusions

L>p(L), L>py(L)

is an irreducible one with finite index and of depth 2, and let us consider the
endomorphism p := p;p, € End(L) and the inclusion

L= p(L) (=pipa(L)).

In general, if y; and y, commute, then the odd powers of the canonical endo-
morphism for p = p;p, is described as the products of those for p; and p,. In
the present case, we have more:

THEOREM 2.1. Let L be a properly infinite factor with p;,p, € End(L), and
we assume that each of the inclusions

L>p(L), L>py(L)

is an irreducible one with finite index and of depth 2. Then the following are
equivalent:
(1) The inclusion L = pip,(L) is irreducible and of depth 2.
(2) For the canonical endomorphisms y, = p,p; and yy, = p,p,, we have
dim Hom(y,,y,) =1 and y,7, = y,y, in Sect(L).
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COROLLARY 2.2. Let L be a properly infinite factor with p,,p, € End(L), and
we assume that each of the inclusions

Lop(Ly==M and M >pp,(L)=:N

is irreducible and of depth 2. Then the following are equivalent:
(1) The inclusion L > N is irreducible and of depth 2.

(2) dimHom(pypy,pyp;) =1 and pypipap; = p2p2pipy in Sect(L).

Recall that for inclusions L > M > N of properly infinite isomorphic factors,
we have endomorphisms p,,p, € End(L) such that M = p,(L) and N = p;p,(L)
([15]). We remark that p;(L) o p;p,(L) is isomorphic to L > p,(L) and both of
the irreducibility and the depth 2 condition for the endomorphism p, correspond

to those for the conjugate p;. Therefore, we apply to get |Corollary}
2.2.

REMARK 1. As in [Theorem 2.1, let us consider the inclusion L = pyp,(L)
and assume that each of the inclusions

L>p(L), L>py(L)

is of depth 2 but not necessarily irreducible. If y,7, = 7,7, then it follows from
direct calculations of ppp that the inclusion L o p(L) is of depth 2.

In order to show Theorem 2.1, we prepare lemmas. At first, recall the fol-
lowing: an inclusion L = ¢(L) is irreducible if and only if dim Hom(p, ¢) =1 and
an irreducible inclusion L o ¢(L) is of depth 2 if and only if dim Hom(pp, pp) =
(dp)?, where dp means the statistical dimension of ¢ ([4, 15]). Thanks to the
Frobenius reciprocity, for the endomorphism p = p;p,, we have

dim Hom(p, p) = dim Hom(p, p,, p,p,) = dim Hom(y,, ;)
and

dim Hom(pp, pp) = dim Hom(pyp, 201, p1p2P201)

= dim Hom(y;7,,7271).

By the discussion so far, we have

LemMma 2.3.  The inclusion L = p(L) = p,p,(L) is irreducible and of depth 2 if
and only if dimHom(y,,7,) = 1 and dimHom(y,75,7,71) = (dp)* = (dp;)*(dp,)°.

Next we recall the following Cauchy-Schwarz type inequality:

Lemma 2.4 ([5, Lemma 16]). For p;,p, € Sect(L), we have
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(dim Hom(p,, p,))” < dim Hom(py, p;) x dimHom(p,, p,).
When dp, = dp,, the equality occurs here if and only if p, = p, € Sect(L).

This lemma gives the following characterization on the commutativity of
canonical endomorphisms:

LemMa 2.5. We assume that p,,p, € Sect(L). Then we have y,y, = y,7, €
Sect(L) if and only if dimHom(y,y,,7,y,) = dim Hom(y7,73).

PrOOF. Assume the latter condition holds. By [Lemma 2.4, we have
. 2 . .
(dim Hom(y,7, 7,71))" < dimHom(y,y,,17,) x dim Hom(y,7y,7,71)
= (dim Hom(y7,3))".

The assumption means that this inequality becomes the equality. And remark
that d(y;7,) = d(py7) (=(dp,)*(dp,)*). Hence, applying Lemma 2.4, we get
the commutativity of the canonical endomorphisms p; and y,. The other
implication follows from direct calculations. ]

Now we give a proof of [Theorem 2.1

ProoF. We only show the implication from (1) to (2). The depth 2
assumption of p; and p, means that

pipipr = (dp)pr,  papaps = (dpy)’pa,
so that we have
V% = (dpl)z)’u V% = (dpz)zyz-
Hence, we have
dimHom(y7,73) = (dp;)*(dp,)* dim Hom(y,, 7,) = (dpy)’(dp,)’

by the irreducibility, i.e., dim Hom(y,,y,) = 1. The depth 2 assumption for the
irreducible inclusion L o p(L) corresponds to

dim Hom(y, 75, 7,71) = (d/))2 = (dl)l)z(dpz)z
by Lemma 2.3. Hence, combining these equations, we have
dim Hom(y;75,7,71) = (dpy)*(dpy)* = dim Hom(y7, 3),
therefore, applying Lemma 2.5, we get the commutativity of y; and y,. O

ExampLE 2.6. Let P be a properly infinite factor and let H and K be
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finite groups with outer actions o = {ap}, . and f = {f;},cx on P. For the
inclusions

L:=Px,H>P>PKH —{xeP,f(x)=x (keK)}

(1], [7], [8]), we choose endomorphisms p;,p, on L satisfying P = p,(L) and
PEB = p py(L). In this case, p,p, (€Sect(L)) corresponds to P, .S
(eSect(P)) via the identification L > p,(L) with P (=p,(L)) 2 P&F) (=p,p,(L)),
and pyp; may similarly be identified with P, _, (o] via the identification L =
pr(L) with P (=p,(L)) = pp;(L) = PH:%) Hence, we may think that p, and
p, are endomorphisms on P with pp; = @] and p,p, = P[F]. Then the
irreducibility PN p,p,(P)" = C is equivalent to

{lealthen N IBel ke = {lid]}

in Sect(P) = Out(P) = Aut(P)/Int(P), and the commutativity of p;p,; and p,p,
just corresponds to

{[“h][ﬂk]}heH,keK = {[B] [ah]}heH,keK'
Therefore, applying [Corollary 2.2, we have

PROPOSITION 2.7. Let P be a properly infinite factor and let H and K be finite
groups with outer actions o.= {ay}, .y and = {P;},cx on P, and we assume that

these two groups {op},cy = H and {fi}cx = K have the trivial intersection
(HNK = {e}) in Out(P) = Aut(P)/Int(P). Then the irreducible inclusion

Px,H>PEP .—xeP.p(x)=x (keK)}

is of depth 2 if and only if the product HK forms a group, that is, HK = KH holds
in Out(P).

We remark that Izumi and Kosaki give an intensive study on finite
dimensional Kac algebras by considering this kind of inclusions and more general
ones in which commuting canonical endomorphisms appear. (See [7], [8].)

3. Simultaneous canonical endomorphisms and commuting
co-commuting squares.

Let
L o M
U U
N o K

be inclusions of properly infinite factors with finite index, and we simply denote
these by (L, M,N,K). In this section, we treat only minimal conditional expec-
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tations and denote the minimal expectation from L onto K (resp. M,N) by
EE (resp. EL,EE). We call (L,M,N,K) a commuting square ([18], [2]) if
ELEL = ELEL = EL is satisfied. 1f a commuting square (L, M, N,K) satisfies
[L: M],= [N :K], (and/or [L: N], = [M : K],), it is said to be co-commuting or
non-degenerate ([19], [21]).

For a commuting co-commuting square, Guido and Longo show the exis-
tence of a simultaneous canonical endomorphism:

ProrosiTioN 3.1 ([3, Proposition 2.3]). Let (L,M,N,K) be a commuting
co-commuting square of properly infinite factors with finite index and LNK' = C.
Then there exists a canonical endomorphism y%, for L > M whose restriction to N
is a canonical endomorphism for N o K.

A simultaneous canonical endomorphism is obtained as follows ([3]): let ¢
be a bicyclic state for M > K and let us consider the faithful state o EL =
wzeL, (e L*(L),). Wesete:=[ME] = [K¢] and take an isometry v € (N, e)
with w* =e. Then I := ¥1o® turns out to be a common canonical
endomorphism for both L > M and N > K, where ¥ and & are *-isomorphisms
given by ¥ = Adv: L — Me and @ : M =~ Me. (See [16, Proposition 2.9].)

In this case, we get the inclusions

Li:=<Ley o L > M =y/(L) o yL)
U U U U
Nyi=(N,e) > N o K =y(N) = p(K),

where the s*-isomorphism y,:L; — L is defined as the extension of y with
71(e) € K. Since the inclusions (Li, L, N;, N) is commuting and co-commuting,
so is the inclusions (M, y(L),K,y(N)).

For two simultaneous canonical endomorphisms for (L, M, N, K), we have

Lemma 3.2. Let (L,M,N,K) be inclusions of properly infinite factors with
canonical endomorphisms y, : L — M and y, : L — N satisfying that y|y (resp.
V2lys) s a canonical endomorphism for N o K (resp. M > K). Then the products
Y172 and y,y, are canonical endomorphisms for L > K and their difference is in
Int(K).

Proor. We have
AdJgJp, = AdJxJy o AdJyJL
= (Adug o y,|y) o AdJyJL
= (Adug o y,) o (Aduy o 7,)

= Adugy,(uy) © 9175,
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where ugx € K and uy € N are suitable unitaries. We remark that ugy,(uy) € K.
Similarly, we have

AdJgJy, = AdJxJy o AdIyJp = Ad(vgy,(un)) 2

for unitaries vx € K and uy; € M, and we also have vgy,(vy) € K. Hence, we
get the conclusion. ]

THEOREM 3.3. Let (L, M,N,K) be inclusions of properly infinite factors with

simultaneous canonical endomorphisms y, : L — M and y, : L — N. Suppose that
LNK'=C. Then we have

MNy(N) =C.

Proor. We may write M =p,;(L) and N =p,(L) for p,,p, € End(L).
Since y, = p;p; € Sect(L, M), we have

MOy (N) = p (L) Npyprpa(L) = py (L0 Pipy(L)").

Therefore, it is sufficient to show the irreducibility of p := p;p, € Sect(L). By
the Frobenius reciprocity, we have

dim Hom(p, p) = dim Hom(p,p, p,p5,1dL).

Thanks to [Lemma 3.2, we have p,p,p,p, = 7,7, = yk. Hence, the irreducibility
of L o K implies the last dimension is 1; therefore, we get the conclusion. []

This proposition means that an irreducible commuting co-commuting square
gives another irreducible one: starting from a commuting co-commuting square,
we have three kinds of other extensions. Applying Theorems 2.1 and 2.2 in
[20], we get that if one of them is irreducible and of depth 2 then so are the
others. As an application of [Lemma 3.2, we have an alternative proof:

ProrosiTiON 3.4 ([20, Theorem 2.2|). Let (L,M,N,K) be a commuting
co-commuting square of properly infinite factors with LNK' = C. Suppose that
both of the inclusions L > M and L > N are of depth 2. Then so is the inclusion
LoK.

ProOF. Let us denote
M =p\(L), N=py(L), K=pp3(L)=pyp4(L)=p(L)
for py,py,p3,pa,p € End(L). Then the assumption means
piopr = (dp)pi, papapy = (dpy)’ps.
Hence, by [Lemma 3.2, we have
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pop = (P1P1P2P2)P = P1P1(P2P2P2)P4
= Plp_l((dﬂz)zﬂzm) = (dl)z)z(mp_l/’l)/h
= (dp,)*((dpy)*pip3) = (dpy) (dpy)’p = (dp)°p.

Therefore, we are done. ]

We remark that in and similar results in [I1], can be
proved similarly.

In the remainder of this section, we would like to show that the existence of
common canonical endomorphisms implies the commuting co-commuting prop-
erty: let

L o M
U U
N o K

be inclusions of properly infinite factors with finite index. And assume that
(i) there is a canonical endomorphism y, : L — M such that y|y is a
canonical endomorphism of N o K,
(ii) there is a canonical endomorphism y,:L — N such that y,|,, is a
canonical endomorphism of M o K,
(iif) the inclusion L o K is irreducible.
In this case, we have

[L:M],=[N:K], (and/or [L:N],=[M :K])).
And moreover, we have

TueoREM 3.5. The set of inclusions (L, M,N,K) forms a commuting
co-commuting square.

The following lemma is due to H. Kosaki.

LemMA 3.6. There exists a non-zero isometry u in K such that y,(x)u = ux
for each xe M.

Proor. Since y, : L — M is a canonical endomorphism, there is an iso-
metry u € M such that

71 (x)u =ux for each xe M.

We have to show that u actually belongs to the smaller factor K. Since M > K,
we obviously have
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(3.1) y1(x)u =ux for each x e K.

On the other hand, by the assumption (i) y,|y : N — K is also a canonical
endomorphism, and hence we can also find an isometry # in K such that

(3.2) y1(x)u =ux for each x e K.

Let 1k p be the inclusion map considered as an element in Sect(K, M). Let
? = y1|x be the restriction considered as an element in Sect(K) (so that ix., y o
y € Sect(K, M)). Then, (3.1) and (3.2) mean

ik pyoy(x)u=xu and g pyoyp(x)u=ux for each xeK.

This means that both of ue M and # € K = M are intertwiners between the two
K-M sectors i1x—,p 09,1k~ m. By the assumption (ii), y (=y,|y) =pp with
peSect(K) and y,(N)=p(K), a downward basic extension of N o K.
Therefore, we have

dim Hom(1x  pr 0 9,15 pr) = dim Hom(ig <, pr 0 pp, 1k < )
= dim Hom(ig — ps 0 p,1x— pr 0 p).
The algebra of self-intertwiners of g,y o p € Sect(K, M) is
M0 (ix—uop(K))' = MNp(K)".

Since p(K) = y,(N), the above relative commutant is one-dimensional by Theo-
rem 3.3. Therefore, u and u differ only by a scalar, and we conclude u e K. []

By the symmetric arguments, we can also take an isometry v € K such that
7,(x)v = vx for each x e N.

PrOOF. (Proof of [Theorem 3.3) Taking intertwiners u,v e K as above, we
set

E:=u"y(Ju, F:=v"p()

By Proposition 5.1 in and the assumption (iii), the map E is the common
conditional expectation for both L > M and N > K, and the map F is one for
both L >N and M o K. Therefore, the products EF and FE coincide with
the conditional expectation EZ from L onto K because of the uniqueness of a
conditional expectation for the irreducible inclusion L o K. Hence, we get the
conclusion. ]

REMARK 2. Let (H,2),(K,p) be as in [Proposition 2.7, and we consider the
following inclusions of fixed point algebras:
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pKp) o pH,a)n pK.f)

We point out that these inclusions have the commuting canonical endomorphisms
p1py and p,p,, and actually we have the following:

PrROPOSITION 3.7. Let P be a type II or type Il factor, and let H and K be
finite groups with outer actions o= {op}, .y and = {Pi}rcx on P. We consider

the implementing unitaries {up};, .y of {on}ycy and {viticx of {Pitrex on the
standard space L*(P), and we set M = {P v {up}, .y} s N ={P Vv {v}cx}’

and L:= M v N. Assume that ¢(oy) and &(fx) have the trivial intersection in
Out(P) and that the inclusion

p - plH.a) n pKp)

or L o> P has finite index. Then the extensions

L o M
U U
N o P

form a commuting square and [L : P] = |e(ay) v e(fg)|. Moreover, these exten-
sions or

P = plH,2)n pK.p)

form a commuting co-commuting square if and only if [L : P| = |HK| or H v K =
HK (=KH) in Out(P).

We just give a sketch of a proof for a type III inclusion, because the
argument is similar to that of Theorem 6.2 in [21]: let G be the group generated
by é(ay) and &(fg). For each ge G, we choose a unitary w, €L and an
automorphism 0, € Aut(P) such that 0, =adw,, &0, =g, we=e, 0.=ce,
We(oy) = Un, Wyp,) = Uk, and w, is a word consisting of u, and v;. For a
conditional expectation E = EL, we have E(wywy) =0 (g #h) to obtain the
projection g := Zg wgeléwg* e (L,eL>. The finite index assumption implies that

w>EY )= E\(JgJ) = E”! (Z JwgJegjw;J) el

hence G is finite. Each element of the *-algebra
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Ly =<x= E XgWy : Xg € P
ge@G

has the unique expression; x, :E(xwg*), so the *-algebra L, is closed with
respect to the strong operator topology, hence we have L =L1,. To see the
relative commutant LN P’, we have y(3;, x,wy) = (3., Xgwy)y, or yx5 = X40,().
Because of the freeness of 0, (g #e), x,=0 (g #¢) and x, e PNP' = C, that
is, LNP' = C. This implies wyw; € Pwy,, and we have a unitary representation
v, with y, € Pw, (9], [22]) to get the outer action y of G on P such that

7y = ady,. 1In this case, we can show that

L o M
U U
N o P

is 1somorphic to

P>, G o Px,H
U U
P>, K > P,

and this forms a commuting square. The latter part of the proposition follows
from Theorem 7.1 in [21].
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