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Abstract. In the Jones Index theory, Longo’s sector theory has been a powerful

approach to the analysis for inclusions of factors and canonical endomorphisms have

played an important role. In this paper, two topics on commuting canonical endo-

morphisms are studied: For a composition of two irreducible inclusions of depth 2

factors, the commutativity of corresponding canonical endomorphisms is shown to be

the condition for the ambient irreducible inclusion to be of depth 2, that is, to give a

finite dimensional Kac algebra. And an equivalent relation between the commuting

co-commuting square condition and the existence of two simultaneous commuting

canonical endomorphisms is discussed.

1. Introduction.

In the Jones index theory ([10]), we have recognized the notion of com-

muting squares ([18], [2], etc.) is very important from the beginning. In par-

ticular, we have studied commuting co-commuting (or non-degenerate commut-

ing) squares ([21], [20]). On the other hand, Longo’s sector theory ([14], [6],

etc.) has got a precious position in index theory for inclusions of properly infinite

factors, and canonical endomorphisms have played an important role. In this

article, we would like to study two kinds of inclusions of factors via ‘‘commuting

canonical endomorphisms’’.

In §2, we study the commutativity of canonical endomorphisms appearing

in a composition of inclusions of factors: let L be a properly infinite factor with

r1; r2 A EndðLÞ, and we assume that each of the inclusions

LI r1ðLÞ ¼: M and MI r1r2ðLÞ ¼: N

is an irreducible one with finite index and of depth 2 ([17]). Then we show that

the following are equivalent:

(1) The inclusion LIN is irreducible and of depth 2.

(2) dimHomðr1r1; r2r2Þ ¼ 1 and the canonical endomorphisms r1r1 and

r2 r2 commute in SectðLÞ.
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Izumi and Kosaki make an intensive study on the classification of finite

dimensional Kac algebras and they give several concrete examples via this kind

of compositions of two inclusions ([7], [8]).

In §3, we recall basic facts on commuting co-commuting squares, in par-

ticular, the existence of a simultaneous canonical endomorphism for a com-

muting co-commuting square shown by Guido and Longo in [3]. We show that

these two simultaneous canonical endomorphisms for a commuting co-commuting

square have the commutativity to give several properties of extensions. After

that, we see an equivalent relation between the commuting square condition and

the existence of two simultaneous canonical endomorphisms.

Our approach in this article depends heavily on Longo’s sector theory and

we shall freely use standard notations and well-known facts on the sector theory

([14], [6], [13], etc.).

The author would like to express his sincere gratitude to Professor Roberto

Longo for the hospitality in Tor Vergata university where the second half of

this work was almost completed. He is also grateful to the referee for fruitful

comments.

2. Commuting canonical endomorphisms appearing in a composition of

depth 2 inclusions of factors.

Let L be a properly infinite factor with r1; r2 A EndðLÞ, and we set gi :¼ ri ri.

In this section, we assume that each of the inclusions

LI r1ðLÞ; LI r2ðLÞ

is an irreducible one with finite index and of depth 2, and let us consider the

endomorphism r :¼ r1r2 A EndðLÞ and the inclusion

LI rðLÞ ð¼r1r2ðLÞÞ:

In general, if g1 and g2 commute, then the odd powers of the canonical endo-

morphism for r ¼ r1r2 is described as the products of those for r1 and r2. In

the present case, we have more:

Theorem 2.1. Let L be a properly infinite factor with r1; r2 A EndðLÞ, and

we assume that each of the inclusions

LI r1ðLÞ; LI r2ðLÞ

is an irreducible one with finite index and of depth 2. Then the following are

equivalent:

(1) The inclusion LI r1r2ðLÞ is irreducible and of depth 2.

(2) For the canonical endomorphisms g1 ¼ r1r1 and g2 ¼ r2 r2, we have

dimHomðg1; g2Þ ¼ 1 and g1g2 ¼ g2g1 in Sect(L).
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Corollary 2.2. Let L be a properly infinite factor with r1; r2 A EndðLÞ, and

we assume that each of the inclusions

LI r1ðLÞ ¼: M and MI r1r2ðLÞ ¼: N

is irreducible and of depth 2. Then the following are equivalent:

(1) The inclusion LIN is irreducible and of depth 2.

(2) dimHomðr1r1; r2 r2Þ ¼ 1 and r1r1r2 r2 ¼ r2 r2 r1r1 in SectðLÞ.

Recall that for inclusions LIMIN of properly infinite isomorphic factors,

we have endomorphisms r1; r2 A EndðLÞ such that M ¼ r1ðLÞ and N ¼ r1r2ðLÞ

([15]). We remark that r1ðLÞI r1r2ðLÞ is isomorphic to LI r2ðLÞ and both of

the irreducibility and the depth 2 condition for the endomorphism r1 correspond

to those for the conjugate r1. Therefore, we apply Theorem 2.1 to get Corollary

2.2.

Remark 1. As in Theorem 2.1, let us consider the inclusion LI r1r2ðLÞ

and assume that each of the inclusions

LI r1ðLÞ; LI r2ðLÞ

is of depth 2 but not necessarily irreducible. If g1g2 ¼ g2g1, then it follows from

direct calculations of rrr that the inclusion LI rðLÞ is of depth 2.

In order to show Theorem 2.1, we prepare lemmas. At first, recall the fol-

lowing: an inclusion LI jðLÞ is irreducible if and only if dimHomðj; jÞ ¼ 1 and

an irreducible inclusion LI jðLÞ is of depth 2 if and only if dimHomðjj; jjÞ ¼

ðdjÞ2, where dj means the statistical dimension of j ([4, 15]). Thanks to the

Frobenius reciprocity, for the endomorphism r ¼ r1r2, we have

dimHomðr; rÞ ¼ dimHomðr1r2; r1r2Þ ¼ dimHomðg1; g2Þ

and

dimHomðrr; rrÞ ¼ dimHomðr1r2r2r1; r1r2 r2r1Þ

¼ dimHomðg1g2; g2g1Þ:

By the discussion so far, we have

Lemma 2.3. The inclusion LI rðLÞ ¼ r1r2ðLÞ is irreducible and of depth 2 if

and only if dimHomðg1; g2Þ ¼ 1 and dimHomðg1g2; g2g1Þ ¼ ðdrÞ2 ¼ ðdr1Þ
2ðdr2Þ

2.

Next we recall the following Cauchy-Schwarz type inequality:

Lemma 2.4 ([5, Lemma 16]). For r1; r2 A SectðLÞ, we have
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ðdimHomðr1; r2ÞÞ
2
a dimHomðr1; r1Þ � dimHomðr2; r2Þ:

When dr1 ¼ dr2, the equality occurs here if and only if r1 ¼ r2 A SectðLÞ.

This lemma gives the following characterization on the commutativity of

canonical endomorphisms:

Lemma 2.5. We assume that r1; r2 A SectðLÞ. Then we have g1g2 ¼ g2g1 A

SectðLÞ if and only if dimHomðg1g2; g2g1Þ ¼ dimHomðg21 ; g
2
2Þ.

Proof. Assume the latter condition holds. By Lemma 2.4, we have

ðdimHomðg1g2; g2g1ÞÞ
2
a dimHomðg1g2; g1g2Þ � dimHomðg2g1; g2g1Þ

¼ ðdimHomðg21 ; g
2
2ÞÞ

2
:

The assumption means that this inequality becomes the equality. And remark

that dðg1g2Þ ¼ dðg2g1Þ ð¼ðdr1Þ
2ðdr2Þ

2Þ. Hence, applying Lemma 2.4, we get

the commutativity of the canonical endomorphisms g1 and g2. The other

implication follows from direct calculations. r

Now we give a proof of Theorem 2.1.

Proof. We only show the implication from (1) to (2). The depth 2

assumption of r1 and r2 means that

r1r1r1 ¼ ðdr1Þ
2
r1; r2 r2r2 ¼ ðdr2Þ

2
r2;

so that we have

g
2
1 ¼ ðdr1Þ

2
g1; g

2
2 ¼ ðdr2Þ

2
g2:

Hence, we have

dimHomðg21 ; g
2
2Þ ¼ ðdr1Þ

2ðdr2Þ
2 dimHomðg1; g2Þ ¼ ðdr1Þ

2ðdr2Þ
2

by the irreducibility, i.e., dimHomðg1; g2Þ ¼ 1. The depth 2 assumption for the

irreducible inclusion LI rðLÞ corresponds to

dimHomðg1g2; g2g1Þ ¼ ðdrÞ2 ¼ ðdr1Þ
2ðdr2Þ

2

by Lemma 2.3. Hence, combining these equations, we have

dimHomðg1g2; g2g1Þ ¼ ðdr1Þ
2ðdr2Þ

2 ¼ dimHomðg21 ; g
2
2Þ;

therefore, applying Lemma 2.5, we get the commutativity of g1 and g2. r

Example 2.6. Let P be a properly infinite factor and let H and K be
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finite groups with outer actions a ¼ fahgh AH and b ¼ fbkgk AK on P. For the

inclusions

L :¼ Pca HIPIPðK ;bÞ
:¼ fx A P; bkðxÞ ¼ x ðk A KÞg

([1], [7], [8]), we choose endomorphisms r1; r2 on L satisfying P ¼ r1ðLÞ and

PðK ;bÞ ¼ r1r2ðLÞ. In this case, r2 r2 ðASectðLÞÞ corresponds to 0
k AK

½bk�

ðASectðPÞÞ via the identification LIr2ðLÞ with P ð¼r1ðLÞÞIPðK ;bÞ ð¼r1r2ðLÞÞ,

and r1r1 may similarly be identified with 0
h AH

½ah� via the identification LI
r1ðLÞ with P ð¼r1ðLÞÞI r1r1ðLÞGPðH;aÞ. Hence, we may think that r1 and

r2 are endomorphisms on P with r1r1 ¼ 0½ah� and r2 r2 ¼ 0½bk�. Then the

irreducibility PV r1r2ðPÞ
0 ¼ C is equivalent to

f½ah�gh AH V f½bk�gk AK ¼ f½id�g

in SectðPÞ ¼ OutðPÞ ¼ AutðPÞ=IntðPÞ, and the commutativity of r1r1 and r2 r2
just corresponds to

f½ah�½bk�gh AH;k AK ¼ f½bk�½ah�gh AH;k AK :

Therefore, applying Corollary 2.2, we have

Proposition 2.7. Let P be a properly infinite factor and let H and K be finite

groups with outer actions a ¼ fahgh AH and b ¼ fbkgk AK on P, and we assume that

these two groups fahgh AH GH and fbkgk AK GK have the trivial intersection

ðH VK ¼ fegÞ in OutðPÞ ¼ AutðPÞ=IntðPÞ. Then the irreducible inclusion

Pca HIPðK ;bÞ
:¼ fx A P; bkðxÞ ¼ x ðk A KÞg

is of depth 2 if and only if the product HK forms a group, that is, HK ¼ KH holds

in OutðPÞ.

We remark that Izumi and Kosaki give an intensive study on finite

dimensional Kac algebras by considering this kind of inclusions and more general

ones in which commuting canonical endomorphisms appear. (See [7], [8].)

3. Simultaneous canonical endomorphisms and commuting

co-commuting squares.

Let

L I M

U U

N I K

be inclusions of properly infinite factors with finite index, and we simply denote

these by ðL;M;N;KÞ. In this section, we treat only minimal conditional expec-
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tations and denote the minimal expectation from L onto K (resp. M;N) by

EL
K (resp. EL

M ;EL
NÞ. We call ðL;M;N;KÞ a commuting square ([18], [2]) if

EL
MEL

N ¼ EL
NE

L
M ¼ EL

K is satisfied. If a commuting square ðL;M;N;KÞ satisfies

½L : M�0 ¼ ½N : K �0 (and/or ½L : N�0 ¼ ½M : K �0), it is said to be co-commuting or

non-degenerate ([19], [21]).

For a commuting co-commuting square, Guido and Longo show the exis-

tence of a simultaneous canonical endomorphism:

Proposition 3.1 ([3, Proposition 2.3]). Let ðL;M;N;KÞ be a commuting

co-commuting square of properly infinite factors with finite index and LVK 0 ¼ C .

Then there exists a canonical endomorphism gLM for LIM whose restriction to N

is a canonical endomorphism for NIK .

A simultaneous canonical endomorphism is obtained as follows ([3]): let j

be a bicyclic state for MIK and let us consider the faithful state j � EL
M ¼

ox A L� ðx A L2ðLÞþÞ. We set e :¼ ½Mx� ¼ ½Kx� and take an isometry v A hN; ei

with vv� ¼ e. Then gLM :¼ C�1 �F turns out to be a common canonical

endomorphism for both LIM and NIK , where C and F are �-isomorphisms

given by C ¼ Adv : L ! Me and F : MGMe. (See [16, Proposition 2.9].)

In this case, we get the inclusions

L1 :¼ hL; ei I L I M ¼ g1ðL1Þ I gðLÞ

U U U U

N1 :¼ hN; ei I N I K ¼ g1ðN1Þ I gðKÞ;

where the �-isomorphism g1 : L1 ! L is defined as the extension of g with

g1ðeÞ A K . Since the inclusions (L1;L;N1;N) is commuting and co-commuting,

so is the inclusions (M; gðLÞ;K ; gðNÞ).

For two simultaneous canonical endomorphisms for ðL;M;N;KÞ, we have

Lemma 3.2. Let ðL;M;N;KÞ be inclusions of properly infinite factors with

canonical endomorphisms g1 : L ! M and g2 : L ! N satisfying that g1jN (resp.

g2jM ) is a canonical endomorphism for NIK (resp. MIK). Then the products

g1g2 and g2g1 are canonical endomorphisms for LIK and their di¤erence is in

IntðKÞ.

Proof. We have

AdJKJL ¼ AdJKJN � AdJNJL

¼ ðAduK � g1jNÞ � AdJNJL

¼ ðAduK � g1Þ � ðAduN � g2Þ

¼ AduKg1ðuNÞ � g1g2;
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where uK A K and uN A N are suitable unitaries. We remark that uKg1ðuNÞ A K .

Similarly, we have

AdJKJL ¼ AdJKJM � AdJMJL ¼ AdðvKg2ðuMÞÞg2g1

for unitaries vK A K and uM A M, and we also have vKg2ðvMÞ A K . Hence, we

get the conclusion. r

Theorem 3.3. Let ðL;M;N;KÞ be inclusions of properly infinite factors with

simultaneous canonical endomorphisms g1 : L ! M and g2 : L ! N. Suppose that

LVK 0 ¼ C . Then we have

M V g1ðNÞ 0 ¼ C :

Proof. We may write M ¼ r1ðLÞ and N ¼ r2ðLÞ for r1; r2 A EndðLÞ.

Since g1 ¼ r1r1 A SectðL;MÞ, we have

M V g1ðNÞ 0 G r1ðLÞV r1r1r2ðLÞ
0 ¼ r1ðLV r1r2ðLÞ

0Þ:

Therefore, it is su‰cient to show the irreducibility of r :¼ r1r2 A SectðLÞ. By

the Frobenius reciprocity, we have

dimHomðr; rÞ ¼ dimHomðr1r1r2r2; idLÞ:

Thanks to Lemma 3.2, we have r1r1r2r2 ¼ g1g2 ¼ g
L
K . Hence, the irreducibility

of LIK implies the last dimension is 1; therefore, we get the conclusion. r

This proposition means that an irreducible commuting co-commuting square

gives another irreducible one: starting from a commuting co-commuting square,

we have three kinds of other extensions. Applying Theorems 2.1 and 2.2 in

[20], we get that if one of them is irreducible and of depth 2 then so are the

others. As an application of Lemma 3.2, we have an alternative proof:

Proposition 3.4 ([20, Theorem 2.2]). Let ðL;M;N;KÞ be a commuting

co-commuting square of properly infinite factors with LVK 0 ¼ C . Suppose that

both of the inclusions LIM and LIN are of depth 2. Then so is the inclusion

LIK .

Proof. Let us denote

M ¼ r1ðLÞ; N ¼ r2ðLÞ; K ¼ r1r3ðLÞ ¼ r2r4ðLÞ ¼ rðLÞ

for r1; r2; r3; r4; r A EndðLÞ. Then the assumption means

r1r1r1 ¼ ðdr1Þ
2
r1; r2 r2 r2 ¼ ðdr2Þ

2
r2:

Hence, by Lemma 3.2, we have
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rrr ¼ ðr1r1r2 r2Þr ¼ r1r1ðr2 r2r2Þr4

¼ r1r1ððdr2Þ
2
r2r4Þ ¼ ðdr2Þ

2ðr1r1r1Þr3

¼ ðdr2Þ
2ððdr1Þ

2
r1r3Þ ¼ ðdr1Þ

2ðdr2Þ
2
r ¼ ðdrÞ2r:

Therefore, we are done. r

We remark that Theorem 2.1 in [20] and similar results in [11], [23] can be

proved similarly.

In the remainder of this section, we would like to show that the existence of

common canonical endomorphisms implies the commuting co-commuting prop-

erty: let

L I M

U U

N I K

be inclusions of properly infinite factors with finite index. And assume that

(i) there is a canonical endomorphism g1 : L ! M such that g1jN is a

canonical endomorphism of NIK ,

(ii) there is a canonical endomorphism g2 : L ! N such that g2jM is a

canonical endomorphism of MIK ,

(iii) the inclusion LIK is irreducible.

In this case, we have

½L : M�0 ¼ ½N : K �0 ðand=or ½L : N�0 ¼ ½M : K�0Þ:

And moreover, we have

Theorem 3.5. The set of inclusions ðL;M;N;KÞ forms a commuting

co-commuting square.

The following lemma is due to H. Kosaki.

Lemma 3.6. There exists a non-zero isometry u in K such that g1ðxÞu ¼ ux

for each x A M.

Proof. Since g1 : L ! M is a canonical endomorphism, there is an iso-

metry u A M such that

g1ðxÞu ¼ ux for each x A M:

We have to show that u actually belongs to the smaller factor K. Since MIK ,

we obviously have
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g1ðxÞu ¼ ux for each x A K :ð3:1Þ

On the other hand, by the assumption (i) g1jN : N ! K is also a canonical

endomorphism, and hence we can also find an isometry ~uu in K such that

g1ðxÞ~uu ¼ ~uux for each x A K :ð3:2Þ

Let iK ,!M be the inclusion map considered as an element in SectðK ;MÞ. Let

g ¼ g1jK be the restriction considered as an element in SectðKÞ (so that iK ,!M �

g A SectðK ;MÞ). Then, (3.1) and (3.2) mean

iK ,!M � gðxÞu ¼ xu and iK ,!M � gðxÞ~uu ¼ ~uux for each x A K :

This means that both of u A M and ~uu A KJM are intertwiners between the two

K-M sectors iK ,!M � g; iK ,!M . By the assumption (ii), g ð¼g1jNÞ ¼ rr with

r A SectðKÞ and g1ðNÞ ¼ rðKÞ, a downward basic extension of NIK .

Therefore, we have

dimHomðiK ,!M � g; iK ,!MÞ ¼ dimHomðiK ,!M � rr; iK ,!MÞ

¼ dimHomðiK ,!M � r; iK ,!M � rÞ:

The algebra of self-intertwiners of iK ,!M � r A SectðK ;MÞ is

M V ðiK ,!M � rðKÞÞ 0 ¼ M V rðKÞ 0:

Since rðKÞ ¼ g1ðNÞ, the above relative commutant is one-dimensional by Theo-

rem 3.3. Therefore, u and ~uu di¤er only by a scalar, and we conclude u A K . r

By the symmetric arguments, we can also take an isometry v A K such that

g2ðxÞv ¼ vx for each x A N.

Proof. (Proof of Theorem 3.5) Taking intertwiners u; v A K as above, we

set

E :¼ u�g1ð�Þu; F :¼ v�g2ð�Þv:

By Proposition 5.1 in [14] and the assumption (iii), the map E is the common

conditional expectation for both LIM and NIK , and the map F is one for

both LIN and MIK . Therefore, the products EF and FE coincide with

the conditional expectation EL
K from L onto K because of the uniqueness of a

conditional expectation for the irreducible inclusion LIK . Hence, we get the

conclusion. r

Remark 2. Let ðH; aÞ; ðK ; bÞ be as in Proposition 2.7, and we consider the

following inclusions of fixed point algebras:
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P I PðH;aÞ

U U

PðK;bÞ
I PðH;aÞ VPðK ;bÞ:

We point out that these inclusions have the commuting canonical endomorphisms

r1r1 and r2 r2, and actually we have the following:

Proposition 3.7. Let P be a type II or type III factor, and let H and K be

finite groups with outer actions a ¼ fahgh AH and b ¼ fbkgk AK on P. We consider

the implementing unitaries fuhgh AH of fahgh AH and fvkgk AK of fbkgk AK on the

standard space L2ðPÞ, and we set M :¼ fP4fuhgh AHg
00
;N :¼ fP4fvkgk AKg

00,

and L :¼ M4N. Assume that eðaHÞ and eðbKÞ have the trivial intersection in

OutðPÞ and that the inclusion

PIPðH;aÞ VPðK;bÞ

or LIP has finite index. Then the extensions

L I M

U U

N I P

form a commuting square and ½L : P� ¼ jeðaHÞ4eðbKÞj. Moreover, these exten-

sions or

P I PðH;aÞ

U U

PðK;bÞ
I PðH;aÞ VPðK;bÞ

form a commuting co-commuting square if and only if ½L : P� ¼ jHK j or H4K ¼

HK ð¼KHÞ in OutðPÞ.

We just give a sketch of a proof for a type III inclusion, because the

argument is similar to that of Theorem 6.2 in [21]: let G be the group generated

by eðaHÞ and eðbKÞ. For each g A G, we choose a unitary wg A L and an

automorphism yg A AutðPÞ such that yg ¼ adwg, eðygÞ ¼ g, we ¼ e, ye ¼ e,

weðahÞ ¼ uh, weðbkÞ
¼ vk, and wg is a word consisting of uh and vk. For a

conditional expectation E ¼ EL
P , we have Eðw�

gwhÞ ¼ 0 ðg 6¼ hÞ to obtain the

projection q :¼
P

g wge
L
Pw

�
g A hL; eLKi. The finite index assumption implies that

y > E�1ð1ÞbE�1ðJqJÞ ¼ E�1
X

JwgJe
L
PJw

�
g J

� �

¼ jGj;

hence G is finite. Each element of the *-algebra
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L0 :¼ x ¼
X

g AG

xgwg : xg A P

( )

has the unique expression; xg ¼ Eðxw�
g Þ, so the *-algebra L0 is closed with

respect to the strong operator topology, hence we have L ¼ L0. To see the

relative commutant LVP 0, we have yð
P

g xgwgÞ ¼ ð
P

g xgwgÞy; or yxg ¼ xgygðyÞ.

Because of the freeness of yg ðg0 eÞ, xg ¼ 0 ðg0 eÞ and xe A PVP 0 ¼ C , that

is, LVP 0 ¼ C . This implies wgwh A Pwgh, and we have a unitary representation

yg with yg A Pwg ([9], [22]) to get the outer action g of G on P such that

gg ¼ adyg. In this case, we can show that

L I M

U U

N I P

is isomorphic to

Pcg G I Pcg H

U U

Pcg K I P;

and this forms a commuting square. The latter part of the proposition follows

from Theorem 7.1 in [21].
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