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Remarks on Littlewood-Paley functions and singular integrals
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Abstract. We consider the generalized Littlewood-Paley square functions arising

from rough kernels and prove the L p-boundedness for a certain range of p depending on

the kernel. We also study a class of singular integrals by similar methods.

1. Introduction.

Let Rn be the n-dimensional Euclidean space. We take c A L1ðRnÞ satisfying

ð

R
n

cðxÞ dx ¼ 0;ð1:1Þ

and define the Littlewood-Paley function on R
n by

Sð f ÞðxÞ ¼ Scð f ÞðxÞ ¼

ð

y

0

jct � f ðxÞj2
dt

t

� �1=2

;

where ctðxÞ ¼ t�ncðt�1xÞ.

The theory of the Littlewood-Paley functions has been an important part of

harmonic analysis. We are referred to [17], [18] and [19] for its history and sig-

nificance. Readers also can see [2], [3], [4], [5], [9], [15] for recent developments

by the authors.

Among many well-known results for the L p boundedness of Sc, one is the

following (see Benedek, Calderón and Panzone [1]):

Theorem A. Let c satisfy, in addition to (1.1),

jcðxÞja cð1þ jxjÞ�n�e
for some e > 0;ð1:2Þ

ð

R
n

jcðx� yÞ � cðxÞj dxa cjyje for some e > 0:ð1:3Þ

Then the operator Sc is bounded on L pðRnÞ for all p A ð1;yÞ.
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Let PtðxÞ ¼ cnt=ðjxj
2 þ t2Þðnþ1Þ=2 be the Poisson kernel for the upper half

space R
n � ð0;yÞ. If QðxÞ ¼ ððq=qtÞPtðxÞÞt¼1, then SQð f Þ is the Littlewood-

Paley g function, while if HðxÞ ¼ w½�1;0�ðxÞ � w½0;1�ðxÞ is the Haar function on

R, where wE denotes the characteristic function of a set E, then SHð f Þ is the

Marcinkiewicz integral

mð f ÞðxÞ ¼

ð

y

0

jF ðxþ tÞ þ F ðx� tÞ � 2F ðxÞj2
dt

t3

� �1=2

;

where FðxÞ ¼
Ð x

0 f ðyÞ dy. It is easy to see that Q and H satisfy the conditions

(1.2) and (1.3), and hence Theorem A can be applied to the proof of the L p

boundedness of g and m.

Recently, Ding-Fan-Pan [2] considered the Littlewood-Paley functions with

rough kernels and proved the following:

Theorem B. Let c A L1ðRnÞ and suppose (1.1) and the following:

(1) ksupt>0jjctj � f jkraCrk f kr for some r A ð1;yÞ;

(2) there exist a, b > 0 such that jĉcðxÞjaCminðjxja; jxj�bÞ for all x A Rnnf0g.

Then

kScð f ÞkpaCpk f kp for all p A ð2r=ðrþ 1Þ; 2r=ðr� 1ÞÞ:

In [2], they also studied singular integral operators of the form:

Tcð f ÞðxÞ ¼

ð

y

0

ct � f ðxÞ
dt

t

and obtained the following result:

Theorem C. Suppose that c A L1ðRnÞ satisfies (1.1) and the conditions (1)

and (2) of Theorem B. Then Tc is bounded on L pðRnÞ for all p A ð2r=ðrþ 1Þ;

2r=ðr� 1ÞÞ.

We have stated Theorems B and C in slightly di¤erent forms from what are

presented in [2]; however, one can easily see that their proofs imply the results as

claimed.

In this note we improve Theorems B and C by essentially relaxing the

conditions imposed on c. The methods we use will apply to the generalized

Littlewood-Paley functions and singular integrals which we now define. Let bðxÞ

be a measurable function on R
n and let gðtÞ (tb 0) be a continuous curve. For

ðx; zÞ A R
n � R, we define the generalized Littlewood-Paley function on R

nþ1,

initially for f A SðRnþ1Þ (the Schwartz space), by

Sð f Þðx; zÞ ¼ Sc; gð f Þðx; zÞ ¼

ð

y

0

jct] f ðx; zÞj
2 dt

t

� �1=2

;
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where

ct] f ðx; zÞ ¼

ð

R
n

bðyÞctðyÞ f ðx� y; z� gðjyjÞÞ dy:

Then it is easy to check

Fðct] f Þðx;oÞ ¼ f̂f ðx;oÞAtðx;oÞ;

where

Atðx;oÞ ¼

ð

R
n

bðyÞctðyÞe
�2piðhy;xiþ gðjyjÞoÞ dy:

Here FðFÞ, f̂f denote the Fourier transforms and h� ; �i denotes the inner product:

hy; xi ¼ y1x1 þ � � � þ ynxn. We also define a singular integral of the form:

Tc; gð f Þðx; zÞ ¼

ðy

0

ct] f ðx; zÞ
dt

t
:

We present the theorems for Sc; g in Section 2 and give their proofs in

Sections 3 and 4. In Section 2, we also give applications of the theorems, where

we see examples of curves g and functions c which satisfy the requirements as-

sumed in the theorems. We give the results for Sc in Section 5 as immediate

corollaries to the results for Sc; g. In Section 5, we also give some remarks con-

cerning the conditions imposed on the functions c. Finally, we study Tc; g and

Tc in Section 6, where we see these operators are closely related to the classical

Calderón-Zygmund singular integrals arising from homogeneous kernels and tech-

niques similar to those used to prove the L p boundedness of the Littlewood-Paley

functions also apply to Tc; g and Tc.

2. Results for the generalized Littlewood-Paley functions.

We define two maximal functions. Let

Nc; gð f Þðx; zÞ ¼ sup
k AZ

ð

R
n

jbðyÞj2p2k ðyÞ f ðx� y; z� gðjyjÞÞ dy

�

�

�

�

�

�

�

�

;

where pðxÞ ¼
Ð 2

1
jctðxÞj dt=t and Z denotes the set of integers; and

Mc; gð f Þðx; zÞ ¼ sup
t>0

ð

R
n

jbðyÞj2jctðyÞj f ðx� y; z� gðjyjÞÞ dy

�

�

�

�

�

�

�

�

:

Note that Nc; gð f ÞaMc; gðj f jÞ.

Our results involve the maximal functions Nc; g and Mc; g, and can be for-

mulated as follows:
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Theorem 1. Suppose there exists e > 0 such that

ð2kþ1

2k

jAtðx;oÞj
2
dt=ta cminðj2kxje; j2kxj�eÞð2:1Þ

for all x A R
nnf0g, o A R and k A Z, where c is independent of x, o and k. Then

Sc; g is bounded on L2ðRnþ1Þ. If we further assume that there exists r A ð1;yÞ

such that Nc; g is bounded on LrðRnþ1Þ, then Sc; g is bounded on L pðRnþ1Þ for all

p A ð2; 2r=ðr� 1ÞÞ.

Theorem 2. Suppose that (2.1) holds and there exists r A ð1;yÞ such that

Mc; g is bounded on LrðRnþ1Þ. Then Sc; g is bounded on L pðRnþ1Þ for all p A

ð2r=ðrþ 1Þ; 2Þ.

Let bðyÞ be a radial function, bðyÞ ¼ b0ðjyjÞ, and cðyÞ ¼ wð0;1�ðjyjÞjyj
�nþ1

Wðy 0Þ

ðy 0 ¼ y=jyj), where W A L1ðS n�1Þ with
Ð

S n�1 Wðy 0Þ dsðy 0Þ ¼ 0. Here s denotes the

Lebesgue surface measure on the unit sphere S n�1 in R
n. Then we obtain the

Marcinkiewicz integral along a curve (see also Remark 4 in Section 5):

Sc; gð f Þðx; zÞ ¼ mgð f Þðx; zÞ ¼

ð

y

0

jFt; gðx; zÞj
2
t�3 dt

� �1=2

;

where

Ft; gðx; zÞ ¼

ð

jyjat

Wðy 0Þjyj�nþ1
b0ðjyjÞ f ðx� y; z� gðjyjÞÞ dy:

To prove Theorems 1 and 2 we adapt the method of [7] for our case of

square functions. We show two vector valued inequalities (see Lemmas 1 and 2

below), which are needed to apply the Littlewood-Paley method. Since the duality

argument as in [7] does not work completely in our case, we need di¤erent as-

sumptions involving Mc; g or Nc; g according as 1 < p < 2 or 2 < p < y.

By Theorem 1 we have the following:

Corollary 1. For c A L1ðRnÞ suppose

ð

jyj<t

cðyÞ dy ¼ 0ð2:2Þ

for all t > 0. We further assume that c is compactly supported and

ð

R
n

jcðyÞju dy < y for some u A ð1;yÞ:ð2:3Þ

Let gðtÞ ¼ c1t
a1 þ � � � þ cmt

am , with 0 < a1 < a2 < � � � < am, ai 0 1, ci 0 0 for all i,

and let bðyÞ1 1. Then Sc; g is bounded on L p for all p A ½2;yÞ.
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Proof. By Theorem 1 it su‰ces to prove (2.1) and the Lr boundedness of

Nc; g for all r A ð1;yÞ. First we prove (2.1). Note that

ð2kþ1

2k

jAtðx;oÞj
2 dt

t
¼

ðð

R
n�R

n

cðyÞcðvÞIðy; v; x;o; kÞ dydv;ð2:4Þ

where

Iðy; v; x;o; kÞ ¼

ð2

1

expð�2pið2kthy� v; xiþ oðgð2ktjyjÞ � gð2ktjvjÞÞÞÞ
dt

t
:

We have jIðy; v; x;o; kÞja log 2 and by the van der Corput estimate (see [20])

jIðy; v; x;o; kÞja c j2khy� v; xij þ
X

m

i¼1

jo2kaiðjyjai � jvjaiÞj

 !�1=ðmþ1Þ

:ð2:5Þ

By (2.4) and (2.5)

ð2kþ1

2k

jAtðx;oÞj
2 dt

t
a cj2kxj�e

JeðcÞ

for all su‰ciently small e > 0, where

JeðcÞ ¼ sup
jxj¼1

ðð

R
n�R

n

jcðyÞcðvÞj jhx; y� vij�e
dydv:

In [15] it is proved that JeðcÞ < y for a su‰ciently small e. The rest of the

estimate (2.1) follows from (2.2) and the assumption that c is compactly sup-

ported.

Define a non-negative measure mk by

m̂mkðx;oÞ ¼

ð

R
n

p2k ðyÞe�2piðhy;xiþgðjyjÞoÞ dy:

Then

Nc; gð f Þðx; zÞ ¼ sup
k AZ

jmk � f ðx; zÞj:

Let Ncð f Þ ¼ supk AZ jp2k � f j. Then Nc is bounded on L pðRnÞ for all p A ð1;yÞ

(see Corollary 3 in Section 5). Therefore by Theorem C of [7] the L r bounded-

ness, for all r A ð1;yÞ, of Nc; g follows from the estimates:

jm̂mkðx;oÞja cjakoj
�e for some e > 0;ð2:6Þ

jm̂mkðx;oÞ � m̂mkðx; 0Þja cjakoj
e for some e > 0;ð2:7Þ
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where ak ¼ 2amk for k > 0 and ak ¼ 2a1k for ka 0. Since c is compactly sup-

ported, we easily get (2.7).

To prove (2.6), put

Bðx;o; kÞ ¼

ðð

R
n�R

n

jcðyÞcðvÞjIðy; v; x;o; kÞ dydv:

We note that

jm̂mkðx;oÞj ¼

ð2

1

ð

R
n

jctðyÞje
�2pið2khy;xiþgð2k jyjÞoÞ dydt=t

�

�

�

�

�

�

�

�

ð2:8Þ

a

ð2

1

ð

R
n

jctðyÞje
�2pið2kh y;xiþgð2k jyjÞoÞ dy

�

�

�

�

�

�

�

�

2

dt

 !1=2

a cjBðx;o; kÞj1=2:

Now by (2.5) we have

jBðx;o; kÞja c min
1aiam

j2kaioj�e
Le; iðcÞð2:9Þ

for su‰ciently small e, where

Le; iðcÞ ¼

ðð

R
n�R

n

jcðyÞcðvÞj jjyjai � jvjai j�e
dydv:

For simplicity we assume that c is supported in fjxj < 1g. Then by Hölder’s in-

equality and (2.3) we have

Le; iðcÞa kck2u

ðð

fjyj<1g�fjvj<1g

jjyjai � jvjai j�eu 0

dydv

 !1=u 0

;

where u 0 is the conjugate exponent to u. It is easy to see that the last integral is

finite if u 0e < minð1; 1=aiÞ. Thus by (2.8) and (2.9) we get (2.6), which completes

the proof of the corollary. r

Remark 1. Let L : R
n ! R

m, nbm, be a linear transformation. Then the

condition (2.1) in Theorems 1 and 2 can be replaced by

ð2kþ1

2k

jAtðx;oÞj
2
dt=ta cminðj2kLxje; j2kLxj�eÞ for some e > 0;ð2:10Þ

for all x A R
nnf0g, o A R and k A Z. Also the bounds in Theorems are inde-

pendent of the linear transform L. This can be seen as follows. Let Pm be the
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projection Pmx ¼ ðx1; . . . ; xmÞ for x A R
n. Then by checking the proofs of

Theorems 1 and 2, we can easily see that (2.1) can be replaced by

ð2kþ1

2k

jAtðx;oÞj
2
dt=ta cminðj2kPmxj

e; j2kPmxj
�eÞ for some e > 0:

Thus the rest of the proof follows that in Corollary in [2].

As an application of Remark 1, we now state a result on the Marcinkiewicz

integral along a curve. We define the two dimensional maximal function

g�
g ðu; vÞ ¼ sup

k AZ

2�k

ð2kþ1

2k

jgðu� t; v� gðtÞÞj dt:

Clearly g�
g ðu; vÞAsups>0 s

�1
Ð s

0 jgðu� t; v� gðtÞÞj dt.

Corollary 2. Let nb 2, and let mgð f Þ be the Marcinkiewicz integral along

g. If b is bounded and W A H 1ðS n�1Þ satisfies
Ð
S n�1 W ds ¼ 0, then we have

kmgð f ÞkL pðR nþ1ÞaCpk f kL pðR nþ1Þ

for all p A ð2r=ðrþ 1Þ; 2r=ðr� 1ÞÞ provided

kg�
g kL rðR2ÞaCrkgkL rðR2Þ for some r A ð1;yÞ:ð2:11Þ

This corollary shows that the requirement of g being convex and increasing

in Theorem 4 of [5] is superfluous.

Proof. By the atomic decomposition of H 1ðS n�1Þ (see [3]) one can assume

Wðy 0Þ ¼ aðy 0Þ is an Ly-atom centered at 1 ¼ ð1; 0; . . . ; 0Þ, and it su‰ces to show

kmgð f ÞkpaCk f kp

with C independent of aðy 0Þ.

Recall an Ly-atom aðy 0Þ centered at 1 is an Ly function aðy 0Þ on S n�1

satisfying

suppðaÞHBð1; rÞVS n�1; r A ð0; 2�;ð
S n�1

aðy 0Þ dsðy 0Þ ¼ 0;

kak
y
a r�ðn�1Þ

(where Bð1; rÞ denotes the ball in R
n with center 1 and radius r). For this r,

let Lrx ¼ ðr2x1; rx2; . . . ; rxnÞ. Then by checking the proof in [3], one easily sees

that ð2kþ1

2k

jAtðx;oÞj
2
dt=ta cminðj2kLrxj

e; j2kLrxj
�eÞð2:12Þ
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for some e > 0. Thus by Remark 1 it remains to show

kMc; gð f ÞkraCk f kr:

It is easy to see that

Mc; gð f Þðx; zÞa c sup
k AZ

2�k

ð

jyja2k

jWðy 0Þj

jyjn�1
j f ðx� y; z� gðjyjÞÞj dy:

By using the polar coordinates, the right hand side of the above inequality is

c sup
k AZ

2�k

ð2k

0

ð

S n�1

jWðy 0Þj j f ðx� ty 0; z� gðtÞÞj dsðy 0Þ dt;

which is bounded, up to a constant, by

ð

S n�1

jWðy 0ÞjMy 0; gð f Þðx; zÞ dsðy
0Þ;

where

My 0; gð f Þðx; zÞ ¼ sup
k AZ

2�k

ð2k

0

j f ðx� ty 0; z� gðtÞÞj dt:

Now we have

kMc; gð f Þkra c

ð

S n�1

jWðy 0Þj kMy 0; gð f Þkr dsðy
0Þ:

By the Calderón-Zygmund rotation method, one easily sees that (2.11) implies

kMy 0; gð f ÞkL rðRnþ1ÞaCk f kL rðR nþ1Þ

with C independent of y 0, and hence the corollary is proved. r

3. Proof of Theorem 1.

Let H denote the Hilbert space L2ðð0;yÞ; dt=tÞ. For each k A Z we con-

sider an operator Tk mapping functions on R
nþ1 to H-valued functions on R

nþ1,

which is defined by

ðTkð f Þðx; zÞÞðtÞ ¼ Tkð f Þðx; z; tÞ ¼ ct] f ðx; zÞw½1;2Þð2
�ktÞ:

Note that

jTkð f Þðx; zÞjH ¼

ð2kþ1

2k

jct] f ðx; zÞj
2 dt

t

 !1=2

:
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Lemma 1. Let 2 < s < y, r ¼ ðs=2Þ 0 ¼ s=ðs� 2Þ. If Nc; g is bounded on

L rðRnþ1Þ, then

X

k

jTkð fkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

a c
X

k

j fkj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

:

Proof. Take a non-negative g A Lr satisfying kgkra 1 and

I :¼
X

k

jTkð fkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s

¼

ð

X

k

jTkð fkÞj
2
H

 !

g dxdz:

Then since

jTkð fkÞj
2
H
a kck1

ð

R
n

jbðyÞj2 p2k ðyÞj fkðx� y; z� gðjyjÞÞj2 dy;

we have

Ia c
X

k

ð

j fkðx; zÞj
2

ð

R
n

jbðyÞj2 p2k ðyÞgðxþ y; zþ gðjyjÞÞ dy

� �

dxdz

a c
X

k

ð

j fkj
2 ~NNc; gðgÞ dxdz;

where

~NNc; gð f Þ ¼ sup
k AZ

ð

R
n

jbðyÞj2 p2k ðyÞ f ðxþ y; zþ gðjyjÞÞ dy

�

�

�

�

�

�

�

�

:

By Hölder’s inequality we have

X

k

ð

j fkj
2 ~NNc; gðgÞ dxdza c

X

k

j fkj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s

k ~NNc; gðgÞkr

a c
X

k

j fkj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s

;

where the L r-boundedness of ~NNc; g follows from that of Nc; g. This completes the

proof. r

To prove Theorem 1 we use Lemma 1 and the ordinary Littlewood-Paley

decomposition. Take C A CyðRnÞ supported in f1=2a jxja 2g and satisfying
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X

j AZ

Cð2 jxÞ ¼ 1 for all x0 0:

Define

dDjð f ÞDjð f Þðx;oÞ ¼ Cð2 jxÞ f̂f ðx;oÞ for all j A Z:

Then we note that Djðct] f Þ ¼ ct]Djð f Þ. Decompose

ct] f ðx; zÞ ¼
X

j AZ

Fjðx; z; tÞ;

where

Fjðx; z; tÞ ¼
X

k AZ

Djþkðct] f Þðx; zÞw½2k ;2kþ1ÞðtÞ:

Set

Ujð f Þðx; zÞ ¼

ð
y

0

jFjðx; z; tÞj
2 dt

t

� �1=2
¼

X

k

jTkðDjþkð f ÞÞj
2
H

 !1=2
:

Then

Sc; gð f Þðx; zÞa
X

j AZ

Ujð f Þðx; zÞ:

We prove the estimate:

kUjð f Þk2a c2�ej jj=2k f k2;ð3:1Þ

where e is the same as that in (2.1). Put Ej ¼ f2�1�j
a jxja 21�jg. Then by the

Plancherel theorem and (2.1) we have

kUjð f Þk
2
2 ¼

X

k AZ

ð

R
nþ1

ð2kþ1

2k

jDjþkðct] f Þðx; zÞj
2 dt

t
dxdz

a

X

k AZ

c

ð

Ejþk�R

ð2kþ1

2k

jAtðx;oÞj
2 dt

t

 !
j f̂f ðx;oÞj2 dxdo

a

X

k AZ

c

ð

Ejþk�R

minðj2kxje; j2kxj�eÞj f̂f ðx;oÞj2 dxdo

a c2�ej jj
X

k AZ

ð

Ejþk�R

j f̂f ðx;oÞj2 dxdoa c2�ej jjk f k22 ;

where the last inequality holds since the sets Ej are finitely overlapping.
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The L2 boundedness of Sc; g is an immediate consequence of (3.1). Suppose

that 1 < r < y, p A ð2; 2r=ðr� 1ÞÞ and Nc; g is bounded on L r. Note that if s is

related to r as in Lemma 1, then p < s ¼ 2r=ðr� 1Þ. By the Littlewood-Paley

inequality and Lemma 1 we see that

kUjð f Þks ¼
X

k AZ

jTkðDjþkð f ÞÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

ð3:2Þ

a c
X

k AZ

jDjþkð f Þj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

a ck f ks:

Interpolating between the two estimates (3.1) and (3.2), we get

kUjð f Þkpa c2�yej jj=2k f kp

for some y A ð0; 1Þ. Thus

kSc; gð f Þkpa
X

j AZ

kUjð f Þkpa ck f kp:

This completes the proof.

4. Proof of Theorem 2.

Lemma 2. Let 1 < s < 2, r ¼ ðs 0=2Þ 0 ¼ s=ð2� sÞ. If Mc; g is bounded on L r,

then

X

k

jTkð fkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

a c
X

k

j fkj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

:

For a function h on R
nþ1 � ð0;yÞ, define an H-valued function PkðhÞ by

ðPkðhÞðx; zÞÞðtÞ ¼ PkðhÞðx; z; tÞ ¼ hðx; z; tÞw½1;2Þð2
�ktÞ:

We also let Tk act on such h by ðTkðhÞðx; zÞÞðtÞ ¼ TkðhÞðx; z; tÞ ¼ Tkðhð� ; � ; tÞÞ �

ðx; z; tÞ: To prove Lemma 2 we need the following.

Lemma 3. Under the assumptions of Lemma 2, for a sequence fhkðx; z; tÞg we

have

X

k

jTkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s 0

a c
X

k

jPkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s 0

:
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Proof. As in the proof of Lemma 1, take a non-negative g A Lr with

kgkra 1 and

I :¼
X

k

jTkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s 0

¼

ð

X

k

jTkðhkÞj
2
H

 !

g dxdz:

Note that
ð

jTkðhkÞj
2
H
g dxdza kck1

ð

~MMc; gðgÞjPkðhkÞj
2
H
dxdz;

where

~MMc; gð f Þðx; zÞ ¼ sup
t>0

ð

R
n

jbðyÞj2 jctðyÞj f ðxþ y; zþ gðjyjÞÞ dy

�

�

�

�

�

�

�

�

:

Therefore, as in the proof of Lemma 1 we have

Ia c
X

k

jPkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s 0

k ~MMc; gðgÞkr

a c
X

k

jPkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

2

s 0

:

This completes the proof. r

Now we give the proof of Lemma 2. Let h� ; �iH denote the inner product

in H. Then
ð

hTkð fkÞðx; z; �Þ; hkðx; z; �ÞiH dxdz ¼

ð

hPkð fkÞðx; z; �Þ; ~TTkðhkÞðx; z; �ÞiH dxdz;

where

~TTkðhÞðx; z; tÞ ¼ w½1;2Þð2
�ktÞ

ð

R
n

bðyÞctðyÞhðxþ y; zþ gðjyjÞ; tÞ dy;

and Pkð fkÞðx; z; tÞ ¼ fkðx; zÞw½1;2Þð2
�ktÞ. Therefore by Hölder’s inequality and

Lemma 3 we see that

ð

X

k

hTkð fkÞðx; z; �Þ; hkðx; z; �ÞiH dxdz

�

�

�

�

�

�

�

�

�

�

a c
X

k

j fkj
2

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s

X

k

jPkðhkÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

s 0

:
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Taking the supremum over fhkðx; z; tÞg with kð
P

k jPkðhkÞj
2
H
Þ1=2ks 0a 1, we get

the conclusion.

We turn to the proof of Theorem 2. Let p; r, with p A ð2r=ðrþ 1Þ; 2Þ, be as

in Theorem 2, and r ¼ s=ð2� sÞ. Then note that 2r=ðrþ 1Þ ¼ s < p. By Lemma

2 and the Littlewood-Paley inequality we have kUjð f Þksa ck f ks, where Uj is as

in the proof of Theorem 1. Since we also have the L2-estimate (3.1), arguing as

in the proof of Theorem 1 we can reach the conclusion.

5. Results for the Littlewood-Paley functions.

Let

Ncð f ÞðxÞ ¼ sup
k AZ

jp2k � f ðxÞj ðx A R
nÞ;

Mcð f ÞðxÞ ¼ sup
t>0

jjctj � f ðxÞj;

where we recall pðxÞ ¼
Ð 2

1 jctðxÞj dt=t. Note that Ncð f ÞaMcðj f jÞ. Mcð f Þ is

the maximal function in the statement of Theorem B and Ncð f Þ is in the proof of

Corollary 1. If c satisfies the conditions:

ð2

1

FðjcjÞðtxÞ dt

�

�

�

�

�

�

�

�

a cjxj�e for some e > 0;ð5:1Þ

ð2

1

FðjcjÞðtxÞ dt� kck1

�

�

�

�

�

�

�

�

a cjxje for some e > 0;ð5:2Þ

then Nc is bounded on L p for all p A ð1;yÞ by [7, Theorem A].

Choosing bðyÞ1 1, gðtÞ1 0 and f ðx; zÞ ¼ f1ðxÞ f2ðzÞ, as immediate con-

sequences of Theorems 1 and 2 we have the following.

Theorem 3. Suppose there exists e > 0 such that

ð2

1

jĉcðtxÞj2 dta cminðjxje; jxj�eÞ for all x A R
nnf0g:ð5:3Þ

Then Sc is bounded on L2ðRnÞ. If we further assume that there exists r A ð1;yÞ

such that Nc is bounded on LrðRnÞ, then Sc is bounded on L pðRnÞ for all

p A ð2; 2r=ðr� 1ÞÞ.

Theorem 4. Suppose that (5.3) holds and there exists r A ð1;yÞ such that Mc

is bounded on L rðRnÞ. Then Sc is bounded on L pðRnÞ for all p A ð2r=ðrþ 1Þ; 2Þ.

There exists c which satisfies
Ð 2

1 jĉcðtxÞj2 dta cjxj�e for some e > 0 but does

not satisfy the pointwise estimate jĉcðxÞja cjxj�d for any d > 0 (see Remark 3), and
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for any r A ð1; 2Þ there exists c such that jĉcðxÞja cminðjxjd; jxj�dÞ for some d > 0,

which implies (5.3), and Nc is bounded on L r but Mc is not (see Remark 2).

From these facts we see that Theorems 3 and 4 essentially improve Theorem B.

Let

BeðcÞ ¼

ð

jxjb1

jcðxÞj jxje dx for e > 0;

DuðcÞ ¼

ð

jxja1

jcðxÞju dx

 !1=u

for u > 1:

Then by Theorems 3, 4 and the results of [15] we have the following:

Corollary 3. Let c A L1ðRnÞ satisfy (1.1).

(i) Suppose the following conditions hold for c:

(1) BeðcÞ < y for some e > 0;

(2) DuðcÞ < y for some u > 1;

(3) jcðxÞja hðrÞWðyÞ ðr ¼ jxj; y ¼ x=jxjÞ for all x A R
nnf0g, for some

non-negative functions h and W such that

(a) hðrÞ is non-increasing for r A ð0;yÞ,

(b) hðjxjÞ A L1ðRnÞ,

(c) W A LqðS n�1Þ for some q, 1 < qay.

Then Sc is bounded on L p for all p A ð1;yÞ.

(ii) If we assume that c satisfies the conditions (1), (2) of (i) and

(4) jcðxÞja hðrÞWðyÞ for jxjb 1,

where h and W are as in (3) of (i), then Sc is bounded on L p for all

p A ½2;yÞ. In particular, if c is supported in fjxja 1g, the condition (2)

of (i) only is su‰cient for the L p-boundedness, 2a p < y, of Sc.

Proof. The conditions (1), (2) and (4) imply (5.3), (5.1) and (5.2) (see

[15, Lemmas 1–3]). As we have noted above, the L p boundedness of Nc, for all

p A ð1;yÞ, follows from (5.1) and (5.2). Thus, we have the second assertion by

Theorem 3.

If the condition (3) holds, Mcð f Þ is bounded, up to a constant, by the

maximal function

sup
t>0

t�n

ð

jyj<t

j f ðx� yÞjWðy=jyjÞ dy;

which is bounded on L p for all p A ð1;yÞ (see [15] for this argument). Thus we

get the first assertion by Theorems 3 and 4. This completes the proof. r

Remark 2. If 1 < p < 2, then there exists c on R
1 such that although c
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is supported in fjxja 1g and satisfies the condition (2) of Corollary 3, Sc is not

bounded on L p. Let cðaÞðxÞ ¼ aj1� jxjja�1
wð�1;1ÞðxÞ sgnðxÞ ða > 0Þ. Then if

2=ð2aþ 1Þ > p, S
cðaÞ is not bounded on L p. To see this we consider the square

function g�
l . It is known that if l > 1 and 1 < p < 2=l, then g�

l is not bounded

on L p (see [10]). By this and the pointwise relation between S
cðaÞ and g�

2aþ1 (see

[21] and also [16]) we see the unboundedness of S
cðaÞ .

We also note that cðaÞ satisfies (5.3) and N
cðaÞ is bounded on L p (see the

proof of Corollary 3 (ii); in fact, it is easy to see that j
d
cðaÞcðaÞðxÞja cminðjxjd; jxj�dÞ

for some d > 0), but M
cðaÞ ð2=ð2aþ 1Þ > pÞ is not bounded on L p since if it is

bounded on L p, by Theorem 4 S
cðaÞ is bounded on L p (note that 2p=ðpþ 1Þ < p),

which contradicts the observation made in the previous paragraph.

Remark 3. For simplicity we consider on R
1. It is known that there exists

a bounded c supported in fjxja 1g such that
Ð
c ¼ 0 and c does not satisfy the

pointwise estimate jĉcðxÞja cjxj�d for any d > 0 (see, e.g., Theorem 2.5.2 in [12,

p. 57]). For this c, by Lemmas 2 and 3 in [15] we have
Ð 2

1 jĉcðtxÞj
2
dtacejxj

�e for

all e A ð0; 1Þ.

Remark 4. Let

cðxÞ ¼ jxj�nþr
Wðx 0Þwð0;1�ðjxjÞ ðr > 0; x 0 ¼ x=jxjÞ;

where W A L1ðS n�1Þ and
Ð
S n�1 WðyÞ dsðyÞ ¼ 0. Put mrð f Þ ¼ Scð f Þ. Then, when

r ¼ 1, mrð f Þ is the Marcinkiewicz integral defined by Stein [17]. Weak ð1; 1Þ and

L p estimates (1 < p < y) were studied by [17] and [11] by assuming certain

smoothness conditions on W. For the recent developments, see the works of the

authors cited in Section 1 and also [6], [14].

Remark 5. It is easy to see that the conditions jxjb 1 and jxja 1 in the

definitions of Be, Du and Corollary 3 (4) can be replaced by jxjb a and jxja a,

respectively, for any a > 0.

6. Singular integrals and Littlewood Paley theory.

Let c A L1 satisfy (1.1). Define a function Wc of homogeneous of degree 0

by

WcðxÞ ¼ jxjn
ð
y

0

cðrxÞrn
dr

r
ðx0 0Þ:

Note that the integral exists for almost every x and Wc A L1ðS n�1Þ,Ð
S n�1 WcðyÞ dsðyÞ ¼ 0.

Lemma 4. Suppose that the condition (2.2) holds and that there exists e A ð0; 1Þ

such that
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jgðtÞ � gð0Þja cte for all t A ½0; 1�:ð6:1Þ

We further assume that bðyÞ is a bounded radial function: bðyÞ ¼ b0ðjyjÞ. Then

for f A SðRnþ1Þ we have

lim
N!y; e!0

ðN

e

ct] f ðx; zÞ
dt

t
¼ p:v:

ð

f ðx� y; z� gðjyjÞÞbðyÞ
WcðyÞ

jyjn
dy:

Proof. To prove the lemma, without loss of generality, we may assume

gð0Þ ¼ 0. Let

Ie;N ¼

ð

jyj<1

ð f ðx� y; z� gðjyjÞÞ � f ðx; zÞÞbðyÞ

ðN

e

ctðyÞ
dt

t
dy;

IIe;N ¼

ð

jyj>1

f ðx� y; z� gðjyjÞÞbðyÞ

ðN

e

ctðyÞ
dt

t
dy:

Then by (2.2) we have

ðN

e

ct] f ðxÞ
dt

t
¼

ð

f ðx� y; z� gðjyjÞÞbðyÞ

ðN

e

ctðyÞ
dt

t
dy ¼ Ie;N þ IIe;N :

Using the polar coordinates, we have

Ie;N ¼

ð1

0

ð

S n�1

ð f ðx� ry; z� gðrÞÞ � f ðx; zÞÞb0ðrÞ

ðN

e

ctðryÞ
dt

t
rn�1

� �

dsðyÞ dr:

By the mean value theorem we see that

ð f ðx� ry; z� gðrÞÞ � f ðx; zÞÞb0ðrÞ

ðN

e

ctðryÞ
dt

t
rn�1

�

�

�

�

�

�

�

�

a crnþe�1

ðN

e

t�njcðt�1ryÞj
dt

t

a cr e�1

ð

y

0

t�njcðt�1yÞj
dt

t
:

Thus by the dominated convergence theorem

lim
N!y; e!0

Ie;N

¼

ð1

0

ð

S n�1

ðð f ðx� ry; z� gðrÞÞ � f ðx; zÞÞb0ðrÞr
�nWcðyÞr

n�1Þ dsðyÞ dr

¼

ð

jyj<1

ð f ðx� y; z� gðjyjÞÞ � f ðx; zÞÞbðyÞ
WcðyÞ

jyjn
dy:
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Similarly we have

lim
N!y; e!0

IIe;N ¼

ð
jyj>1

f ðx� y; z� gðjyjÞÞbðyÞ
WcðyÞ

jyjn
dy:

On the other hand, as usual, we see that

lim
d!0

ð
jyj>d

f ðx� y; z� gðjyjÞÞbðyÞ
WcðyÞ

jyjn
dy

¼

ð
jyj<1

ð f ðx� y; z� gðjyjÞÞ � f ðx; zÞÞbðyÞ
WcðyÞ

jyjn
dy

þ

ð
jyj>1

f ðx� y; z� gðjyjÞÞbðyÞ
WcðyÞ

jyjn
dy:

Combining these observations, we get the conclusion. r

Under the assumption of Lemma 4 we can define

Tc; gð f Þðx; zÞ :¼ lim
N!y; e!0

ðN

e

ct] f ðx; zÞ
dt

t
ð6:2Þ

¼ p:v:

ð
f ðx� y; z� gðjyjÞÞbðyÞ

WcðyÞ

jyjn
dy

for f A SðRnþ1Þ. On the other hand, if the condition (2.1) holds, the limit

in (6.2) exists in L2 (see Remark 6 below). So, in this case, we define Tc; gð f Þ

by the L2 limit. This causes no ambiguity; if both the condition (2.1) and the

assumptions of Lemma 4 hold, these definitions are the same.

Let W A L1ðS n�1Þ satisfy
Ð
S n�1 WðyÞ dsðyÞ ¼ 0. Put

cWðxÞ ¼ ðlog 2Þ�1jxj�n
Wðx 0Þw½1;2ÞðjxjÞ:

Then cW A L1ðRnÞ and (2.2) is satisfied. We also note that WcW ¼ W. So, if g

satisfies (6.1) and bðyÞ is bounded and radial, by (6.2) we see that

TcW; gð f Þðx; zÞ ¼ p:v:

ð
f ðx� y; z� gðjyjÞÞbðyÞWðy 0Þjyj�n

dy:ð6:3Þ

The Littlewood-Paley theory used to study Sc; g also can be applied to prove

the L p boundedness of Tc; g.

Theorem 5. Suppose that Nc; g is bounded on LsðRnþ1Þ, 1 < s < y, and the

condition (2.1) holds. Then Tc; g is bounded on L pðRnþ1Þ for 2s=ðsþ 1Þ < p <

2s=ðs� 1Þ.
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Proof. By the inequalities of Littlewood-Paley, Schwarz and Minkowski we

have, for 1 < p < y,

ðN

e

ct] f
dt

t

�

�

�

�

�

�

�

�

p

a c
X

j

ðN

e

X

k

TkþjðDjð f ÞÞð� ; � ; tÞ
dt

t

�

�

�

�

�

�

�

�

�

�

2
0

@

1

A

1=2
�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

a c
X

j

X

k

jTkþjðDjð f ÞÞjH

 !2
0

@

1

A

1=2
�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

a c
X

k

X

j

jTkþjðDjð f ÞÞj
2
H

 !1=2
�

�

�

�

�

�

�

�

�

�

�

�

p

¼ c
X

k

Ukð f Þ

�

�

�

�

�

�

�

�

�

�

p

:

Let 2a p < 2s=ðs� 1Þ. Then as in the proof of Theorem 1, we have

kUkð f Þkpa c2�djkjk f kp

for some d > 0. Combining these estimates, we see that

ðN

e

ct] f
dt

t

�

�

�

�

�

�

�

�

p

a ck f kp:

Letting e ! 0, N ! y, we get the conclusion for 2a p < 2s=ðs� 1Þ. The result

for 2s=ðsþ 1Þ < p < 2 follows by duality. r

Remark 6. Let f A SðRnþ1Þ. Suppose that the condition (2.1) holds.

Then the limit

lim
N!y; e!0

ðN

e

ct] f ðx; zÞ
dt

t

exists in L2. To see this, put, for 0 < M < N,

T
M;N
k ð f Þðx; z; tÞ ¼ ct] f ðx; zÞw½1;2Þð2

�ktÞw½M;N�ðtÞ

and define

U
M;N
j ð f Þ ¼

X

k

jTM;N
k ðDjþkð f ÞÞj

2
H

 !1=2

:
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Then as in the proof of Theorem 5 we have

ðN

M

ct] f
dt

t

�

�

�

�

�

�

�

�

2

a c
X

j

U
M;N
j ð f Þ

�

�

�

�

�

�

�

�

�

�

2

:

Note that UM;N
j ð f ÞaUjð f Þ, limM;N!y U

M;N
j ð f Þ ¼ 0 a.e. and k

P

j Ujð f Þk2 < y.

Therefore by the dominated convergence theorem we see that

lim
M;N!y

ðN

M

ct] f
dt

t

�

�

�

�

�

�

�

�

2

¼ 0:

Similarly we see that

lim
e; d!0

ð d

e

ct] f
dt

t

�

�

�

�

�

�

�

�

2

¼ 0:

Thus the Cauchy criterion implies the conclusion.

Corollary 4. Let c, b and g be as in Corollary 1. Then Tc; g is bounded

on L pðRnþ1Þ for all p A ð1;yÞ.

Proof. In the proof of Corollary 1, it is shown that Nc; g is bounded

on L pðRnþ1Þ for all p A ð1;yÞ and the condition (2.1) holds. Thus the result

follows from Theorem 5. r

If (5.3) or (2.2) is satisfied, we can also define

Tcð f ÞðxÞ ¼ lim
N!y; e!0

ðN

e

ct � f ðxÞ
dt

t
ðx A R

nÞ:

Then as a corollary to Theorem 5, we have the following.

Theorem 6. Suppose that Nc is bounded on LsðRnÞ, 1 < s < y, and c

satisfies (5.3). Then Tc is bounded on L pðRnÞ for 2s=ðsþ 1Þ < p < 2s=ðs� 1Þ.

Theorem 6 essentially improves Theorem C in the same way that Theorems

3 and 4 improve Theorem B.

Remark 7. Let nb 2. Let W be in the Hardy space H 1ðS n�1Þ with
Ð

S n�1 W ds ¼ 0, and let GðrÞ be a function on ð0;yÞ such that
Ð

y

0 jGðrÞjrn�1 dr <

y. Put cðxÞ ¼ GðjxjÞWðx 0Þ. Then by Lemma 4

Tcð f ÞðxÞ ¼ p:v: c

ð

f ðx� yÞ
WðyÞ

jyjn
dy

for some constant c. Thus by [8] Tc is bounded on L p for all p A ð1;yÞ. This
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improves Theorem 5 in [2]; in [2] the result is proved under a stronger assumption

that jGðrÞja cminðr�nþr; r�n�rÞ for some r > 0.

Remark 8. It is not di‰cult to see that we can replace the condition (2.1)

by (2.10) in all the results of this section which require (2.1) (see Remark 1).

By Remark 8, Lemma 4 and Theorem 5 we have the following singular

integral analog of Corollary 2.

Corollary 5. Let nb 2, and let a curve g and a function b be as in Lemma

4. Let W A H 1ðS n�1Þ satisfy
Ð
S n�1 W ds ¼ 0. Define

Tð f Þðx; zÞ ¼ p:v:

ð
f ðx� y; z� gðjyjÞÞbðyÞWðy 0Þjyj�n

dy;

initially for f A SðRnþ1Þ. Suppose

kg�
g kL rðR2ÞaCrkgkL rðR2Þ

for some r A ð1;yÞ, where g�
g is as in Corollary 2. Then we have

kTð f ÞkL pðR nþ1ÞaCpk f kL pðR nþ1Þ

for all p A ð2r=ðrþ 1Þ; 2r=ðr� 1ÞÞ.

Proof. The proof is similar to that of Corollary 2. So, our proof here is

brief. As in the proof of Corollary 2 we may assume that W is an Ly-atom.

Let W be the Ly-atom considered in the proof of Corollary 2, and put

cðxÞ ¼ ðlog 2Þ�1jxj�n
Wðx 0Þw½1;2�ðjxjÞ:

Then by (6.3) Tð f Þ ¼ Tc; gð f Þ. Define Atðx;oÞ by this c. Then we also have

the estimate (2.12). Thus by Remark 8 and Theorem 5, to prove the corollary it

su‰ces to show the L rðRnþ1Þ boundedness of Nc; g, but this also can be proved in

the same way as the L rðRnþ1Þ boundedness of Mc; g in the proof of Corollary 2

by using the L rðR2Þ boundedness of g�
g . This completes the proof. r

Corollary 5 is the main theorem in a recent paper by Lu, Pan and Yang [13],

in which they obtained the theorem by a di¤erent proof based on estimates of

certain oscillatory integrals.
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