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Abstract. In this paper, we will study smoothability of a weak Fano 3-fold with only
canonical singularities which is obtained as an image of a crepant primitive birational
contraction from a smooth weak Fano 3-fold. Main part is on a contraction of type III.

0. Introduction.

We will work over C in this paper.

DeriNITION 0.1. Let X be a 3-dimensional normal Gorenstein projective variety
which has only canonical singularities.

(i) We call X a weak Fano 3-fold when —Ky is nef and big.

(i) We call X a Fano 3-fold when —Ky is ample.

DeriNITION 0.2. Let X be a 3-dimensional normal Gorenstein projective variety
which has only canonical singularities, (4,0) a germ of the 1-dimensional disk, and
f: 2 — (4,0) be a small deformation of X over (4,0). We call f a smoothing of X
when the fiber 2, = !(s) is smooth for any s e (4,0)\{0}.

Let X be a smooth weak Fano 3-fold and ¢ : X — X a birational projective contraction
to a weak Fano 3-fold with only canonical singularities. If X has a smoothing, then we
have another smooth weak Fano 3-fold Z;. We want to connect weak Fano 3-folds by
deformations and birational contractions as above. We call this problem Reid’s fantasy
for weak Fano 3-folds.

REMARK. “Original” Reid’s fantasy is for Calabi-Yau 3-folds.
Thus we consider the following problem.

PROBLEM. Let X be a weak Fano 3-folds with only canonical singularities. When
does X have a smoothing?

Known results on Problem are as follows.
1. (Namikawa, Mukai Cf. [Na 3| and [Mu])
Let X be a Fano 3-fold with only terminal singularities. Then X has a
smoothing.
2. (Namikawa, Takagi Cf. [Na 3], and [Mi])
Let X be a weak Fano 3-fold with only terminal singularities. Assume that
there exists a birational proper morphism ¢ : X — X to a Fano 3-fold with only
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canonical singularities such that dim¢~'(x) <1 for any x€ X. Then X has a
smoothing.
3. (Vi)
Let X be a weak Fano 3-fold with only terminal singularities. Then there
exists a small deformation of X over (4,0) j:Z — (4,0) such that the fiber
2, = () has only ordinary double points for any s e (4,0)\{0}.
4 E)
Let X be a weak Fano 3-fold with only terminal singularities. If X is Q-
factorial, then X has a smoothing.
If the condition “Q-factorial” is dropped, then there exists an example which
does not have a smoothing.
Extending the method in Section 3 of [Mi], we will show the following theorems in
Section 1 and 2 of this paper.

THEOREM 0.3. Let X be a weak Fano 3-fold with only terminal singularities,
{p1,p2,...,p1} =Sing(X) the ordinary double points on X, and f:Z — X a small
partial resolution of X such that C; =: f~'(P;) = P' and that f is an isomorphism over
X\{p1,p2,...,p1}. [If there is a relation in Hy(Z,C) : Zi[:l o;[Ci] = 0 with o; # 0 for all
i, then X has a smoothing.

THEOREM 0.4. Let X be a weak Fano 3-fold with only isolated canonical singu-
larities. Assume that
(i) X is Q-factorial,
(i) for any p e Sing(X), the Kuranishi space of (X, p) is smooth, and
(iii) for any p e Sing(X), (X, p) has a smoothing.
Then X has a smoothing.

RemARk (Cf. [Na 1], [Na 2], [Na 4] and [Na-St]).
Namikawa proved the same statements of and [Theorem 0.4 for

Calabi-Yau 3-fold. But the condition in is a necessary and sufficient
condition of smoothability in the case of Calabi-Yau 3-fold.

In order to consider Reid’s fantasy for weak Fano 3-folds, we study ‘“Smoothing
problem” of a weak Fano 3-fold with only canonical singularities obtained as an image
of a crepant primitive birational contraction from a smooth weak Fano 3-fold.

DEerFINITION 0.5. Let X be a smooth weak Fano 3-fold, and ¢ : X — X a crepant
birational projective morphism. We call ¢ primitive when its relative Picard number
p(X/X)=1. Moreover, letting E be the exceptional locus of ¢, we will define as
follows.

(i) ¢ is a crepant primitive birational contraction of type I when dim(E) = 1.

(i) ¢ is a crepant primitive birational contraction of type II when dim(E) = 2 and

dim¢(E) = 0.
(i) ¢ is a crepant primitive birational contraction of type III when dim(FE) = 2
and dim¢(E) = 1.

We treat a crepant primitive birational contraction of type III from a smooth weak
Fano 3-fold in Section 3, which is the main part of this paper. On a crepant primitive
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birational contraction of type III from a smooth weak Fano 3-fold, we have the fol-
lowing theorem.

THEOREM 0.6. Let X be a smooth weak Fano 3-fold and ¢ : X — X a crepant
primitive birational contraction of type 11l contracting a divisor E to a curve C. Then

(i) C is smooth.

(i) @|g: E — C is a conic bundle, and each fiber is a non-singular conic, a union of
two lines meeting at a point, or a double line.

(iii) If the general fiber of @|. is a non-singular curve, then E is normal and E has
only rational double points.

(iv)  If the general fiber of ¢\ is two lines meeting at a point, then singularities of E
on the double line are pinch point singularities (of the form x*> +tz> =0 in
(C3,0)).

PrOOF. We can show this by the same method in [Wi 1], [Wi 2] and Section 3 of
Wi 3. []

DerFINITION 0.7. Let X be a smooth weak Fano 3-fold and ¢: X — X a crepant
primitive birational contraction of type III contracting a divisor £ to a curve C. We
call pe C is a dissident point if the fiber of ¢|, : E — C over p is not isomorphic to
general fiber. We call the fiber over a dissident point the dissident fiber.

Theorem 0.6 enables us to define the following.

DerINITION 0.8. Let X be a smooth weak Fano 3-fold and ¢: X — X a crepant
primitive birational contraction of type III contracting a divisor E to a curve C.

(i) The case E is normal: We call ¢ a contraction of (g,d)-type when g = g(C)
and d = —K3 - C. Moreover we call ¢ without dissident fibers when ¢| :
E — Cis a P'-bundle and ¢ with dissident fibers when ¢, is not a P'-bundle.

(i) The case E is non-normal: Let E be the normalization of E, and E —
C — C the Stein factorization. We call ¢ a contraction of (9,d,d)-type when
g=9(C), g=9¢(C), and d = —K5 - C.

We will prove the following theorem on deformations of X and ¢.

THEOREM 0.9. Let X be a smooth weak Fano 3-fold and ¢: X — X a crepant
primitive birational contraction of type Il contracting a divisor E to a curve C.

(i) X has a smoothing unless ¢ is of (0,0), (0,1), (0,4,0), or (0,g,1)-type, or
(0,3)-type without dissident fibers, or (1,1)-type without dissident fibers.

(i) Let & — Def(X) be the Kuranishi family of X. Assume that ¢ is a con-
traction of (0,0), (0,1), (0,g,0) or (0,g,1)-type. Then E will deform in the
family.

(i) Assume that ¢ is a contraction of (0,3)-type without dissident fibers, or (1,1)-
type without dissident fibers. Then there exists a small deformation of ¢ over
(4,0)
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such that, for any te (4,0)\{0},
L 57}

is a crepant primitive birational contraction of type 1 which is a contraction of a
single P!.

Key ideas of the proof of (i) of this theorem are

(1)

We will find a small deformation of ¢ over (4,0)
r 2.7
N
(4,0)
such that, for any 7€ (4,0)\{0},
b2 — X

is a crepant primitive birational contraction of type I, and
We will count the number of curves which are contracted by such @,. It
depends on not only g or g but also d. We remark that there are similar

results for Calabi-Yau 3-folds (Cf. [Wi 1], [Gr 1], [Gr 2]). But there are
differences in the case of type III with d # 0.
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NOTATIONS.

(1) In this paper, (4,0) means a germ of the 1-dimensional disk.

(2) Def(e) means the Kuranishi space of e and T means its tangent space at
0. We also use this notation in the case that e is a morphism.

(3) Let G = Z/2Z acting on a C-vector space F (resp. a coherent sheaf % on a
scheme X over C. In this case G acts on X trivially.). Let ¢ be the gen-
erator of G. We set F¥ = {se F|os = s} (resp. we define 7 by & % (U) =
{se #(U)|as = s} for an open set U of X).

(4) Let G~ Z/2Z acting on a C-vector space F (resp. a coherent sheaf % on
a scheme X over C. In this case G acts on X trivially.). Let o be the
generator of G. We set FI'll = {se F|os = —s} (resp. we define #1~! by
FENU) = {se Z(U) |os = —s} for an open set U of X).

1. On a contraction of Type I.

We will prove Theorem 0.3 in this section, and we have a theorem on a contraction
of type I as a corollary of [Theorem 0.3. We prove the following theorem first.
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THEOREM 1.1. Let X be a weak Fano 3-fold with only ordinary double points,
{p1,p2,...,p1} =Sing(X), and v: Z — X be a small resolution of X such that v is an
isomorphism over X\Sing(X). Let C;=v ' (P;). Assume that there exists a relation in
Hy(Z,C): 21'1:1 a;[Ci| =0 with a; #0 for all i, then X has a smoothing.

Proor. Let U = X\Sing(X), X; a sufficiently small neighborhood of p;, and
U: = X;\{p:}- Under these setting, we consider the following commutative diagram:

HI(U,@U) _* @iHé.(Z7@Z) L HZ(Z,@z)

i
!/

®H (U, Oy) —0 @HE(Z,Q%) —— HY(Z,0%).
We remark that y and 7s are defined by a section of H°(Z,w,'), and the
upper horizontal sequence is exact. By the assumption, there exist elements
nili=1,2,....0)e DL, HZ(Z,Q%) such that 5/ #0 and B'((7}|i=1,2,...,1)) = 0.
Thus there exists 7€ H'(U,Oy) such that a(n), = y;(n!) for i=1,2,...,1.

Case 1. (The case that there exists a smooth member S € |—Kx|.)

We may assume that y and p; are defined by v*S. In this case, y; is an iso-
morphism for any i. Thus y;(5/) #0. Since Def(X) is smooth as in [Mi], # can be
realized as a smoothing of X.

Case 2. (The case that |-Ky| does not have a smooth member.)

Let ¢, : X — X, be a multi-anti-canonical morphism. In this case, as in Section
3 of [Mi], we may assume that Bs|—Kx| = {p1}, ¢, 1is an isomorphism near p;, X,
is isomorphic to X> 6 < P(1,1,1,1,2,3) which is a weighted complete intersection of
multi-degree {2,6}, and its defining homogeneous equation of degree 2 of X4 in
P(1,1,1,1,2,3) is given by X¢ + X? + X7 + X? =0. By the structure of X, there
exists an element (' e T}M such that ( is locally a non-trivial deformation at ¢,.(p;) and
is locally the trivial deformation at any other singularities.

Let U’ = X, \Sing(X,.), Xj’ a sufficiently small neighborhood of each connected
component of Sing(X), U/= X/\(Sing(X,)NX/), and E = ¢ ' (Sing(X,.))NU. We
may assume that U; = U]. Under these setting, we consider the following diagram:

H'(X,0y) —— HY(U',0y) —— HU,0yp)

Ty —— @H (U], Ou)).

In this diagram, the upper horizontal sequence is exact. By the choice of {/, we
have that r({’ ); =0 for j#1. Since ¢, is an isomorphism near p;, we have that
7:(r(¢");) = 0. Since t({’|;) = 0, there exists an element { such that |, = {'|;,. Thus
we have that «({), # 0.

Suppose that y and y; are defined by S € |—Kx| such that SN Sing(X) = {p1}, We
know that y; is an isomorphism for i # 1. Thus a(y), # 0 for i # 1. Thus there exists
a complex number ¢ such that a(y + &{); # 0 for all i. Since Def(X) is smooth as in
[Mi], there exists a realization of 5 + ¢ which is a smoothing of X. O
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PrOOF OF THEOREM 0.3. By and its proof, it is enough to show that
all singularities of X" which are not ordinary double points are smoothed by a suitable
deformation of X. There is a deformation of X to a 3-fold with only ordinary double
points by (2) of Main Theorem of [Mi]. Considering Section 3 of (refined in
Section 2 of this paper), it follows from the method in the first part of the proof of

Theorem 2.5 (3) = (2) of [Na 2]. O
We can show the following theorem as in Theorem 5.1 of [Gr 1]

THEOREM 1.2. Let X be a smooth weak Fano 3-fold, and ¢ : X — X a crepant
primitive birational contraction of type 1. Then X has a smoothing unless ¢ is a con-
traction of a single P' to an ordinary double point.

2. On a contraction of Type II.

In this section, we prove [Theorem 0.4. To prove this theorem we need the
following which we can prove by a little refinement of the method in Section 3 of [Mi].

THEOREM 2.1. Let X be a weak Fano 3-fold with only isolated canonical singu-
larities. Assume that, for any singularity p, the Kuranishi space of (X, p) is smooth.
Then the Kuranishi space Def (X) of X is smooth.

PropoOSITION 2.2. Let X be a weak Fano 3-fold with only isolated canonical sin-
gularities. ~Assume that X is Q-factorial. Then there exists a smooth member S € |—Ky|.

We prove now [Theorem 0.4.

Proor OF THrOREM 0.4. Let {pi,ps,...,p,} =Sing(X). Let v:X — X be a
resolution of X such that v is an isomorphism over U := X'\Sing(X) and its exceptional
divisors E; :=v~!(p;) have simple normal crossings. Let X; be a sufficiently neigh-
borhood of p;, U; = X;\{p;}. We know the following proposition.

ProposITION 2.3 (Cf. The proof of Proposition 4 of [Na 4]).
If (X, p;) is not a rigid singularity, then the homomorphism

[ Hé(f,Q{%) — HZ(X’,QAZ;)

is not injective.

By [Proposition 2.2}, there exists a smooth member S € |—Ky/|, then we have the following
commutative diagram defined by v*S:

HZ (X, Q; @ vioy!) L HY(X, Q; Q@ viwy!)

| |

i

HE (X,23) . H?*(X,Q3).

By this diagram and [Proposition 2.3, i/ is not injective for any i. We consider the
following commutative diagram:
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(U,00) —2 @HE(X, Q2@ v'oy') — HX(X, Q2@ vioy)

U,0y) —— ®:H'(U;,0y).
We remark that the upper horizontal sequence is exact, and the homomorphism J; is
factorized as follows:

H'(U;,0y) — Hp (X,05) — Hp (X,Q2; ® viwy').

By the exactness, there exists an element 7 € H!(U,®y) such that o'(y);, # 0 for any

i. By [MTheorem 2.1, we can prove [Theorem 0.4 by the Namikawa’s stratification
method (cf. the proof of Theorem 5 of [Na 4]). n

3. On a contraction of type III.
We use the following theorem of Takagi in this section,

THeOREM 3.1 (Takagi) (Cf. [Ta]). Let X be a weak Fano 3-fold with only canonical
singularities. The complete linear system |—2Ky| is base-point free.

PROPOSITION 3.2. Let X be a smooth weak Fano 3-fold, and ¢ : X — X a crepant
primitive birational contraction of type 111 contracting a divisor E to a curve C. Let E be
the normalization of E (when E is normal E = E), E — C — C the Stein factorization,
and f : E — X the induced map. Then the image of the natural map Def (f) — Def (X)
has codimension

(i) >max{g,g+d— 1} when ¢ is a contraction of (g,d)-type.

(i) >max{g,g +2d — 1} when ¢ is a contraction of (g,g,d)-type.

ProOF. We first show codimension > g when ¢ is (g,d)-type (resp. =g when ¢ is
(g9,9,d)-type). (This was proved in Proposition 4.2 of in the case that E is P!-
bundle or any fiber of ¢|, is union of two lines meeting at a point, and this proof is a
modification of it.) To show this, we need the following lemma:

LemMma 3.3. Let Q)% be the double dual of Q)Z? We have that H°(X, Q)%() = 0.

PrOOF OF LEMMA. Let U = X\C, which is a smooth locus of X. By [Theoreml
3.1, |-2Ky| is base-point free. Since X has generically cA4; or c¢A, singularities, there
exists a member D € |-2K3| such that D is smooth except DN C and D has an A4; or
A singularity at each point of DNC. Let n: Y = Spec(0; @ Op(Kg)) — X be the
double cover of X ramified along D, then Y is a Calabi-Yau 3-fold with only canonical
singularities. Let ¥ =7 '(U) and G = Z/2Z. We have that (7,Q2)" = Q. So we
have H'(V,7.Q7) = H(V,Q}) = H'(V,0y) = H*(Y,0y) = 0 by the result of Kawa-
mata [Ka]. Thus H'(X,Q2) = H'(U,Qf) = H'(V,n.Q})° = 0. O

Step 1. When ¢ is (g,d)-type, the codimension > g.

Proor. This is a modification of the argument from the proof of Proposition 6.5
of [Na 1]. Let Tf1 be the tangent space of Def(f). We have an exact sequence by

T, =Ty @ Ty — H' (X, [*Ox).
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This induces an exact sequence
T} % 10 L H(E, Nejy).

We know that Def(X) is smooth by and [Mi], thus it is enough to show that
rank(f) > g. Using the identification @y ~ Qj ® wy! and Ng/y = wp @ wy!, we may
view f as a map f:H'(X,Q; @ wy') — H(E,wr ® wg'). While we can choose
S € |—-Kyx| such that F = SNE = Zld:l F;, where F; =~ P! is a fiber of E over C for each
i, and F;NF; = if i #j. In fact there exists a member S € |[-Ky| which has only
rational double points by [Re], so C is not a base locus of |—Ky|. If there is a base
point p on C, we consider the anti-canonical model X, of X:

XL)?

h F

X,

As in Section 3 in [Mi], Bs|—Kx, | = {4,.(p)}, and general member S, € |-Ky, | has a
single ordinary double point only at ¢,.(p). By Proposition 2.1 of [Pa], for a general
member S € |—Kyx|, S — S, is the minimal resolution of the ordinary double point.
Thus we can choose a member of |-Ky| as desired. We consider the following com-
mutative diagram whose vertical arrows are defined by an S e |—Ky/:

H'(Xx,9%) Lo HY(Ewp)

\ |

HI(X,Q)%@a)}l) ., HYE, o ® oy').

By the exact sequence
0 — wp — 0 @y — op® oy |y — 0,
and H%(wp ® wy!|p) = H(wr) =0, we have that a is injective. Thus we have that
rank(f) < rank(a o ) = rank(ff o b) < rank(p).

So it is enough to show that g(C) < rank(f).
Let v: X' — X be a embedded resolution of the pair (X, E). Let u=¢ov, E' the
proper transform of E by v. There is a commutative diagram

HYE,05) —— HX,Q))

H'(C,0¢0) —— HY(E',0p) —— HX(X',QL).

The vertical arrow of left-hand side is an isomorphism because E has only rational
double points by [Theorem 0.6, and the first horizontal arrow at the bottom is an
isomorphism because a general fiber of ¢|, : E — C is isomorhpic to P'. We remark
that ¢ is the dual map of B. If we can show that ¢’ is injective, we have that

rank(B) = rank(d) > rank(é") > ¢(C).
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Thus it is enough to show that H'(X',Q2,) — H'(E' wg') is surjective. By the Hodge
symmetry it is enough to show that H?*(X',Q\,) — H?*(E',Q}) is surjective. By the
following 2 exact sequences

0— Op/(—E') — Qu|p — 2 — 0
0 — Qp(—E') = ) — Qylp — 0,
it is enough to show that H3(X’,Q,(—E')) =0. By the Serre duality
H¥ (X', Q4,(—E")) =~ H'(X',0x/(Ky + E")) = H (X', Q3.(E")).
There is an injection
12 (E') — QF

because both sheaves are isomorphic to each other outside a subset of codimension >2
and Q: is a reflexible sheaf. Then we have H(X’, Q¢,(E')) = 0 because H(X,Q2) =0
by the Lemma. O

Step 2. When the ¢ is (g,g,d), the codimension > g.

Proor. This is a modification of the argument from the proof of Proposition 1.2
of [Gr2]. By [Theorem 0.6, ¢z : E — Cis a P'-bundle over C. Define N; by the exact
sequence

0—0;— Oy — Ny — 0.

We remark that Ny is torsion free, locally free away from the inverse image of pinch
points of E. Thus we have that the double dual N; of Ny is isomorphic to w; ® f*wy!.
We have an exact sequence as in [Ra],

T} - Ty ®T; — H' (X, [*Ox).

This induces an exact sequence

7} % 1) L H(E N)).
Let f be a composition homomorphism T} — H'(E,N;) — H'(E,N;). We know
that Def(X) is smooth by and [Mi], thus it is enough to show that rank(f) > g.
Using the identifications Oy ~ Qf @ wy' and Ny = w; ® f*wy', we may view f as a
map f: H'(X,Q} @ wy') — H'(E,0p ® f*wy'). We consider the following commu-
tative diagram:

H'(X, Q2 _r, HY(E, w;
X - E

H'(X, Q2 ® oy) ., HY(E, wz)

~

H'(X,0y) —— HY(E,N;) —— H'(E,Ny).
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We remark that injectivity of the first vertical map of the right-hand side is because
of the same reason in Step 1. Thus it is enough to show that rank(ﬁ) > g. Since
hl(E wz) = § (because ¢;: E — C is a P'-bundle over C), it is enough to show that
B is surjective. By the Hodge symmetry, it is enough to show that H*(X, Ql)
H?(E,Q}) is surjective.

We consider the following 2 exact sequences,

0— 7 %Q)l(ﬁf*f*Q)l(HﬁZ%O
where %, has support on the singularities of E, and
OH,%Hf*Q)l(HQI%HQ%HO

where %, has support on the pinch point of E. By the second exact sequence, we have
that the map H?(E, f*Qy) — H*(E,Q}) is surjective. Thus it is enough to show that
H3(X,7)=0. By the Serre duality, H>(X,7) =~ H*(X,7#,” ® wy)". There is an
injection
¢*971V ®wy — (2)2?

because both sheaves are isomorphic to each other outside a subset of codimension >2
and Q7 is a reflexible sheaf. Thus we have that H*(X, 7Y ® wy) = H*(X,Q}) = 0 by
Lemma 3.3. (]

We next show that the codimension > g + d — 1 when ¢ is (g, d)-type (resp. >g + 2d — 1
when ¢ is (g,g,d)-type). If d =0, then g>g+d—1 (resp. g=g+2d—1). So we
may assume d # 0. Define Ny by the exact sequence

0—0;— [0y —N—0
as in Step 2. We remark that Ny = Ng/xy when E is normal.
LemmA 3.4. The homomorphism H'(X,0x) — H'(E,0z ® f*wy') is surjective,
where the homomorphism is induced by the composition of homomorphisms
Ox — [0y — Ny — Ny =2 0z ® fwy'.

Proor OF LemmA. By [Theorem 3.1, there exists a member D e|—2Ky| such
that DN CN {dissident points} = ¢f and D := ¢*D € |-2Ky| is smooth. Taking double
cover of X and X branched along D and D, we have the following commutative

diagrams.
F—— ('

NN I[\

Y ——7Y

! I |
E—~|—C E—|—C
NN NY N

X — EFE——C

By the results of Wilson, Namikawa, and Gross of Calabi-Yau 3-folds (Cf. [Wi 1],
[Wi 2], [Na 1] and [Gr 2]), we have that the homomorphism

H'(Y, Q%) — H'(F, )
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is surjective. We have that
= % x _—1
Vi — (0 @ fFoy).

Let o be the involution on Y. We remark that 6oy = —y. We have that (n*a)ﬁ)[*l} ~
(.7 (0p ® f*oy)]? = [(0p ® froy) ® (O @ frox)]” = w; ® f*wy'. We consider
the following commutative diagram.

Q2]

S

7.0y]° ——  [moog] "

k

Oy —— wp® f*a))}1

This induces a commutative diagram

HY(Y,25)" ——  H'(F,0p)" "

| I

HY(X,0y) —— H'(wp® f*oy).

Since the upper horizontal homomorphism is surjective, so is the horizontal homo-
morphism at the bottom. L]

As in Step 1 and 2, we have a commutative diagram with an exact row

L HI(E,Nf)

x J
H' (Ev ]\Z‘)?
and we know that Def(X) is smooth. By [Lemma 3.4 we know that Imp =
W' (E,0p ® f*wy'). Thus it is enough to show that 4'(E,w; ® f*wy') =g +d — 1
(resp. g+2d —1).

As in Step 1, we can show that there exists a member S e |-Ky| such that
F=f*S=S% F (resp. .2 F,), where F; ~ P' is a fiber of E over C for each i, and
FFNF,=@ifi#j. Since wg ®f*a))}l|Fl_ >~ wpr,, we have an exact sequence induced by
the choice of S

T} —— T}

d
-1
0— wp — 0 ® [foy — Por, — 0.
i=1

2d
(resp. 0— wp — wp @ froy' — P or, — 0.)
=1

1

This induces the following exact sequence:
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d ~ ~
P H(F,or) — H(E,0p) — H'(E,05 @ f*wy')
i=1

d ~
- @Hl(FHwFl) - H2<E7COE>'
i=1

2d . .
(resp. P H(F,0r) — H'(E,0f) — H' (E,0; ® f*oy")
i=1

2d ~
- @HI(FHCOE) - HZ(E7CUE)'
i=1

N——

Since h*(F;,wr) =0, h'(F,0F) = 1, h'(E,wz) = g (resp. =§), and h*(E,wz) = 1,
IProposition 3.2| follows from this exact sequence. ]

By [Proposition 3.2 E will not deform under a generic deformation of X, unless ¢ is a
contraction of (0,0), (0,1), (0,4,0), or (0,4, 1)-type. Thus there exists a deformation of
¢ which 1s a crepant primitive birational contraction of type I. We want to count the
number of curves contracted by the contraction of type I in the following proposition.

PROPOSITION 3.5. Let X be a smooth weak Fano 3-fold and ¢ : X — X a crepant
primitive birational contraction of type l11.  Assume that ¢ is neither (0,0), (0,1), (0,g,0),
nor (0,g,1)-type. Then there exists a small deformation of ¢ over (4,0)

Q{’Lf

N

(4,0)
such that, for any te (4,0)\{0},
P 5?1

is a crepant primitive contraction of type 1 which contracts
(i) just 29 —2+dP"s when ¢ is a contraction of (g,d)-type without dissident
fibers with d > 2.
(ii) at least 2§ — 2 +2dP"s when ¢ is a contraction of (g,§,d)-type.
(iii) [PVs where 29 —2 <1 <2g—1 when ¢ is a contraction of (g,1)-type without
dissident fibers.
(iv) a single P' when ¢ is a contraction of (1,1)-type without dissident fibers.

Proor. We will divide the proof into 3 cases.

Case 1 (¢ is of (g,d)-type without dissident fibers).

Let Z >~ P! be any fiber of ¢ g over peC and i:Z — X the natural closed
embedding. We have that Nz y = Nz/g @ (Ng/x|,) where Nz = 0z. We consider
the following commutative diagram:

1

g | N T/\l — HI(Z,NZ/X)
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We remark that the upper horizontal sequence is exact as in [Ra]. Thus for n e T \ Z
extends sideways to first order in the first order deformation corresponding to # if and
only if 7o f(n) =0. Using the identification Ng/xy = wg ® wy', we may view 7 as a
map

t: HY(E,0p ® 0y') — H' (0 ® wy'|,).
By the relative duality, we know that

R'$.op =~ ngﬁ*(a)E/C ®d wc) = (ngb*a)E/C) ® we = wc.
Thus we have the isomorphisms
R'¢. (05 @ 0y') = R'¢,(0p ® ¢ (03] ¢) = (R'.0p) ® 0F' = we ® 0F.
Considering the Leray spectral sequence, we have an identification

HY(E, 05 @ oy') —— H'(Z,0p ® wx'|y)

.

HO<C,Q)C®CO:1) —t> Ho(pawc®w:l|p)'

By the assumption, there exists an element ¢ € H°(C, wc ® ws ) such that # # 0. Then
there exists an element 5 e T} such that () = ¢ by | From the above
argument, the fiber over a point where 7(&) vanishes extends sideways to first order in
the first order deformation corresponding to #. Because 7(&) vanishes at 2g — 2+ d
points, 2g — 2 + dP"’s extends sideways in a general first order deformation.

Next, we consider the obstruction of the morphism i: Z — X. We consider the
following commutative diagram:

1

T, ——  HY(Z,Ngx) T? T3

T

H(C,0c ® 03') —— H'(p,0c ® o3'|,).

We remark that the upper horizontal sequence is exact. If d # 1, the linear system
|Kc — (Kg|c)| is base-point free. Thus 7 is surjective. We know that f is surjective by
[Cemma 3.4, thus 7 is surjective. If d = 1, in this case g # 0 by the assumption, we have
that |Kc — (Ky|c)| = |[Kc| 4+ g where ¢ = =K - C. Thus 7 is surjective if p # ¢. This
completes the proof in this case except (iv).

Case 2 (¢ is of (g,d,d)-type). Let E be the normalization of E, and E — C — C
the Stein factorization. We consider the following commutative diagram:

/

F s g
l~ l'F
&

—(CC—»
h

<—&—:><

>

v
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Let Z =~ P! be any fiber of ¢z over pe C and i: Z — X be the natural closed embed-
ding. There is a natural morphism Nz ,y — Ny|, for any fiber Z. We remark that
Nzjx = Ny jp @ (Nr|,) where N, /i = Oz for a general fiber Z.  We consider the following
commutative diagram:

T} — Ty e HY(Z,Nzx)
B ¢
H'(E,Ny) — HY(Z,N|)

H(C,0z® h*a);?l) — H(p,0s ® h*a);—,1|p).

We remark that { is an isomorphism for a general fiber Z and we can show that the
lower vertical arrows are isomorphisms by the similar reason in Step 1. The above
commutative diagram tells us that Z will not extend in a first order deformation corre-
sponding to # if 7o () # 0 for any fiber Z, and that Z extends sideways to first order
in the first order deformation corresponding to # if 7o () = 0 for a general fiber Z.
Since the degree of Kis+ h*(—Ky) is 2§ —2+42d and d #0, |Ks+ f*(—Ky)| is base-
point free. Thus we can show this proposition by the same method in Step 1 in this
case. We remark that we only considered a fiber of ¢~E in this proof, thus we need “‘at
least” in this statement.

Case 3 ((iv) of this proposition). If any fiber will not deform, then the Kéhler cone
of X is not locally constant at 0 € Def(X). But it contradicts Page 63 of and
Theorem 3.1. O

PROPOSITION 3.6. Let X be a smooth weak Fano 3-fold, and ¢ : X — X a crepant
primitive birational contraction of type 1l. Assume that ¢ is a contraction of (g,d)-
type with dissident fibers and is neither (0,0) nor (0,1)-type. Then there exists a small
deformation of ¢ over (4,0)

such that, for any te (4,0)\{0},
L 5?}

is a crepant primitive birational contraction of type 1 which is not a contraction of a single
P! to an ordinary double point.

Proor. We can show this proposition by the same method in the proof of

Theorem 1.3 of [Gr 2].

PROPOSITION 3.7. Let X be a smooth weak Fano 3-fold, ¢ : X — X a crepant
primitive birational contraction of type 111, and X — Def (X) the Kuranishi family of X.
Assume that ¢ is a contraction of (0,0), (0,1), (0,g,0), or (0,g,1)-type. Then E will
deforms in the family.
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PrOOF. The case d =0 was proved by Paoletti (cf. the proof of Lemma 3.6 of
[Pa]), thus we may assume d = 1.

We first treat the case ¢ is of (0,1)-type. When ¢ is without dissident fibers,
hY(E,Op(E)) = h'(E,0p @ wy!) = h°(C,0c ® a);?l) =0. Consider the exact sequence
in Step 1 of [Proposition 3.6,

O—>wE—>wE®a);(1 — o — 0
where F ~ P!. This induces a long exact sequence
0=H'(E,wop ®wy') — H (F,or) — H*(E, wr)
— H*(E,0r ® wy') — 0.

Thus we can show that h*(E,Ug(E)) = h*(E,0p @ wy') =0. Thus E will deform in
the Kuranishi family of X.

When E is of (0,1)-type with dissident fibers. As in the case E is (0,1)-type
without dissident fibers, we can prove that h?(E, Og(E)) = 0 if h'(E, Oz(E)) =0. So it
is enough to show that A!(E, Uz(E)) = 0. We can consider the following commutative

diagram:
E
El

where 1 : E — E is the minimal resolution of E, and ¢': E' — C is a P'-bundle.
Since wyp ~ u*wg, we have that

I

_r E
¢ 1
—— CxP.
H'(E,0p @ p'oy') = H'(E, 1 (0 ® 0x")).
Since u u*(wr @ wy!) ~ wp ® wy!, we have that

HY(E,0g(E)) = HY(E,0r ® wy') — H'(E, 0 ® 1 wy")

by the Leray spectral sequence.
Thus it is enough to show that

HYE,0; @ u*oy') = H'(E, )" oyx) = 0.
Since ¢ wy ~ wy, we have that v*(¢') 0wy ~ u*¢*ws ~ p*wy, thus
HY E i oy) = Hl(EA',v*(qS’)*a))?).
Since v.v*((¢') ' wy) ~ (¢') "wy, we have that
H'(E',(¢') wg) = H'(E,v'(¢') wy)

by the Leray spectral sequence. As is the case ¢ is a (0, 1)-type without dissident fibers,
we can show that

HI(E,v (¢/)*w)?) = Hl(El7wE’ ® (¢/)*w;71) =0.
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Thus the rest is the case ¢ is of (0,4, 1)-type. If there exists a small deformation of ¢
over (4,0)

such that, for any 7€ (4,0)\{0},
D, A — 5?1

is a crepant primitive birational contraction of type I. We consider the following
commutative diagram as in Case 2 of the proof of [Proposition 3.6

S
/_\

O

><

-
<

><|

CC—
\/

Then @, contracts at least 2GP"’s for ¢ e (4,0)\{0} which are deformations of fibers of
qgé, and these fibers are chosen generically in fibers of ¢§E~ as in Case 2 of the proof of
[Proposition 3.6. We remark that the morphism C — C is a finite morphism branched
over at least 2 points on C by Hurwitz formula, and these points on C are dissident
points. By [Pa], we know that the fiber of ng whose image by ¢ o f is a dissident point
deforms in the Kuranishi family of X. It is a contradiction. ]

Combining these propositions and Theorem 1.2, we can prove [Theorem 0.9
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