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Abstract. In this paper, we will study smoothability of a weak Fano 3-fold with only

canonical singularities which is obtained as an image of a crepant primitive birational

contraction from a smooth weak Fano 3-fold. Main part is on a contraction of type III.

0. Introduction.

We will work over C in this paper.

Definition 0.1. Let X be a 3-dimensional normal Gorenstein projective variety

which has only canonical singularities.

(i) We call X a weak Fano 3-fold when �KX is nef and big.

(ii) We call X a Fano 3-fold when �KX is ample.

Definition 0.2. Let X be a 3-dimensional normal Gorenstein projective variety

which has only canonical singularities, ðD; 0Þ a germ of the 1-dimensional disk, and

f : X ! ðD; 0Þ be a small deformation of X over ðD; 0Þ. We call f a smoothing of X

when the fiber Xs ¼ f�1ðsÞ is smooth for any s A ðD; 0Þnf0g.

Let X be a smooth weak Fano 3-fold and f : X ! X a birational projective contraction

to a weak Fano 3-fold with only canonical singularities. If X has a smoothing, then we

have another smooth weak Fano 3-fold Xs. We want to connect weak Fano 3-folds by

deformations and birational contractions as above. We call this problem Reid’s fantasy

for weak Fano 3-folds.

Remark. ‘‘Original’’ Reid’s fantasy is for Calabi-Yau 3-folds.

Thus we consider the following problem.

Problem. Let X be a weak Fano 3-folds with only canonical singularities. When

does X have a smoothing?

Known results on Problem are as follows.

1. (Namikawa, Mukai Cf. [Na 3] and [Mu])

Let X be a Fano 3-fold with only terminal singularities. Then X has a

smoothing.

2. (Namikawa, Takagi Cf. [Na 3], [Ta] and [Mi])

Let X be a weak Fano 3-fold with only terminal singularities. Assume that

there exists a birational proper morphism f : X ! X to a Fano 3-fold with only
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canonical singularities such that dim f�1ðxÞa 1 for any x A X . Then X has a

smoothing.

3. ([Mi])

Let X be a weak Fano 3-fold with only terminal singularities. Then there

exists a small deformation of X over ðD; 0Þ f : X ! ðD; 0Þ such that the fiber

Xs ¼ f�1ðsÞ has only ordinary double points for any s A ðD; 0Þnf0g.

4. ([Mi])

Let X be a weak Fano 3-fold with only terminal singularities. If X is Q-

factorial, then X has a smoothing.

If the condition ‘‘Q-factorial’’ is dropped, then there exists an example which

does not have a smoothing.

Extending the method in Section 3 of [Mi], we will show the following theorems in

Section 1 and 2 of this paper.

Theorem 0.3. Let X be a weak Fano 3-fold with only terminal singularities,

fp1; p2; . . . ; plgH SingðX Þ the ordinary double points on X, and f : Z ! X a small

partial resolution of X such that Ci ¼: f �1ðPiÞGP1 and that f is an isomorphism over

Xnfp1; p2; . . . ; plg. If there is a relation in H2ðZ;CÞ :
P l

i¼1 ai½Ci� ¼ 0 with ai 0 0 for all

i, then X has a smoothing.

Theorem 0.4. Let X be a weak Fano 3-fold with only isolated canonical singu-

larities. Assume that

(i) X is Q-factorial,

(ii) for any p A SingðXÞ, the Kuranishi space of ðX ; pÞ is smooth, and

(iii) for any p A SingðXÞ, ðX ; pÞ has a smoothing.

Then X has a smoothing.

Remark (Cf. [Na 1], [Na 2], [Na 4] and [Na-St ]).

Namikawa proved the same statements of Theorem 0.3 and Theorem 0.4 for

Calabi-Yau 3-fold. But the condition in Theorem 0.3 is a necessary and su‰cient

condition of smoothability in the case of Calabi-Yau 3-fold.

In order to consider Reid’s fantasy for weak Fano 3-folds, we study ‘‘Smoothing

problem’’ of a weak Fano 3-fold with only canonical singularities obtained as an image

of a crepant primitive birational contraction from a smooth weak Fano 3-fold.

Definition 0.5. Let X be a smooth weak Fano 3-fold, and f : X ! X a crepant

birational projective morphism. We call f primitive when its relative Picard number

rðX=XÞ ¼ 1. Moreover, letting E be the exceptional locus of f, we will define as

follows.

(i) f is a crepant primitive birational contraction of type I when dimðEÞ ¼ 1.

(ii) f is a crepant primitive birational contraction of type II when dimðEÞ ¼ 2 and

dim fðEÞ ¼ 0.

(iii) f is a crepant primitive birational contraction of type III when dimðEÞ ¼ 2

and dim fðEÞ ¼ 1.

We treat a crepant primitive birational contraction of type III from a smooth weak

Fano 3-fold in Section 3, which is the main part of this paper. On a crepant primitive
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birational contraction of type III from a smooth weak Fano 3-fold, we have the fol-

lowing theorem.

Theorem 0.6. Let X be a smooth weak Fano 3-fold and f : X ! X a crepant

primitive birational contraction of type III contracting a divisor E to a curve C. Then

(i) C is smooth.

(ii) fjE : E ! C is a conic bundle, and each fiber is a non-singular conic, a union of

two lines meeting at a point, or a double line.

(iii) If the general fiber of fjE is a non-singular curve, then E is normal and E has

only rational double points.

(iv) If the general fiber of fjE is two lines meeting at a point, then singularities of E

on the double line are pinch point singularities (of the form x2 þ tz2 ¼ 0 in

ðC 3
; 0Þ).

Proof. We can show this by the same method in [Wi 1], [Wi 2] and Section 3 of

[Wi 3]. r

Definition 0.7. Let X be a smooth weak Fano 3-fold and f : X ! X a crepant

primitive birational contraction of type III contracting a divisor E to a curve C. We

call p A C is a dissident point if the fiber of fjE : E ! C over p is not isomorphic to

general fiber. We call the fiber over a dissident point the dissident fiber.

Theorem 0.6 enables us to define the following.

Definition 0.8. Let X be a smooth weak Fano 3-fold and f : X ! X a crepant

primitive birational contraction of type III contracting a divisor E to a curve C.

(i) The case E is normal: We call f a contraction of ðg; d Þ-type when g ¼ gðCÞ

and d ¼ �KX � C. Moreover we call f without dissident fibers when fjE :

E ! C is a P
1-bundle and f with dissident fibers when fjE is not a P

1-bundle.

(ii) The case E is non-normal: Let ~EE be the normalization of E, and ~EE !
~CC ! C the Stein factorization. We call f a contraction of ðg; ~gg; d Þ-type when

g ¼ gðCÞ, ~gg ¼ gð ~CCÞ, and d ¼ �KX � C.

We will prove the following theorem on deformations of X and f.

Theorem 0.9. Let X be a smooth weak Fano 3-fold and f : X ! X a crepant

primitive birational contraction of type III contracting a divisor E to a curve C.

(i) X has a smoothing unless f is of ð0; 0Þ, ð0; 1Þ, ð0; ~gg; 0Þ, or ð0; ~gg; 1Þ-type, or

ð0; 3Þ-type without dissident fibers, or ð1; 1Þ-type without dissident fibers.

(ii) Let X ! Def ðXÞ be the Kuranishi family of X. Assume that f is a con-

traction of ð0; 0Þ, ð0; 1Þ, ð0; ~gg; 0Þ or ð0; ~gg; 1Þ-type. Then E will deform in the

family.

(iii) Assume that f is a contraction of ð0; 3Þ-type without dissident fibers, or ð1; 1Þ-

type without dissident fibers. Then there exists a small deformation of f over

ðD; 0Þ

X ���!
F

X

f

?
?
?
y
f

ðD; 0Þ

�
�
�
��!
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such that, for any t A ðD; 0Þnf0g,

Ft : Xt ! Xt

is a crepant primitive birational contraction of type I which is a contraction of a

single P
1.

Key ideas of the proof of (i) of this theorem are

(1) We will find a small deformation of f over ðD; 0Þ

X ���!
F

X

f

?
?
?
y
f

ðD; 0Þ

�
�
�
��!

such that, for any t A ðD; 0Þnf0g,

Ft : Xt ! Xt

is a crepant primitive birational contraction of type I, and

(2) We will count the number of curves which are contracted by such Ft. It

depends on not only g or ~gg but also d. We remark that there are similar

results for Calabi-Yau 3-folds (Cf. [Wi 1], [Gr 1], [Gr 2]). But there are

di¤erences in the case of type III with d0 0.
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Notations.

(1) In this paper, ðD; 0Þ means a germ of the 1-dimensional disk.

(2) Def ð�Þ means the Kuranishi space of � and T 1
� means its tangent space at

0. We also use this notation in the case that � is a morphism.

(3) Let GGZ=2Z acting on a C-vector space F (resp. a coherent sheaf F on a

scheme X over C . In this case G acts on X trivially.). Let s be the gen-

erator of G. We set F G ¼ fs A F j ss ¼ sg (resp. we define F
G by F

GðUÞ ¼

fs A FðUÞ j ss ¼ sg for an open set U of X ).

(4) Let GGZ=2Z acting on a C-vector space F (resp. a coherent sheaf F on

a scheme X over C . In this case G acts on X trivially.). Let s be the

generator of G. We set F ½�1� ¼ fs A F j ss ¼ �sg (resp. we define F
½�1� by

F
½�1�ðUÞ ¼ fs A FðUÞ j ss ¼ �sg for an open set U of X ).

1. On a contraction of Type I.

We will prove Theorem 0.3 in this section, and we have a theorem on a contraction

of type I as a corollary of Theorem 0.3. We prove the following theorem first.
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Theorem 1.1. Let X be a weak Fano 3-fold with only ordinary double points,

fp1; p2; . . . ; plg ¼ SingðXÞ, and n : Z ! X be a small resolution of X such that n is an

isomorphism over XnSingðX Þ. Let Ci ¼ n�1ðPiÞ. Assume that there exists a relation in

H2ðZ;CÞ :
P l

i¼1 ai½Ci� ¼ 0 with ai 0 0 for all i, then X has a smoothing.

Proof. Let U ¼ XnSingðX Þ, Xi a su‰ciently small neighborhood of pi, and

Ui ¼ Xinfpig. Under these setting, we consider the following commutative diagram:

H 1ðU ;YU Þ ���!
a

liH
2
Ci
ðZ;YZÞ ���!

b
H 2ðZ;YZÞ

?
?
?
y
a 0 ldi

lgi

x
?
?
?

g

x
?
?
?

liH
1ðUi;YUi

Þ ���!
ld 0i

liH
2
Ci
ðZ;W2

ZÞ ���!
b 0

H 2ðZ;W2
ZÞ:

��
��
��

��
�!

We remark that g and gi’s are defined by a section of H 0ðZ;o�1
Z Þ, and the

upper horizontal sequence is exact. By the assumption, there exist elements

ðh 0
i j i ¼ 1; 2; . . . ; lÞ A 0 l

i¼1
H 2

Ci
ðZ;W2

ZÞ such that h 0
i 0 0 and b 0ððh 0

i j i ¼ 1; 2; . . . ; lÞÞ ¼ 0.

Thus there exists h A H 1ðU ;YUÞ such that aðhÞi ¼ giðh
0
i Þ for i ¼ 1; 2; . . . ; l.

Case 1. (The case that there exists a smooth member S A j�KX j.)

We may assume that g and gi are defined by n�S. In this case, gi is an iso-

morphism for any i. Thus giðh
0
i Þ0 0. Since Def ðXÞ is smooth as in [Mi], h can be

realized as a smoothing of X .

Case 2. (The case that j�KX j does not have a smooth member.)

Let fac : X ! Xac be a multi-anti-canonical morphism. In this case, as in Section

3 of [Mi], we may assume that Bsj�KX j ¼ fp1g, fac is an isomorphism near p1, Xac

is isomorphic to X2;6 HPð1; 1; 1; 1; 2; 3Þ which is a weighted complete intersection of

multi-degree f2; 6g, and its defining homogeneous equation of degree 2 of X2;6 in

Pð1; 1; 1; 1; 2; 3Þ is given by X 2
0 þ X 2

1 þ X 2
2 þ X 2

3 ¼ 0. By the structure of Xac, there

exists an element z 0 A T 1
Xac

such that z is locally a non-trivial deformation at facðp1Þ and

is locally the trivial deformation at any other singularities.

Let U 0 ¼ XacnSingðXacÞ, X 0
j a su‰ciently small neighborhood of each connected

component of SingðX Þ, U 0
j ¼ X 0

j nðSingðXacÞVX 0
j Þ, and E ¼ f�1

ac ðSingðXacÞÞVU . We

may assume that U1 GU 0
1. Under these setting, we consider the following diagram:

H 1ðX ;YUÞ ���! H 1ðU 0
;YU 0Þ ���!

t
H 2

EðU ;YUÞ
x
?
?
?

lti

x
?
?
?

T 1
Xac

���!
r

ljH
1ðU 0

j ;YU 0
j
Þ:

�����������!

In this diagram, the upper horizontal sequence is exact. By the choice of z 0, we

have that rðz 0Þj ¼ 0 for j0 1. Since fac is an isomorphism near p1, we have that

tiðrðz
0Þ1Þ ¼ 0. Since tðz 0jU 0Þ ¼ 0, there exists an element z such that zjU 0 ¼ z 0jU 0 . Thus

we have that aðzÞ1 0 0.

Suppose that g and gi are defined by S A j�KX j such that S V SingðXÞ ¼ fp1g, We

know that gi is an isomorphism for i0 1. Thus aðhÞi 0 0 for i0 1. Thus there exists

a complex number e such that aðhþ ezÞi 0 0 for all i. Since Def ðXÞ is smooth as in

[Mi], there exists a realization of hþ ez which is a smoothing of X . r
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Proof of Theorem 0.3. By Theorem 1.1 and its proof, it is enough to show that

all singularities of X which are not ordinary double points are smoothed by a suitable

deformation of X . There is a deformation of X to a 3-fold with only ordinary double

points by (2) of Main Theorem of [Mi]. Considering Section 3 of [Mi] (refined in

Section 2 of this paper), it follows from the method in the first part of the proof of

Theorem 2.5 (3) ) (2) of [Na 2]. r

We can show the following theorem as in Theorem 5.1 of [Gr 1].

Theorem 1.2. Let X be a smooth weak Fano 3-fold, and f : X ! X a crepant

primitive birational contraction of type I. Then X has a smoothing unless f is a con-

traction of a single P1 to an ordinary double point.

2. On a contraction of Type II.

In this section, we prove Theorem 0.4. To prove this theorem we need the

following which we can prove by a little refinement of the method in Section 3 of [Mi].

Theorem 2.1. Let X be a weak Fano 3-fold with only isolated canonical singu-

larities. Assume that, for any singularity p, the Kuranishi space of ðX ; pÞ is smooth.

Then the Kuranishi space Def ðXÞ of X is smooth.

Proposition 2.2. Let X be a weak Fano 3-fold with only isolated canonical sin-

gularities. Assume that X is Q-factorial. Then there exists a smooth member S A j�KX j.

We prove now Theorem 0.4.

Proof of Theorem 0.4. Let fp1; p2; . . . ; png ¼ SingðXÞ. Let n : ~XX ! X be a

resolution of X such that n is an isomorphism over U :¼ XnSingðXÞ and its exceptional

divisors Ei :¼ n�1ðpiÞ have simple normal crossings. Let Xi be a su‰ciently neigh-

borhood of pi, Ui ¼ Xinfpig. We know the following proposition.

Proposition 2.3 (Cf. The proof of Proposition 4 of [Na 4]).

If ðX ; piÞ is not a rigid singularity, then the homomorphism

ii : H
2
Ei
ð ~XX ;W2

~XX
Þ ! H 2ð ~XX ;W2

~XX
Þ

is not injective.

By Proposition 2.2, there exists a smooth member S A j�KX j, then we have the following

commutative diagram defined by n�S:

H 2
Ei
ð ~XX ;W2

~XX
n n�o�1

X Þ ���!
i 0
i

H 2ð ~XX ;W2
~XX
n n�o�1

X Þ

F

x
?
?
?

x
?
?
?

H 2
Ei
ð ~XX ;W2

~XX
Þ ���!

ii
H 2ð ~XX ;W2

~XX
Þ:

By this diagram and Proposition 2.3, i 0i is not injective for any i. We consider the

following commutative diagram:
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H 1ðU ;YUÞ ���!
a 0

liH
2
Ei
ð ~XX ;W2

~XX
n n�o�1

X Þ ���!
li 0

i
H 2ð ~XX ;W2

~XX
n n�o�1

X Þ
�
�
�
�

ldi

x
?
?
?

H 1ðU ;YUÞ ���!
a

liH
1ðUi;YUi

Þ:

We remark that the upper horizontal sequence is exact, and the homomorphism di is

factorized as follows:

H 1ðUi;YUi
Þ ! H 2

Ei
ð ~XX ;Y ~XX Þ ! H 2

Ei
ð ~XX ;W2

~XX
n n�o�1

X Þ:

By the exactness, there exists an element h A H 1ðU ;YUÞ such that a 0ðhÞi 0 0 for any

i. By Theorem 2.1, we can prove Theorem 0.4 by the Namikawa’s stratification

method (cf. the proof of Theorem 5 of [Na 4]). r

3. On a contraction of type III.

We use the following theorem of Takagi in this section,

Theorem 3.1 (Takagi) (Cf. [Ta]). Let X be a weak Fano 3-fold with only canonical

singularities. The complete linear system j�2KX j is base-point free.

Proposition 3.2. Let X be a smooth weak Fano 3-fold, and f : X ! X a crepant

primitive birational contraction of type III contracting a divisor E to a curve C. Let ~EE be

the normalization of E (when E is normal ~EE ¼ E), ~EE ! ~CC ! C the Stein factorization,

and f : ~EE ! X the induced map. Then the image of the natural map Def ð f Þ ! Def ðX Þ

has codimension

(i) bmaxfg; gþ d � 1g when f is a contraction of ðg; d Þ-type.

(ii) bmaxf~gg; ~ggþ 2d � 1g when f is a contraction of ðg; ~gg; d Þ-type.

Proof. We first show codimensionb g when f is ðg; d Þ-type (resp. b~gg when f is

ðg; ~gg; d Þ-type). (This was proved in Proposition 4.2 of [Pa] in the case that E is P
1-

bundle or any fiber of fjE is union of two lines meeting at a point, and this proof is a

modification of it.) To show this, we need the following lemma:

Lemma 3.3. Let ~WW2
X

be the double dual of W2
X
. We have that H 0ðX ; ~WW2

X
Þ ¼ 0.

Proof of Lemma. Let U ¼ XnC, which is a smooth locus of X . By Theorem

3.1, j�2KX j is base-point free. Since X has generically cA1 or cA2 singularities, there

exists a member D A j�2KX j such that D is smooth except DVC and D has an A1 or

A2 singularity at each point of DVC. Let p : Y ¼ SpecðOX lOX ðKX ÞÞ ! X be the

double cover of X ramified along D, then Y is a Calabi-Yau 3-fold with only canonical

singularities. Let V ¼ p�1ðUÞ and G ¼ Z=2Z. We have that ðp�W
2
V Þ

G ¼ W2
U . So we

have H 0ðV ; p�W
2
V Þ ¼ H 0ðV ;W2

V Þ ¼ H 0ðV ;YV Þ ¼ H 0ðY ;YY Þ ¼ 0 by the result of Kawa-

mata [Ka]. Thus H 0ðX ; ~WW2
X
Þ ¼ H 0ðU ;W2

UÞ ¼ H 0ðV ; p�W
2
V Þ

G ¼ 0. r

Step 1. When f is ðg; d Þ-type, the codimensionb g.

Proof. This is a modification of the argument from the proof of Proposition 6.5

of [Na 1]. Let T 1
f be the tangent space of Def ð f Þ. We have an exact sequence by [Ra]

T 1
f ! T 1

X lT 1
E ! H 1ðX ; f �YX Þ:
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This induces an exact sequence

T 1
f !

a
T 1
X !

b
H 1ðE;NE=X Þ:

We know that Def ðX Þ is smooth by [Pa] and [Mi], thus it is enough to show that

rankðbÞb g. Using the identification YX GW2
X no�1

X and NE=X GoE no�1
X , we may

view b as a map b : H 1ðX ;W2
X no�1

X Þ ! H 1ðE;oE no�1
X Þ. While we can choose

S A j�KX j such that F ¼ S VE ¼
Pd

i¼1 Fi, where Fi GP
1 is a fiber of E over C for each

i, and Fi VFj ¼ q if i0 j. In fact there exists a member S A j�KX j which has only

rational double points by [Re], so C is not a base locus of j�KX j. If there is a base

point p on C, we consider the anti-canonical model Xac of X :

X ���!
f

X

fac

?
?
?
y
fac

Xac:

�
�
�
��!

As in Section 3 in [Mi], Bsj�KXac
j ¼ ffacðpÞg, and general member Sac A j�KXac

j has a

single ordinary double point only at facðpÞ. By Proposition 2.1 of [Pa], for a general

member S A j�KX j, S ! Sac is the minimal resolution of the ordinary double point.

Thus we can choose a member of j�KX j as desired. We consider the following com-

mutative diagram whose vertical arrows are defined by an S A j�KX j:

H 1ðX ;W2
X Þ ���!

~bb
H 1ðE;oEÞ

?
?
?
y
b

?
?
?
y
a

H 1ðX ;W2
X no�1

X Þ ���!
b

H 1ðE;oE no�1
X Þ:

By the exact sequence

0 ! oE ! oE no�1
X ! oE no�1

X jF ! 0;

and H 0ðoE no�1
X jF Þ ¼ H 0ðoF Þ ¼ 0, we have that a is injective. Thus we have that

rankð ~bbÞa rankða � ~bbÞ ¼ rankðb � bÞa rankðbÞ:

So it is enough to show that gðCÞa rankð ~bbÞ.

Let n : X 0 ! X be a embedded resolution of the pair ðX ;EÞ. Let m ¼ f � n, E 0 the

proper transform of E by n. There is a commutative diagram

H 1ðE;OEÞ ���!
d

H 2ðX ;W1
X Þ?

?
?
y
F

?
?
?
y

H 1ðC;OCÞ ���!
F

H 1ðE 0;OE 0Þ ���!
d 0

H 2ðX 0;W1
X 0Þ:

The vertical arrow of left-hand side is an isomorphism because E has only rational

double points by Theorem 0.6, and the first horizontal arrow at the bottom is an

isomorphism because a general fiber of fjE : E ! C is isomorhpic to P
1. We remark

that d is the dual map of ~bb. If we can show that d 0 is injective, we have that

rankð ~bbÞ ¼ rankðdÞb rankðd 0Þb gðCÞ:
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Thus it is enough to show that H 1ðX 0
;W2

X 0Þ ! H 1ðE 0
;oE 0Þ is surjective. By the Hodge

symmetry it is enough to show that H 2ðX 0
;W1

X 0Þ ! H 2ðE 0
;W1

E 0Þ is surjective. By the

following 2 exact sequences

0 ! OE 0ð�E 0Þ ! W1
X 0 jE 0 ! W1

E 0 ! 0

0 ! W1
X 0ð�E 0Þ ! W1

X 0 ! W1
X 0 jE 0 ! 0;

it is enough to show that H 3ðX 0
;W1

X 0ð�E 0ÞÞ ¼ 0. By the Serre duality

H 3ðX 0
;W1

X 0ð�E 0ÞÞGH 0ðX 0
;YX 0ðKX 0 þ E 0ÞÞGH 0ðX 0

;W2
X 0ðE 0ÞÞ:

There is an injection

m�W
2
X 0ðE 0Þ ,! ~WW2

X

because both sheaves are isomorphic to each other outside a subset of codimensionb2

and ~WW2
X
is a reflexible sheaf. Then we have H 0ðX 0

;W2
X 0ðE 0ÞÞ ¼ 0 because H 0ðX ; ~WW2

X
Þ ¼ 0

by the Lemma. r

Step 2. When the f is ðg; ~gg; d Þ, the codimensionb ~gg.

Proof. This is a modification of the argument from the proof of Proposition 1.2

of [Gr 2]. By Theorem 0.6, ~ff ~EE : ~EE ! ~CC is a P
1-bundle over ~CC. Define Nf by the exact

sequence

0 ! Y~EE ! f �Y~XX ! Nf ! 0:

We remark that Nf is torsion free, locally free away from the inverse image of pinch

points of E. Thus we have that the double dual ~NNf of Nf is isomorphic to o ~EE n f �o�1
X .

We have an exact sequence as in [Ra],

T 1
f ! T 1

X lT 1
~EE
! H 1ðX ; f �YX Þ:

This induces an exact sequence

T 1
f !

a
T 1
X !

b 0

H 1ð ~EE;Nf Þ:

Let b be a composition homomorphism T 1
X ! H 1ð ~EE;Nf Þ ! H 1ð ~EE; ~NNf Þ. We know

that Def ðXÞ is smooth by [Pa] and [Mi], thus it is enough to show that rankðbÞb ~gg.

Using the identifications YX GW2
X no�1

X and ~NNf Go ~EE n f �o�1
X , we may view b as a

map b : H 1ðX ;W2
X no�1

X Þ ! H 1ðE;o ~EE n f �o�1
X Þ. We consider the following commu-

tative diagram:

H 1ðX ;W2
X Þ ���!

~bb
H 1ð ~EE;o ~EEÞ

?
?
?
y

?
?
?
y

X

H 1ðX ;W2
X no�1

X Þ ���!
b

H 1ðE;o ~EEÞ
?
?
?
y
F

?
?
?
y
F

H 1ðX ;YX Þ ���! H 1ð ~EE;Nf Þ ���! H 1ð ~EE; ~NNf Þ:
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We remark that injectivity of the first vertical map of the right-hand side is because

of the same reason in Step 1. Thus it is enough to show that rankð ~bbÞb ~gg. Since

h1ð ~EE;o ~EEÞ ¼ ~gg (because ~ff ~EE : ~EE ! ~CC is a P
1-bundle over ~CC ), it is enough to show that

~bb is surjective. By the Hodge symmetry, it is enough to show that H 2ðX ;W1
X Þ !

H 2ð ~EE;W1
~EE
Þ is surjective.

We consider the following 2 exact sequences,

0 ! F1 ! W1
X ! f� f

�W1
X ! F2 ! 0

where F2 has support on the singularities of E, and

0 ! F3 ! f �W1
X ! W1

~EE
! F4 ! 0

where F4 has support on the pinch point of ~EE. By the second exact sequence, we have

that the map H 2ð ~EE; f �W1
X Þ ! H 2ð ~EE;W1

~EE
Þ is surjective. Thus it is enough to show that

H 3ðX ;F1Þ ¼ 0. By the Serre duality, H 3ðX ;F1ÞGH 0ðX ;F4
1 noX Þ

4. There is an

injection

f�F
4
1 noX ,! ~WW2

X

because both sheaves are isomorphic to each other outside a subset of codimensionb2

and ~WW2
X
is a reflexible sheaf. Thus we have that H 0ðX ;F4

1 noX ÞJH 0ðX ; ~WW2
X
Þ ¼ 0 by

Lemma 3.3. r

We next show that the codimensionb gþ d � 1 when f is ðg; d Þ-type (resp.b~ggþ 2d � 1

when f is ðg; ~gg; d Þ-type). If d ¼ 0, then gb gþ d � 1 (resp. ~ggb ~ggþ 2d � 1). So we

may assume d0 0. Define Nf by the exact sequence

0 ! Y~EE ! f �Y~XX ! Nf ! 0

as in Step 2. We remark that Nf ¼ NE=X when E is normal.

Lemma 3.4. The homomorphism H 1ðX ;YX Þ ! H 1ð ~EE;o ~EE n f �o�1
X Þ is surjective,

where the homomorphism is induced by the composition of homomorphisms

YX ! f �YX ! Nf ! ~NNf Go ~EE n f �o�1
X :

Proof of Lemma. By Theorem 3.1, there exists a member D A j�2KX j such

that DVC V fdissident pointsg ¼ q and D :¼ f�D A j�2KX j is smooth. Taking double

cover of X and X branched along D and D, we have the following commutative

diagrams.
F C 0 ~FF ~CC 0

Y
c

Y F C 0

E
p

C ~EE ~CC

X
f

X E C

By the results of Wilson, Namikawa, and Gross of Calabi-Yau 3-folds (Cf. [Wi 1],

[Wi 2], [Na 1] and [Gr 2]), we have that the homomorphism

H 1ðY ;W2
Y Þ ! H 1ð ~FF ;o ~FF Þ
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is surjective. We have that

g : o ~FF !
F

p�ðo ~EE n f �o�1
X Þ:

Let s be the involution on Y. We remark that s � g ¼ �g. We have that ðp�o ~FF Þ
½�1� G

½p�p
�ðo ~EE n f �o�1

X Þ�G G ½ðo ~EE n f �o�1
X Þn ðO~EE l f �oX Þ�

G Go ~EE n f �o�1
X . We consider

the following commutative diagram.

½p�W
2
Y �

½�1�

?
?
?
y
F

½p�YY �
G
���! ½p�o ~FF �

½�1�

?
?
?
y

?
?
?
y
F

YX ���! o ~EE n f �o�1
X

�
�
�
�
�
�
�
��!

This induces a commutative diagram

H 1ðY ;W2
Y Þ

½�1�
���! H 1ð ~FF ;o ~FF Þ

½�1�

?
?
?
y

?
?
?
y
F

H 1ðX ;YX Þ ���! H 1ðo ~EE n f �o�1
X Þ:

Since the upper horizontal homomorphism is surjective, so is the horizontal homo-

morphism at the bottom. r

As in Step 1 and 2, we have a commutative diagram with an exact row

T 1
f ���!

a
T 1
X ���!

b 0

H 1ð ~EE;Nf Þ

b

?
?
?
y

H 1ð ~EE; ~NNf Þ;

�
�
�
�
�
��!

and we know that Def ðXÞ is smooth. By Lemma 3.4, we know that Im b ¼

h1ð ~EE;o ~EE n f �o�1
X Þ. Thus it is enough to show that h1ð ~EE;o ~EE n f �o�1

X Þb gþ d � 1

(resp. ~ggþ 2d � 1).

As in Step 1, we can show that there exists a member S A j�KX j such that

F ¼ f �S ¼
Pd

i¼1 Fi (resp.
P2d

i¼1 Fi), where Fi GP
1 is a fiber of ~EE over ~CC for each i, and

Fi VFj ¼ q if i0 j. Since o ~EE n f �o�1
X jFi

GoFi
, we have an exact sequence induced by

the choice of S

0 ! o ~EE ! o ~EE n f �o�1
X ! 0

d

i¼1

oFi
! 0:

resp: 0 ! o ~EE ! o ~EE n f �o�1
X ! 0

2d

i¼1

oFi
! 0:

 !

This induces the following exact sequence:
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0
d

i¼1

H 0ðFi;oFi
Þ ! H 1ð ~EE;o ~EEÞ ! H 1ð ~EE;o ~EE n f �o�1

X Þ

! 0
d

i¼1

H 1ðFi;oFi
Þ ! H 2ð ~EE;o ~EEÞ:

 

resp: 0
2d

i¼1

H 0ðFi;oFi
Þ ! H 1ð ~EE;o ~EEÞ ! H 1ð ~EE;o ~EE n f �o�1

X Þ

! 0
2d

i¼1

H 1ðFi;oFi
Þ ! H 2ð ~EE;o ~EEÞ:

!

Since h0ðFi;oFi
Þ ¼ 0, h1ðFi;oFi

Þ ¼ 1, h1ð ~EE;o ~EEÞ ¼ g (resp. ¼~gg), and h2ð ~EE;o ~EEÞ ¼ 1,

Proposition 3.2 follows from this exact sequence. r

By Proposition 3.2, E will not deform under a generic deformation of X , unless f is a

contraction of ð0; 0Þ, ð0; 1Þ, ð0; ~gg; 0Þ, or ð0; ~gg; 1Þ-type. Thus there exists a deformation of

f which is a crepant primitive birational contraction of type I. We want to count the

number of curves contracted by the contraction of type I in the following proposition.

Proposition 3.5. Let X be a smooth weak Fano 3-fold and f : X ! X a crepant

primitive birational contraction of type III. Assume that f is neither ð0; 0Þ, ð0; 1Þ, ð0; ~gg; 0Þ,

nor ð0; ~gg; 1Þ-type. Then there exists a small deformation of f over ðD; 0Þ

X ���!
F

X

f

?
?
?
y
f

ðD; 0Þ

�
�
�
��!

such that, for any t A ðD; 0Þnf0g,

Ft : Xt ! Xt

is a crepant primitive contraction of type I which contracts

(i) just 2g� 2þ dP1’s when f is a contraction of ðg; d Þ-type without dissident

fibers with db 2.

(ii) at least 2~gg� 2þ 2dP1’s when f is a contraction of ðg; ~gg; d Þ-type.

(iii) lP1’s where 2g� 2a la 2g� 1 when f is a contraction of ðg; 1Þ-type without

dissident fibers.

(iv) a single P
1 when f is a contraction of ð1; 1Þ-type without dissident fibers.

Proof. We will divide the proof into 3 cases.

Case 1 (f is of ðg; d Þ-type without dissident fibers).

Let ZGP
1 be any fiber of fjE over p A C and i : Z ,! X the natural closed

embedding. We have that NZ=X GNZ=E l ðNE=X jZÞ where NZ=E GOZ. We consider

the following commutative diagram:

T 1
i ���! T 1

X ���!
i

H 1ðZ;NZ=X Þ
?
?
?
y
b

?
?
?
y
F

H 1ðE;NE=X Þ ���!
t

H 1ðZ;NE=X jZÞ:
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We remark that the upper horizontal sequence is exact as in [Ra]. Thus for h A T 1
X , Z

extends sideways to first order in the first order deformation corresponding to h if and

only if t � bðhÞ ¼ 0. Using the identification NE=X GoE no�1
X , we may view t as a

map

t : H 1ðE;oE no�1
X Þ ! H 1ðoE no�1

X jZÞ:

By the relative duality, we know that

R1f�oE GR1f�ðoE=C n f�oCÞG ðR1f�oE=CÞnoC GoC :

Thus we have the isomorphisms

R1f�ðoE no�1
X ÞGR1f�ðoE n f�ðo�1

X
jCÞÞG ðR1f�oEÞno�1

X
GoC no�1

X
:

Considering the Leray spectral sequence, we have an identification

H 1ðE;oE no�1
X Þ ���!

t
H 1ðZ;oE no�1

X jZÞ
?
?
?
y
F

?
?
?
y
F

H 0ðC;oC no�1
X
Þ ���!

t
H 0ðp;oC no�1

X
jpÞ:

By the assumption, there exists an element x A H 0ðC;oC no�1
X
Þ such that h0 0. Then

there exists an element h A T 1
X such that bðhÞ ¼ x by Lemma 3.4. From the above

argument, the fiber over a point where tðxÞ vanishes extends sideways to first order in

the first order deformation corresponding to h. Because tðxÞ vanishes at 2g� 2þ d

points, 2g� 2þ dP1’s extends sideways in a general first order deformation.

Next, we consider the obstruction of the morphism i : Z ,! X . We consider the

following commutative diagram:

T 1
X ���!

i
H 1ðZ;NZ=X Þ ���! T 2

i ���! T 2
X

?
?
?
y
b

?
?
?
y
F

H 0ðC;oC no�1
X
Þ ���!

t
H 0ðp;oC no�1

X
jpÞ:

We remark that the upper horizontal sequence is exact. If d0 1, the linear system

jKC � ðKX jCÞj is base-point free. Thus t is surjective. We know that b is surjective by

Lemma 3.4, thus i is surjective. If d ¼ 1, in this case g0 0 by the assumption, we have

that jKC � ðKX jCÞj ¼ jKC j þ q where q ¼ �KX � C. Thus t is surjective if p0 q. This

completes the proof in this case except (iv).

Case 2 (f is of ðg; ~gg; d Þ-type). Let ~EE be the normalization of E, and ~EE ! ~CC ! C

the Stein factorization. We consider the following commutative diagram:

f

~EE E X

~ff~EE fjE f

~CC C X :

h
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Let ZGP
1 be any fiber of ~ff ~EE over p A ~CC and i : Z ,! X be the natural closed embed-

ding. There is a natural morphism NZ=X ! ~NNf jZ for any fiber Z. We remark that

NZ=X GNZ= ~EE l ð ~NNf jZÞ where NZ= ~EE GOZ for a general fiber Z. We consider the following

commutative diagram:

T 1
i ���! T 1

X ���!
i

H 1ðZ;NZ=X Þ
?
?
?
y
b

?
?
?
y
z

H 1ð ~EE; ~NNf Þ ���!
t

H 1ðZ; ~NNf jZÞ?
?
?
y
F

?
?
?
y
F

H 0ð ~CC;o ~CC n h�o�1
X
Þ ���!

t
H 0ðp;o ~CC n h�o�1

X
jpÞ:

We remark that z is an isomorphism for a general fiber Z and we can show that the

lower vertical arrows are isomorphisms by the similar reason in Step 1. The above

commutative diagram tells us that Z will not extend in a first order deformation corre-

sponding to h if t � bðhÞ0 0 for any fiber Z, and that Z extends sideways to first order

in the first order deformation corresponding to h if t � bðhÞ ¼ 0 for a general fiber Z.

Since the degree of K ~CC þ h�ð�KX Þ is 2~gg� 2þ 2d and d0 0, jK ~CC þ f �ð�KX Þj is base-

point free. Thus we can show this proposition by the same method in Step 1 in this

case. We remark that we only considered a fiber of ~ff ~EE in this proof, thus we need ‘‘at

least’’ in this statement.

Case 3 ((iv) of this proposition). If any fiber will not deform, then the Kähler cone

of X is not locally constant at 0 A Def ðX Þ. But it contradicts Page 63 of [Pa] and

Theorem 3.1. r

Proposition 3.6. Let X be a smooth weak Fano 3-fold, and f : X ! X a crepant

primitive birational contraction of type III. Assume that f is a contraction of ðg; d Þ-

type with dissident fibers and is neither ð0; 0Þ nor ð0; 1Þ-type. Then there exists a small

deformation of f over ðD; 0Þ

X ���!
F

X

f

?
?
?
y
f

ðD; 0Þ

�
�
�
��!

such that, for any t A ðD; 0Þnf0g,

Ft : Xt ! Xt

is a crepant primitive birational contraction of type I which is not a contraction of a single

P
1 to an ordinary double point.

Proof. We can show this proposition by the same method in the proof of

Theorem 1.3 of [Gr 2].

Proposition 3.7. Let X be a smooth weak Fano 3-fold, f : X ! X a crepant

primitive birational contraction of type III, and X ! Def ðXÞ the Kuranishi family of X.

Assume that f is a contraction of ð0; 0Þ, ð0; 1Þ, ð0; ~gg; 0Þ, or ð0; ~gg; 1Þ-type. Then E will

deforms in the family.

T. Minagawa708



Proof. The case d ¼ 0 was proved by Paoletti (cf. the proof of Lemma 3.6 of

[Pa]), thus we may assume d ¼ 1.

We first treat the case f is of ð0; 1Þ-type. When f is without dissident fibers,

h1ðE;OEðEÞÞ ¼ h1ðE;oE no�1
X Þ ¼ h0ðC;oC no�1

X
Þ ¼ 0. Consider the exact sequence

in Step 1 of Proposition 3.6,

0 ! oE ! oE no�1
X ! oF ! 0

where F GP
1. This induces a long exact sequence

0 ¼ H 1ðE;oE no�1
X Þ ! H 1ðF ;oF Þ ! H 2ðE;oEÞ

! H 2ðE;oE no�1
X Þ ! 0:

Thus we can show that h2ðE;OEðEÞÞ ¼ h2ðE;oE no�1
X Þ ¼ 0. Thus E will deform in

the Kuranishi family of X .

When E is of ð0; 1Þ-type with dissident fibers. As in the case E is ð0; 1Þ-type

without dissident fibers, we can prove that h2ðE;OEðEÞÞ ¼ 0 if h1ðE;OEðEÞÞ ¼ 0. So it

is enough to show that h1ðE;OEðEÞÞ ¼ 0. We can consider the following commutative

diagram:

ÊE ���!
m

E
?
?
?
y
n

?
?
?
y
fjE

E 0
���!

f 0

CGP
1
:

where m : ÊE ! E is the minimal resolution of E, and f 0
: E 0 ! C is a P

1-bundle.

Since oÊE F m�oE , we have that

H 1ðÊE;oÊE n m�o�1
X Þ ¼ H 1ðÊE; m�ðoE no�1

X ÞÞ:

Since m�m
�ðoE no�1

X ÞFoE no�1
X , we have that

H 1ðE;OEðEÞÞGH 1ðE;oE no�1
X Þ ,! H 1ðÊE;oÊE n m�o�1

X Þ

by the Leray spectral sequence.

Thus it is enough to show that

H 1ðÊE;oÊE n m�o�1
X ÞGH 1ðÊE; m�oX Þ ¼ 0:

Since f�oX FoX , we have that n�ðf 0Þ�oX F m�f�oX F m�oX , thus

H 1ðÊE; m�oX Þ ¼ H 1ðÊE; n�ðf 0Þ�oX Þ:

Since n�n
�ððf 0Þ�oX ÞF ðf 0Þ�oX , we have that

H 1ðE 0
; ðf 0Þ�oX ÞGH 1ðÊE; n�ðf 0Þ�oX Þ

by the Leray spectral sequence. As is the case f is a ð0; 1Þ-type without dissident fibers,

we can show that

H 1ðE 0
; ðf 0Þ�oX ÞGH 1ðE 0

;oE 0 n ðf 0Þ�o�1
X
Þ ¼ 0:
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Thus the rest is the case f is of ð0; ~gg; 1Þ-type. If there exists a small deformation of f

over ðD; 0Þ

X ���!
F

X

f

?
?
?
y
f

ðD; 0Þ

�
�
�
��!

such that, for any t A ðD; 0Þnf0g,

Ft : Xt ! Xt

is a crepant primitive birational contraction of type I. We consider the following

commutative diagram as in Case 2 of the proof of Proposition 3.6:

f

~EE E X

~ff~EE fjE f

~CC C X :

h

Then Ft contracts at least 2~ggP1’s for t A ðD; 0Þnf0g which are deformations of fibers of
~ff ~EE , and these fibers are chosen generically in fibers of ~ff ~EE as in Case 2 of the proof of

Proposition 3.6. We remark that the morphism ~CC ! C is a finite morphism branched

over at least 2 points on C by Hurwitz formula, and these points on C are dissident

points. By [Pa], we know that the fiber of ~ff ~EE whose image by f � f is a dissident point

deforms in the Kuranishi family of X . It is a contradiction. r

Combining these propositions and Theorem 1.2, we can prove Theorem 0.9.
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