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Abstract. We define the cobordism group of Morse functions on manifolds and

show that it is an infinite cyclic group for dimension two in the oriented case. We also

give an explicit Morse function which gives a generator of the group.

1. Introduction.

The purpose of this paper is to determine the structure of the 2-dimensional

oriented cobordism group of Morse functions.

Let us recall a brief history of the cobordism theory of smooth maps. Thom

[18] described the cobordism groups of embeddings in terms of homotopy groups of

certain spaces, using the so-called Pontrjagin-Thom construction. Wells [19] defined

the cobordism groups of immersions and studied them again by using a Pontrjagin-

Thom type construction. Eliashberg [3] generalized Wells’ result to cobordism groups

of smooth maps satisfying certain di¤erential relations of order one. Cobordism groups

of smooth maps with a given set of local and global singularities were introduced and

studied by Rimányi and Szűcs [14], who showed that these groups are isomorphic to the

homotopy groups of certain ‘‘universal spaces’’, where the isomorphisms are obtained

again by a Pontrjagin-Thom type construction. Recall that they considered only the

non-negative codimension case, i.e., the case where the dimension of the target is greater

than or equal to that of the source.

In this paper, as a simple but important example for the strictly negative

codimension case, we study the cobordism group Mð2Þ of Morse functions on oriented

surfaces and show that it is an infinite cyclic group, using a totally di¤erent method.

Note that the group Mð2Þ corresponds to the 2-dimensional oriented cobordism group

for fold singularities of codimension �1 in a sense similar to that of [14].

Recently Ando [1], [2] studied the n-dimensional oriented cobordism group for

fold singularities of codimension zero. Our method is totally di¤erent from Ando’s

and uses the notion of the Stein factorization. The second author [15], [16] studied the

cobordism group of Morse functions with only minima and maxima as their critical

points using the Stein factorizations, which are manifolds for such functions. Our sit-

uation admitting critical points of any index is more complicated, since the Stein facto-

rizations are no longer manifolds.
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The paper is organized as follows. In §2, we give a precise definition of the (fold)

cobordism group of Morse functions on n-dimensional manifolds and state our main

theorem. We also define the Stein factorization of a Morse function and introduce the

notion of a Reeb function, which is a function on a certain graph. In §3, we define and

study the cobordism group of Reeb functions from a graph theoretical viewpoint. Our

approach is to reduce the cobordism relation to certain moves for functions on graphs.

In §4, we complete the proof of our main theorem by using a method of Mata-Lorenzo

[12] for realizing a certain 2-dimensional polyhedron as the Stein factorization of a

generic map of a 3-manifold into the plane.

Throughout the paper, all manifolds and maps are of class Cy. The symbol

‘‘G’’ denotes an appropriate isomorphism between algebraic objects. For a space X ,

idX denotes the identity map of X .

The authors would like to express their sincere gratitude to Professor Takao

Matumoto for his constant encouragement.

2. Preliminaries.

A smooth real-valued function on a smooth manifold is called a Morse function if

its critical points are all non-degenerate. Note that its restriction to the set of critical

points may not necessarily be injective in general. For a positive integer n, we denote

by MðnÞ the set of all Morse functions on closed (possibly disconnected) oriented n-

dimensional manifolds. We adopt the convention that the function on the empty set q

is an element of MðnÞ for all n.

Before defining the cobordism group of Morse functions, let us recall the notion of

fold singularities. Let f : M ! N be a smooth map between smooth manifolds with

n ¼ dimMb dimN ¼ p. A singular point of f is a point q A M such that the dif-

ferential dfq : TqM ! Tf ðqÞN has rank strictly smaller than p. We denote by Sð f Þ the

set of all singular points of f and call it the singular set of f . A singular point q A Sð f Þ

is a fold point if there exist local coordinates ðx1; x2; . . . ; xnÞ and ðy1; y2; . . . ; ypÞ around q

and f ðqÞ respectively such that f has the form

yi � f ¼
xi; 1a ia p� 1;

Gx2
p G x2

pþ1 G � � �G x2
n ; i ¼ p:

�

If the signs appearing in yp � f all coincide, then we say that q is a definite fold point,

otherwise an indefinite fold point. We denote by S0ð f Þ (or S1ð f Þ) the set of all definite

(resp. indefinite) fold points of f .

Definition 2.1. Two Morse functions f0 : M0 ! R and f1 : M1 ! R in MðnÞ

are said to be cobordant (or fold cobordant) if there exist a compact oriented ðnþ 1Þ-

dimensional manifold X and a smooth map F : X ! R� ½0; 1� which has only fold

points as its singularities such that

(1) the oriented boundary qX of X is the disjoint union M0 q ð�M1Þ, where �M1

denotes the manifold M1 with the orientation reversed, and

(2) we have
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F jM0�½0; eÞ
¼ f0 � id½0; eÞ : M0 � ½0; eÞ ! R� ½0; eÞ; and

F jM1�ð1�e;1�
¼ f1 � idð1�e;1� : M1 � ð1� e; 1� ! R� ð1� e; 1�

for some su‰ciently small e > 0, where we identify the collar neighborhoods of

M0 and M1 in X with M0 � ½0; eÞ and M1 � ð1� e; 1� respectively.

In this case, we call F a cobordism between f0 and f1.

If a Morse function in MðnÞ is cobordant to the function on the empty set, we say

that it is null-cobordant.

It is easy to show that the above relation defines an equivalence relation on the

set MðnÞ for each n. Furthermore, it is easy to see that the set of all equivalence

classes forms an additive group under the disjoint union: the neutral element is the class

corresponding to null-cobordant Morse functions, and the inverse of a class represented

by a Morse function f : M ! R is given by the class of �f : �M ! R. We denote

by MðnÞ the set of all (fold) cobordism classes of elements of MðnÞ and call it the

cobordism group of Morse functions (or fold cobordism group of Morse functions) on

oriented manifolds of dimension n, or the n-dimensional oriented cobordism group of

Morse functions.

Remark 2.2. Let M be a closed oriented n-dimensional manifold. It is easy to

see that if two Morse functions f and g on M are connected by a one-parameter family

of Morse functions, then they are cobordant. In particular, every Morse function is

cobordant to a Morse function whose critical values are all distinct. Such a Morse

function is said to be stable. For details, see [5, Chapter III, §2].

Our main result of this paper is the following.

Theorem 2.3. The 2-dimensional oriented cobordism group of Morse functions Mð2Þ

is an infinite cyclic group.

We will also give an explicit example of a Morse function which gives a generator

of Mð2Þ (see Figure 10 in §4).

In the subsequent sections, we will study the group structure of Mð2Þ using the

following notion of Stein factorizations (for more details, see [11], for example).

Definition 2.4. Suppose that a smooth map f : M ! N with n ¼ dimMb

dimN ¼ p is given. Two points in M are equivalent if they lie on the same component

of an f -fiber. Let Wf denote the quotient space of M with respect to this equivalence

relation and qf : M !Wf the quotient map. Then it is easy to see that there exists a

continuous map f : Wf ! N such that f ¼ f � qf . The space Wf or the commutative

diagram

M ���!
f

N

q f f 
�
�
�

�
�
�
!

Wf

is called the Stein factorization of f .
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If f : M ! R is a Morse function on a closed manifold M, then Wf has the natural

structure of a 1-dimensional CW complex. In this case, we call Wf the Reeb graph of f

(for example, see [4]). Furthermore, we call the continuous map f : Wf ! R a Reeb

function.

3. Cobordism group of Reeb functions.

In this section, we study the Reeb graphs and Reeb functions associated with Morse

functions on surfaces. Let us begin by defining the following class of Morse functions.

Definition 3.1. Let f : M ! R be a Morse function on a closed oriented surface

M. We say that f is simple if every component of an arbitrary f -fiber contains at most

one critical point. Note that a stable Morse function is always simple.

The following lemma can easily be proved (for example, see [17, §3]).

Lemma 3.2. Let f : M ! R be a simple Morse function on a closed orientable

surface M. Then its Reeb graph Wf is a finite graph whose vertices are the qf -images of

the critical points of f such that

(1) the vertices corresponding to critical points of index 0 or 2 have degree 1, and

those of index 1 have degree 3,

and the Reeb function f : Wf ! R satisfies the following:

(2) around each vertex of Wf , f is equivalent to one of the functions as depicted in

Figure 1, and

(3) f is an embedding on each edge.

Figure 1. Behavior of f around each vertex of the Reeb graph Wf .

R R

R R
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To each vertex of degree three of the Reeb graph we associate the sign þ1 or �1 as

in Figure 1.

Let us consider an abstract generalization of the Reeb function f : Wf ! R

appearing in the Stein factorization of a simple Morse function on a closed orientable

surface.

Definition 3.3. Let G be a finite graph which may possibly be disconnected, and

r : G ! R a continuous function such that

(1) the degree of each vertex of G is equal either to 1 or to 3,

(2) around each vertex of G, r is equivalent to one of the functions as depicted in

Figure 1, and

(3) r is an embedding on each edge.

To each vertex of degree three we associate the sign þ1 or �1 as in Figure 1. We call

G an abstract Reeb graph and r : G ! R an abstract Reeb function. We adopt the

convention that the empty graph and the function on it are also an abstract Reeb graph

and an abstract Reeb function, respectively.

By Lemma 3.2, the Reeb graph Wf and the Reeb function f : Wf ! R asso-

ciated with a simple Morse function f on a closed orientable surface are an abstract

Reeb graph and an abstract Reeb function, respectively.

Let f0 : M0 ! R and f1 : M1 ! R be cobordant simple Morse functions on

closed oriented surfaces and F : X ! R� ½0; 1� a cobordism between them. By slightly

changing F in the interior of X , we may assume that F�1ðR� ð½0; eÞU ð1� e; 1�ÞÞ coin-

cides with the collar neighborhood of qX as in Definition 2.1 (2). Note that X is a

compact oriented 3-manifold with boundary and that F has only fold points as its sin-

gularities. Hence, the singular set SðFÞ is a compact 1-dimensional manifold properly

embedded in X and F jSðFÞ is an immersion. By perturbing F slightly on the comple-

ment of the collar neighborhood of qX , we may assume that F jSðFÞ is an immersion with

normal crossings outside of the closure of the collar neighborhood (for details, see

[5]). In particular, each F -fiber contains at most two singular points. Therefore, for a

point x A qF ðSðFÞÞ, q�1F ðxÞðHF�1ðF ðxÞÞÞ contains one or two singular points, where

qF and F are the maps appearing in the Stein factorization of F :

X ���!
F

R� ½0; 1�

qF F 
�
�
�

�
�
�
!

WF :

In the former case, we call x a simple point, otherwise a non-simple point.

Combining Lemma 3.2 and results of Kushner, Levine and Porto [10], [11], we have

the following.

Lemma 3.4. The Stein factorization WF is a compact 2-dimensional polyhedron.

Furthermore, around each point x A WF , the map F : WF ! R� ½0; 1� is equivalent to one

of the maps as depicted in Figure 2, where the maps in question are vertical projections to

a horizontal plane and they correspond to the following cases.

(1) x A qF ðqXÞnqF ðSðF ÞÞ. (2) x A qF ðIntXÞnqF ðSðFÞÞ:

(3) x A qF ðqX VS0ðFÞÞ. (4) x A qF ðIntX VS0ðF ÞÞ.
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(5) x A qF ðqX VS1ðFÞÞ. (6) x A qF ðIntX VS1ðF ÞÞ and x is simple.

(7), (8) x A qF ðIntX VS1ðF ÞÞ and x is non-simple.

Furthermore, the thick lines indicate qF ðSðF ÞÞ.

By composing F with a di¤eomorphism R� ½0; 1� ! R� ½0; 1� which is the identity

on R� ð½0; e�U ½1� e; 1�Þ, we may arrange so that p2 � F jSðFÞ is a Morse function with

finitely many critical points whose F -images are not self-intersections of F jSðFÞ, where

p2 : R� ½0; 1� ! ½0; 1� is the projection to the second factor. For t A ½0; 1� which is not

a critical value of the Morse function p2 � F jSðFÞ, Mt ¼ ðp2 � FÞ
�1ðtÞ is a closed oriented

surface and p1 � F jMt
: Mt ! R is a Morse function, where p1 : R� ½0; 1� ! R is the

projection to the first factor. By carefully examining the changes in the Reeb function

of p1 � F jMt
as t varies from 0 to 1, we easily obtain the following.

Corollary 3.5. If two simple Morse functions f0 : M0 ! R and f1 : M1 ! R on

closed oriented surfaces are cobordant, then the Reeb function f1 : Wf1 ! R is obtained

from f0 : Wf0 ! R by a finite iteration of moves as depicted in Figure 3 up to homotopy

Figure 2. Behavior of F : WF ! R� ½0; 1� around each point of WF .
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in the space of abstract Reeb functions, where the functions in question are the height

functions.

Details of the proof of the above corollary are left to the reader.

Definition 3.6. Let ri : Gi ! R, i ¼ 0; 1, be abstract Reeb functions. We say that

r0 and r1 are cobordant if there exist a 2-dimensional compact polyhedron P and a

continuous map R : P ! R� ½0; 1� such that

(1) Gi ¼ R�1ðR� figÞ, i ¼ 0; 1, and they are subcomplexes of P with regular

neighborhoods of the forms G0 � ½0; e� and G1 � ½1� e; 1�, respectively, for

some su‰ciently small e > 0, where G0 corresponds to G0 � f0g and G1 to

G1 � f1g,

(2) we have

RjG0�½0; eÞ ¼ r0 � id½0; eÞ : G0 � ½0; eÞ ! R� ½0; eÞ; and

RjG1�ð1�e;1� ¼ r1 � idð1�e;1� : G1 � ð1� e; 1� ! R� ð1� e; 1�;

and

Figure 3. Seven moves for Reeb functions.

q
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(3) around each point of P, the polyhedron P and the map R is equivalent to one

of the maps as depicted in Figure 2.

In this case, we call R a cobordism between r0 and r1. Furthermore, the set SðPÞ of

the points in P which have regular neighborhoods as in Figure 2 (3)–(8) is called the

singular set of P, and the points in P which have regular neighborhoods as in Figure 2

(7) and (8) are called non-simple vertices of P.

Note that by Lemma 3.4, Reeb functions associated with cobordant simple Morse

functions are cobordant in the above sense.

If an abstract Reeb function is cobordant to the function on the empty graph, we

say that it is null-cobordant.

It is easy to show that the above relation defines an equivalence relation on the set

of abstract Reeb functions. Furthermore, it is easy to see that the set of all equivalence

classes forms an additive group under the disjoint union: the neutral element is the

class corresponding to null-cobordant abstract Reeb functions, and the inverse of a class

represented by an abstract Reeb function r : G ! R is given by the class of �r : G ! R.

We denote by R the set of all cobordism classes of abstract Reeb functions and call it

the cobordism group of Reeb functions.

By an argument similar to the proof of Corollary 3.5, we can show the following.

Lemma 3.7. Two abstract Reeb functions r0 : G0 ! R and r1 : G1 ! R are co-

bordant if and only if r1 is obtained from r0 by a finite iteration of moves as depicted

in Figure 3 up to homotopy in the space of abstract Reeb functions, where the functions

in question are the height functions.

Take an arbitrary element of the 2-dimensional oriented cobordism group of Morse

functions Mð2Þ. By Remark 2.2, we can always find a stable and hence simple Morse

function f : M ! R as a representative. By Lemma 3.4, the cobordism class of the

Reeb function f : Wf ! R does not depend on the choice of such a representative.

Thus the map

r : Mð2Þ ! R

sending the cobordism class represented by a simple Morse function to the cobordism

class of its associated Reeb function is well-defined. Furthermore, it is clearly a homo-

morphism of abelian groups.

The main result of this section is the following.

Proposition 3.8. The cobordism group R of Reeb functions is an infinite cyclic

group generated by the cobordism class of the abstract Reeb function as depicted in

Figure 4.

Proof. For an abstract Reeb function r : G ! R, let sðrÞ be the sum of the

signs over all vertices of G of degree three (see Figure 1 for the definition of the sign of

each degree three vertex). By Lemma 3.7, if two abstract Reeb functions r0 and r1 are

cobordant, then we have sðr0Þ ¼ sðr1Þ, since each of the seven moves as in Figure 3 and

any homotopy in the space of abstract Reeb functions leave the sum of the signs

invariant. Hence, s : R ! Z defined by sending the cobordism class of r to sðrÞ is well-

defined. Furthermore, it is clearly a homomorphism of abelian groups.

K. Ikegami and O. Saeki1088



Let us consider the family

S ¼ fsn : n A Zg

of standard abstract Reeb functions as depicted in Figure 5 and i : S ! R the natural

map induced by the inclusion. Then, we see easily that s � i is bijective, and hence s is

surjective and i is injective.

Let us show that s is injective by showing that i is surjective. For a given abstract

Reeb function r : G ! R, we will show that there exists an sn A S which is cobordant

to r.

If G is the empty set, then r coincides with s0. Suppose that G is non-empty. If

some component of G is not a tree, then there exists a non-trivial loop l in G which

is not null-homotopic. We may assume that it is a simple loop and hence that every

vertex on l has degree three.

Lemma 3.9. There exists an edge on l which is of the form as depicted in Figure 6

(1).

Proof. Suppose that all the edges of l are of the forms (2), (3), or (4) of

Figure 6. Let v be a vertex on l which takes the maximum value of rj
l
. Then an

edge e1 of l incident to the vertex v must be of the form (3). Then the edge e2 of l

adjacent to e1 and not incident to v must also be of the form (3). Repeating the same

argument, we have the conclusion that all the edges of l are of the form (3). This is a

Figure 4. Abstract Reeb function representing a generator of R.

Figure 5. Standard abstract Reeb functions.

R

q
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contradiction, since an edge incident to the vertex corresponding to the minimum of rj
l

must be of the form (4). Hence an edge of l must be of the form (1). r

Let us go back to the proof of Proposition 3.8. Let e be an edge of the loop l as

in Lemma 3.9. By using the moves (VI) and (VII) of Figure 3, which do not change

the homotopy type of the graph, we can raise the upper vertex of e until e is as depicted

in Figure 7 (1). Then by a homotopy in the space of abstract Reeb functions, we may

further assume that rj
l
takes the maximum value at the upper vertex of e. Now, by

using the moves (V) and (VII) of Figure 3, we can slide the lower vertex of e along l

(see Figure 8 for one of the procedures) until we get the situation as depicted in Figure 7

(2). Finally, by the move (IV), we can remove the edge e so that we obtain a graph

whose first Betti number is smaller than the original one by one. Repeating this pro-

cedure, we may assume that every component of the graph G is a tree.

If G is not connected, then by using a homotopy in the space of abstract Reeb

Figure 6. Four cases for an edge in l.

Figure 7. Sliding the edge e.

Figure 8. Sliding the lower vertex of e along l.
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functions together with the move (II) in Figure 3, we may assume that G is connected

and hence is a tree.

Suppose that G contains two adjacent vertices v1 and v2 of degree three whose

signs are equal to þ1 and �1 respectively. If rðv2Þ > rðv1Þ, then we have the situation

as depicted in Figure 9 (2). Let v3 0 v2 be the upper vertex of the upper edge e1 0 e

incident to v1, where e is the edge which has v1 and v2 as its end points. Since G is

a tree, the graph Gne1 has two components. Let G1 be the component of Gne1 which

contains v3. We can raise G1 by a homotopy in the space of abstract Reeb functions

so that rðv3Þ > rðv2Þ. Then we can apply the move (VII) of Figure 3 as indicated in

Figure 9 (2) so that we have rðv2Þ < rðv1Þ as in Figure 9 (1).

Then, applying the move (III), we can eliminate the vertices v1 and v2. Note that

the resulting graph does not contain any non-trivial loop, although it has two connected

components. We raise one of the two components by a homotopy in the space of

abstract Reeb functions and then use the move (II) to connect the two components. In

this way, we get a tree whose number of vertices of degree three is fewer than the

original one by two. Repeating this procedure finitely many times, we may assume that

all the vertices of degree three have the same sign and that the graph G is a tree.

If G has no vertex of degree three, then G must be of the form as in the left hand

side of Figure 3 (I), which is cobordant to s0.

Suppose that all the vertices of degree three have the sign þ1. Let T be a

simple arc in G connecting a maximal vertex and a minimal vertex such that rjT is

an embedding. If there exists an edge disjoint from T , then by using the move (V) of

Figure 3, we can slide its lower vertex until it reaches T . After repeating this proce-

dure finitely many times, we get an abstract Reeb function which is homotopic to sn in

the space of abstract Reeb functions, where n is the sum of the signs over all degree

three vertices of G. Hence, we have proved that r is cobordant to sn.

When all the vertices of degree three have the sign �1, a similar argument can be

applied. Thus, we have proved that i : S ! R is surjective and hence that s : R ! Z

is a bijection. Since it is a homomorphism, it is an isomorphism. By our construction

of the homomorphism s, it is clear that R is generated by the cobordism class of the

abstract Reeb function as depicted in Figure 4. This completes the proof of Proposition

3.8. r

Figure 9. Adjacent vertices of degree three with opposite signs.
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4. Proof of the main theorem.

In this section, we complete the proof of our main theorem.

Proof of Theorem 2.3. By Proposition 3.8, we have only to show that the

homomorphism r : Mð2Þ ! R defined in the previous section is an isomorphism.

For a given abstract Reeb function r : G ! R, it is not di‰cult to construct a closed

oriented surface M and a simple Morse function f : M ! R such that f : Wf ! R can

be identified with r in the sense that there exists a homeomorphism c : Wf ! G which

makes the following diagram commutative (for details, see [6], [7], [8], [9], for example).

M ���!
f

R

q f f r

 
�
�
�

�
�
�
!

�
�
�
!

Wf ���!
c

G

Hence, r is surjective.

In order to show that r is injective, suppose that f : M ! R and g : N ! R are

simple Morse functions whose associated Reeb functions f : Wf ! R and g : Wg ! R

are cobordant. Then by Definition 3.6, there exists a continuous map R : P! R�

½0; 1� of a 2-dimensional compact polyhedron P as in Definition 3.6 (1), (2) and (3),

where r0 ¼ f , G0 ¼Wf , r1 ¼ g and G1 ¼Wg. Such a map R can be regarded as an

immersed-W ‘‘with boundary’’ in the sense of Mata-Lorenzo (see [12], [13]). Then, by

using Mata-Lorenzo’s argument, we can construct a compact oriented 3-manifold X

with boundary and a smooth map F : X ! R� ½0; 1� which realizes R : P! R� ½0; 1� in

the sense that there exists a homeomorphism j : WF ! P such that the diagram

X ���!
F

R� ½0; 1�

qF F R

 
�
�
�

�
�
�
!

�
�
�
!

WF ���!
j

P

is commutative. This is shown as follows.

First, we decompose the polyhedron P as

P ¼ NðqPÞUNðVÞUNðSÞUS;

where NðqPÞ is the regular neighborhood of qP ¼ G0 UG1 as in Definition 3.6 (1), NðVÞ

is the union of the regular neighborhoods of non-simple vertices of P,

NðSÞ ¼ ~NNðSÞnðNðqPÞUNðVÞÞ;

~NNðSÞ is the regular neighborhood of the singular set SðPÞ of P, and S is the closure of

the complement of NðqPÞUNðVÞUNðSÞ in P.

Over NðqPÞ, we consider

FqP : ðM � ½0; e�ÞU ðN � ½1� e; 1�Þ ! R� ½0; 1�

defined by FqP ¼ f � id½0; e� on M � ½0; e� and by FqP ¼ g� id½1�e;1� on N � ½1� e; 1�.

Over NðVÞ, we construct a compact oriented 3-manifold XV and a smooth map

FV : XV ! R� ½0; 1� with only indefinite fold points as its singularities such that WFV

and FV are identified with NðVÞ and RjNðVÞ respectively (for details, see [10], [11]).
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Then we can extend the smooth map FqP UFV : ðM � ½0; e�ÞU ðN � ½1� e; 1�ÞUXV !

R� ½0; 1� to a smooth map FS : XS ! R� ½0; 1� of a compact oriented 3-manifold XS

with only fold points as its singularities so that FS : WFS
! R� ½0; 1� is identified with

RjNðqPÞUNðVÞUNðSÞ. Finally, we can extend FS to a smooth map F : X ! R� ½0; 1� of

a compact oriented 3-manifold X with only fold points as its singularities so that F :

WF ! R� ½0; 1� is identified with R, since the map qFS over qS ¼ ðNðqPÞUNðVÞU

NðSÞÞVS defines an orientable S1-bundle and hence it is the projection of a trivial

S1-bundle.

By construction, we see that the smooth map F : X ! R� ½0; 1� gives a cobordism

between f and g. Thus the map r : Mð2Þ ! R is injective.

This completes the proof of Theorem 2.3. r

Since for the Morse function h : S2 ! R as depicted in Figure 10 the associated

Reeb function represents a generator of R, we see that h represents a generator of the

2-dimensional oriented cobordism group of Morse functions Mð2ÞGZ.

Remark 4.1. For a given Morse function on a closed oriented surface, let us

associate the sign þ1 (or �1) for every degree one vertex of the Reeb graph corre-

sponding to a critical point of index 0 (resp. 2). Then by considering the number of

points in the inverse image of a point with respect to the Reeb function, we see easily

that the sum of all the signs always vanishes. This shows that the sum of the signs over

all vertices of degree three is equal to c2ð f Þ � c0ð f Þ, where clð f Þ denotes the number of

critical points of f of index l. Our proof of Theorem 2.3 shows that the map

Mð2Þ ! Z

which associates c2ð f Þ � c0ð f Þ A Z to the cobordism class of a Morse function f is well-

defined and gives an isomorphism.
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