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Abstract. It is known that any compact connected Lie group with its left invariant

framing is framed null-cobordant in the p-component for any prime p0 2; 3. In this

paper we will prove that the 3-components of SOð2nþ 1Þ and SpðnÞ are zero for nb 3,

n0 5; 7; 11. Combining this with the previously known results on SOð2nÞ and SUðnÞ

consequently we see that any classical group has at most only the 2-component with some

exceptions.

1. Introduction.

Let ðG;LÞ be the pair consisting of a compact connected Lie group of dimension

d and its left invariant framing. In this paper we are concerned with whether or not

ðG;LÞ is framed cobordant to the boundary of a stably parallelizable manifold. This

problem is first raised by Gershenson in [4]. Let ½G;L� denote the framed cobordism

class represented by ðG;LÞ in the stable homotopy group p
S
d of spheres and let ½G;L�ð pÞ

denote the p-component of ½G;L�. Then this problem is referred to that of estimating

the order of ½G;L� or ½G;L�ðpÞ for all primes p.

By observing its filtration associated with the Adams spectral sequence for BP,

Knapp [8] gave the result of general nature such that ½G;L�ðpÞ is zero for any prime

pb 7. This result was later improved by Ossa in [14] as follows: 72½G;L� ¼ 0 and in

particular if G is a classical group then

24½G;L� ¼ 0:

As to the known results of its 3-component we have the following. From the

work of Becker and Schultz [3] (cf. [11]) we know that ½SOð2nÞ;L�ð3Þ ¼ 0 for nb 1

and furthermore we have partial stronger results like ½SOð4Þ;L� ¼ 0, ½SOð6Þ;L� ¼ 0,

½SOð7Þ;L� ¼ 0, ½SOð8Þ;L� ¼ 0 and ½SOð9Þ;L� ¼ 0 ([3], [7]). But these results were

recently strengthened in [6] as follows: ½SOð2nÞ;L� ¼ 0 for nb 2. Besides it is known

[12] that ½SUðnÞ;L�ð3Þ ¼ 0 for nb 3. For the exceptional Lie groups in addition to the

classical ones we know that ½F4;L�ð3Þ ¼ 0 ([7]), ½E6;L�ð3Þ ¼ 0 ([13]) and ½G2;L�ð3Þ ¼ 0

([18], [10]), to be exact, ½G2;L� ¼ k A p
S
14 using Toda’s notation in [17].

The purpose of this paper is to prove the following theorem.

Theorem 1.1. ½SOð2nþ 1Þ;L�ð3Þ ¼ 0 and ½SpðnÞ;L�ð3Þ ¼ 0 for any nb 3 except

n ¼ 5; 7; 11.
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Putting together the result of this theorem and the facts stated above preceding to

this theorem we have

Theorem 1.2. Let G denote the group SOð2nÞ ðnb 1Þ, SOð2nþ 1Þ ðnb 3Þ,

SUðnÞ ðnb 3Þ or SpðnÞ ðnb 3Þ. Then the 3-component of ðG;LÞ vanishes except for

G ¼ SOð2nþ 1Þ and SpðnÞ with n ¼ 5; 7; 11.

As for the groups with rank 1 and 2 excluded from the above theorem it is proved

that ½SUð2Þ;L� ¼ n, ½SOð3Þ;L� ¼ 2n A pS
3 , ½SOð5Þ;L� ¼ �b1 A pS

10 and ½Spð2Þ;L� ¼ b1 A

pS
10 ([1], [3], [7]) using the notations of Toda [17]. We note here that SOðnÞ and SpinðnÞ

have the same nullity in the 3-components since ½SOðnÞ;L�ð3Þ ¼ 2½SpinðnÞ;L�ð3Þ by Lemma

7.14 of [3].

As is shown in Lemma 2.6 below ½SOð2nþ 1Þ;L�ð3Þ and ½SpðnÞ;L�ð3Þ have the same

order. So we only have to prove Theorem 1.1 for SOð2nþ 1Þ. Our proof is mainly

based on the results of [3] and the method of [14]. Another key point in the proof is

the use of the solution of Adams conjecture of [15] together with the fact stated in

Lemma 4 of [16]. Furthermore we use the result of [2] for the proof of Theorem 1.1 in

the six cases where n ¼ 6; 8; 9; 10; 12; 13. Although we can prove ½SOð7Þ;L�ð3Þ ¼ 0 and

½SOð9Þ;L�ð3Þ ¼ 0 in the same way as in these six cases, we cite the stronger result of [3]

and [7] as mentioned above. Unfortunately the only three cases n ¼ 5; 7; 11 remains

unknown. It seems that some other method is required to deal with these cases.

In section 2 we summarize several fundamental facts which we need later. In

section 3 we establish a method of our computation and in the last section using this we

give a proof of Theorem 1.1.

Finally I would like to thank the referee for suggesting some improvements of this

paper.

2. The J-map.

We begin with recalling the construction of the J-map from [16], p. 314. Consider

an element x of gKOKO�1ðXÞ where X is a finite CW-complex with base point. We know

that x can be represented by a map f : X ! SOðNÞ. In this situation, we write bð f Þ

for x. Let WN
1 S

N and WN
0 SN be the spaces of all base point preserving maps of dgree

1 and 0 respectively. Then SOðNÞ can be embedded into WN
1 SN in the canonical

way. By u we denote this embedding. Subtracting the identity map of SN into itself

from the composite uf : X ! WN
1 SN we have a map X ! WN

0 SN and then taking the

adjoint of this map we get a map

~JJ : gKOKO�1ðXÞ ! p0
SðXÞ

where p0
SðXÞ is the reduced stable cohomotopy group of X in dimension 0. By

definition we can check that there holds the relation

~JJðxþ yÞ ¼ ~JJðxÞ þ ~JJðyÞ þ ~JJðxÞ ~JJðyÞ:

Let us set JðxÞ ¼ 1þ ~JJðxÞ A p0
SðX

þÞGZl p0
SðXÞ where Xþ denotes the disjoint union

of X and a single point which is viewed as its base point. In fact, J is obtained by

taking the adjoint of uf itself without subtracting the identity map of SN . Then J

becomes multiplicative, namely, it satisfies
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Jðxþ yÞ ¼ JðxÞJðyÞð2:1Þ

and Jð0Þ ¼ 1 since ~JJð0Þ ¼ 0 by definition.

Let r denote the standard non-trivial n-dimensional real representation of SOðnÞ

(which is also called briefly the identity representation of SOðnÞ) and l2r the second

exterior power of r. We need here the expression of only c2ðbðrÞÞ in terms of bðrÞ and

bðl2rÞ where c2 denotes the second Adams operation.

Lemma 2.2. c2ðbðrÞÞ ¼ 2nbðrÞ � 2bðl2ðrÞÞ:

Proof. Let Er;Ernr and El2r be the n-, n2- and n
2

� �
-dimensional vector bundles

associated with r, rn r and l2r respectively over a suspension space S15SOðnÞþ.

Then we can write as bðrÞ ¼ ½Er� � n and bðl2rÞ ¼ ½El2r� �
n
2

� �
under the natural iden-

tification gKOKOðS15SOðnÞþÞGgKOKO�1ðSOðnÞÞlZ2 and ½Ernr� ¼ ½Er�
2 since obviously

Ernr GEr nEr where ½E � denotes the isomorphism class of E. Now we have

c2ð½Er�Þ ¼ ½Ernr� � 2½El2r�

([5], Chapter 12, Proposition 2.5). Substituting ½Ernr� ¼ ½Er�
2, ½Er� ¼ bðrÞ þ n and

½El2r� ¼ bðl2rÞ þ n
2

� �
into this formula we obtain the result since the products of ele-

ments of gKOKOðS15SOðnÞþÞ are zero. r

Let j : SOð2nþ 1Þ ! S d be an obvious collapsing map to a top cell of SOð2nþ 1Þ

where d ¼ nð2nþ 1Þ and let us consider the homomorphism j � : pS
d ¼ p0

SðS
dÞ !

p0
SðSOð2nþ 1ÞþÞ. From now on we denote by r the identity representation of

SOð2nþ 1Þ and set

m ¼ ~JJðbðrÞÞ:

Then we know

Lemma 2.3 ([3], Theorem 5.3). j �ð½SOð2nþ 1Þ;L�Þ ¼ mnð2� mÞn and mnþ1ð2� mÞn

¼ 0:

Note that right multiplication is used in [3] to define the left invariant framing L of

SOð2nþ 1Þ. So we will conform ourself to this manner. We also find that the map j �

is injective. As is seen below this holds for any compact connected Lie group G with

framing L. We now explain this for later use. In fact the left invariant framing of

the tangent bundle L : tðGÞ ! G � R
d is given by the linear map Rg�1� : tgðGÞ ! teðGÞ

induced by right multiplication by g�1 where tgðGÞ denotes the tangent space at g and in

particular the tangent space te at the identity element is identified with R
d .

Let GHR
dþs be an embedding with normal bundle n. Using radial reduction

we may regard as nHR
dþs. We also see that this yields an embedding tðGÞ ¼ G�

R
d
HR

dþs � R
d ¼ R

2dþs identifying the bundle isomorphism L : tðGÞGG � R
d . Thus

we obtain an embedding nl tðGÞHR
2dþs. From this we get an obvious collapsing

map c : S2dþs ! Tðnl tðGÞÞ where TðhÞ denotes the Thom space of a vector bundle

h. Moreover we have a bundle isomorphism nl tðGÞGG � R
dþs induced by parallel

translation. This induces a homeomorhism h : Tðnl tðGÞÞAS dþs5Gþ. Then the

homotopy fundamental class sðG;LÞ of the framed manifold ðG;LÞ, defined in pS
d ðG

þÞ,

is represented as a stable map by the composition hc : S2dþs ! S dþs5Gþ.
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Define a homomorphism k : p0
SðG

þÞ ! p0
SðS

dÞ ¼ pS
d by

kðxÞ ¼ hx; sðG;LÞip for x A p0
SðG

þÞ

where h ; ip denotes the Kronecker product in the stable homotopy theory. Then by

definition it is easily seen that k becomes the left-inverse map of j � : pS
d ¼ p0

SðS
dÞ !

p0
SðG

þÞ so that j � is a monomorphism. In addition we see ½G;L� ¼ kð1Þ by definition.

This can be generalized as follows.

Given a map f : G ! SOðNÞ the twisted framing L f
: tðGÞl ðG � R

NÞ !

G � R
dþN of L by f is defined by the formula L f ðu; ðg; vÞÞ ¼ ðLðuÞ; ðg; f ðgÞ�1

vÞÞ

where u A tgðGÞ and v A R
N . Then we see by construction that there holds ½G;L f � ¼

h1; sðG;L f Þip ¼ hJðbð f ÞÞ; sðG;LÞip. For convenience we write ½G;L f � ¼ ½G; bð f Þ�.

Then

½G; bð f Þ� ¼ kðJðbð f ÞÞÞ:

Let Ad denote the adjoint representation of G. Then for any real representation g

of G we have by Lemma 4 of [16]

½G; bðAdÞ � ebðgÞ� ¼ ð�1Þd ½G; ebðgÞ�

where e ¼G1. We give here an outline of its proof. To simplify the notation we set

j ¼ LAd�eg and c ¼ Leg. Then j;c : tðGÞlR
l
GG � ðRd lR

lÞ are given as follows:

jðu; ðg; vÞÞ ¼ ðg; ðAdðg�1Þ�Rg�1�ðuÞ; gðgÞ
eðvÞÞÞ and cðu; ðg; vÞÞ ¼ ðg; ðRg�1�ðuÞ; gðgÞ

�eðvÞÞÞ

where u A tgðGÞ and v A R
l. By t we denote the di¤eomorphism of G given by

tðgÞ ¼ g�1 for g A G. Then clearly t�Ad�Rg�1�ðuÞ ¼ Rg�t�ðuÞ and t changes the orien-

tation of G by the degree ð�1Þd . Therefore it can be easily checked that these two

framed manifolds ðG; jÞ and ðG;cÞ become isomorphic through t with their orientations

having a di¤erence by the sign ð�1Þd . Thus the above result follows.

Applying this formula to the case G ¼ SOð2nþ 1Þ we have

½SOð2nþ 1Þ; bðl2rÞ � ebðgÞ� ¼ ð�1Þn½SOð2nþ 1Þ; ebðgÞ�

because l2r is precisely the adjoint representation of G. So using the homomorphism k

we have

kðJðbðl2rÞ � ebðgÞÞÞ ¼ ð�1ÞnkðJðebðgÞÞÞ:ð2:4Þ

Now let us return to Lemma 2.3. Denote by Mð3Þ and xð3Þ’s the localizations of a

group M and its elements x’s at the prime 3. And identify x A pS
d with j �ðxÞ for brevity

since j � is injective. Then we have

Lemma 2.5. ½SOð2nþ 1Þ;L�ð3Þ ¼ ð2mÞnð3Þ and mnþ1
ð3Þ ¼ 0.

Proof. Since SOð2nþ 1Þ is covered clearly with finite contractible closed sub-

spaces, there holds mnþs ¼ 0 for some sb 1. Hence from the second formula of Lemma

2.3 it follows by induction on s that mnþ1
ð3Þ ¼ 0, so that the first assertion follows imme-

diately from the first of Lemma 2.3. r

Lemma 2.6. ½SOð2nþ 1Þ;L�ð3Þ and ½SpðnÞ;L�ð3Þ are of the same order.
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Proof. By Lemma 2.5, ½SOð2nþ 1Þ;L�ð3Þ ¼ ð2 ~JJðbðrÞÞÞnð3Þ. Also for SpðnÞ we

have a similar result ½SpðnÞ;L�ð3Þ ¼
~JJðbðrÞÞnð3Þ by Theorem 5.3 of [3] where r denotes

the obvious inclusion of SpðnÞ into SOð4nÞ. By inspecting the correspondence C :

p0
SðSpðnÞÞð3Þ G p0

SðSOð2nþ 1ÞÞð3Þ given in [9], we can easily verify that Cð ~JJðbðrÞÞÞ ¼
~JJð2bðrÞÞ. Using this together with (2.1) we have Cð½SpðnÞ;L�ð3ÞÞ ¼ ½SOð2nþ 1Þ;L�ð3Þ.

Hence the result is immediate. r

3. The orders of k(mk).

Let G be a compact connected Lie group and suppose that p0
SðGÞ is localized at

the prime 3. But we will omit the index (3) attached to elements hereafter (with the

exception of (3.5)). The following fact is useful for our computation and we use it

below without references. Given x A gKOKO�1ðGÞ satisfying ~JJðlexÞ ¼ 0 for some non-

negative two integers l such that ðl; 3Þ ¼ 1 and e, then since ~JJðxÞ is a nilpotent element

of p0
SðGÞ we can show ~JJðxÞ ¼ 0 by the inductive method using (2.1).

So the solution of Adams conjecture [15] together with this implies that there holds

Jðc2ðxÞ � xÞ ¼ 1 for any x A gKOKO�1ðGÞ, namely

Jðc2ðxÞÞ ¼ JðxÞ:

Let r denote the identity representation of SOð2nþ 1Þ. Then by using Lemma 2.2 and

applying this formula to bðrÞ; bðl2ðl2rÞÞ and bðl2ðl2ðl2rÞÞÞ we have

ðiÞ Jð2bðl2rÞÞ ¼ Jðð4nþ 1ÞbðrÞÞ;ð3:1Þ

ðiiÞ Jð2bðl2ðl2rÞÞÞ ¼ Jðð4n2 þ 2n� 1Þbðl2rÞÞ;

ðiiiÞ Jð2bðl2ðl2ðl2rÞÞÞÞ ¼ Jðð4n4 þ 4n3 � n2 � n� 1Þbðl2ðl2rÞÞÞ

which are used for the proof of the following lemma.

Before we mention the next assertion we recall the theorem of [14] and state briefly

the idea how to prove it. Let SHG be a circle subgroup of G and let x denote a

canonical complex line bundle associated with the principal S-bundle G ! G=S. Then

we find that G=S becomes a stably parallelizable (not parallelizable) manifold with the

natural framing induced by L on G. We denote this framing by the same symbol L.

Let f : G ! SOðNÞ be a map such that it is written as a composite of the canonical

projection p : G ! G=S with a map ~ff : G=S ! SOðNÞ. Then it is proved that there

holds

½G;L f � ¼ �h ~JJðbxÞ; sðG=S;L
~ff Þip

where b A ~KKðS2Þ denotes the Bott element. Moreover it is shown that 9 ~JJðbxÞ ¼ 0 and

especially 3 ~JJðbxÞ ¼ 0 in the classical cases. Thus we see that there holds

3kðJððbð f ÞÞÞÞ ¼ 0

for any map f : SOð2nþ 1Þ ! SOðNÞ which factors through SOð2nþ 1Þ=S for some

circle subgroup SHSOð2nþ 1Þ.

We make use of this method for the proof of the lemma below. In fact this

formula is often applied to a map given in the following form. Let r1; r2 be real
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representations of SOð2nþ 1Þ which agree on a given circle subgroup SHSOð2nþ 1Þ,

up to trivial representations. Then we write simply as

r1jS ¼ r2jS:

Now we may assume that they have the same dimension N, if necessary, by adding

trivial representations adequately and then we can define a map f : SOð2nþ 1Þ !

SOðNÞ by f ðgÞ ¼ r1ðgÞr2ðgÞ
�1 for g A SOð2nþ 1Þ. Consequently, because this map

obviously factors through SOð2nþ 1Þ=S, we have

3kðJðsbðr1Þ � sbðr2ÞÞÞ ¼ 0ð3:2Þ

for any integer s. Such an argument is used repeatedly below. So to simplify our

argument we will abbreviate the description about a map like f .

For convenience we introduce further an additional notation. For two real rep-

resentations r1; r2 of SOð2nþ 1Þ we write as

r1jS 1 r2jS

if there exists another representation r3 of SOð2nþ 1Þ satisfying r1jS ¼ ðr2 þ 3r3ÞjS.

Lemma 3.3. 3kðmkÞ ¼ 0 for all kb 0.

Proof. Taking account of the observation given at the begining of this section

we see that it is enough to prove 3kðJðsbðrÞÞÞ ¼ 0 for any integer s. We break up the

proof into the three cases n1 0; 1; 2 mod 3. To begin with we consider the first two

cases. Take S to be the circle subgroup SOð2Þ � I2n�1 of SOð2nþ 1Þ where I2n�1 is the

identity element of degree 2n� 1. Let h be the identity representation of S. Then the

restrictions of r and l2r to S become as follows:

rjS ¼ hþ ð2n� 1Þ and l2rjS ¼ ð2n� 1Þhþ ð2n2 � 3nþ 2Þ:

So we have l2rjS ¼ ð2n� 1ÞrjS and hence using (3.2) it is deduced that

3kðJð2sbðl2rÞ � ð4n� 2ÞsbðrÞÞÞ ¼ 0:

Now, using the property (2.1) of J, the equality (3.1), (i) allows us to exchange 2sbðl2rÞ

for ð4nþ 1ÞsbðrÞ in this bracket. Thus we obtain

3kðJð3sbðrÞÞÞ ¼ 0ð3:4Þ

so that it follows that

3kðJð3sbðl2rÞÞÞ ¼ 0:

Making use of (3.4) or, to be exact, a map like f mentioned above from which (3.4) is

derived enables us to carry out our computation under the modulus 3 reduction. What

this means is simply that if there holds 3kðJðð3sþ kÞbðrÞÞÞ ¼ 0, then by using (3.4) this

can be reduced to 3kðJðkðbðrÞÞÞÞ ¼ 0. Under this assumption we proceed to our proof.

We now consider to cut down 3 in the bracket of (3.4). In case of n1 0 mod 3 we

find ðl2ðl2rÞ þ r2ÞjS 1 ðrl2rþ rÞjS. Since 3kðJð3sbðl2rÞÞÞ ¼ 0 it follows from (3.1),

(ii) that
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3kðJð2sbðl2ðl2rÞÞ þ sbðl2rÞÞÞ ¼ 0

so that we have 3kðJð3sbðl2ðl2rÞÞÞÞ ¼ 0. Taking account of this it follows from the

above congruence expression that

3kðJð2sbðl2ðl2rÞÞ � 2sbðl2rÞ þ 2sbðrÞÞÞ ¼ 0:

Substituting the above equality into this one we have

3kðJð�3sbðl2rÞ þ 2sbðrÞÞÞ ¼ 0:

And further, by substituting 3kðJð3sbðl2rÞÞÞ ¼ 0 we get

3kðJð2sbðrÞÞÞ ¼ 0

and so by using (3.4) we have

3kðJðsbðrÞÞÞ ¼ 0:

We consider next the case where n1 1 mod 3. Then there hold l2rjS 1 rjS,

l2rjS 1 l2ðl2rÞjS and l2ðl2ðl2rÞÞjS 1 0. Using (3.4) we argue as in the preceding

case. From the first two congruence expressions we have

3kðJðsbðl2rÞ � sbðrÞÞÞ ¼ 0 and 3kðJðsbðl2ðl2rÞÞ � sbðl2rÞÞÞ ¼ 0:

Furthermore from (3.1), (iii) we have

3kðJð2sbðl2ðl2ðl2rÞÞÞ þ sbðl2ðl2rÞÞÞÞ ¼ 0

so that 3kðJð3sbðl2ðl2ðl2rÞÞÞÞÞ ¼ 0 follows. Using this it is deduced from the third

congruence expression that

3kðJðsbðl2ðl2ðl2rÞÞÞÞÞ ¼ 0:

Consequently by combining these four equalities we have 3kðJðsbðrÞÞÞ ¼ 0 as desired.

To prove the remaining case where n1 2 mod 3 we take the circle subgroup

S to be the diagonal subgroup such that SOð2Þ � I2n�3 HSOð2Þ � SOð2Þ � I2n�3 H

SOð2nþ 1Þ. Then we have

rjS ¼ 2hþ ð2n� 3Þ and l2rjS ¼ h2 þ ð4n� 6Þhþ ð2n2 � 7nþ 8Þ

where h is the one similar to the above. From these it follows that ðr2 þ ð4n� 6ÞrÞjS ¼

4l2rjS. Hence we have

3kðJðð8n� 4ÞsbðrÞ � 4sbðl2rÞÞÞ ¼ 0:

This together with (3.1), (i) yields 3kðJð3sbðrÞÞÞ ¼ 0, so that it follows that

3kðJðsbðl2rÞÞÞ ¼ 0:

By substituting this into (3.1), (ii) we have

3kðJðsbðl2ðl2rÞÞÞÞ ¼ 0:

Moreover it holds that ðl2ðl2rÞ � rl2rþ 2l2r� rÞjS 1 0 and so we have
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3kðJðsbðl2ðl2rÞÞ � 3sbðl2rÞ � 2sbðrÞÞÞ ¼ 0:

Clearly combining these equalities gives 3kðJðsbðrÞÞÞ ¼ 0 and completes the proof of the

lemma. r

Applying Lemma 3.3 to Lemma 2.5 we see that

½SOð2nþ 1Þ;L�ð3Þ ¼ kð1Þ ¼ ð�1ÞnkðmnÞ and mnþ1 ¼ 0:ð3:5Þ

We now formulate a method computing kðmnÞ ¼ 0 in (3.5). First we give a remark

about a extraction of square root of 1þ m in p0
S
ðSOð2nþ 1ÞþÞ. Since m is nilpotent,

ð1þ mÞ1=2 can be expanded into a finite series of m. Using Lemma 3.3 we see that

there holds ð1þ mÞ3
N

¼ 1 for some large N. Furthermore since 1þ 3N is even we see

that ðð1þ 3NÞ=2ÞbðrÞ becomes an element of gKOKO�1ðSOð2nþ 1ÞþÞ. A simple compu-

tation shows that Jððð1þ 3NÞ=2ÞbðrÞÞ ¼ ð1þ mÞ1=2. This means that ð1þ mÞ1=2 can be

recognaized geometrically as an element of p0
S
ðSOð2nþ 1ÞþÞ.

By (3.1), (i) using (2.1) we have

Jðbðl2rÞ � ekbðrÞÞ ¼ Jðð2n� ekÞbðrÞÞJðbðrÞÞ1=2

for kb 0 and e ¼G1. Therefore from (2.4) it follows that

ð�1Þnkðð1þ mÞekÞ ¼ kðð1þ mÞ2n�ekþ1=2Þð3:6Þ

where k and e are as above. Here we set

R ¼
Xn

i¼1

ð�1Þ im i and 1þ a ¼ ð1þ mÞ2nþ1=2:

Using these notations we can rewrite (3.6) as

ð�1Þnkðð1þ mÞkÞ ¼ kðð1þ RÞkð1þ aÞÞ

and since ð1þ mÞ�1 ¼ 1þ R

ð�1Þnkðð1þ RÞkÞ ¼ kðð1þ mÞkð1þ aÞÞ

for kb 0 according as e ¼ 1 or �1. Applying induction on k to these formulas we can

get the following:

ðiÞ ð�1ÞnkðmkÞ ¼ kðRkð1þ aÞÞ;ð3:7Þ

ðiiÞ ð�1ÞnkðRkÞ ¼ kðmkð1þ aÞÞ

for kb 0. In particular, from either of (3.7) with k ¼ 0 it follows that kðaÞ ¼

ð�1Þnkð1Þ, so that we see

kðaÞ ¼ kð1Þ if n is odd and kðaÞ ¼ 0 if n is even:ð3:8Þ

The formula (3.7) is a main tool for our computation, but we need another

formula to deal with the six cases as noted in the introduction. By Proposition

5.2 and the formula on p. 906 of [2] we have ½SOð2nþ 1Þ; 2nbðrÞ� ¼ 0 and ½SOð2nþ 1Þ;

ð2n� 2ÞbðrÞ� ¼ 0. These imply
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ðiÞ kðð1þ mÞ�2nÞ ¼ 0;ð3:9Þ

ðiiÞ kðð1þ mÞ�2nþ2Þ ¼ 0:

Apply this to (3.6). Then we also have

ðiÞ kðð1þ aÞð1þ mÞ2nÞ ¼ 0;ð3:10Þ

ðiiÞ kðð1þ aÞð1þ mÞ2n�2Þ ¼ 0:

4. Proof of Theorem 1.1.

To prove Theorem 1.1 it su‰ces by virtue of Lemma 2.6 to show that

½SOð2nþ 1Þ;L�ð3Þ ¼ 0. So we will prove that kðmnÞ ¼ 0 or equivalently kð1Þ ¼ 0 in

(3.5). (Here we continue assuming that all the elements are localized at the prime 3.)

For conveience we divide n into the nine types such that n ¼ 9sþ r ð0a ra 8Þ and

analyze the formulas of (3.7) with appropriate integers k’s to each case. In addition

we consider those of (3.9) and (3.10) for the six cases noted in the introduction. To do

this we need to expand 1þ a, namely ð1þ mÞ2nþ1=2, and R i ð1a ia 18Þ into series of

m up to at least the 18th degree. Since R ¼ �mð1þ RÞ holds, we can get those of Rk

for n� ia ka n from the series expansions of such R i’s. Lemma 3.3 shows that the

coe‰cients of these series of m may be assumed to belong to Z3. So we will carry out

our calculation under this assumption.

Now we have

ð1þ mÞ1=2 ¼ 1� mþ m
2 þ m

3 � m
4 þ m

5 þ m
9 � m

10 þ m
11 þ m

12 � m
13 þ m

14 þ h19

in Z3½m� where hi denotes the sum of the higher terms with degrees above i. Fur-

thermore we have in Z3½m�

R ¼ �mþ m
2 � m

3 þ m
4 � m

5 þ m
6 � m

7 þ m
8 � m

9 þ m
10 � m

11 þ m
12 � m

13 þ m
14

� m
15 þ m

16 � m
17 þ m

18 þ h19;

R2 ¼ m
2 þ m

3 � m
5 � m

6 þ m
8 þ m

9 � m
11 � m

12 þ m
14 þ m

15 � m
17 � m

18 þ h19;

R3 ¼ �m
3 þ m

6 � m
9 þ m

12 � m
15 þ m

18 þ h19;

R4 ¼ m
4 � m

5 þ m
6 þ m

7 � m
8 þ m

9 � m
13 þ m

14 � m
15 � m

16 þ m
17 � m

18 þ h19;

R5 ¼ �m
5 � m

6 � m
8 � m

9 þ m
14 þ m

15 þ m
17 þ m

18 þ h19;

R6 ¼ m
6 þ m

9 � m
15 � m

18 þ h19;

R7 ¼ �m
7 þ m

8 � m
9 þ m

16 � m
17 þ m

18 þ h19;

R8 ¼ m
8 þ m

9 � m
17 � m

18 þ h19;

R9 ¼ �m
9 þ m

18 þ h19;
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R
10 ¼ m

10 � m
11 þ m

12 � m
13 þ m

14 � m
15 þ m

16 � m
17 þ m

18 þ h19;

R
11 ¼ �m

11 � m
12 þ m

14 þ m
15 � m

17 � m
18 þ h19;

R
12 ¼ m

12 � m
15 þ h19;

R
13 ¼ �m

13 þ m
14 � m

15 � m
16 þ m

17 � m
18 þ h19;

R
14 ¼ m

14 þ m
15 þ m

17 þ m
18 þ h19;

R
15 ¼ �m

15 � m
18 þ h19;

R
16 ¼ m

16 � m
17 þ m

18 þ h19;

R
17 ¼ �m

17 � m
18 þ h19;

R
18 ¼ m

18 þ h19:

Together with these a similar series expansion of 1þ a is required. But this varies

according to the number n modulo 9. We will give this expansion at the beginning of

the proof of each case and use freely it together with the relations of Lemma 3.3 and

(3.5) such that 3kðmkÞ ¼ 0 ðkb 0Þ and kðmnÞ ¼ ð�1Þnkð1Þ.

Case 1: n ¼ 9s ðsb 1Þ. In this case there holds the relation

ð1þ mÞ2n ¼ 1� sm
9 þ h17

and so it follows that

1þ a ¼ 1� mþ m
2 þ m

3 � m
4 þ m

5 þ ð1� sÞðm9 � m
10 þ m

11 þ m
12 � m

13 þ m
14Þ þ h17:

We begin with the case s ¼ 1, i.e., n ¼ 9. By (3.8) we have

kð1þ m� m
2 � m

3 þ m
4 � m

5Þ ¼ 0

and also by (3.10), (ii) and (3.9), (ii) we have

kðm3Þ ¼ �kð1Þ and kðm2Þ ¼ kðmÞ:

From these formulas it follows that

kð�1þ m
4 � m

5Þ ¼ 0:

Furthermore by (3.7), (ii) with k ¼ 5; 8; 3 we get

kð1� m
6 � m

7Þ ¼ 0; kðm8Þ ¼ 0 and kðm4 � m
5 þ m

6 þ m
7 � m

8 þ m
9Þ ¼ 0:

Clearly combining the above four equalities together with kðm9Þ ¼ �kð1Þ leads to the

required result kð1Þ ¼ 0. So we may suppose that sb 2, i.e., nb 18.

Calculate (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7 and (3.7), (i) with k ¼ n� 10

in this order. Then we have

kðmn�1Þ ¼ kðmn�7Þ ¼ 0; kðmn�3 þ m
n�2 þ m

nÞ ¼ 0 and kðmn�5Þ ¼ kðmn�4Þ ¼ 0:

Taking account of these formulas we proceed to our computation. From (3.7), (ii) with

k ¼ n� 11; n� 12 it follows that
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kðmn�11 � m
n�10 þ m

n�9 � m
n�8 � m

n�6 þ ð1� sÞmn�2 � m
nÞ ¼ 0

and

kð�m
n�11 þ m

n�10 � m
n�8 þ ðs� 1Þmn�2Þ ¼ 0:

Adding these two equalities yields

kðmn�9 þ m
n�8 � m

n�6 � m
nÞ ¼ 0:

Moreover from (3.7), (ii) with k ¼ n� 9 we have

kð�m
n�9 � m

n�8 þ m
n�7 þ m

n�6 þ ðs� 1ÞmnÞ ¼ 0

and so by adding the above two equalities we obtain

ðsþ 1ÞkðmnÞ ¼ 0

by virtue of kðmn�7Þ ¼ 0. Hence when s1 0; 1 mod 3 we see that kðmnÞ ¼ 0. Next we

check the case s1 2 mod 3. From (3.7), (i) with k ¼ n� 13 we have

kðmn�13Þ ¼ 0

using kðmn�4Þ ¼ 0. Also by (3.7), (i) with k ¼ n� 16 we get

kðmn�13 þ m
n�7 þ m

n�4 � m
nÞ ¼ 0:

Substituting kðmn�13Þ ¼ 0 and kðmn�7Þ ¼ kðmn�4Þ ¼ 0 we obtain kðmnÞ ¼ 0 as desired.

Case 2: n ¼ 9sþ 1 ðsb 1Þ. In this case we have

ð1þ mÞ2n ¼ 1þ m� m
3 � m

4 þ m
6 þ m

7 þ ðs� 1Þðm9 þ m
10 � m

12 � m
13Þ þ sm14 þ h15

and so

1þ a ¼ 1þ m
3 þ ðsþ 1Þðm9 þ m

12Þ þ sm14 þ h15:

By calculating (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7; n� 9 in this order we

have

kðmn�1Þ ¼ 0; kðmn�3 þ m
n�2 � m

nÞ ¼ 0; kðmn�5 � m
n�4 þ m

n�2Þ ¼ 0;ð4:1Þ

kðmn�7Þ ¼ 0 and kðmn�9 � m
n�6 þ m

nÞ ¼ 0:

Using these relations it follows from (3.7), (ii) with k ¼ n� 10 that

ðs� 1ÞkðmnÞ ¼ 0

which means that if s1 0; 2 mod 3 then kðmnÞ ¼ 0. We observe here the case

s ¼ 1, i.e., n ¼ 10. By (3.9), (i) we have kðð1þ mÞ�18Þ ¼ 0 which yields kðm9Þ ¼ �kð1Þ

directly. But it follows from the first equality of (4.1) that kðm9Þ ¼ 0 which shows

kð1Þ ¼ 0. Hence we suppose that sb 2, i.e., nb 19 and prove the case where s1 1

mod 3.

From the calculations of (3.7), (ii) with k ¼ n� 11; n� 12 and (3.7), (i) with

k ¼ n� 12 we have
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kð�m
n�11 þ m

n�10 þ m
n�8 � m

n�2Þ ¼ 0;ð4:2Þ

kðmn�11 � m
n�10 þ m

n�9 � m
n�3 � m

nÞ ¼ 0ð4:3Þ

and

kð�m
n�11 þ m

n�10 þ m
n�9 � m

n�8 þ m
nÞ ¼ 0:ð4:4Þ

Adding (4.2) and (4.3) and also (4.3) and (4.4) we have

kðmn�9 þ m
n�8 þ m

nÞ ¼ 0 and kð�m
n�9 � m

n�8 � m
n�3Þ ¼ 0

using the second equality of (4.1). And taking the sum of these two equalities we

have kðmn�3Þ ¼ kðmnÞ. By substituting this into the second equality of (4.1) we then

have

kðmn�2Þ ¼ 0ð4:5Þ

so that from the third equality of (4.1) it follows that

kðmn�5Þ ¼ kðmn�4Þ:ð4:6Þ

Using the first equality of (4.1) and (4.5) it follows from (3.7), (ii) with k ¼ n� 13

and (3.7), (i) with k ¼ n� 14 that

kðmn�13 þ m
n�10 þ m

n�4Þ ¼ 0

and

kðmn�13 � m
n�11 � m

n�10 þ m
n�8 þ m

n�7 � m
n�5 � m

n�4 þ m
nÞ ¼ 0:

Taking the di¤erence of these two equalities we have

kð�m
n�11 þ m

n�10 þ m
n�8 þ m

n�7 � m
n�5 þ m

n�4 þ m
nÞ ¼ 0:

Subtracting (4.2) from this we have

kðmn�7 � m
n�5 þ m

n�4 þ m
n�2 þ m

nÞ ¼ 0:

Into this equality substituting kðmn�7Þ ¼ 0, kðmn�2Þ ¼ 0 and kðmn�5Þ ¼ kðmn�4Þ of (4.1),

(4.5) and (4.6) we can get kðmnÞ ¼ 0 easily.

Case 3: n ¼ 9sþ 2 ðsb 2Þ. In this case the following series expansions hold:

ð1þ mÞ2n ¼ 1þ mþ m
3 þ m

4 � sðm9 þ m
10 þ m

12 þ m
13Þ þ h19

and

1þ a ¼ 1� ðsþ 1Þm9 þ ðs2 � 1Þm18 þ h19:

From the computations of (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7 we have

kðmn�1 þ m
nÞ ¼ 0; kðmn�2Þ ¼ kðmn�3Þ ¼ kðmn�5Þð4:7Þ

and

kðmn�7 þ m
n�6 � m

n�5 � m
n�4Þ ¼ 0:
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Moreover let us calculate (3.7), (ii) with k ¼ n� 9; n� 11; n� 13; n� 16 in this order

using (4.7). Then we have

kðmn�9 � m
n�8 þ m

n�6 � m
n�3 þ ð1� sÞmnÞ ¼ 0; kðmn�11 � smn�2Þ ¼ 0;ð4:8Þ

kðmn�13 þ m
n�12 � sðmn�4 þ m

n�2ÞÞ ¼ 0

and

kðmn�15 � m
n�14 � m

n�12 � sðmn�6 þ m
n�2ÞÞ ¼ 0:

Similarly we have from (3.7), (ii) with k ¼ n� 17

kð�m
n�17 � m

n�14 þ sðmn�8 þ m
n�2ÞÞ ¼ 0:ð4:9Þ

Compute in addition (3.7), (ii) with k ¼ n� 18 using (4.7) and (4.8). Then we have

kðmn�17 � m
n�15 � m

n�14 þ m
n�12 þ sð�m

n�8 þ m
n�6Þ � m

nÞ ¼ 0:

Subsituting the last formula of (4.8) into this equality we have

kðmn�17 þ m
n�14 � m

n � sðmn�8 þ m
n�2ÞÞ ¼ 0:

And adding this and (4.9) the assertion kðmnÞ ¼ 0 follows immediately.

Case 4: n ¼ 9sþ 3 ðsb 0Þ. We have

ð1þ mÞ2n ¼ 1� m
3 þ m

6 þ sð�m
9 þ m

12 � m
15 � m

18Þ � s2m18 þ h19

and

1þ a ¼ 1� mþ m
2 þ ðsþ 1Þð�m

9 þ m
10 � m

11Þ þ ðs� s2Þm18 þ h19:

Since it is known that ½SOð7Þ;L� ¼ 0 ([3], [7]), we skip to the case s ¼ 1, i.e.,

n ¼ 12. From (3.9), (i) and (ii) it follows that

kð1þ m
3Þ ¼ 0 and kð�mþ m

2 � m
4 þ m

5Þ ¼ 0:

From (3.10), (i) we also have

kð�1� mþ m
2 � m

3 þ m
4 � m

5 þ m
6 � m

7 þ m
8Þ ¼ 0:ð4:10Þ

Calculate (3.7), (ii) with k ¼ 11; 9; 7; 1. Then we have

kðm11Þ ¼ 0; kðm9 þ m
10Þ ¼ 0; kðm7 � m

8 þ m
9Þ ¼ 0

and

kðm� m
2 � m

10 þ m
11Þ ¼ 0

so that especially from the last equality we have

kðm� m
2 þ m

9Þ ¼ 0:

Substituting all the other equalities into (4.10) we find

kðm6Þ ¼ 0:
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On the other hand, from (3.10), (i) we have

kð1� m
3 þ m

6Þ ¼ 0

so that we get

kðm6Þ ¼ kð1Þ

since kð1þ m
3Þ ¼ 0. Consequently it is immediate that kð1Þ ¼ 0. Hence we proceed to

our computation assuming that sb 2, i.e., nb 21.

Calculate (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7, (3.7), (i) with k ¼ n� 7 and

(3.7), (ii) with k ¼ n� 9; n� 11; n� 12 in this order. Then we have

kðmn�kÞ ¼ 0 ð1aka3Þ; �kðmn�7Þ ¼ kðmn�5Þ ¼ kðmn�4Þ; kðmn�11Þ ¼ kðmn�10Þð4:11Þ

and

kðmn�9 þ m
n�8 þ m

n�6 þ m
n�4 þ ð1� sÞmnÞ ¼ 0:ð4:12Þ

Furthermore from (3.7), (ii) with k ¼ n� 17; n� 18 and (3.7), (i) with k ¼ n� 18 we

get

kðmn�17 � m
n�16 þ m

n�15 � m
n�14 þ m

n�13 � m
n�12 � sðmn�8 � m

n�7 þ m
n�6ÞÞ ¼ 0;ð4:13Þ

kðmn�17 � m
n�16 � m

n�15 þ m
n�12 � m

n�9 � m
n�8 þ m

n�7 � m
n�6 þ m

n�3ð4:14Þ

� sðmn�8 � m
n�7 � m

n�6 þ m
n�3 þ m

nÞ � s
2
m
nÞ ¼ 0;

and

kðmn�17 � m
n�16 þ m

n�15 � m
n�14 þ m

n�13 � m
n�12 þ m

n�11 � m
n�10 � m

nð4:15Þ

� sðmn�9 � m
n�8 þ m

n�7 � m
n�6 þ m

n�5 � m
n�4 þ m

n�3 � m
n�2 þ m

n�1 þ m
nÞÞ ¼ 0:

Take the di¤erence of (4.13) and (4.14) using (4.11) and (4.12) and also take that of

(4.14) and (4.15) similarly. Then it follows that

kðmn�15 þ m
n�14 � m

n�13 � m
n�12 þ m

n � sðmn�6 � m
nÞ � s

2
m
nÞ ¼ 0

and

kðmn�15 þ m
n�14 � m

n�13 � m
n�12 � m

n � sðmn�6 � m
nÞÞ ¼ 0:

From the di¤erence of these equalities and (4.12) we obtain

ðs2 þ 1ÞkðmnÞ ¼ 0

which shows kðmnÞ ¼ 0 clearly.

Case 5: n ¼ 9sþ 4 ðsb 0Þ. In this case there hold the relations

ð1þ mÞ2n ¼ 1� mþ m
2 � m

3 þ m
4 � m

5 þ m
6 � m

7 þ m
8

þ sð�m9 þ m
10 � m

11 þ m
12 � m

13 þ m
14Þ þ h15
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and

1þ a ¼ 1þ mþ m
3 þ m

4 � ðsþ 1Þðm9 þ m
10 þ m

12 þ m
13Þ þ h15:

We begin with the case s ¼ 1, i.e., n ¼ 13 since ½SOð9Þ;L� is known to be zero ([3],

[7]). By calculating (3.9), (i) and (ii) we have

kðmÞ ¼ kðm3Þ ¼ �kð1Þ:

Hence by calculating (3.10), (i) and (ii) we have

kðm9 þ m
12Þ ¼ 0 and kð1þ m

9 þ m
10 � m

12Þ ¼ 0:

Furthermore from (3.7), (ii) with k ¼ 10; 12 it follows that

kðm10Þ ¼ kðm12Þ ¼ �kð1Þ:

Substituting these into the above two equalities yields the contradictory two results

kðm9Þ ¼ kð1Þ and kðm9Þ ¼ �kð1Þ:

Therefore it is immediate that kð1Þ ¼ 0:

Let us suppose that sb 2, i.e., nb 22. And compute (3.7), (ii) with k ¼ n� 1;

n� 3; n� 7; n� 8, (3.7), (i) with k ¼ n� 8 and (3.7), (ii) with k ¼ n� 9 in this order.

Then it follows that

kðmn�3Þ ¼ kðmn�1Þ ¼ kðmnÞ; kð�m
n�7 þ m

n�6 � m
n�4 þ m

nÞ ¼ 0;

kðmn�6 þ m
n�5 þ m

n�4Þ ¼ 0; kðmn�7 þ m
n�4 þ m

n�2Þ ¼ 0

and

kð�m
n�9 þ m

n�7 � m
n�6 þ m

nþ4 þ ðs� 1ÞmnÞ ¼ 0:

Adding the second formula and the fifth yields

kðmn�9 � smnÞ ¼ 0:

Using the above equalities we have from (3.7), (i) and (ii) with k ¼ n� 11

kðmn�11 þ m
n�10 þ ðsþ 1Þmn�2 � smnÞ ¼ 0 and kðmn�11 þ m

n�10 þ ðsþ 1Þðmn�2 þ m
nÞÞ ¼ 0:

Subtracting we get

ðs� 1ÞkðmnÞ ¼ 0:

Hence we see that if s1 0; 2 mod 3 then kðmnÞ ¼ 0. For the proof of the case

s1 1 mod 3 we consider the following equalities obtained from (3.7), (ii) with k ¼

n� 13; n� 14 and (3.7), (i) with k ¼ n� 14.

kðmn�13ð�1þ mþ m
3 þ m

4 þ m
9 þ m

10 þ m
12 þ m

13ÞÞ ¼ 0;

kðmn�13ðm2 þ m
3 þ m

8 þ m
9 þ m

11 þ m
12 þ m

13ÞÞ ¼ 0

and
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kðmn�13ð�1þ mþ m
2 � m

3 þ m
4 þ m

8 � m
9 þ m

10 þ m
11 � m

12 þ m
13ÞÞ ¼ 0:

Then by combining these we obtain kðmnÞ ¼ 0 immediately.

Case 6: n ¼ 9sþ 5 ðsb 1Þ. In this case we have

ð1þ mÞ2n ¼ 1þ mþ ð1� sÞðm9 þ m
10Þ þ h15

and

1þ a ¼ 1� m
3 þ m

6 � ðsþ 1Þðm9 � m
12Þ þ h15:

We get

kðmn�1 þ m
nÞ ¼ 0; kðmn�3 � m

n�2 � m
nÞ ¼ 0; kðmn�5 þ m

n�2Þ ¼ 0;ð4:16Þ

kðmn�7 þ m
n�6 � m

n�5 þ m
n�4 þ m

nÞ ¼ 0;

kð�m
n�9 þ m

n�8 þ m
n�5 þ m

n�4 þ ðsþ 1ÞmnÞ ¼ 0

and

kðmn�6 � m
n�5Þ ¼ 0

from the computations of (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7; n� 9 and (3.7), (i)

with k ¼ n� 9 in this order. Moreover using (4.16) from (3.7), (i) with k ¼ n� 10;

n� 11 and (3.7), (ii) k ¼ n� 11 we have

kð�m
n�9 þ m

n�8 þ sm
nÞ ¼ 0;ð4:17Þ

kðmn�11 � m
n�8 � sm

nÞ ¼ 0ð4:18Þ

and

kð�m
n�11 þ m

n�8 � m
n�5 þ ðs� 1Þmn�2Þ ¼ 0:ð4:19Þ

By virtue of (4.16) we also have

kðmn�9 � m
n�8 � m

nÞ ¼ 0ð4:20Þ

by taking the di¤erence of the equalities

kðmn�13 þ m
n�12 � m

n�11 � m
n�10 þ m

n�9 � m
n�8 � m

n�3 þ m
n�2 � m

n�1 � m
n

� sðmn�4 þ m
n�3 � m

n�2 þ m
nÞÞ ¼ 0

and

kðmn�13 þ m
n�12 � m

n�11 � m
n�10 � m

n�9 þ m
n�8 þ m

n�7 þ m
n�6 � m

n�5 þ m
n�4

� m
n�3 þ m

n�2 þ m
n�1 þ m

n � sðmn�4 þ m
n�1ÞÞ ¼ 0

which are obtained from (3.7), (i) and (ii) with k ¼ n� 13. In a similar way we have

kðmn�2 þ ð1� sÞmn�5Þ ¼ 0ð4:21Þ

H. Minami1048



by taking the di¤erence of the equalities

kðmn�11 � m
n�8 � sðmn�5 þ m

n�2ÞÞ ¼ 0 and kðmn�11 � m
n�8 � m

n�5 � ðsþ 1Þmn�2Þ ¼ 0

obtained from (3.7), (i) and (ii) with k ¼ n� 14. Adding (4.17) and (4.20) yields

ðs� 1ÞkðmnÞ ¼ 0:

This implies that if s1 0; 2 mod 3 then kðmnÞ ¼ 0. So we suppose that s1 1 mod 3.

Then by virtue of (4.21) it follows that kðmn�2Þ ¼ 0. Hence we have

kðmn�5 þ m
nÞ ¼ 0

by adding (4.18) and (4.19). Now we have

kðmn�5Þ ¼ 0

since kðmn�5 þ m
n�2Þ ¼ 0 by (4.16). Consequently we have kðmnÞ ¼ 0.

Case 7: n ¼ 9sþ 6 ðsb 0Þ. The following series expansion is enough for the

present case:

ð1þ mÞ2n ¼ 1þ m
3 þ ð1� sÞðm9 þ m

12Þ þ h13

and so

1þ a ¼ 1� mþ m
2 � m

3 þ m
4 � m

5 þ m
6 � m

7 þ m
8

� ðsþ 1Þm9 � m
10 þ m

11 þ ðsþ 1Þm12 þ h13:

Suppose that sb 1, i.e., nb 15 and calculate (3.7), (ii) with k ¼ n� 1; n� 3; n� 5

and (3.7), (i) with k ¼ n� 8 in this order. Then it follows that

kðmn�1Þ ¼ 0; kðmn�3 þ m
n�2 � m

nÞ ¼ 0; kðmn�5 � m
n�4 þ m

n�2Þ ¼ 0 and kðmn�7Þ ¼ 0:

Moreover from (3.7), (i) with k ¼ n� 9 we have

kðmn�9 þ m
n�8 � ðsþ 1ÞmnÞ ¼ 0:

Using these formulas we obtain

kðmn�11 � m
n�10 � m

n�8 � m
n�2 � m

nÞ ¼ 0 and kðmn�11 � m
n�10 � m

n�8 � m
n�2Þ ¼ 0

from (3.7), (i) and (ii) with k ¼ n� 12. By subtracting we obtain the required result

kðmnÞ ¼ 0.

Here we now consider the remaining case s ¼ 0, i.e., n ¼ 6. The first three

formulas above are valid for the present case. Hence we have

kðm5Þ ¼ 0; kð1� m
3 � m

4Þ ¼ 0 and kðm� m
2 þ m

4Þ ¼ 0:

But from (3.9), (i) it follows that

kð1� mþ m
2 � m

3 þ m
4 � m

5 þ m
6Þ ¼ 0:

Substitute these formulas into this equality. Then it is immediate that kðm6Þ ¼ 0 so that

we have kð1Þ ¼ 0 since kðm6Þ ¼ kð1Þ.
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Case 8: n ¼ 9sþ 7 ðsb 1Þ. In this case we have

ð1þ mÞ2n ¼ 1� mþ m
2 þ m

3 � m
4 þ m

5 þ ð1� sÞðm9 � m
10 þ m

11 þ m
12Þ þ h13

and

1þ a ¼ 1þ m� ðsþ 1Þm9 � sm
10 þ h13:

Calculate (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 7 in this order. Then we have

kðmn�1 � m
nÞ ¼ 0; kðmn�3 þ m

nÞ ¼ 0; kðmn�5 þ m
n�4 þ m

n�2 þ m
n�1Þ ¼ 0

and

kðmn�7 � m
n�6Þ ¼ 0:

Moreover from the computations of (3.7), (i) and (ii) with k ¼ n� 9; n� 10 we have

kð�m
n�9 þ m

n�3Þ ¼ 0; kðmn�4 � m
n�3Þ ¼ 0ð4:22Þ

and

kðmn�8 � m
n�6Þ ¼ 0; kð�m

n�9 þ m
n�6 þ ð1� sÞmnÞ ¼ 0:

Similar calculations of (3.7), (i) and (ii) with k ¼ n� 11 give

kð�m
n�11 � m

n�10 þ m
n�9 þ m

n�8 þ ðsþ 1Þmn�2 þ m
nÞ ¼ 0ð4:23Þ

and

kð�m
n�11 � m

n�10 � m
n�8 þ ðs� 1Þmn�2 þ sm

nÞ ¼ 0:

Taking the di¤erence of two equalities of (4.23) we have

kðmn�9 � m
n�6 � m

n�2 þ ð1� sÞmnÞ ¼ 0ð4:24Þ

since kðmn�8Þ ¼ kðmn�6Þ by (4.22). Furthermore taking the sum of the first formula of

(4.23) and the equality

kðmn�11 þ m
n�10 þ m

n�9 � m
n�8 þ m

n�6 � m
n þ sðmn�2 þ m

nÞÞ ¼ 0

obtained from (3.7), (ii) with k ¼ n� 12 we have

kð�m
n�9 þ m

n�6 þ ð1� sÞmn�2 þ sm
nÞ ¼ 0:

Add this and (4.24). Then we have

kðmn � sm
n�2Þ ¼ 0:ð4:25Þ

By taking the di¤erence of the fourth of (4.22) and the equality

kð�m
n�9 þ m

n�6 þ m
n�2 þ ðs� 1ÞmnÞ ¼ 0

obtained from (3.7), (i) with k ¼ n� 12 we have

kðmn�2 þ ð1� sÞmnÞ ¼ 0:
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Hence by substituting this into (4.25) we obtain

kððs2 � s� 1ÞmnÞ ¼ 0

which implies kðmnÞ ¼ 0 obviously.

Case 9: n ¼ 9sþ 8 ðsb 0Þ. The required expansion series are

ð1þ mÞ2n ¼ 1þ m� m
3 � m

4 þ m
6 þ m

7 þ ð1� sÞðm9 � m
10 � m

12Þ þ h13

and

1þ a ¼ 1þ m
3 � sðm9 þ m

12Þ þ h13:

We postpone showing the case s ¼ 0. Supposing that sb 1, i.e., nb 17 we

calculate (3.7), (ii) with k ¼ n� 1; n� 3; n� 5; n� 6; n� 7; n� 9 and (3.7), (i) with k ¼

n� 7; n� 9 in this order. Then we have

kðmn�1 þ m
nÞ ¼ 0; kðmn�2 � m

nÞ ¼ 0; kðmn�3Þ ¼ kðmn�5Þ ¼ 0;ð4:26Þ

kðmn�7 þ m
n�6Þ ¼ 0; kðmn�4 þ m

nÞ ¼ 0; kðmn�9 � m
n�8Þ ¼ 0

and

kðmn�6 þ ð1� sÞmnÞ ¼ 0:

Taking the above equalities into account we have

ð4:27Þ

kð�m
n�6 þ sðmn � m

n�8ÞÞ ¼ 0; kðmn�11 þ m
n�8 � smn�2Þ ¼ 0 and kðmn�11 þ m

n�8Þ ¼ 0

from (3.7), (i) with k ¼ n� 10; n� 12 and (3.7), (ii) with k ¼ n� 11. Subtracting the

second equality of (4.27) from the third we have

skðmn�2Þ ¼ 0; so that skðmnÞ ¼ 0

by virtue of kðmn�2Þ ¼ kðmnÞ by (4.26). Hence we conclude that if s1 1; 2 mod 3 then

kðmnÞ ¼ 0.

Consider the sum of the last equality of (4.26) and the first of (4.27). Then we

have

kðmn � smn�8Þ ¼ 0:

It is therefore seen that if s1 0 mod 3 then kðmnÞ ¼ 0.

Finally we consider the case s ¼ 0, i.e., n ¼ 8. From the equalities of (4.26)

together with kðm8Þ ¼ kð1Þ it follows that

kðm7Þ ¼ �kð1Þ and kðm2Þ ¼ �kðmÞ:

Furthermore from (3.9), (i) and (3.10), (i) we have

kðmÞ ¼ �kð1Þ and kð1� mþ m
2 þ m

7 � m
8Þ ¼ 0:

By substituting the first three equalities into the last one we obtain kð1Þ ¼ 0 imme-

diately. This completes the proof of Theorem 1.1.
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