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Abstract. It is known that any compact connected Lie group with its left invariant
framing is framed null-cobordant in the p-component for any prime p # 2,3. In this
paper we will prove that the 3-components of SO(2n+ 1) and Sp(n) are zero for n > 3,
n#5,7,11. Combining this with the previously known results on SO(2n) and SU(n)
consequently we see that any classical group has at most only the 2-component with some
exceptions.

1. Introduction.

Let (G, L) be the pair consisting of a compact connected Lie group of dimension
d and its left invariant framing. In this paper we are concerned with whether or not
(G, L) is framed cobordant to the boundary of a stably parallelizable manifold. This
problem is first raised by Gershenson in [4]. Let [G, L] denote the framed cobordism
class represented by (G, L) in the stable homotopy group 75 of spheres and let [G,L]( »)
denote the p-component of [G,L]. Then this problem is referred to that of estimating
the order of [G, L] or [G, L], for all primes p.

By observing its filtration associated with the Adams spectral sequence for BP,
Knapp gave the result of general nature such that [G, L]( ) 18 zero for any prime
p = 7. This result was later improved by Ossa in as follows: 72[G,L] =0 and in
particular if G is a classical group then

24[G, L] = 0.

As to the known results of its 3-component we have the following. From the
work of Becker and Schultz (cf. [I1]) we know that [SO(2n),L]; =0 for n>1
and furthermore we have partial stronger results like [SO(4),L] =0, [SO(6),L] =0,
[SO(7),L] =0, [SO(8),L] =0 and [SO(9),L] =0 ([3], [7]). But these results were
recently strengthened in [6] as follows: [SO(2n),L] =0 for n > 2. Besides it is known
that [SU(n), L] 3 =0 for n > 3. For the exceptional Lie groups in addition to the
classical ones we know that [Fy,L]5 =0 ([7]), [Es L] =0 ([13]) and [Gy, L] =0
([18], [10]), to be exact, [G2,L] =k € ©}, using Toda’s notation in [17].
The purpose of this paper is to prove the following theorem.

THEOREM 1.1. [SO(2n + 1),L](3) =0 and [Sp(n),L](3) =0 for any n>3 except
n=>5,7,11I.
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Putting together the result of this theorem and the facts stated above preceding to
this theorem we have

THEOREM 1.2. Let G denote the group SO(2n) (n>1), SO2n+1) (n=3),
SU(n) (n>3) or Sp(n) (n>3). Then the 3-component of (G, L) vanishes except for
G =S0(2n+1) and Sp(n) with n=5,7,11.

As for the groups with rank 1 and 2 excluded from the above theorem it is proved
that [SU(2),L] =v, [SO3),L] =2veny, [SO(5),L] = —p, eny, and [Sp(2),L] =p, €
sy ([1), (3], [7]) using the notations of Toda [T7].  We note here that SO(n) and Spin(n)
have the same nullity in the 3-components since [SO(n), L] 5 = 2[Spin(n), L] ;) by Lemma
7.14 of [3]

As is shown in below [SO(2n + 1), L] 5, and [Sp(n), L] have the same
order. So we only have to prove [Theorem 1.1 for SO(2n+ 1). Our proof is mainly
based on the results of [3] and the method of [14]. Another key point in the proof is
the use of the solution of Adams conjecture of together with the fact stated in
Lemma 4 of [16]. Furthermore we use the result of [2] for the proof of Theorem 1.1 in
the six cases where n = 6,8,9,10,12,13. Although we can prove [S0(7),L](3) =0 and
[SO(9), L]3) =0 in the same way as in these six cases, we cite the stronger result of
and as mentioned above. Unfortunately the only three cases n =35,7,11 remains
unknown. It seems that some other method is required to deal with these cases.

In section 2 we summarize several fundamental facts which we need later. In
section 3 we establish a method of our computation and in the last section using this we
give a proof of Theorem 1.1.

Finally I would like to thank the referee for suggesting some improvements of this
paper.

2. The J-map.

We begin with recalling the construction of the J-map from [16], p. 314. Consider
an element x of KO~ (X) where X is a finite CW-complex with base point. We know
that x can be represented by a map f : X — SO(N). In this situation, we write f(f)
for x. Let QYS" and Q)YS" be the spaces of all base point preserving maps of dgree
1 and 0 respectively. Then SO(N) can be embedded into 21'S" in the canonical
way. By u we denote this embedding. Subtracting the identity map of SV into itself
from the composite uf : X — QS we have a map X — Q)'S" and then taking the
adjoint of this map we get a map

J: KO\ (X) — n2(X)

where 72(X) is the reduced stable cohomotopy group of X in dimension 0. By

definition we can check that there holds the relation
J(x+y)=J(x) +J(y) +T(x)J(y).

Let us set J(x) = 1 +J(x) e 2%(X ") = Z ® nd(X) where X* denotes the disjoint union
of X and a single point which is viewed as its base point. In fact, J is obtained by
taking the adjoint of uf itself without subtracting the identity map of SV. Then J
becomes multiplicative, namely, it satisfies
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(2.1) J(x+y)=J(x)J(y)

and J(0) =1 since J(0) =0 by definition.

Let p denote the standard non-trivial n-dimensional real representation of SO(n)
(which is also called briefly the identity representation of SO(n)) and A%p the second
exterior power of p. We need here the expression of only *(f(p)) in terms of f(p) and
B(2*p) where > denotes the second Adams operation.

Lemma 2.2, Y2 (B(p)) = 2nB(p) — 2B(A*(p)).

Proor. Let E,, E,g, and E/lz be the n-, n?- and (})-dimensional vector bundles
associated with p, p® p and A%p respectively over a suspension space S ASO(n)*.
Then we can write as f(p) = [E,] —n and B(2p) = [E, »)] = (3) under the natural iden-

tification KO(S! A SO(n)") =~ KO~ (SO(n)) ® Z, and [E,0p) = [E[,]2 since obviously

E,», =~ E, ® E, where [E] denotes the isomorphism class of E. Now we have
VA(E)) = [Epepl - 2(E;2,)

(3], Chapter 12, Proposition 2.5). Substituting [E,e,] = [E,]*, [E,] = p(p) +n and

[E2,] = ﬁ(/lz )+ (3) into this formula we obtain the result since the products of ele-
ments of KO(S' A SO(n)") are zero. ]

Let j: SO(2n+ 1) — S¢ be an obvious collapsing map to a top cell of S0(2n +1)
where d =n(2n+1) and let us consider the homomorphism j*: 75 = r%(S9) —
n%(SO(2n+1)"). From now on we denote by p the identity representation of
SO(2n+1) and set

=J(B(p))-

Then we know

Lemma 2.3 ([3], Theorem 5.3). j*([SO(2n+1),L])) = u"(2 — p)" and p" 1 (2 — p)"
=0.

Note that right multiplication is used in [3] to define the left invariant framing L of
SO(2n+1). So we will conform ourself to this manner. We also find that the map ;*
is injective. As is seen below this holds for any compact connected Lie group G with
framing L. We now explain this for later use. In fact the left invariant framing of
the tangent bundle L : 7(G) — G x R is given by the linear map R, 1, : 7,(G) — 7.(G)
induced by right multiplication by g~! where 7,(G) denotes the tangent space at g and in
particular the tangent space 7. at the identity element is identified with RY.

Let G = R be an embedding with normal bundle v. Using radial reduction
we may regard as v < RY™. We also see that this yields an embedding 7(G) =
R? = R x R? = R*** identifying the bundle isomorphism L : 7(G) = G x R?. Thus
we obtain an embedding v @ 7(G) = R****. From this we get an obvious collapsing
map c: S** — T(v@® t(G)) where T(5) denotes the Thom space of a vector bundle
5. Moreover we have a bundle isomorphism v @ 7(G) = G x R“** induced by parallel
translation. This induces a homeomorhism /% : T(v® 7(G)) ~ S™ A G*. Then the
homotopy fundamental class o(G, L) of the framed manifold (G, L), defined in 73 (G"),
is represented as a stable map by the composition hc : S29T5 — S5 A G,
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Define a homomorphism « : n3(G") — n3(S9) = =5 by
k(x) = <{x,0(G, L)), for xeng(G")

where <, ), denotes the Kronecker product in the stable homotopy theory. Then by
definition it is easily seen that x becomes the left-inverse map of j*: x5 = n2(S9) —
n3(G") so that j* is a monomorphism. In addition we see [G, L] = k(1) by definition.
This can be generalized as follows.

Given a map f:G— SO(N) the twisted framing L/ :7(G) @ (G x RN) —
G x R™N of L by f is defined by the formula L/ (u,(g,v)) = (L(u),(g,f(g9) 'v))
where u € 7,(G) and ve RY. Then we see by construction that there holds [G,L/] =
{1,0(G, L)Y, = <J(B(f)),0(G,L)>,. For convenience we write [G,L/]=[G,B(f)].
Then

(G, B(S)] = w(J(B(S)))-

Let Ad denote the adjoint representation of G. Then for any real representation y
of G we have by Lemma 4 of

(G, B(Ad) — eB(7)] = (—1)°[G, (7))

where ¢ = +1. We give here an outline of its proof. To simplify the notation we set
9 =LA and = L¥. Then ¢,y : 7(G) @ R’ =~ G x (R ® R’) are given as follows:
o1, (9.0)) = (9. (Ad(g™"), R, 1. (1).7(6) (1)) and h(a(.0)) = (4. (R, +.(1).7(9) (1))
where ue1,(G) and v €eR’. By t we denote the diffefomorphism of G given by
t(g) =g~ for ge G. Then clearly #,Ad.R,1,(u) = Ry.t.(u) and ¢ changes the orien-
tation of G by the degree (—l)d. Therefore it can be easily checked that these two
framed manifolds (G, ¢) and (G, ) become isomorphic through 7 with their orientations
having a difference by the sign (—l)d. Thus the above result follows.

Applying this formula to the case G = SO(2n+ 1) we have

[SO(2n +1), B(2%p) — eB(7)] = (=1)"[SO(2n + 1), ¢B()]

because A%p is precisely the adjoint representation of G. So using the homomorphism «
we have

(2.4) K(J(B(22p) = eB(7))) = (=1)"k(J(B(2))).

Now let us return to [Lemma 2.3. Denote by M3, and x(3)’s the localizations of a
group M and its elements x’s at the prime 3. And identify x € 77 with j*(x) for brevity
since j* is injective. Then we have

LEMMA 2.5. [SO(2n + 1), L] = (2u)5) and ”F;)l =0

Proor. Since SO(2n+ 1) is covered clearly with finite contractible closed sub-
spaces, there holds "™ = 0 for some s > 1. Hence from the second formula of
2.3 it follows by induction on s that quw)rl = 0, so that the first assertion follows imme-

diately from the first of [ O
LemmA 2.6. [SO(2n+1),L]5) and [Sp(n), L], are of the same order.
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Proor. By [Lemma 2.3, [SO(2~n+1),L](3):(2J~(ﬂ(p)))?3). Also for Sp(n) we
have a similar result [Sp(n), L] = J(B(p))3y by Theorem 5.3 of [3] where p denotes
the obvious inclusion of Sp(n) into SO(4n). By inspecting the correspondence ¥ :
ng(Sp(n))(3) >~ 7%(SO(2n + 1))y given in [9], we can easily verify that P (J(B(p))) =
J(2B(p)). Using this together with we have ¥([Sp(n), L]s3)) = [SO(2n + 1), L] 5).
Hence the result is immediate. O

3. The orders of x(u").

Let G be a compact connected Lie group and suppose that 72(G) is localized at
the prime 3. But we will omit the index (3) attached to elements hereafter (with the
exception of (3.5)). The following fact is useful for our computation and we use it
below without references. Given x e KO !(G) satisfying J(/x) =0 for some non-
negative two integers / such that (/,3) = 1 and e, then since J(x) is a nilpotent element
of 7%(G) we can show J(x) =0 by the inductive method using [2.1).

So the solution of Adams conjecture [15] together with this implies that there holds
J(y*(x) —x) =1 for any x e KO~!(G), namely

JWA(x)) = J(x).

Let p denote the identity representation of SO(2n+ 1). Then by using and
applying this formula to f(p), f(A*(A%p)) and B(.2(A*(2%p))) we have

(3.1) (i) J(2B(’p)) = J((4n+ 1)B(p)),
(i) J(2B(A*(2%p))) = J((4n* + 2n — 1)B(4A7p)),
(iii) JQB(A(A2(22p)))) = J((4n* +4n® —n® —n— 1)B(A2(A*p)))

which are used for the proof of the following lemma.

Before we mention the next assertion we recall the theorem of and state briefly
the idea how to prove it. Let S < G be a circle subgroup of G and let £ denote a
canonical complex line bundle associated with the principal S-bundle G — G/S. Then
we find that G/S becomes a stably parallelizable (not parallelizable) manifold with the
natural framing induced by L on G. We denote this framing by the same symbol L.
Let f: G— SO(N) be a map such that it is written as a composite of the canonical
projection 7 : G — G/S with a map VR G/S — SO(N). Then it is proved that there
holds

G, L' = —(J(b¢),6(G/S, L),

where b € K(S?) denotes the Bott element. Moreover it is shown that 9J(h&) = 0 and
especially 3J(h€) = 0 in the classical cases. Thus we see that there holds

3r(J((A(1))) =0

for any map f: SO(2n+ 1) — SO(N) which factors through SO(2rn+ 1)/S for some
circle subgroup S < SO(2n+1).

We make use of this method for the proof of the lemma below. In fact this
formula is often applied to a map given in the following form. Let p;,p, be real
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representations of SO(2n + 1) which agree on a given circle subgroup S = SO(2n + 1),
up to trivial representations. Then we write simply as

Pl‘s :P2|S~

Now we may assume that they have the same dimension N, if necessary, by adding
trivial representations adequately and then we can define a map f:SO(2n+1) —
SO(N) by f(g) =p,(9)ps(g9)~" for ge SO2n+1). Consequently, because this map
obviously factors through SO(2n+ 1)/S, we have

(3.2) 3i(J(sB(p1) — sh(p2))) = 0

for any integer s. Such an argument is used repeatedly below. So to simplify our
argument we will abbreviate the description about a map like f.

For convenience we introduce further an additional notation. For two real rep-
resentations p;,p, of SO(2n+ 1) we write as

Pils = pals
if there exists another representation p; of SO(2n + 1) satisfying p,|g = (p, + 3p3)|s-
Lemma 3.3. 3x(u*) =0 for all k > 0.

Proor. Taking account of the observation given at the begining of this section
we see that it is enough to prove 3x(J(sp(p))) = 0 for any integer s. We break up the
proof into the three cases n =0,1,2 mod3. To begin with we consider the first two
cases. Take S to be the circle subgroup SO(2) x I,—; of SO(2n + 1) where I, is the
identity element of degree 2n — 1. Let # be the identity representation of S. Then the
restrictions of p and A?p to S become as follows:

pls=n+Q2n—1) and i%p|g= 2n— 1)+ (2n*> —3n+2).
So we have A%p|g = (2n— 1)p|g and hence using it is deduced that

3(J (25B(7p) — (4n — 2)sB(p))) = 0.

Now, using the property of J, the equality (3.1), (i) allows us to exchange 2sﬂ(/12p)
for (4n+ 1)sf(p) in this bracket. Thus we obtain

(3.4) 3c(J (33B(p))) = 0
so that it follows that

31(J (3sB(27p))) = 0.

Making use of or, to be exact, a map like / mentioned above from which 18
derived enables us to carry out our computation under the modulus 3 reduction. What
this means is simply that if there holds 3x(J((3s+ k)f(p))) = 0, then by using this
can be reduced to 3x(J(k(f(p)))) =0. Under this assumption we proceed to our proof.

We now consider to cut down 3 in the bracket of [3.4]. In case of n =0 mod3 we
find (1%(A%p) 4+ p?)|s = (pA*p + p)|g. Since 3x(J(3s8(A%p))) =0 it follows from (3.1),
that
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3K(J (25p(22(2°p)) + sB(2°p))) = 0

so that we have 3x(J(3s8(A%(A%p)))) = 0. Taking account of this it follows from the
above congruence expression that

3k(J (2522 (2p)) — 2sB(A°p) + 2sB(p))) = 0.
Substituting the above equality into this one we have
3K(J(=3sB(42p) + 25B(p))) = 0.
And further, by substituting 3x(J(3s8(4%p))) = 0 we get
31(J(255(p))) = 0
and so by using we have
3i(J(sB(p))) = 0.

We consider next the case where n=1 mod3. Then there hold A%p|s = plg,
Aplg = 22(0%p)|g and 2%(A*(2%p))|s = 0. Using we argue as in the preceding
case. From the first two congruence expressions we have

3(J(s(2°p) = 5B(p))) =0 and  3i(J(sB(2°(2°p)) = sB(2°p))) = 0.
Furthermore from (3.1), we have
3c(J(2sBU(2(2p))) + B2 (12p)))) = 0

so that 3x(J(3sp(A*(A%(4%p))))) = 0 follows. Using this it is deduced from the third
congruence expression that

3k(J(sB2(22(22p))))) = 0.

Consequently by combining these four equalities we have 3x(J(sf(p))) = 0 as desired.

To prove the remaining case where n =2 mod3 we take the circle subgroup
S to be the diagonal subgroup such that SO(2) x I,_3 < SO(2) x SO(2) x I,_3 <
SO(2n+1). Then we have

plg =21+ 2n—3) and 2Ap|lg =n*+ (4n— 6)n + (2n* — Tn + 8)

where 7 is the one similar to the above. From these it follows that (p? + (4n — 6)p)|g =
4)%p|s. Hence we have

3c(J((8n — 4)5B(p) — 45B(i2p))) = 0.
This together with (3.1), (i) yields 3x(J(3sf(p))) =0, so that it follows that
3 (sB2p)) = 0.
By substituting this into (3.1), we have
3(J (sB(27(27p)))) = 0.
Moreover it holds that (A*(1%p) — pA®p +24%p — p)|¢ =0 and so we have



1040 H. MiNnam1

3k(J(sP(22(22p)) — 3sB(2°p) — 25B(p))) = 0.
Clearly combining these equalities gives 3 (J(sf(p))) = 0 and completes the proof of the

lemma. ]
Applying [Lemma 3.3 to [Lemma 2.5 we see that
(3.5) [SO(2n + 1), L] 5 = k(1) = (=1)"x(x") and ut=0.

We now formulate a method computing x(x") =0 in (3.5). First we give a remark
about a extraction of square root of 1+ u in 7%(SO(2n+1)"). Since u is nilpotent,
(1 +,u)1/ 2 can be expanded into a finite series of x. Using we see that
there holds (1 + x)’ " =1 for some large N. Furthermore since 1+ 3" is even we see
that ((143%)/2)B(p) becomes an element of KO~1(SO(2n+1)"). A simple compu-
tation shows that J(((1+3%)/2)B(p)) = (1 + w)"/>. This means that (1 + x)"/* can be
recognaized geometrically as an element of 7%(SO(2n+ 1)7).
By (3.1), (i) using (2.1) we have

J(B(22p) — ekB(p)) = J((2n = ek)B(p)T (B(p))''
for k>0 and ¢ = +1. Therefore from it follows that

(3.6) (=1)"5((1+ 0)™) = k(1 + p)> 12

where k& and ¢ are as above. Here we set
2 T
R:Z(_1>lﬂl and 14 o= (1_|_‘u)2n+1/2‘
i=1

Using these notations we can rewrite (3.6) as
(=1)"=((1+w)") = w((1+ R)*(1 +a))
=1+R
(=1)"%((1+ R)*) = w((1 + )" (1 + o))

and since (14 )"

for k > 0 according as ¢ =1 or —1. Applying induction on k to these formulas we can
get the following:

(3.7) () (—1)"k(k") = k(RE(1 + ),

() (—1)"%(R) = x(1"(1 + 2))

for k>0. In particular, from either of (3.7) with k=0 it follows that x(a) =
(—1)"k(1), so that we see

(3.8) k(a) =x(l) if nis odd and x(a) =0 if n is even.

The formula (3.7) is a main tool for our computation, but we need another
formula to deal with the six cases as noted in the introduction. By Proposition
5.2 and the formula on p. 906 of [2] we have [SO(2n + 1),2nf(p)] =0 and [SO(2n + 1),
(2n —2)B(p)] = 0. These imply
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(3.9) () (14> =0,
k(14 1)) =0,

Apply this to (3.6). Then we also have

(3.10) 1) (14 a)(1+p)*) =0,

() x((1+o)(1+w)™ %) =0.

4. Proof of Theorem 1.1.

To prove [Theorem 1.1 it suffices by virtue of to show that
[SO(2n + 1),L](3) =0. So we will prove that x(u") =0 or equivalently x(1) =0 in
(3.5). (Here we continue assuming that all the elements are localized at the prime 3.)
For conveience we divide n into the nine types such that n =9s+r (0 <r <8) and
analyze the formulas of (3.7) with appropriate integers k’s to each case. In addition
we consider those of (3.9) and (3.10) for the six cases noted in the introduction. To do
this we need to expand 1+ o, namely (1 + 2)**""/? and R’ (1 <i < 18) into series of
u up to at least the 18th degree. Since R = —u(1 4+ R) holds, we can get those of R¥
for n —i < k <n from the series expansions of such R”’s. [Cemma 3.3 shows that the
coefficients of these series of ¢ may be assumed to belong to Z3. So we will carry out
our calculation under this assumption.

Now we have

(1~|—,u)1/2:1—,u+,uz+,u3—,u4+,us+,u9—,ulo+,u“+ﬂ12—ﬂ13+ﬂ14+h19

in Zs[u] where h; denotes the sum of the higher terms with degrees above i. Fur-
thermore we have in Zs[y]

8 10 11

— i+ ! =

SAENAL

R=—p+p> = +pu* =+’ =+ p
S 1 T 8 e,

RE= 12418 — 15— S 4+ 18 4 18 — i — 12 4 ™ 15— i = S 4y,

R = g+ 15— 10 4 12 — 115 4 1 4 By,

15 _ 16 17— 18 g,

R = — )t p + i — 1S+ 1 =+ 1M —
RS = 15— 18— 18 — 1% 4 1™ + 1"+ 17 4 1+ g,
RO = u + 1 — " — "™ + hyo,

R = 7+ 18 — 1% 4 1% — 1V + 1% 4 By,

7

RY =1 + 1 — " — "™ 4 hyo,

R’ = —1° + 1" + hyo,



1042 H. MiNnam1

RO = 10 12 13 IS 16 1T 8 g
R = M 2 M 15 T 8

R = 12 — 415 4 hy,

R = B3 M 15 16 417 18

R™ = 1" 4 i8S V7 11 4 g,

R'S = —u'5 — 118 4y,

RS — 116 — VT 4 18 s,

R = — V7 — 1" 4 o,

R'S = 4" 4 hyo.

Together with these a similar series expansion of 1 + « is required. But this varies
according to the number » modulo 9. We will give this expansion at the beginning of
the proof of each case and use freely it together with the relations of and
(3.5) such that 3x(u*) =0 (k >0) and x(u") = (—1)"x(1).

Case I: n=9s (s>1). In this case there holds the relation

(1+ )™ =1=s5p’ + I
and so it follows that
lto=1—p+p°+p =i+ 0+ (1= 5) (1 =+ p" + 0 =+ ") + g
We begin with the case s=1, i.e, n=9. By (3.8) we have
k(l+p—p? = +pt—1°) =0
and also by (3.10), and (3.9), we have
k(@) = —x(1) and w(p’) = K(p).
From these formulas it follows that
k(=1 +u*—p’) =0.
Furthermore by (3.7), with k = 5,8,3 we get
K(1=u®—p') =0, w(u®)=0 and x(x* = +u’+p" —u*+4°)=0.

Clearly combining the above four equalities together with x(u°) = —x(1) leads to the
required result k(1) =0. So we may suppose that s > 2, ie., n>18.

Calculate (3.7), with k =n—1,n—3,n—5,n—7 and (3.7), (i) with k =n— 10
in this order. Then we have

k(") = k(@) =0, w4 u") =0 and  xk(u") =x(u"*) =0.

Taking account of these formulas we proceed to our computation. From (3.7), with
k=n—11,n—12 it follows that
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K1 = 10 S S O (1 ) = ) = 0

and
K(—p 1 10 S (5 1)) = 0.
Adding these two equalities yields
k("0 4 18— S — ) = 0.
Moreover from (3.7), (i1} with kK =n—9 we have
k(=" =" )+ (s = D) =0
and so by adding the above two equalities we obtain
(s + (s = 0
by virtue of x(u"~7) =0. Hence when s = 0,1 mod3 we see that x(u") =0. Next we
check the case s =2 mod3. From (3.7), (i) with £k =n— 13 we have
k(1) =0

using x(u"*) =0. Also by (3.7), (i) with k =n—16 we get

n—13

K(,u +un—7 +ﬂn_4 _lun) —0.

Substituting x(x" ') =0 and x(x"7) = k(u"*) =0 we obtain x(u") =0 as desired.
Case 2: n=9s+1 (s>1). In this case we have

12

(1+,Lt)2n=1+ﬂ—ﬂ3—ﬂ4+ﬂ6+ﬂ7+(5—1)(,U9+,U10—,U —/113)+su14+h15

and so
Lba=1+2+(s+ 1)’ +p?) +sp' + Is.

By calculating (3.7), with k=n—1,n—3,n—5n—"7,n—9 in this order we
have

41) k(@) =0, k(""" =0, k(@ — g u" ) =0,
k(@) =0 and w(u" — "0+ u") = 0.
Using these relations it follows from (3.7), with k£ =n — 10 that

(s — (") = 0

which means that if s=0,2 mod3 then x(u")=0. We observe here the case
s=1,ie, n=10. By (3.9), (i) we have x((1+)~'®) = 0 which yields x(x°) = —x(1)
directly. But it follows from the first equality of (4.1) that x(x’) =0 which shows
k(1) =0. Hence we suppose that s > 2, i.e., n > 19 and prove the case where s =1
mod 3.

From the calculations of (3.7), with k=n—11,n—12 and (3.7), (i) with
k=n—12 we have
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(4.2) (=g 0 2) = 0,
(4.3) S [ B B
and

(4.4) (= O ) — T ) = 0.

Adding (4.2) and and also (4.3) and (4.4) we have

K(,un—9 +ﬂn—8 +ﬂn) —0 and K(_,un—9 _,un—S - 'un—3) -0

using the second equality of (4.1). And taking the sum of these two equalities we
have x(u"3) = x(u"). By substituting this into the second equality of (4.1) we then
have

(4.5) k(1) = 0
so that from the third equality of (4.1) it follows that
(4.6) (") = r(u" ).

Using the first equality of (4.1) and it follows from (3.7), [i1] with k =n — 13
and (3.7), (i) with k =n — 14 that

K(ﬂn_l3 _I_ﬂn—lo ‘|‘,Un_4) -0

and

n—13 _  n-11 _  n-10

K(u = S T = S = ") = 0.

Taking the difference of these two equalities we have

n—11

K(—u +ﬂn710 _|_,un78 _i_,unf7 _ 'unfS _|_lun74 +ﬂn) —0.

Subtracting (4.2) from this we have
K(,u”_7 . Iun—5 +,U”_4 +,Un_2 _|_ﬂn) —0.

Into this equality substituting x(x"7) =0, r(u"?) = 0 and x(u">) = x(u"*) of (4.1),

and we can get x(u") =0 easily.
Case 3: n=9s+2 (s>2). In this case the following series expansions hold:

(L) =1+ p+ 0+t — s+ p" + 1" + 1) + o
and
Lbo=1—(s+ 1)+ (s =)' + ho.
From the computations of (3.7), with k=n—1,n—3,n—5,n—"7 we have
(4.7) k('™ ) =0, (@) = k(u) = w(p)
and

K(‘un77 _|_‘un76 . Iun75 _lun74) —0.
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Moreover let us calculate (3.7), with k=n—-9,n—11,n—13,n— 16 in this order
using [4.7). Then we have

4.8) k(" = =+ (L)) =0, (M = s ?) =0,
(@B 4 1 (1 ) = 0

and

K15 — 1 12 (6 4 n2)) = o,
Similarly we have from (3.7), with k =n— 17
(4.9) (=" =" S0 ")) = 0.
Compute in addition (3.7), with k = n — 18 using and (4.8). Then we have

(1T — IS e 12 S ety oy — g
Subsituting the last formula of (4.8) into this equality we have
(@ 4 (S 4 ) = 0.

And adding this and (4.9) the assertion x(u") =0 follows immediately.
Case 4 n=9s5+3 (s>0). We have

18 + h19

(4w =1 +ub +5(—° + ' — % — %) — 7u
and
Lto=1—pu+p®+ (s+ 1) (= +p" = ") + (s = )" + hyo.

Since it is known that [SO(7),L] =0 ([3], [7]), we skip to the case s =1, ie.,
n=12. From (3.9), (i) and it follows that

k(1+4) =0 and w(—u+p* —p'*+ 1) =0.

From (3.10), (i) we also have
(4.10) k(=1 —p+p?—p+u =+ =+ %) =0.
Calculate (3.7), with £ =11,9,7,1. Then we have

k() =0, x(@’ +u') =0, x(u —p*+p°)=0
and

k(u—p?—u 44" =0
so that especially from the last equality we have
k(u—p*+u’) =0.

Substituting all the other equalities into we find

K(u°) = 0.
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On the other hand, from (3.10), (i) we have
k(1= + %) =0

so that we get

since x(1 4+ u?) = 0. Consequently it is immediate that x(1) = 0. Hence we proceed to
our computation assuming that s > 2, i.e., n > 21.

Calculate (3.7), with k=n—1,n—3,n—5n-"7, (3.7), (i) with k =n—7 and
(3.7), with k =n—9,n—11,n— 12 in this order. Then we have

411) w(@") =0 (1<k<3), —w(p"")=r(p" ) =r(@"), x(u" ") =r(p"")
and
(@.12) R0 4 S 4 (1 sty = 0,

Furthermore from (3.7), with k =n—17,n— 18 and (3.7), (i) with k =n — 18 we
get

(413) K_(lun717 o Iunfl6 _i_luanS _lun714 _i_ﬂnfl} o lun712 o S(lunfS o Iun77 _’_lun76)) — O,
(414) K(,uni” - Mn716 _,uanS +ﬂn712 _lun79 . Iun78 +ﬂn77 _'un76 _'_,unf3
_ s('un—S _ ﬂn_7 _ Iun—6 +,Un_3 _'_Iun) _ SZﬂn) — 07
and
(415) K(,Lln_” —,Lln_16 +ﬂn—15 _lun—14 +ﬂn—13 _lun—12 +ﬂn—11 _Iun—IO _lun
o S(Iun79 o ‘unfS _i_lun77 _lunf6 _i_lunfS _Iun74 _i_lunf3 . Iun72 _|_‘un71 _|_‘un)) =0.

Take the difference of (4.13) and (4.14) using (4.11) and (4.12) and also take that of
(4.14) and (4.15) similarly. Then it follows that

6 2

K(,un_IS +ﬂn—l4 o ,un—l3 _'un—12 +ﬂn . S(,u”_ _'un) - 'un> -0

and
KIS 3 12 (8 ) = 0,
From the difference of these equalities and we obtain
(s + e(u") = 0

which shows x(u") =0 clearly.
Case 5: n=9s+4 (s>0). In this case there hold the relations

A+ =1—p+p® =+t =+ 18—+ 18

+s(—,u9 I
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and
Lba=1+u+ +u = (s+ 1) +u' + 1% +p5%) + hus.

We begin with the case s = 1, i.e., n = 13 since [SO(9), L] is known to be zero ([3],
[7]). By calculating (3.9), (i) and we have

() = () = —x(1).
Hence by calculating (3.10), (i) and we have
k(@ +u'?)=0 and x(1+p° + 40 —pu?)=0.
Furthermore from (3.7), with k = 10,12 it follows that
10) = K('?) = ~(1)

Substituting these into the above two equalities yields the contradictory two results

r(u

k(1) = k(1) and K(x’) = —(1).

Therefore it is immediate that (1) = 0.

Let us suppose that s > 2, i.e,, n >22. And compute (3.7), with k=n—1,
n—3,n—"7n-38, (3.7), (i) with k=n—8 and (3.7), with k =n —9 in this order.
Then it follows that

k(W) = (") = (@), k(=" = ") =0,
k(W6 S N =0, we(lT ) =0
and
K(— "™ 4 T = O g (s — 1)) = 0.
Adding the second formula and the fifth yields
(1 — sy = 0.
Using the above equalities we have from (3.7), (i) and with k =n—11
k(" M4 s+ D)t —su™) =0 and  w(p" N 04 (s 1)(" 2+ 4") = 0.
Subtracting we get
(s — (") = 0.

Hence we see that if s=0,2 mod3 then x(x") =0. For the proof of the case
s =1 mod3 we consider the following equalities obtained from (3.7), with &k =
n—13,n—14 and (3.7), (1) with k =n — 14.

k(P (1 pt Dt 1"+ 1 ) =0,
K(u”’”(uz +ﬂ3 +,U8 +ﬂ9 +ﬂ11 +ﬂ12 _|_'u13)) =0

and
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K(,unil}(—l +#+ﬂ2 _lu3 +,U4 +,u8 _lu9 +ﬂ10 +ﬂ11 _‘u12 +ﬂ13)) =0.

Then by combining these we obtain (") =0 immediately.
Case 6: n=9s+5 (s>1). In this case we have

I+ =T+ u+(1—s) (1’ + ") + s
and
Lto=1—4 +p°=(s+ 1)’ —p%) + hs.
We get

(4.16)  x(u"'Hu") =0, k(" -p"-p") =0, K@ +u"?) =0,

("7 4 @ = S ) = 0,

K=" 4 1S 4 1S g (s D) = 0
and

("0 = 1) =0

from the computations of (3.7), withk=n—1,n—3,n—5n—"7,n—-9 and (3.7), (i)
with Kk =n —9 in this order. Moreover using (4.16) from (3.7), (i) with k =n — 10,
n—11 and (3.7), k=n—11 we have

(4.17) k(=" 4+ " su™) =0,

(4.18) k(@ ="t =) =0

and

(4.19) k(=" = " 4 (s = Du?) = 0.

By virtue of (4.16) we also have
(4.20) k(W' ="t —u") =0

by taking the difference of the equalities

K(ﬂn_B _|_ﬂn—12 _Iun—ll _lun—IO +ﬂn—9 _lun—8 _Iun—S +u —u" V=

— ("t T =) ) =0

and

10 —6 n—4

K_(Iun713 _i_,unle _'unfll _Iunf _lun79 _i_lunf8 _i_lunf7 +ﬂn _'unfS +u

n—2

_Iun—3 +,U +ﬂn—1 _|_lun —s(,u"_4 +ﬂn—l)) -0

which are obtained from (3.7), (i) and with k =n —13. In a similar way we have

(4.21) k(1" + (1= ") = 0
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by taking the difference of the equalities
("N = S (S ) =0 and (e — @S — S (s D) = 0
obtained from (3.7), (i) and with k =n —14. Adding (4.17) and yields
(s — (") = 0.

This implies that if s =0,2 mod3 then x(x") =0. So we suppose that s =1 mod 3.
Then by virtue of it follows that x(u""2) =0. Hence we have

k(1" +u") =0
by adding (4.18) and [(4.19). Now we have

K(u") =0

since x(u" > +u"2) =0 by (4.16). Consequently we have x(u") = 0.
Case 7. n=9s+6 (s=>0). The following series expansion is enough for the
present case:

A+ =1+ + (1 =) + 1) + h3
and so
ltoa=1—pu+p*—pw+u* =’ +p® = + 4
— (54 1) = u" 4+ p' + (s 4+ D' + s,

Suppose that s > 1, i.e.,, n > 15 and calculate (3.7), with k=n—-1,n-3,n-5
and (3.7), (i) with kK =n — 8 in this order. Then it follows that

K(,u”_l) — O, K(,u”_3 +ﬂn—2 _lun) — O, K(,Lln_s _Iun—4 _{_lun—2> =0 and K‘(,Ltn_7) —0.
Moreover from (3.7), (i) with k =n—9 we have
k(" + 1" = (s + ") = 0.
Using these formulas we obtain
n—11 _  'n

K(,U U -10 IunfS o luan o lun) —0 and K_(lunfll _lunflo _Iun78 o Iuan) -0

from (3.7), (i) and with k =n —12. By subtracting we obtain the required result
x(u") = 0.

Here we now consider the remaining case s=0, i.e., n=06. The first three
formulas above are valid for the present case. Hence we have

K(#S) =0, x(1- u3 - u4) =0 and x(u _uz +ﬂ4) =0.
But from (3.9), (i) it follows that
(1= gt p? = + i — 1 + 1) = 0.

Substitute these formulas into this equality. Then it is immediate that x(u°) = 0 so that
we have (1) = 0 since x(u®) = x(1).
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Case 8¢ n=9s+7 (s>1). In this case we have

B R AR I B (F

(1+u)
and
l4oa=14pu—(s+ D)’ —su'®+ hys.
Calculate (3.7), with k =n—1,n—3,n—5n—7 in this order. Then we have
k('™ =) =0, w(@ 4 u) =0, k(WA ) =0
and
k(@ — 1% =0,
Moreover from the computations of (3.7), (i) and with k =n—9,n— 10 we have
(4.22) K=" 4 ) =0, (' — @) = 0
and
RS = ) =0, se(—p" 4 4 (1= ") = 0.
Similar calculations of (3.7), (i) and with k =n— 11 give
(4.23) (=N = 10 O S (s D ) = 0
and
(=N = 10 S (o 1) s = 0.
Taking the difference of two equalities of we have
(4.24) k(™ — 8 — = 4 (1= ") = 0

since x(u"8) = x(u"~®) by [4.22). Furthermore taking the sum of the first formula of
and the equality

n—11 n—10

k(@M = T — " sl 4 i) = 0

obtained from (3.7), with k =n — 12 we have
k(=" + "0+ (1= )"+ su") = 0.

Add this and [4.24). Then we have

(4.25) r(u" —su"%) = 0.

By taking the difference of the fourth of and the equality
k(=" + )"+ " (s = D) =0

obtained from (3.7), (i) with kK =n — 12 we have

k("2 4 (1= s)u") = 0.
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Hence by substituting this into we obtain
k(2 = s — ) = 0

which implies x(x") = 0 obviously.
Case 90 n=95+8 (s>0). The required expansion series are

12

A+ =1+p— =i+ p+ 17+ (1= s5) (6 = p' = ') + hia

and
L+o=14p" —s(u’ +p"%) + h.

We postpone showing the case s=0. Supposing that s> 1, ie., n>17 we
calculate (3.7), (i) with k=n—1,n—3,n—5n—6,n—7,n—9 and (3.7), (i) with k =
n—"7,n—9 in this order. Then we have

(4.26) k(") =0, k(WP —p") =0, k(@) =r(p") =0,
k("0 =0, k(@) =0, w(p" = u"t) =0
and
k("0 + (1= s)u") = 0.
Taking the above equalities into account we have

(4.27)
K(—,u”_6 +S(ﬂn _Iun—8>) _ O, K(,u"_“ _’_Iun—S . Sﬂn_2> —0 and K(‘un—ll +ﬂn_8> -0

from (3.7), (i) with k =n—10,n— 12 and (3.7), with £k =n —11. Subtracting the
second equality of (4.27) from the third we have

sk(u?) =0, so that sx(u")=0

by virtue of x(u"2?) = x(u") by (4.26). Hence we conclude that if s = 1,2 mod 3 then
x(u") = 0.

Consider the sum of the last equality of (4.26) and the first of (4.27). Then we
have

r(u" —su"%) = 0.

It is therefore seen that if s =0 mod3 then x(u") =0.
Finally we consider the case s=0, i.e., n=8. From the equalities of (4.26)
together with x(u8) = (1) it follows that

(') =—x(1) and x(x?) = —x(u).
Furthermore from (3.9), (i) and (3.10), (i) we have
K(p) = —(1) and Kk(l—p+p2 + 4 —p°) = 0.

By substituting the first three equalities into the last one we obtain x(1) =0 imme-
diately. This completes the proof of MTheorem 1.1.
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