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On coefficients of Yablonskii-Vorob’ev polynomials

By Masanobu KANEKO and Hiroyuki OCHIAI

(Received May 7, 2002)

Abstract. We give a formula for the coefficients of the Yablonskii-Vorob’ev poly-
nomial. Also the reduction modulo a prime number of the polynomial is studied.

1. Introduction.

The object of study in the present article is a sequence of polynomials 7,(x) €
Z[x] (n=0,1,2,...), referred to as the Yablonskii-Vorob’ev polynomials, satisfying the
recursion

Tt (0) Tt (%) = XT3 (x)° + T, () T (x) — T)(x)°, (1)

n

with the initial condition 7y(x) =1, Tj(x) = x. The first few are

Th(x) = x* — 1,

Ts(x) = x5 — 35x12 4+ 175x% — 1225x°% — 12250x3 + 6125.

Note that we have adopted a normalization different from the usual one (see the remark
at the end of Section 2).

Although it is not clear a priori that the recursion (1) gives a sequence of poly-
nomials, we know it does indeed, the fact which is most naturally explained in the
context of connection with rational solutions of the second Painlevé equation (Pp).
(See, e.g., [I], [6] for this and related subjects.) Specifically, the logarithmic derivative
y=T,(x)/Ty(x)— T, (x)/Ty-1(x) of the ratio T,(x)/T,—i(x) is a solution of

2

(Prr) % = 2y° — 4xy + 4n.

As such, the Yablonskii-Vorob’ev polynomial can be thought of as a non-linear
analogue of the classical special polynomials associated to linear differential equations.
In this paper, we discuss some properties including explicit formulas and reductions
modulo primes of coefficients of this “Painlevé special polynomial”’. We note that,
owing to the connection with Schur functions, such results also give a kind of infor-
mation on certain character values of irreducible representations of symmetric groups.
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Now we state our main results. Using the recursion (1), it is easy to see by
induction that the polynomial 7),(x) is monic of degree n(n + 1)/2 and has the following
expansion;

To(x) = S 4™, y(n) e Z, 2)
j>0
where 0 =1 if n =1 mod3 and 0 otherwise. Set

n

u, = [J 2k - 1)1,

k=1

The first theorem gives the coefficient of the term of the lowest degree (=the constant
term if n =0,2 mod3 and the term of degree 1 if =1 mod3) of T,(x).

THEOREM 1. We have

<_1)m37(3m71)m/2:un/(:uf%l—llum)7 lf n=3m-— 17
to(n) = q (=1)"37Crmt 2y f (u,, y17), if n=3m, (3)
(_1)m3—3(m+1)m/2lun/lu3w lf n=3m + 1.

As for the higher coefficients, we show the following.

THEOREM 2. For fixed j, the function nw ti(n)/ty(n) extends to a polynomial
function in n depending on n mod 3.

Several examples of the theorem will be given at the end of Section 3.
The next result concerns the reduction modulo a prime of the polynomial 7),(x).

THEOREM 3. For a prime number p > 3 and any non-negative integers m and n, we
have
T — dlﬂp+n_dl7T d
mp+n(x> =X n(x) mod p,

where d, = n(n+1)/2, the degree of T,(x).

2. Constant terms.

To prove [Theorem 1, we recall the determinant expression of the Yablonskii-
Vorob’ev polynomial of Jacobi-Trudi type [2|. Define a family of polynomials /(x) €
Olx] (n=0,1,2,...) by the generating function

xA+ (1/3)4 th : (4)

and set iy =h_, =---=0. Writing the left-hand side as eYe? 3 and expanding this
out, we see that the polynomial /(x) is given by

[k/3]

—3i
23 il k 3i)! ’ (3)
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where [k/3] is the greatest integer which does not exceed k/3. In particular, the degree
of hi(x) is k and the leading coefficient is 1/k!. Set

Ta(X) = det(hyaisns1(X)) 1 <i j<n (6)

The polynomial 7,(x) is known as the 2-core Schur polynomial attached to the staircase
partition of depth n. The degree of 7,(x) is at most d,, = n(n + 1)/2 since the degree of
hi(x) is k, but it turns out that it is exactly d, and the coefficient of x% in 7,(x) is given
by ;' =1/[1}_;(2k — D!, as the following lemma shows.

LemMmA 4. We have
det(1/(j—2i+n+ 1)) ;o =n",
where we understand 1/1!' =0 if 1 <O0.

A proof is found in [5], Corollary 7.16.3 (formula 7.71) combined with Corollary 7.21.6.
The determinant formula for the Yablonskii-Vorob’ev polynomial ([2], [7]) asserts
that 7,(x) is a constant multiple of 7,(x):

T(x) = T (x)- (7)

PrROOF OF THEOREM 1.
Suppose n=3m — 1. Then #y(n) is the constant term of 7,(x). From equations
(7) and (6), we want to compute the determinant

Tn (0) = det<hj—2i+3m (O)) 1<i,j<3m—1*

The point is that this determinant splits into three blocks and we can calculate each
block separately by using Lemma 4. Actually, noting from (5) that A3(0) = 1/(3'l!)
and /3;-1(0) = h341(0) = 0, we proceed as follows:

(1) Fori=3k with 1 <k <m — 1, the (i, j) entry hj_x+3,(0) is zero unless j = 3/
with 1 </ <m—1, in which case the value is A3 (0) = 1/(3"72Fm(1—
2k +m)!). Then, by [Lemma 4, the determinant of m—1 by m— 1 matrix
with these (k,l) entries is equal to 1/(30m=Um/2y ).

(2) For i=3k—1 with 1<k<m, the (i,)) entry hj—6k+3m+2(0) 18 zero
unless j=3/—2 with 1 </ <m, in which case the value is /3;_21m)(0) =
1/(3'=2k+m(] — 2k 4+ m)!). Noting that this is equal to 0 for k = m and [ < m,
and 1 for k =1 =m, we see that the m by m determinant is equal to the one
in (1) as above, i.e., equal to 1/(30"-Dm/2y ).

(3) Similarly, for i =3k —2 with 1 <k <m, the (i, ) entry hj_gri3m14(0) is zero
unless j=3/—1 with | </<m. By [Lemma 4, the determinant of m by m
matrix with entries 1/(3/~2%"+1(] — 2k 4+ m + 1)!) is equal to 1/(30m+1m/2y ).

Combining the above three, we conclude 73, 1(0) = +1/(33"=Vm/2,2 4, ), the sign
being the inversion number of the permutations of rows and columns, which, as is
readily seen, is equal to (—1)". This establishes the formula in the case of n = 3m — 1.
The computation in the case when n = 3m is exactly the same and will be omitted.
When n =3m+ 1, ty(n) is not the constant term and the above computation does not
work. But the following lemma allows us to reduce this case to the preceding two.
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LemMMmA 5. We have

To 1 () Ty (%) = Try () T (%) = (2n+ 1) To(x)?
for all n.

See [6, p. 92] or [1, p. 188] for a proof. Putting n = 3m in the lemma and comparing
the constant term of both sides, we obtain

to(3m — Dto(3m + 1) = (6m + 1)1o(3m)>. (8)
From this, we have
to(3m + 1) = (6m + 1)19(3m)*/16(3m — 1)
= (=1)"(6m + 1)3720 28/ (15,1447,
(=1)"3 730ty s

which completes the proof of [Theorem 1. O

REMARK 6. When n = 0,2 mod 3, there is an alternative way to derive the formula
in Theorem 1 from the hook-type formula of 7,(x) in (the authors would like to
thank Masatoshi Noumi for pointing out this). However, the case » =1 mod3 does
not follow from the hook-type formula.

REMARK 7. As mentioned in the introduction, the usual recursion for the
Yablonskii-Vorob’ev polynomials is

Tuit ()T (x) = XT(x)° = 4(Tu(0) T,/ (x) = T1(x)°). 9)
If in general we start with the recursion
Tt (X) T 1 (x) = xT5, (%)% + a(To(x) T (x) — T(x)7), (10)

a being a constant, and the same initial values 7(x) = 1 and 7 (x) = x, the formula for
the lowest term in [Theorem 1 changes only by a power of a, namely,

(1033 ", 4 g ), =31,
fo(n) = (=1)"(a/3)" "2, [ (s 112),  if n=3m,
(=1)"™(a/3)> M2y 13 if n=3m+ 1.

3. Higher coefficients.

For the proof of Theorem 2 it is convenient to use different symbols for #(n)
according to the congruence classes of » modulo 3. Put

a](m) = tj(3l’lfl - 1), bj(m) = tj(?ﬂ’H), and CJ(I’YI) = tj(3m + 1)
Also put
a(m) = aj(m)/ao(m),  bi(m) = b;(m)/bo(m), and  &(m) = ¢;(m)/co(m).
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PrROOF OF THEOREM 2. First let n = 3m. We substitute the expansion (2) into the
recursion (1) and compare the coefficients of x**! for k >0 to obtain

k+1

k k
> cilm)ag_i(m) = bi(m)be_i(m) + Y _ 3i(3i = 1)bi(m)bjes1—i(m)
i=0 i=1

i=0
k

= 9ijbi(m)bi1-i(m).
i=1

Dividing both sides by co(m)ag(m), which is equal to (6m + 1)bo(m)* by (8), and
separating the term with i = k£ + 1 in the middle sum on the right (the only place where
bixs1(m) appears), we obtain

k k
3(k + 1)(3k + 2)bi 1 (m) = (6m + 1) Y &(m)ax—i(m) — > _ bi(m)bi_i(m)

i=0 i=0

k
+3) i(3k — 6i + 4)bi(m)by1-i(m) (11)

i=1

for kK > 0. Similarly, for n =3m — 1 we obtain from the recursion (1)

k
3(k + 1)(3k + 2)aks1 (m) = — (6m —1) > &(m — 1)by_i(m)
i=0
k k

=Y a@i(m)ae—i(m) + 3 i(3k — 6i + 4)a@i(m)dg1-i(m)

i=0 i=1
(12)

for k > 0. Here, we have used the identity by(m)co(m — 1) = —(6m — 1)ag(m)*> which
follows from by putting n =3m — 1 and comparing the constant terms of
both sides. For n=3m+ 1, we compare the constant terms in the recursion (1) to get
ao(m + 1)bo(m) = —co(m)?, and then with this we obtain as above (comparing the
coefficients of x¥**3 in (1))

k+1 k
(3k 4+ 1)(3k + 4) &1 (m Za, (m + Dbisr—i(m) =Y &(m)é_i(m)
i=0
k
+) (3i + 1)(3k — 6i + 4)&:(m)éxs1—i(m) (13)

i=1

for k > 0.

Now we prove [Theorem 2 by induction on j. For j=0, the required property,
which is equivalent to the statement that &(m),b;(m), and &(m) are polynomials in
m, holds trivially. Suppose the property holds up to j < k. Then equations (12) and
(11) ensures respectively that both @i(m) and by, (m) are polynomials in m. Then,
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we conclude in turn by equation that ¢, 1(m) is also a polynomial in m. This

completes the proof of [Theorem 2.

[

Equations (11), (12), and allow us to compute explicitly the polynomials a;(m),

Z;j(m), and ¢;j(m). First several examples are given below.

EXAMPLE 8.

as(m) = —(19m + 6)(m + 1)m(m — 1) /46200,

as(m) = —(155m2 — 572m — 48)(m + )ym(m — 1)/21021000,

ay(m)=—-m, a(m)=-m(m—1)/10, az(m)= (m+ 1)m(m —1)/210,

bi(m)=m, by(m)=—m(m+1)/10, b3(m) = —(m+ )m(m —1)/210,

by(m) = —(19m — 6)(m + 1)m(m — 1)/46200,

(155m> + 572m — 48)(m + 1)m(m — 1)/21021000,
=0, é&(m)=3mm+1)/70, &(m)=—(m+ 1)m/350,
m) = —9(m + 2)(m + 1)m(m — 1)/200200,

bs(m) =
(m)
(m) =
¢s(m) =3(m+2)(m+ 1)m(m — 1)/3503500,
(m) =
(m)

m

56””

7Wl

REMARK 9. (i) We can extend the recursion (1) to negative n.

—(207m>% + 207m + 50)(m + 2)(m + Dm(m — 1)/4526522000,

= 9(107m2 + 107m + 4)(m + 2)(m + 1)m(m — 1) /348542194000.

Then by the

symmetry we have T, j(x) = T,(x). From this, we can deduce b;(m)=

a(—m) and ¢;(m) = ¢;(—m —1).

(ii) As a polynomial in m, a;(m) is divisible by a@;(m) for j < 3, but this does
not hold in general as the case j =4 shows. Likewise, ¢;(m) divides ¢;;1(m)

for 2 < j <5 but not for j=6.
(i) The fact that ¢;(m) =0 was given in [6, Theorem 1].

4. Yablonskii-Vorob’ev polynomial modulo a prime.

Fix a prime number p > 3 once and for all. We first establish a special case of
Mheorem 3, namely for m =1 and n=0. Once having this, the general case will be

proved rather easily.

ProrositioN 10. We have
T,(x) = x% mod p.

Proor. The key ingredient is again the determinant formula (7);

Tp(x) = 1y Tp(x).
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Noting that (2k — 1)!! is prime to p if k < (p+1)/2 and is divisible by p exactly once
if (p+1)/2 <k < p, we find the exact power of p which divides u, = r_ 2k =1 is
pPO2 So, if we put uy = p~PtU/2y, we have ) e Z and

Ty(x) = ﬂép(pﬂ)/zfp(x)- (14)

We first show that the polynomial p(7+1)/ 27,(x) is realized as a determinant of a matrix
with entries which have p-integral coefficients. To state this, we develop some nota-
tion. Let Z, denote the local ring {b/ae€ Q|a,be Z,(a,p) =1} which contains Z
as a subring. The maximal ideal of Z,) generated by p is denoted by p. Set p[x] =
{3 s01x’ € Zp)[x]|r; € p}. By “mod p” of an element in Z,[x], we mean its image
in the quotient ring Z,)[x]/p[x] ~ F,[x|, where F, is the field of p elements.

Recall the polynomial /;(x) was defined by the generating function (4). Expanding
(d)d2)e* 3 = (x + 32)e*+*'/3 we obtain the recursion

(k + 1)hk+1(x) = xhk(x) + hk,2<x) for k > 2,
with iy =1, iy = x, and hy = x?/2. Multiplying both sides by k! and setting I (x) =
k'hi(x), we have

Bies1 (x) = xhi(x) + k(k — Dhg_a(x) for k > 2,

with hg = 1, by = x, hy = x2. This implies inductively that /(x) is a monic polynomial
of degree k with integral coefficients. In particular, we have

hi(x) € Z,)[x] if k<p and ph(x)e Z,)x] if p <k <2p. (15)

Now define a matrix (a;) by

1<i,j<p
g — {hj2i+p+1 if i>(p+1)/2,
v phj_2j+p+1 if i < (p + 1)/2

Then by (15) and (6), we have a; € Z(,)[x] and

PP, (x) = det(ay) (16)

1<i,j<p-

To compute this determinant modulo p, it is convenient to consider instead a modi-
fied matrix (cj),.; ;<, which is obtained from (a;) by a suitable permutation of rows:
namely set

{ak,- ifi=2k—1,
Cij = [
J Alet-(p+1)/2,j if i = 2k.

The inversion number of this permutation is Zfﬁ 1_1)/ 2i= (p> —1)/8 and so
det(a;) = (—=1)7" V78 det(cy). (17)
The following lemma supplies enough information for computing det(c;) modulo p.

Lemma 11. (i) If i > j, then c; € p[x].
(1) If i is odd, then c; = —x? mod p.
(iii) If i is even, then c; = 1.
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PrROOF OF LEMMA. If i =2k —1, then k < (p+1)/2 and c¢; = axj = phj—skips1 =

h 5 By (15) this belongs to p[x] if i > j, while for i = j this is equal to ph,(x) =

Phy—(i— .

hy(x)/(p — 1)! = —h,(x) mod p by Wilson’s lemma. By (5), the coefficient of x”~% in
hy(x) is p!/(37i(p — 3i)!), which is in p for i>1 and hence /,(x) =x” modp. If
i =2k, then ¢; = ayy(ps1)y2,j = M-k = hj—;. This is 0 if i> j and 1 if i = j. ]

From (i) of the lemma, the matrix (c;) modulo p is upper-triangular, the diagonal
entries of which are given by (ii) and (iii) of the lemma. We therefore have

det(c;) = (—=1)PTV2xP(r+1/2 mod p.
Combining this with (17), (16) and (14), we have

T,(x) = (=1)” P=1)/8+ pH)/Zu]’]xdf’ mod p.

But we know that 7),(x) is a monic polynomial of degree d,, hence the constant on the
right should be congruent to 1 modulo p and we obtain the proposition. ]

COROLLARY 12.  We have T, = x%+ modp and T, | = x%' mod p.

Proor. From [Proposition 10] we have 7,(x) =0 modp since d, =0 mod p.
Thus the recursion (1) reduces modulo p to T, T, = xT; = x*»*'. Since T} (x)
and 7,_;(x) are monic of degrees d,.| and d,_; respectively, and d,.| + d,_1 = 2d, + 1,
we get the formulas in the corollary. ]

PROOF OF THEOREM 3. Set S, = x (=T, wtp modp. We know Sp=1 and
S) =x by [Proposition 10| and [Corollary 12,  Noting that S, = x~ (4=~ T, —and S, =
x~(p= )T” since dy1p, —d, = p(p+1+2n)/2 =0 mod p, we have the same recursion
(1) for {S, }n20 Thus we conclude S, = T,, mod p for all n. Applying this inductively,

we establish Theorem 3. O

COROLLARY 13. We have T, _; = x%=~%T; mod p.

Proor. We use the relation 7, |(x) = T,(x) as indicated in Remark 9. The-
orem 3 also holds for negative indices and we obtain

Tpflfl'(x) = T,eri(.X) = del’“'_ iTl‘(X) = Xdpf"_ ’T}(X) ]
Finally, we briefly mention what happens in the case when p =2 and 3.

REMARK 14. Consider the general recursion in Remark 7 with ae Z. For
p =3, it is easy to see (using the fact that T,(x) is “almost” a polynomial in x?) that

T,(x) = (x —a)™ mod3 if n=0,2 mod3
and
T,(x) = x(x —a)® ' mod3 if n=1 mod3.

In contrast, it trivially holds that T,(x) = x% mod2 if a is even, while for odd a,
numerical computation suggests that no periodic pattern for 7,(x) mod 2 exists and that
irreducible factors of arbitrary high degree occur as n gets bigger.
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