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Abstract. A squarefree module over a polynomial ring S = k[xi,...,x,] is a gen-
eralization of a Stanley-Reisner ring, and allows us to apply homological methods to the
study of monomial ideals more systematically.

The category Sq of squarefree modules is equivalent to the category of finitely gen-

The derived category D”(Sq) has two duality functors D and A. The functor D is a
common one with H/(D(M*)) = Exte"'(M*, ws), while the Alexander duality functor A is
rather combinatorial. We have a strange relation DoAdoDoAdoDo A~ T?, where T
is the translation functor. The functors Ao D and Do A give a non-trivial autoequi-
valence of D?(Sq). This equivalence corresponds to the Koszul duality for 4, which is a
Koszul algebra with A4' =~ A. Our D and A4 are also related to the Bernstein-Gel'fand-
Gel’fand correspondence.

The local cohomology H, }A(S) at a Stanley-Reisner ideal I, can be constructed from
the squarefree module Ext(S/I4,ws). We see that Hochster’s formula on the Z"-graded
Hilbert function of H (S/I4) is also a formula on the characteristic cycle of H;'/(S) as a
module over the Weyl algebra 4 = k{xy,...,x,,01,...,0,» (if char(k) =0).

1. Introduction.

The Stanley-Reisner ring of an abstract simplicial complex A < 2{1-+  which is
the quotient of a polynomial ring S = k[xi,...,x,] by the squarefree monomial ideal
14, is a central concept of combinatorial commutative algebra (see [7], [22]). In [24],
the author defined a squarefree N"-graded S-module. A Stanley-Reisner ring S/1y, its
syzygy module Syz;(S/l,), the canonical module ws, and Ext%(S/I4, ws) are always
squarefree. Using this notion, we can treat Stanley-Reisner rings and related objects
in a categorical way, see [9], [15], [18], [20], [21], [25], [26], [27]. In the present paper,
we will study the derived category of squarefree modules.

Let Sqg (or simply Sq) be the category of squarefree S-modules and their degree
preserving maps. Then Sq is equivalent to the category of finitely generated left A-
modules, where A is the incidence algebra of the Boolean lattice 2{!--"}.

Let D’(Sq) be the derived category of bounded complexes in Sq. We have
contravariant functors D and 4 from D?(Sq) to itself satisfying D> =~ 4% ~ Idps(sq)-
If M is a squarefree module, so is Exti(M,ws). Moreover, for M* e D?(Sq), we
can define D(M*) e D*(Sq) with H'(D(M*)) = Ext¢™(M*,ws) in a natural way, see
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[Proposition 3.2,  On the other hand, extending an idea of Eagon-Reiner [8], Miller
and Romer constructed the Alexander duality functor A on Sq. Since A is exact,
we can regard it as a duality functor on D”(Sq).

Using D’(Sq), we can get simple and systematic proofs of many results in [15], [20]

[21], [24], [25] Moreover, we prove a strange natural equivalence
DoAoDoAoDoAd~T™,

where T is the translation functor on D’(Sq).

Let E= /\ S; be the exterior algebra. A squarefree module over E, which was
defined by Romer [20], is also a natural concept. The category Sqp of squarefree
E-modules is equivalent to Sqg in a natural way. A famous theorem of Bernstein-
Gel’fand-Gel’'fand [4] states that the bounded derived category of finitely generated Z-
graded S-modules is equivalent to the bounded derived category of finitely generated
Z-graded left E-modules. The functors defining this equivalence preserve the square-
freeness, and coincide with 4 o D and Do A in the squarefree case under the equiv-
alence Sqg =~ Sqz. We have another relation to Koszul duality. The incidence algebra
A of 211} js a Koszul algebra whose quadratic dual A' is isomorphic to A itself. The
functors Ao D and Do A give a non-trivial autoequivalence of D”(Sq). This equiv-
alence corresponds to the Koszul duality D”(mod,) =~ D’(mod ;).

In the last section, under the assumption that char(k) = 0, we study modules over
the Weyl algebra k<{x,...,x,,01,...,0, associated to squarefree modules (e.g., the
local cohomology module H }A(S)). Especially, we give the formula for their charac-
teristic cycles.

After I received the referee’s report for the first version, I widely revised the paper.
Among other things, Proposition 4.6 is a new result of the second version which was
submitted in September 2001. The present version is the fourth one, in which some
proofs and expositions are revised.

2. Preliminaries.

Let S = k[xj,...,x,] be a polynomial ring over a field k. Consider an N"-grading
S=@,cnSa =P,y kx?, where x* =T] | x/ is the monomial with the exponent
a=(ay,...,a,). We denote the graded maximal ideal (xj,...,x,) by m. For a Z"-

graded module M and a€ Z", M, means the degree a component of M, and M(a)
denotes the shifted module with M(a), = M,.5. We denote the category of S-modules
by Mod, and the category of Z"-graded S-modules by *Mod. Here a morphism f in
*Mod is an S-homomorphism f : M — N with f(M,) < N, for allae Z". See for
information on *Mod.

For M,N € *Mod and a € Z", set *Homg(M,N), := Hom-moa(M,N(a)). Then

“Homg(M,N) := P *Homg(M,N),
acZ"
has a natural Z"-graded S-module structure. If M is finitely generated, then
*Homg(M, N) is isomorphic to the usual Homg(M,N) as the underlying S-module.
Thus, we simply denote *Homg (M, N) by Homg(M,N) in this case. In the same sit-
uation, Exti(M,N) also has a Z"-grading with Exti(M,N), = Ext'y;.q(M, N(a)).
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For aeZ", set supp,(a):={ila; >0} < [n]:={l,...,n}. We say aeZ" is
squarefree if a; = 0,1 for all i e [n]. When a € Z" is squarefree, we sometimes identify
a with supp, (a). Let 4 =2 be a simplicial complex (i.e., 4 # &, and F e 4 and
G c F imply G € 4). The Stanley-Reisner ideal of A is the squarefree monomial ideal
Iy := (xF|F¢A4) of S. Any squarefree monomial ideal is the Stanley-Reisner ideal I,
for some 4. We say S/I, is the Stanley-Reisner ring of A.

DerFINITION 2.1 ([24]). We say a Z"-graded S-module M is squarefree, if the
following conditions are satisfied.

(a) M is N"-graded (i.e., M, =0 if a¢ N"), and dimy M, < oo for all ae N".

(b) The multiplication map M, 3 y — x?y e M, is bijective for all a,b € N" with
supp, (@ + b) = supp,, ().

A squarefree module M is generated by its squarefree part | Fel) Mp. Thus it
is finitely generated. For a simplicial complex 4 < 2" I, and S/I, are squarefree
modules. A free module S(—F), F c [n], is also squarefree. In particular, the Z"-
graded canonical module wg = S(—1) of S is squarefree, where 1= (1,...,1).

Denote by Sqg (or simply Sq) the full subcategory of *Mod consisting of all the
squarefree modules. In *Mod, Sq is closed under kernels, cokernels and extensions ([24,
Lemma 2.3]). For the study of Sq, the incidence algebra of a finite partially ordered set
(poset, for short) is very useful, as shown in [18], [27]. In Section 4 of the present
paper, we will use further properties of the incidence algebra (of a Boolean lattice). So
we now recall basic properties of an incidence algebra for the reader’s convenience. See
[2, §III. 1] for undefined terminology.

Let P be a finite poset. The incidence algebra A = I(P,k) of P over k is the
k-vector space with a basis {ey,|x,y € P with x > y}. The k-bilinear multiplication
defined by e, ,e., =J, .ey, makes 4 a finite dimensional associative k-algebra. (The
usual definition is the opposite ring of our 4. But we use the above definition for the
convenience in a later section.) Set e,:=ey,. Then 1 =) _,e. and ece, =y e.
We have A =~ @\ cpAex as a left A4-module, and each Ae, is indecomposable.

An incidence algebra A is the algebra associated with a quiver with relations. For a
poset P, we consider the quiver I = {I), 11} with I =P and

I'N={x-«—-y|x,ye P,x >y, but there is no ze P with x >z > y}.
So I' is (essentially) the Hasse diagram of P. Set

p:={p1— p2| p1 and p, are paths of I" with s(p;) = s(p>) and e(p1) =e(p2)},

where s(p;) and e(p;) represent the initial vertex and the final vertex of p; respectively.
Let k(I",p) be the algebra associated with (I7,p). Then we have an isomorphism
k(L p) = A. Here, if [p] is the residue class containing a path p of I', we have
Y([p]) = ex,y, where x =e(p) and y =s(p).

Denote the category of finitely generated left A-modules by mod,. If N € mod,,
we have N = @xe p Ny as a k-vector space, where N, :=e,N. Note that e, ,N, = N,
and e, ,N. =0 for y#:z If f: N — N’ is a morphism in mod,, then f(N,) < N/.
Under the isomorphism A =~ k(I',p), mod, is equivalent to the category Rep(I’,p) of
representations of (I7,p) by [2, III, Proposition 1.7]. If (V, f) € Rep(I, p) corresponds
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to Nemod,, then N, = V(x) for xe P. We have explicit descriptions of simple
objects, indecomposable projectives, and indecomposable injectives in mod,, = Rep(/", p),
see [2, SIIL. 1].

Let 2" be the Boolean lattice (i.e., we regard the power set 2/ of [n] as a poset
by inclusions), and 4 = I(2", k) its incidence algebra. For M e Sq, set ®(M) := N =
@FCM Np to be a k-vector space with My =~ Np. Then N has a left A-module
structure such that the multiplication map Np > y +— eg ry € Ng for G o F is induced
by Mp>y— x\Flye Mg. Tt is easy to see that & gives a covariant functor
Sq — mod,. Recall that A4 =~ k(I", p), where I" is a quiver whose set of vertices is 2,
and mod, =~ Rep(I',p). If M is a squarefree module, @(M) corresponds to the rep-
resentation (V, f) e Rep(I',p) with V(F)= Mp and frygyr: V(F)=Mp3y— x;y€
Mpyy = V(FU{i}) for F < [n] and i€ [n]\F. In [26], the author used sheaves on
a poset to understand squarefree modules. But this notion is equivalent to that of
representations of (/I7,p) in our context.

PrOPOSITION 2.2 ([26], [27]). Let A =12 k) be the incidence algebra. The
functor @ constructed above gives an equivalence Sq =~ mod .

For a subset F < [n|, Pr denotes the monomial prime ideal (x;|i ¢ F) of S. The
next result follows from |Proposition 2.2 and [2, §III. 1].

COROLLARY 2.3 ([25]). Sq is an abelian category, and has enough projectives and
injectives. An indecomposable projective (resp. injective) object in Sq is isomorphic to
S(—F) (resp. S/Pr) for some F < [n]. For any squarefree module M, both proj. dimg, M
and inj.dimg, M are at most n.

Many invariants of squarefree modules are naturally described in terms of 4. For
example, if M is a squarefree module with N := @(M), dimg M = max{|F|| N # 0} =
n —min{i| Ext’ (N, 4) # 0} and proj.dimg M = proj.dim , N = max{i | Ext/ (N, 4) # 0}.
See Remark 3.3 below for information on Ext/(N,A).

We also remark that Sq admits the Jordan-Holder theorem and the Krull-Schmidt
theorem and a simple object in Sq (i.e., a non-zero squarefree module without non-trivial
squarefree submodule) is isomorphic to (S/Pp)(—F) for some F.

DEFINITION 2.4 ([25]). A Z"-graded S-module M =P
if the following two conditions are satisfied.
(a) dimy M, < oo for all ae Z".
(b) The multiplication map M, 3 y — x?y e M,,; is bijective for all ae Z" and
be N" with supp, (a+ b) = supp, (a).

M, is called straight,

acZ"

For a Z"-graded S-module M = P, _,. M,, we call the submodule P, _,» M, the
N"-graded part of M, and denote it by A (M). If M is straight then A (M) is
squarefree. Conversely, for any squarefree module N, there is a unique (up to isomor-
phism) straight module Z(N) whose N"-graded part is isomorphic to N. For exam-
ple, Z(S/Pr) = *E(S/Pr), where *E(S/Pr) is the injective envelope of S/Pr in *Mod.
Denote by Strg (or simply Str) the full subcategory of *“Mod consisting of all the straight
S-modules.
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ProrosiTiON 2.5 ([25, Proposition 2.7]). The functors N :Str— Sq and % :
Sq — Str give an equivalence Sq = Str.

Let Com” (Sq) be the category of bounded cochain complexes of squarefree mod-
ules, and D”(Sq) the bounded derived category of Sq. A squarefree module M can be
regarded as a complex --- — 0 — M — 0 — --- with M at the O™ place. For a com-
plex M* and an integer p, let M*[p] be the p™ translation of M*. Thatis, M*[p] is a
complex with M'[p] = M7 and dy;,) = (—1)"dy.

A complex M* e Com’(Sq) has a projective resolution P* € Com”(Sq). That is,
there is a quasi-isomorphism P* — M*® and each P’ is projective in Sq. We say P° is
minimal if dp(P*~") = mP' for all i. A minimal projective resolution of M* e Com®(Sq)
in Sq is a Z"-graded minimal S-free resolution of M*. Under the same notation as
IProposition 2.2, a projective resolution P° e Comb(Sq) 1s minimal if and only if so is
Q°® := ®(P*) e Com”(mod ), that is, dp(Q'~') = xQ’ for all i. Here v = {er ¢|F 2 G)
is the Jacobson radical of 4. Hence every M*® € Comb(Sq) has a unique minimal pro-
jective resolution, and any projective resolution is a direct sum of a minimal one and
an exact complex. Let P* be a minimal projective resolution of M* e Com’(Sq). We
define f,(F,M*) e N so that

P*l' ~ @ S(_F)ﬂi(FvM.).
Fcn]

Similarly, every M* € Com”(Sq) has an injective resolution 7* € Com’(Sq). That
is, there is a quasi-isomorphism M*® — I* and each I' is injective in Sq. We say I° is
minimal if 1" is a *essential extension of ker(d}) for all i (i.e., LNker(d}) # {0} for any
non-zero Z"-graded submodule L of I’). As projective resolutions, 7° is minimal if
and only if so is J*:= @(I*) (i.e., each J' is an essential extension of ker(d})). Thus
every M* e Comb(Sq) has a unique minimal injective resolution, and any injective re-
solution is a direct sum of a minimal one and an exact complex. For M* e Com’(Sq)
and F < [n], we define natural numbers i'(F, M*®) so that

I'= @ (s/pp)" "M,

Fcn

where 1* € Com”(Sq) is a minimal injective resolution of M*. If I* e Com’(Sq) is a
(minimal) injective resolution of M* e Com’(Sq), then Z(/*) is a (minimal) injective
resolution of Z(M*®) in *Mod. Hence

f(F,M*) = u'(Pr, Z(M?*)),

where u'(—) is the usual Bass number of a complex (cf. [19]).
Note that B;(F,—) and i'(F,—) are invariants of isomorphic classes in D?(Sq).
For M* and N°®, we define a complex Hom$(M*, N*) by Homi(M* N*) =
[1,., Homg(M/,N'*) and the differential d’(f)= ((=1)"fin1di; +d\"f;);c, for [ =
(fi)jez € HomiL(M* N*). Note that if M* N*e Com”(*Mod) and each M’ is finitely
generated then Hom$(M*, N*) € Com’(*Mod).
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LeMMA 2.6. Let I* be a (not necessarily minimal) injective resolution of M* €
Com’(Sq). For F < [n], we have

i@'(F,M*) = dim;[H'(Homg(S/Pr,1°))]

Proor. If E* € Com” (Sq) is an exact complex consisting of injective objects, then
E* splits and Homg(S/Pp, E®) is clearly exact. So we may assume that /° is minimal.
Note that Homg(S/Pr, S/Pg) is isomorphic to S/Pg if F o G, and 0 otherwise. Hence
we have [Homi(S/Pr,1*)], = k' F:M*) and the differentials of [Hom$(S/Pr,1*)], are
0. So we are done. ]

3. Functors on the derived category of squarefree modules.

Let A be the incidence algebra of 2". If N e mod,, then Hom, (N, k) has a right
A-module (i.e., a left A°°-module) structure such that (fA)(a) = f(da) for Ae A and
ae N, see [2, §II. 3]. But the opposite ring A°? of A is isomorphic to A itself by
AP s ep g ege pe € A, where F°:= [n]\F. Thus Hom,(—,k) gives a contravariant
functor from mod, to itself. By the equivalence Sq =~ mod, of [Proposition 2.2, we have
an exact contravariant functor from Sq to itself. We call this functor the Alexander
duality functor, and denote it by 4. We have 4 oA = Idgq, see [2, II, Theorem 3.3].

The functor 4 was defined independently by Miller and Romer extending
an idea of Eagon-Reiner [8]. But their constructions of 4 are different from the above
one. Romer’s definition is similar to ours, but it uses squarefree modules over an
exterior algebra. Miller’s definition uses straight modules and the Matlis duality. In
fact, we have A(M) =~ A" (*Homg(Z (M), *E(k))(—1)).

It is easy to see that A(M), is the k-dual of Mp., and the multiplication A(M), >
Y Xy €A<M>FU{1'} for i ¢ F is the k-dual of Mpe\(;y 3y~ X;y € Mpc. For exam-
ple, A(S(—F)) =S/Prc and A(S/1y) = 14+, where A" :={F < [n]|F°® ¢ 4} is (Eagon-
Reiner’s) Alexander dual complex ([8]) of A4.

A complex I* € Com’(Sq) is a (minimal) injective resolution of M* if and only if
the Alexander dual A(/°) is a (minimal) projective resolution of A(M*®). Hence we
have j'(F,M*) = B,(F¢, A(M?*)).

The following is a key lemma of this section.

LemMma 3.1 ([25, Lemma 3.20]). For a squarefree module M and a subset F  |n,
N (Homg(M,*E(S/Pr))) is isomorphic to (Mr)" ® (S/Pr). Here (Mp)" is the dual
k-vector space of My, but we set the degree of (Mp)" to be 0 (since it is essentially
Homy (Mg, [S/Pr|r)). In particular, N/ (Homg(M, E(S/Pr))) is squarefree.

Let w*® be a minimal injective resolution of wg[n] in *Mod (according to the usual
convention on dualizing complexes, we use wg|n| instead of wy itself). The complex w*
is of the form

(1) | R e X )
o' = P “E(S/Pr),
Fcn]
|Fl=—i

and the differential is composed of (—1)*F) . nat : *E(S/Pr) — *E(S/Pp\(j,) for jeF,
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where nat: “E(S/Pr) — *E(S/Pp\(;3) is induced by the natural surjection S/Pp —
S/Pp\(j1, and a(j,F) :=#{ie F|i < j}. See [7, §5.7).

PROPOSITION 3.2.  Let M* € Com®(Sq), and P* € Com®(Sq) its projective resolution.
Then A (Homg(M*,w*)), /' (Homg(P*, @*)) and Homg(P*, ws(n]) belong to Com”(Sq),
and are isomorphic in D’(Sq).

Proor. By [Lemma 3.1, A (Hom(M°* w*)) and A (Homg(P* ,w®)) are in
Com”(Sq). Since Homg(S(—F),ws) = S(—F°), Hom$(P*,ws[n]) also belongs to
Com?(Sq). Applying [11, Exercise III 5.1] to *Mod, we have Z”"-graded quasi-
isomorphisms Homg(M*, ®w*) — Homg(P*,®*) and Homg(P*, ws[n]) — Homg(P*, w*®).
Hence we have quasi-isomorphisms

A (Homg$(M*, w*)) — A (Homg(P*, w*))
and
Homg(P*, ws[n]) = /' (Homg(P*, ws[n])) — A (Homg(P*,w*)). O

It is easy to see that D: M* — A (Homg(M*®, w*)) defines a contravariant func-
tor from D’(Sq) to itself. If P* is a projective resolution of M*, Hom$(P*, ws[n]) and
A" (Hom$(P*,w*)) are isomorphic to D(M*) in D?(Sq) by [Proposition 3.2, Hence

H(D(M*)) = Ext§"'(M*,ws) and Do D = Idpssg).

REMARK 3.3. Let A be the incidence algebra of 2. For N € mod,, the right A-
module Hom (N, A4) can be seen as a left A4-module by the isomorphism A°? =~ A given
in the beginning of this section. Similarly, Ext’ (N, 1) e mod,. Let & :Sq — mod, be
the functor of |Proposition 2.2, and let Psq (resp. P,) be the full subcategory of Sq (resp.
mod,) consisting of projective objects. Then the homotopic categories Kb(Psq) and
K®(Py) are equivalent to D’(Sq) and D’(mod,) respectively. Both Hom$(®(—), A)
and @ o Hom$(—, ws) define functors from K’(Sq)(= D”?(Sq)) to K*(P,)(= D*(mod,))
and the isomorphisms

Hom,(®(S(—F)),A) =~ Hom,(Aep, A) = Aepe = ®(Homgs(S(—F), ws))

give a natural equivalence Homj(®(—),4) = ® o Hom§(—,ws). Hence if M is a
squarefree module, then Ext (®(M), A) = ®(Exti(M,ws)). Moreover D corresponds
to the right derived functor RHom$%(—,4) up to translation.

For N emod,, we have Homy(N,k) = Hom,(N,E) as left A°° (= A)-modules,
where E is the injective envelope of A/t as a left A-module, see [2, §II. 3]. So A is a
representable functor too.

Let /* be a minimal injective resolution of M* e Com’(*Mod) in *Mod. For
acZ" and ie N, let u'(m, M*), be the number of copies of *E(S/m)(a) which appear
in the Krull-Schmidt decomposition of I°.

PrOPOSITION 3.4. If M* e D(Sq), then up'(m,M*), #0 implies a is squarefree.
Moreover p'(m, M*), = B;(F, D(M?*)) for all F < [n].

ProOF. Since Homg(S(—a), *E(k)) = *E(k)(a), the argument of [19, Theorem 3.6]
also works here. [
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For a squarefree module M, we can describe D(M) = A" (Hom*(M,w*®)) explicitly.
By [Lemma 3.1, we have

(2) DM):0—-D"(M)— D" (M)—---— D" (M) — 0,
D'(M) = F@{}(MFY‘ ®x (S/PF).

|F|=—i

As in the lemma, the degree of (My)" is 0 € Z". The differential is composed of the
maps

(=)™ () @ mat: (Mp)' ®; S/Pr — (Mp\(;y)" ®i S/Pr( )

for je F. Here (v;)" is the k-dual of the multiplication map v;: Mp\;;y 3 y — X;y €
My and “nat” is the natural surjection S/Pr — S/Pp\;;;. Note that D(M) is a com-
plex of injective objects in Sq and it is minimal. Thus we have

dimy My if i = —|F),

i'(F,D(M)) =
a (M) {O otherwise.

For a complex M*® = {M' '} e Com®(Sq), we can also describe the complex
D(M*) in a similar way. In fact,

D'(M*)= @ D'(M))= D (M) ®(S/Pr),

i—j=t —|F|-j=t
and the differential is given by
D'(M*) = (M) ® (S/Pr)3x® y = dpy(x ® y) + (=1)'(6"(x) ® y) e D*(M*),

where 6 : (M1)" — (ML ") is the k-dual of &, ': ML ' — ML and dpuiy is the
—|F|™ differential of D(M7). The complex D(M*) is a complex of injective objects,
but it is not minimal in general.

PROPOSITION 3.5 (cf. [25, Proposition 3.8]). If M* e Com’(Sq), then
7(F,M*) = '(Pp, 2(M*)) = dim; [Exty "™/ (M*, wg))}.

Proor. Since D? = Idg,, it suffices to show z'(F,D(M*)) = dim;[HFI=/(M*)],..
To see this, we use [Lemma 2.6. The differential dp(y) induces the zero map on
[Homg(S/Pr,D(M?*))]p. Thus the complex [Homg(S/Pr, D(M?*))|, of k-vector spaces
is isomorphic to the complex (Mp)*[|F|]. So we are done. [

The next result was proved in [21, Theorem 2.6] for the module case.

COROLLARY 3.6. If M* e Com”(Sq), then
Bi(F, M*) = dimy[Exts ™" (A(M*), w5)] .
Proor. We have B,(F,M*) = i'(F¢, A(M*)) = dim;[HF=(D o A(M*))]pe. O

Let M be a squarefree module. Next we will describe the complex
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F (M) := Ao D(M) = AN (Hom* (M, »*))).

For each F < [n], (MF)° denotes a k-vector space with a bijection Y : Mp — (Mp)°.
We denote Y (y) € (MF)° by »°, and set deg()°) = 0. (The essential meaning of M7y is
the k-dual of Hom(Mp, (S/Pr)r).) Then

F'(M)= P (Mr)° ®;S(—F°)

|F|l=i
and the differential map is given by
Ay’ ®s) =Y (1)U (x)° ® x;s.
JEF
Since A4 is faithful and exact, we have the following.

COROLLARY 3.7 (cf. [24, Theorem 2.10)). For all ie Z and all M € Sq, we have
H(F(M)) = A(Exty (M, ws)). In particular, H'(F(M)) = 0 for all i # d if and only
if M is a Cohen-Macaulay module of dimension d or M = 0.

For a complex M*®={M' '} e Com’(Sq), we can also describe Z(M?*)=
Ao D(M*) in the following way:

F(M)= @O F'(M)= @ (Mp) & S(-F°),
i+j=t |F|+j=t

and the differential is given by

F'(M*) > (M})° @, S(=F°) 2 ° ® s = dy(u ()" @) + (=1)07()*) @ se 71 (M),
Here dz () is the |F|'™ differential of # (M7), and 6/ : (M£)° — (ML™")° is induced by
ol M — M /1. Note that #(M*) is a complex of projective objects, but not mini-
mal in general.

Let P* be a minimal projective resolution of M*® e Comb(Sq). Thus

<]

For an integer i, the i-linear strand P, is defined to be the complex such that

<z>_ @ S( F

|F|=i

is a direct summand of P/ and the differential P</l> — P{f;l is the corresponding com-
ponent of the differential P/ — P/*! of P* (so this map is represented by a matrix of
linear forms). The next result generalizes [24, Theorem 4.1].

Tueorem 3.8. If M*® e D*(Sq), the i-linear strand Pjy of M* is isomorphic to
F (Exts(A(M*), ws))[n — .

The following is immediate from [Corollary 3.7 and [Theorem 3.8.

COROLLARY 3.9 (Romer [21]). Let M be a squarefree module. Then M is com-
ponentwise linear (i.e., the i-linear strand Py is acyclic for any i) if and only if A(M)
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is sequentially Cohen-Macaulay (i.e., Bxti(A(M),ws) is a Cohen-Macaulay module of
dimension n — i for all i).

To prove [Theorem 3.8, we reconstruct Pj, using the spectral sequence Let O° be
a (not necessarily minimal) projective resolution of M*® e Com” (Sq). Consider the
m-adic filtration Q°® = FyQ°® > F1Q® > --- of Q°* with F;Q®* =m'Q®. Set gr, (M) :=
@izo m!M /m™*'M for an S-module M, and regard it as a module over gr, S =
Dynom'/m* = S Since Q' is a free S-module, Qf:=@D, . E! =D,.,m’Q'/
mPH Q! = gr, Q' is isomorphic to Q' (if we identify gr,, S with S). The maps d}*?:
EP? — EP'?' make Qf a cochain complex of free gr,,(S)-modules. Consider the
decomposition Q° = P* @ C*, where P* is minimal and C* is exact. If we identify Q]
with Q' = P' @ C', the differential dy of Qf is given by (0,dc). Hence we have
0l =@, E"" = P'. Themapsd’: El' = m’P'/m’T P! — EPTha — mptlprily
m? 2P make QF a cochain complex of free gr,,(S)(= S)-modules whose differential
is the “linear term” of the differential dp of P*. Thus, under the identification Q] =

the complex Q is isomorphic to P P

ieZ

PrOOF OF THEOREM 3.8. Since 4doDoDoAd=Idpis,), it suffices to prove the
i-linear strand of Ao D(M?®) is isomorphic to Z(H ""/(M*))[n—i]. Recall that
F(M*)=AoD(M*) is a complex of projective objects. Set Q°* =% (M*), and con-
sider the m-adic filtration F;Q® = m‘Q® of Q°. Under the above notation, the dif-
ferential d : Q) =~ F'(M*) — Qi =~ #""1(M*) is given by (—1)'5. Thus

Ol= @ H/(M*)p®;S(—F°)= D 7'(H/(M*)),
|F|+j=t I+j=t
and the differential of Qf is induced by that of #(M/). Hence we can easily check
that Q7 is isomorphic to (—Bje ;7 (H/(M*))[—j]. By the remark before this proof, the
i-linear strand of A o D(M*®) is isomorphic to Z (H ""(M*))[n — i]. ]

THEOREM 3.10. We have a natural equivalence DoAoDoAoDoA=~T* in
D’(Sq), where T is the translation functor (i.e., T*" : M* — M*[2n]).

ProOF. For M* = {M' 6’} e Com”(Sq), the complex Hom(Z (M*), wsn]) is iso-
morphic to Do Ao D(M*) in D’(Sq). We have

Homs<f<M°>,ws[n]>:Homs< D <M;;>°®ks<—F°>,ws)

—i—n=|F|+j

= @ (M) ®S(-F)

—i—n=|F|+j

= @ (M) ®S(-F).

i=—n—|F|+j

Here we simply denote the dual vector space of (M;”)° by (M,”)", since (M;/)° =~ M’
as k-vector spaces (only the degrees are dlfferent). Also here deg(M ) =0eZ".
The differential of Homg (% (M*),ws(n]) is given by
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(M) @ S(=F)2 y@s Y (=)0 () @ us + (=1)"10° (1) @ s,
leF

where v/ : (M;')" — (M;<{l})* is the k-dual of v : F\{l} sz xze M/, and 6" :
(M) — (M7 is the k-dual of 67" : M7 — M’
Similarly, # (A(M?*)) represents Ao Do A(M?®) in Db(Sq), and we have

FAM*) = D (4/(M)y)" @i S(—F°)

i=|F|+j
= @ (M) ®;S(-F°)
i=|F|+j
= @ (M) @rS(-F).
i=n—|F|+j

Also here, we simply denote (A(M7);)° = ((M1)")° by (M;l)". The differential of
the above complex is given by

(M7) @ S(-F)2y®@s— Y (-1 (7)) @ xis+ (=D 5" (y) @,

leF

For an integer /e Z, set f(I):=1 if [=1,2 (mod4), and p(/):=0 if /=3,0
(mod4). We also set a(A4, B) := #{(a,b)|a > b,ae A,b e B} for A, B < [n]. Then the
multiplication by (—1)*FFDTAEEIHEIT on (M 7Y ®) S(—F), which can be regarded
as a submodule of both Homgnf‘FHj(ﬁ(M‘),coS[n]) and Z"FIH(4(M*)), induces
quasi-isomorphism between Hom$(Z# (M*),ws[n]) and T* o F(A(M*)). So Do Ao
D=T"0AoDoA as a functor on D’(Sq). Since (AoDoAd)o(AoDoA) = Idps(sq)
we get the assertion. OJ

ExampLE 3.11. For F < [n], we have the following.

DoAdoDoAdoDoA(S(—F))=DoAoDoAoD(S/Pr:)
=DodoDoA((S/Pre)(—F°)[—|F| +n))
=DoAoD((S/Pr)(=F)[|F| —n])
=D o A((S/Pr)[n])

= D (S(=F°)[—n])
= S(—F)[2n].
4. Relation to Koszul duality.
Let S = k[xy,...,x,] be a polynomial ring as in the previous sections, and E :=

A S; =kei,..., e,y an exterior algebra. E is a Z"-graded ring with deg(e;) = (0, ...,
0,—1,0,...,0) = —deg(x;) where —1 is in the i" position. When we regard S and E as
Z-graded rings, we set deg(x;) = 1 and deg(e;) = —1 for all i. In this paper, E-modules
are left E-modules unless otherwise specified. For a Z”"-graded E-module M and
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acZ", M, means the degree a component of M, and M(a) is the shifted module with
M (a), = M,yp as in the polynomial ring case.

Denote the category of finitely generated Z-graded S-modules (resp. E-modules)
by modg (resp. modg). Although mods and mody are far from equivalent, a famous
theorem of Bernstein-Gel'fand-Gel’fand [4] states that D’(mods) =~ D’(modg) as tri-
angulated categories. First, we will see that this equivalence also holds in the Z"-
graded context. Denote the category of finitely generated Z"-graded S-modules (resp.
E-modules) by *mods (resp. “modg).

There are several papers concerning the Bernstein-Gel’fand-Gel’'fand correspon-
dence. But their conventions are not quite the same. In this paper, we basically follow
[10], which is well suited for our purpose. Here we give functors defining D”(*mody) =~
D’(*modg). For M e *modgs, we define Z(M) = Hom(E(—1), M) to be a Z"-graded
cochain complex of free E-modules as follows. (The original definition is Z(M) =
Homy (E, M), but we use this grading. We will also shift the grading of ¥ (N) defined
below.) We can define a Z"-graded left E-module structure on Homy(E(—1), M,)
by (af)(e) = f(ea). Then Homy(E(—1), M,) = E(—a)®* ™™ Set the cohomological
degree of Homy(E(—1), M,) to be |la|| := >, ;. The differential of (M) is defined
by

Homy (E(—-1), M,) > f — [e =) X f(el-e)] e P Homy(E(—1), Myys,),

ieln ien]

where ¢ € N" is the squarefree vector whose support is {i}. We also define the com-
plex 2(M*) = @), ., Homy(E(-1), M/) for a complex M* = {M/,6’} in “mods. The
cohomological degree i component of Z(M?*) is C—Di:jﬂ‘a” Homy (E(—1), MJ) and the
differential is given by

2'(M*) > Hom(E(—1), M]) 3 f = dyau(f) + (=1)'(67 o f) e 27 (M*),

where dy(y) 1s the |la||™ differential of 2(M7). We can apply # to a Z-graded
complex M* e Com”(mods) (in this case, we replace E(—1) by E(—n)). Then Z is
equivalent to the functor given in [4], [3], up to degree shifting. For M*®e
Com’(*mods), #(M*) has only finitely many non-vanishing cohomologies. And 2
induces a covariant functor from D’(*mods) to D?(*modg), which is also denoted by .

Next, we will define the functor % : Com’(*modz) — Com’(*mods). Set Z(N*®) =
P,.,S(—1) ®, N’ for a complex N* = {N’,5'} in “modz. The cohomological degree
of Z(N°*) is given by Z/(N*) =P S(—1) ®, NJ. And the differential is defined
by

i=j—|lall

LN )2 S(-1) @ Nj3s@y— Y xis@ey+ (=) (s®5/(y) e ZH(N*).
le[n]

If we apply & to Z-graded complexes, it is equivalent to the functor given in [4], [3],
up to degree shifting. If N* is bounded, so is #(N°®). And % induces a covariant
functor from D’(*modz) to D’(*modg), which is also denoted by .

In the Z-graded case, Bernstein-Gel'fand-Gel’fand [4] (see also [3], [10]) states that
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& : Com”(modz) — Com”(mods) is a left adjoint to % : Com”(mods) — Com”(modp),
that is, we have a natural isomorphism

¢ N Homcomb( )(g(N.>, M.) i) Homcomb( )(N., %(M‘))

mod g modg

for M* € Com’(modg) and N* € Com”(modz). Moreover, the map & o Z(M*) — M*
associated to the identity map Z(M*®) — #(M*) is a quasi-isomorphism. Similarly,
the map N* — Z o ¥ (N°*) associated to the identity map L (N°®) — Z(N*®) is a quasi-
isomorphism. Hence # and % define an equivalence D”(mods) =~ D”(modg).

We can regard a Z”"-graded module as a Z-graded module by M; = @HaH
In this sense, Com’ ( mods) and Com’(*modg) are (non -full) subcategorles of
Com’(mods) and Com’(modg) respectively. If M* e Com’(*mods) and N* e Com”
("modg), then the restriction of ¢ gives the isomorphism

Hom 0 moag) (ZL(N), M*) = Hom r - pyoq,) (N 5 Z(M*)).

mod g modg

Thus the quasi-isomorphisms & o Z(M*®) — M*® and N®* — #Zo ¥ (N°*) are Z"-graded.
Hence we have the following.

THEOREM 4.1 (BGG correspondence (Z"-graded version)). The functors # and ¥
define an equivalence of triangulated categories D”(*'modg) =~ D’ (*modg).

The functors # and % are closely related to D and A of the previous section. To
see this, we recall the definition of a squarefree module over E.

DEFINITION 4.2 (Romer [20]). A Z"-graded E-module N = P,
if N is finitely generated and N = @FC m N-r.

wezn Na 18 squarefree

For example, a monomial ideal of E is always squarefree. We denote the full
subcategory of *modg consisting of all the squarefree E-modules by Sq;. We have the
functors % : Sq; — Sq¢ and & : Sqg — Sqp giving an equivalence Sqq =~ Sq;. Here
S (N)p = N_p for N € Sqg, and the multiplication map S (N)r 3 y+— x;y € S(N)pyy
for i¢ F is given by S(N)p=N_p3z+— (—1)“(”F)e,~z € N_rugiy) = L (N)pygy-  See
[20] for further information.

We have D”(Sqs) = D, (‘mods) by [11, Exercises 111 2.2] (but use projective reso-
lutions instead of injective resolutions). So D?(Sqg) can be seen as a full subcategory
of D’(*mods). On the other hand, for N € *modg, set

=@ N, and N':== P N_,c=N'

acN" acN" and ais
not squarefree

Note that N’ and N” are E-modules, and A (N):= N’/N" is squarefree. If all co-
homologies of N* e Com”(*mody) are squarefree, then ./"(N*) and N* are isomorphic
in D”(‘modg). Hence we have Dg, (‘modg) = D’(Sqy).

Comparing ¥ and # = A o D defined in the last section, we have the following.

ProposITION 4.3. If N°® is a (bounded) complex of squarefree E-modules, then
FL(N°*)=8(—1)®,N* is a (bounded) complex of squarefree S-modules. Hence ¥
gives a functor from D®(Sqy) to D’(Sqg). Moreover, for M* e Com?(Sqy), we have
Lob(M*)=A0D(M*).
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On the other hand, (M) is not a complex of squarefree E-modules. In fact, a
free E-module E(—a) is not squarefree unless a = 0. But we have the following.

PropPoOSITION  4.4. If M*eD"(Sqs), then (M*)e D§, (‘modg) = D"(Sqp).
Moreover, we have a natural equivalence ¥ o R = Do A.

PrROOF. We have M* =~ AoDoDoA(M®*)=ZLo80oDoA(M*) in D’(Sqs) (and
in D’(*mods)) by [Proposition 4.3. From [Theorem 4.1, #(M®) =~ %o L o&oDo
A(M*) = EoDoA(M*) e D§, (‘modg). Since & o0& =1Idpis,,), we are done. ]

Let R = C—Bizo R; be an N-graded associative k-algebra such that dim; R; < oo for
all i and Ry = k™ for some me N as an algebra. Then r:= (—Bi>0 R; 1s the graded
Jacobson radical. We say R is Koszul, if a left R-module R/r admits a graded
projective resolution

--—>P_2—>P_1—>PO%R/r—>O

such that P~ is generated by its degree i component, that is, P~/ = RP." (we say such a
resolution is a linear resolution). If R is Koszul, it is a quadratic ring, and its quadratic
dual ring R' (see [3, Definition 2.8.1]) is Koszul again, and isomorphic to the opposite
ring of the Yoneda algebra E(R):= P, ,Exty(R/x, R/x).

Let gr.mod, be the category of finitely generated Z-graded left R-modules. If R
is a Koszul algebra with R, =0 for i > 0, and R' is left noetherian, we have functors

DF : D’(gr.modg) 3 N* — R' ®, N* € D’ (gr.mody)
and
DG : D’(gr.mody ) > M* — Homg, (R, M*) € D’(gr.mody)

giving the equivalence D”(gr.mody) =~ D”(gr.mody) called Koszul duality, see [3, The-
orem 2.12.6]. The exterior algebra E is a Koszul algebra with E' >~ S. Thus the
Bernstein-Gel’fand-Gel’fand correspondence is a classical example of Koszul duality.
Let A be the incidence algebra of 2"l over k. Then A has an N-grading with
deg(er,g) = |F\G|. Note that Ay = @D, ker =~ k*". For each ie Z, let gr.mod (i)
be the full subcategory of gr.mod, consisting of N € gr.mod, such that N; = (—D‘ Flitj Np
for all jeZ. The forgetful functor gives an equivalence gr.mod,(i) =~ mod, for all
ieZ, and D"(gr.mod,(i)) = D} 4 . (gr-mod,) is a full subcategory of D”(gr.mod,).
Since A/rA =~ @FCM kep as left A-modules, and each ker has a linear projective

resolution
= P Adeg— P Adeg — Aep — kep — 0
G>F G>F
|Gl=IF|+2 |Gl=|F|+1
(here we regard kep and Aeg as objects in gr.mod ,(|F|)), 4 is Koszul. To see this we
can use |Proposition 2.2 In fact, a minimal free resolution of a squarefree module
(S/Pr)(—F), which corresponds to kep, is given by the Koszul complex with respect to

{xi|i¢ F}.
LEMMA 4.5. The quadratic dual ring A' of A is isomorphic to A itself.
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One might think A' should be a “negatively graded ring”, since A' is generated by
Homy, (41, 4¢) as a Ai)-algebra. But we use the same convention as here, so we
regard A' as a positively graded ring with /1!1 = Homy, (A4, Ap).

ProoF. Let T :=T A1 =Ag@ A @ (A @y, A1) -+ = @izo/l?i be the tensor
ring of Ay = {epyg,r | F < [n],i ¢ F). (See [3, §2.7] for the linear algebra over a semi-
simple algebra Ay used here.) Then A =~ T/I, where

I = (epugi ), Fuiiy ® erugy,F — €rugi i}, Fuijy @ erugp,r | F < [n),i,j ¢ F)

is a two sided ideal. Let A} := Homy, (4, 4¢) be the dual of the left Ayp-module A;.
Then A has a right A¢-module structure such that (fa)(v) = (f(v))a, and a left A,-
module structure such that (af)(v) = f(va), where a € Ay, f € A{, ve A;. As a left (or
right) Ap-module, Ay is generated by {eg pyy |F < [n],i ¢ F}, where
€;7FU{,-} (eGu{j},G) = 0F, Géi,jeFu{i}«
Let T™ = T4,y be the tensor ring of Aj. Note that ef p,, ®eg gy, # 0 if and
only if FU{i} =G. We have that (4] ®,, 4]) is isomorphic to (4; ®,, 41)" =
Hom, (41 ®,4, A1, 49) via (f ®@¢g)(v®@w) =g(vf(w)), where f,ge A and v,we A4;.
In particular,
(ez*wuu} ® eI"U{i},FU{i,j})(é’FU{z‘,j},Fu{z’} ® eFu{i},F) = €ru{i,j}-
Easy computation shows that the quadratic dual ideal
I"=(fed;@A4;|f(v)=0 forallvehc A @A =T,)cT*
of I is equal to
(er. ruiiy @ eruy rugy + €r rugsy @ erugn oy | F < )6 j € F i # ).
The k-algebra homomorphism defined by

Ao 3 ep s epe € Ay(= Ag) and Ay 3 erufi},F (—1)°‘("’F)e(*FU{l.})c7Fc e A,

gives a graded isomorphism A ~ A'. ]

Since A(x~ A') is an artinian algebra, we have the functors DF and DG defining
D’(gr.mod ;) =~ D’(gr.mod ;). In the next result, we will denote the contravariant
functors from D?(mod,) to itself induced by D and A4 for D’(Sq) (under the equivalence
Sq =~ mod, of [Proposition 2.2) also by D and A4.

THEOREM 4.6. Let the notation be as above. If N*®e D”(gr.mod (0)), then we
have DF(N*) e D’(gr.mod  (n)) and DG(N°*)e D’(gr.mod,(—n)) under the isomor-
phism A' = A of Lemma 4.5. By the equivalence gr.mod (j) =~ mod,, DF and DG
give endofunctors of D”(mod,). Then DF ~ Ao D and DG = Do A as endofunctors of
Db(mOdA).

Proor. First, we recall the construction of DF : D?(gr.mod ) > N*® — A' ®y, N°*
e D*(gr.mod ) under the same notation as the proof of the previous lemma. Note
that Ay = Ay = @FCM ker. The component (DF)'(N*®) of cohomological degree ¢ is
@t:iﬂ./l! ®4, N/. For N egrmod,, a left A'-module 4' ®,, N = @Fc[n] A'ep ®) Np
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is generated by {er ® np|F < [n] and np € Np}. If N egr.mod,(0), the degree of
er ® np is deg(ep) — deg(np) = —|F|. For N* = {N' '} € Com’(gr.mod ), the differ-
ential of DF(N*®) is given by

(DF)'(N*) 3 er @ np — (—=1)" Y e}y ® (erugy,r - nr) + er @ (np),
1¢F

see [3, Theorem 2.12.1].

The graded isomorphism A = A" makes M egrmod ;, a graded left 4-module
(without changing the grading of M), and gives an equivalence gr.mod , =~ gr.mod .
From now on, we regard DF as an endofunctor of D?(gr.mod,) by the equivalence
gramod ; ~ gr.amod,. So we have DF(N) = (—BFCM Aepe ®; Np for N € grmod . If
N e gr.mod ,(0), then the degree of epc ® np € Aepe @ Np = DF(N) is —|F| = |F®| — n.
Thus DF(N) e gr.mod ,(n). For N*®e D’(gr.mod,(0)), the cohomological degree of
DF(N*) is given by (DF)'(N*)= @t:j+|F| Aepe ®; NJ, and the differential sends
ere @ np € (DF)'(N*®) to

S0 g e ® (erugy,r - 1F) + ere @ d(np).
I¢F

In Section 3, we study the endofunctor & = A4 o D on D?(Sq). Under the equiv-
alence Sq =~ mod, of [Proposition 2.2}, this functor induces an endofunctor of D”(mod,).
We also denote it by 4 o D. Then for N* € D’(mod,), the component (4 o D)'(N*) of

cohomological degree ¢ is ®t:j+|F\ Aepe ® N4, and an element epe ® np € depe @),
Nr < (Ao D) (N*) is sent to

Z(_l)m(l’F)ch.,(FU{l})c ® (eruqy,r - nr) + (—1)'ere ® 5(nr)

I¢F
by the differential. A quasi-isomorphism (DF)'(N*®) 3 x — (—1)? Dy e (Ao D) (N*®)
gives a natural equivalence DF ~ 4o D, where f(—) is the function defined in the
proof of [Theorem 3.10. The natural equivalence DG =~ Do A can be proved in a
similar way. ]

5. Local cohomology modules as holonomic D-modules.

In this section, we study a local cohomology module H }A(S). The following result
was essentially obtained by Mustatd [17] and Terai [23], and can be proved by the same
argument as the proof of [25, Theorem 2.11].

THEOREM 5.1 (cf. [17], [23], [25]). Let Iy, be the local cohomology functor with
supports in 1g. Then I, (w*)eD(Str) and % o D(S/1y) = I, (w®). In particular,
H] (S)(—1) = H| (ws) = Z(Exty(S/14, ws)).

See [16], for further results on minimal flat resolutions of I7,(w*).
In the rest of this section, we assume that char(k) =0. Let

A= An(k> =k<X1,...,xn,81,...,an>
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be the Weyl algebra acting on S, and let {F;},., with F; = (x%0”||a| + || < i) be the
Bernstein filtration of 4. Here |a| =Y ., |a;| for a = (ay,...,a,). Then the associated
graded ring grA4 := @izOE/Fi—l is isomorphic to the polynomial ring k[Xi,...,X,,
01,...,0,] of 2n variables. See, for example, [5].

In [25], the author pointed out that a straight S-module M has a holonomic A-
module structure. But if we consider the Z"-grading, the left A-module structure given
in [25] is somewhat unnatural. So we will give a more natural treatment here.

Let M be a left A-module. Set

(3) My = @ M,, where M,={yeM|(x;0;))y =a;y for all i}.

acZ"

Then M., is an A-submodule with x;M, < M., and 0;M, < M,_.,. In particular,
M,y is a Z"-graded S-module. For example, S, =S and the Z”"-grading given by
(3) coincides with the usual one. If a; # —1, the map M, > y — Xx;y € M, is bijec-
tive. In fact, its inverse is (1/(a; +1))0; : Myi,, — M,. 1If M is a finitely generated left
A-module, then dimy M, < o for all ae Z". (In fact, if V' < M, is a k-vector sub-
space and M’ := AV <= M is the submodule generated by V', then M'N M, = V by the
construction. Since M is a noetherian 4-module, M, is finite dimensional.) Hence
M, (—1) is a straight S-module in this case.
While M, =0 in many cases, we have the following.

PropoSITION 5.2. Let mody be the category of finitely generated left A-modules.
Then (=), (—1) : mod, — Str is a dense functor.

Proor. If f: M — N is an A-homomorphism, we have f(M,) < N, for all
acZ". So (—),(—1) gives a functor. Next we prove the density. Let M be a Z"-
graded S-module with M(—1) e Str. We will define d;y for y e M, as follows.

(¥) If @; #0, the map M, . 3z — x;z€ M, is bijective, hence there is a unique
element y’ e M, ., such that x;y' = y. Set d;y:=a;y’. If q;=0, we set d;y =0.

It is easy to check that (%) makes M a left 4-module with M = M. ]

In the situation of the proof of |Proposition 5.2, (*) is not a unique way to make
M an A-module. Consider the case n =1 (i.e., S =k[x]). Set M := A/Ax0. Then
M has a k-basis {1,x,x2,...,0,0%...}. So M = M and M(—1) = ws ® *E(k) as
S-modules. Since dMj # 0, the A-module structure of M is not given by (x).

We say a finitely generated left 4-module M is a straight A-module if M = M,y
and its A-module structure is given by (x). If M and N are straight 4-modules, then
an A-homomorphism f : M — N is nothing other than a Z"-graded S-homomorphism.
Thus the category Str, of straight A-modules is equivalent to Strg.

A local cohomology module H}(S) has a natural 4-module structure for any ideal
I (cf. [14]). In the monomial ideal case, we have the following.

ProrosiTiON 5.3.  Let 14 be a squarefree monomial ideal. Then H IlA (S) is a straight
A-module (i.e., the A-module structure is given by (x)).

ProOOF. Recall that H,"A(S) is the i™ cohomology of the Cech complex C* with
respect to monomial generators of /,. Each term of C* is a direct sum of copies of the
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localizations S, of S at {x¥ x*' ...}. Note that Syr(—1) = Z(S(—F°)) is a straight
S-module, and its A-module structure as a localization of S is give by (x). Thus C* is a
complex of straight A-modules. The natural 4-module structure of H; (S) =~ H'(C*) is
given in this way. So we are done. ]

Usually, the canonical module wg, which is a straight S-module, is regarded as a
right A-module using Lie differentials. So it seems that a straight S-module M itself
(not the shifted module M(1)) should be a right 4-module.

For a right A-module M, consider an A-submodule

(4) My = @ M,, where M,={yeM|y(x;0;) = —a;y for all i}.

acZ"
If M is finitely generated, M, is a straight S-module by the same argument as left A4-
modules. Conversely, any straight S-module can be a right 4-module with My, = M
as |Proposition 5.2 The right A-module wy satisfies ws = (ws),,,, and the Z"-grading
given by (4) coincides with the one given by wg =~ S(—1).

It is well-known that a left A-module M can be viewed as a right A-module, if we
set yx; = x;y and yod; = —0;y for ye M. When we regard M as a right A-module in
this way, we denote it by M. Then (M), = Mu(—1) as S-modules. So the degree
shifting by —1 also appears here. It is also noteworthy that, for a Z"-graded S-module
M, the shifted module M(—1) is straight if and only if so is the graded Matlis dual
*Homg (M, *E(k)). Related arguments for straight modules over a normal semigroup
ring are found in §6 of [27].

rat>

PropPOSITION 5.4. If M is a finitely generated left A-module, then M., is holonomic.

PrOOF. We may assume that M = M;,,. Consider the filtration Iy </} < ---
with I := ZMSZ.M,, of M. Then FiIj c [y for all i,j >0, where {F;} is the Bern-
stein filtration of 4. Hence gr M has a gr A-module structure. Moreover, gr M is a

Z"-graded grd = k[%|,...,%,,01,...,0,-module such that the degree of the image of
yeM, acZ", in grM is be Z*', where

a; if i<n and a; > 0,
bi=< —a;_, ifi>n and a;_, <0,
0 otherwise.

It is easy to see that gr M is a squarefree gr A-module, in particular, finitely generated.
If [grM], #0 for some I < [2n], then |I|<n. Thus dimg4(grM)<n (if M #0,
dimg, 4(gr M) = n), that is, M is holonomic. O

Let M be a finitely generated left A-module. Then M admits a good filtration
{I};=¢, that is, the associated graded module gr M := @), ,I;/Ii1 is a finitely gen-
erated gr A-module (cf. [5]). We denote the set of minimal associated primes of gr M as
a grA-module by SS(M). For Qe SS(M), we denote the multiplicity of the grA-
module gr M at Q by eg(M) (cf. [6, A.3]). It is known that SS(M) and ep(M) do not
depend on the particular choice of a good filtration of M.

For F < [n], we denote the monomial prime ideal (¥;|i¢ F)+ (9;|je F) of grd =
k[X1,...,%4,01,...,0,] by Qp. It is easy to see that Qr is an involutive ideal (i.e.,
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closed under the Poisson product, see [6, A.3]) of dimension n. Conversely, every
involutive monomial prime ideal of dimension 7 is of the form Qp for some F.

ProrosITION 5.5. Let M be a finitely generated left A-module. Then
SS(Mat) = {Or | Mp_1 # 0} and e, (Mry) = dimy Mp_;.
Here F represents the squarefree vector whose support is F < [n].
We need the following lemma.

LeEMMA 5.6. Let M be a finitely generated left A-module with M = M. If M is
not a straight A-module, then M is not simple as an A-module.

Proor. Since M is not straight, there are some a€ Z", i€ [n|, and y € M, such
that ¢; =0 and 0;y #0. Let N := A(0;y) be the submodule of M. Since x;(0;y) =
a;y =0, we have y¢ N. Hence N # 0, M. ]

PrROOF OF PrOPOSITION 5.5. We may assume that M = M,,.. Note that the sub-
module N constructed in the proof of satisfies N = Ny (More generally, if
M = My, any submodule M’ of M satisfies M’ = (M’),,,.) By[Lemma 5.6, we have a
filtration 0 = My = My < --- = M; = M such that M; = (M,),,, and M;/M;_ is straight
for each i. Recall that Stry =~ Strg =~ Sqq and a simple object in Sq is isomorphic to
(S/Prp)(—F) for some F c [n]. So we may assume that M;/M; | = Z(S/Pr(—F))(1)
=: L[F]. Take the filtration I" of L[F]| given in the proof of [Proposition 5.4 Then we
have gr(L[F]) = (gr4)/Qr. Hence SS(L[F]) ={Qr} and eg,(L[F]) =1. On the other
hand, we have dimy L[F], _; =0F p for all F' < [n]. Since ep,(—) is additive, we are
done. ]

The characteristic cycle of Hj (S) as an A-module (ie., eg,(H] (S)) for Qr €
SS(H| (S))) was studied in [I], but we will give another approach here. The next
corollary shows that Hochster’s formula ([22, Theorem I1.4.1]) on the Hilbert function of
H! (S/1,) is also a formula on the characteristic cycle of H /A (S).

COROLLARY 5.7. Let I, be the Stanley-Reisner ideal of a simplicial complex
Ac 2. For all F < [n] and all i >0, we have

eg, (H},(S)) = dimy H, i r11 (ks F; k),
where IkyF ={G < [n]|GNF = and FUG € 4}.

PrOOF. By Propositions 5.3 and 5.3, we have eq, (Hj (S)) = dim[H] (ws)],. But
dimy[H] (ws)]p = dimg H,_ i1 11 (Iks F3 k) by Terai’s formula ([23]). O

REMARK 5.8. The relation between Hochster’s formula and Terai’s formula is ex-
plained by the isomorphisms A" (H] (ws)) = Exty(S/Ls,ws) = H'(S/14)", where (—)"
means the graded Matlis dual.
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