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Abstract. A squarefree module over a polynomial ring S ¼ k½x1; . . . ; xn� is a gen-

eralization of a Stanley-Reisner ring, and allows us to apply homological methods to the

study of monomial ideals more systematically.

The category Sq of squarefree modules is equivalent to the category of finitely gen-

erated left L-modules, where L is the incidence algebra of the Boolean lattice 2f1;...; ng.

The derived category DbðSqÞ has two duality functors D and A. The functor D is a

common one with H iðDðM �ÞÞ ¼ Extnþi
S ðM �;oSÞ, while the Alexander duality functor A is

rather combinatorial. We have a strange relation D � A �D � A �D � AGT
2n, where T

is the translation functor. The functors A �D and D � A give a non-trivial autoequi-

valence of DbðSqÞ. This equivalence corresponds to the Koszul duality for L, which is a

Koszul algebra with L
!
GL. Our D and A are also related to the Bernstein-Gel’fand-

Gel’fand correspondence.

The local cohomology H i
ID
ðSÞ at a Stanley-Reisner ideal ID can be constructed from

the squarefree module Ext iSðS=ID;oSÞ. We see that Hochster’s formula on the Z
n-graded

Hilbert function of H i
m
ðS=IDÞ is also a formula on the characteristic cycle of H n�i

ID
ðSÞ as a

module over the Weyl algebra A ¼ khx1; . . . ; xn; q1; . . . ; qni (if charðkÞ ¼ 0).

1. Introduction.

The Stanley-Reisner ring of an abstract simplicial complex DH 2f1;...;ng, which is

the quotient of a polynomial ring S ¼ k½x1; . . . ; xn� by the squarefree monomial ideal

ID, is a central concept of combinatorial commutative algebra (see [7], [22]). In [24],

the author defined a squarefree N
n-graded S-module. A Stanley-Reisner ring S=ID, its

syzygy module SyziðS=IDÞ, the canonical module oS, and Ext iSðS=ID;oSÞ are always

squarefree. Using this notion, we can treat Stanley-Reisner rings and related objects

in a categorical way, see [9], [15], [18], [20], [21], [25], [26], [27]. In the present paper,

we will study the derived category of squarefree modules.

Let SqS (or simply Sq) be the category of squarefree S-modules and their degree

preserving maps. Then Sq is equivalent to the category of finitely generated left L-

modules, where L is the incidence algebra of the Boolean lattice 2f1;...;ng.

Let DbðSqÞ be the derived category of bounded complexes in Sq. We have

contravariant functors D and A from DbðSqÞ to itself satisfying D
2
GA

2
G IdD bðSqÞ.

If M is a squarefree module, so is Ext iSðM;oSÞ. Moreover, for M � A DbðSqÞ, we

can define DðM �Þ A DbðSqÞ with H iðDðM �ÞÞ ¼ Extnþi
S ðM �;oSÞ in a natural way, see
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Proposition 3.2. On the other hand, extending an idea of Eagon-Reiner [8], Miller [15]

and Römer [20] constructed the Alexander duality functor A on Sq. Since A is exact,

we can regard it as a duality functor on DbðSqÞ.

Using DbðSqÞ, we can get simple and systematic proofs of many results in [15], [20],

[21], [24], [25]. Moreover, we prove a strange natural equivalence

D � A �D � A �D � AGT
2n
;

where T is the translation functor on DbðSqÞ.

Let E ¼ 5S �
1 be the exterior algebra. A squarefree module over E, which was

defined by Römer [20], is also a natural concept. The category SqE of squarefree

E-modules is equivalent to SqS in a natural way. A famous theorem of Bernstein-

Gel’fand-Gel’fand [4] states that the bounded derived category of finitely generated Z-

graded S-modules is equivalent to the bounded derived category of finitely generated

Z-graded left E-modules. The functors defining this equivalence preserve the square-

freeness, and coincide with A �D and D � A in the squarefree case under the equiv-

alence SqS GSqE . We have another relation to Koszul duality. The incidence algebra

L of 2f1;...;ng is a Koszul algebra whose quadratic dual L! is isomorphic to L itself. The

functors A �D and D � A give a non-trivial autoequivalence of DbðSqÞ. This equiv-

alence corresponds to the Koszul duality DbðmodLÞGDbðmod
L

!Þ.

In the last section, under the assumption that charðkÞ ¼ 0, we study modules over

the Weyl algebra khx1; . . . ; xn; q1; . . . ; qni associated to squarefree modules (e.g., the

local cohomology module H i
ID
ðSÞ). Especially, we give the formula for their charac-

teristic cycles.

After I received the referee’s report for the first version, I widely revised the paper.

Among other things, Proposition 4.6 is a new result of the second version which was

submitted in September 2001. The present version is the fourth one, in which some

proofs and expositions are revised.

2. Preliminaries.

Let S ¼ k½x1; . . . ; xn� be a polynomial ring over a field k. Consider an N
n-grading

S ¼ 0
a AN n Sa ¼ 0

a AN n kxa, where xa ¼
Qn

i¼1 x
ai
i is the monomial with the exponent

a ¼ ða1; . . . ; anÞ. We denote the graded maximal ideal ðx1; . . . ; xnÞ by m. For a Z
n-

graded module M and a A Z
n, Ma means the degree a component of M, and MðaÞ

denotes the shifted module with MðaÞ
b
¼ Maþb. We denote the category of S-modules

by Mod, and the category of Z
n-graded S-modules by �Mod. Here a morphism f in

�Mod is an S-homomorphism f : M ! N with f ðMaÞHNa for all a A Z
n. See [12] for

information on �Mod.

For M;N A �Mod and a A Z
n, set �HomSðM;NÞ

a
:¼ Hom �ModðM;NðaÞÞ. Then

�HomSðM;NÞ :¼ 0
a AZ n

�HomSðM;NÞ
a

has a natural Z
n-graded S-module structure. If M is finitely generated, then

�HomSðM;NÞ is isomorphic to the usual HomSðM;NÞ as the underlying S-module.

Thus, we simply denote �HomSðM;NÞ by HomSðM;NÞ in this case. In the same sit-

uation, Ext iSðM;NÞ also has a Z
n-grading with Ext iSðM;NÞ

a
¼ Ext i�ModðM;NðaÞÞ.
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For a A Z
n, set suppþðaÞ :¼ fi j ai > 0gH ½n� :¼ f1; . . . ; ng. We say a A Z

n is

squarefree if ai ¼ 0; 1 for all i A ½n�. When a A Z
n is squarefree, we sometimes identify

a with suppþðaÞ. Let DH 2½n� be a simplicial complex (i.e., D0q, and F A D and

GHF imply G A D). The Stanley-Reisner ideal of D is the squarefree monomial ideal

ID :¼ ðxF jF B DÞ of S. Any squarefree monomial ideal is the Stanley-Reisner ideal ID
for some D. We say S=ID is the Stanley-Reisner ring of D.

Definition 2.1 ([24]). We say a Z
n-graded S-module M is squarefree, if the

following conditions are satisfied.

(a) M is N
n-graded (i.e., Ma ¼ 0 if a B N

n), and dimk Ma < y for all a A N
n.

(b) The multiplication map Ma C y 7! xby A Maþb is bijective for all a; b A N
n with

suppþðaþ bÞ ¼ suppþðaÞ.

A squarefree module M is generated by its squarefree part 6
FH½n�MF . Thus it

is finitely generated. For a simplicial complex DH 2½n�, ID and S=ID are squarefree

modules. A free module Sð�F Þ, F H ½n�, is also squarefree. In particular, the Z
n-

graded canonical module oS ¼ Sð�1Þ of S is squarefree, where 1 ¼ ð1; . . . ; 1Þ.

Denote by SqS (or simply Sq) the full subcategory of �Mod consisting of all the

squarefree modules. In �Mod;Sq is closed under kernels, cokernels and extensions ([24,

Lemma 2.3]). For the study of Sq, the incidence algebra of a finite partially ordered set

( poset, for short) is very useful, as shown in [18], [27]. In Section 4 of the present

paper, we will use further properties of the incidence algebra (of a Boolean lattice). So

we now recall basic properties of an incidence algebra for the reader’s convenience. See

[2, §III. 1] for undefined terminology.

Let P be a finite poset. The incidence algebra L ¼ IðP; kÞ of P over k is the

k-vector space with a basis fex;y j x; y A P with xb yg. The k-bilinear multiplication

defined by ex;yez;w ¼ dy; zex;w makes L a finite dimensional associative k-algebra. (The

usual definition is the opposite ring of our L. But we use the above definition for the

convenience in a later section.) Set ex :¼ ex;x. Then 1 ¼
P

x AP ex and exey ¼ dx;yex.

We have LG0
x AP

Lex as a left L-module, and each Lex is indecomposable.

An incidence algebra L is the algebra associated with a quiver with relations. For a

poset P, we consider the quiver G ¼ fG0;G1g with G0 ¼ P and

G1 ¼ fx�  �y j x; y A P; x > y; but there is no z A P with x > z > yg:

So G is (essentially) the Hasse diagram of P. Set

r :¼ fp1 � p2 j p1 and p2 are paths of G with sð p1Þ ¼ sðp2Þ and eð p1Þ ¼ eðp2Þg;

where sðpiÞ and eðpiÞ represent the initial vertex and the final vertex of pi respectively.

Let kðG; rÞ be the algebra associated with ðG ; rÞ. Then we have an isomorphism

c : kðG ; rÞ !
G

L. Here, if ½ p� is the residue class containing a path p of G , we have

cð½ p�Þ ¼ ex;y, where x ¼ eðpÞ and y ¼ sðpÞ.

Denote the category of finitely generated left L-modules by modL. If N A modL,

we have N ¼0
x AP

Nx as a k-vector space, where Nx :¼ exN. Note that ex;yNy HNx

and ex;yNz ¼ 0 for y0 z. If f : N ! N 0 is a morphism in modL, then f ðNxÞHN 0x.

Under the isomorphism LG kðG; rÞ, modL is equivalent to the category RepðG ; rÞ of

representations of ðG ; rÞ by [2, III, Proposition 1.7]. If ðV ; f Þ A RepðG ; rÞ corresponds
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to N A modL, then Nx ¼ VðxÞ for x A P. We have explicit descriptions of simple

objects, indecomposable projectives, and indecomposable injectives in modL GRepðG ; rÞ,

see [2, §III. 1].

Let 2½n� be the Boolean lattice (i.e., we regard the power set 2½n� of ½n� as a poset

by inclusions), and L ¼ Ið2½n�; kÞ its incidence algebra. For M A Sq, set FðMÞ :¼ N ¼

0
FH½n� NF to be a k-vector space with MF GNF . Then N has a left L-module

structure such that the multiplication map NF C y 7! eG;F y A NG for GIF is induced

by MF C y 7! xðGnFÞy A MG. It is easy to see that F gives a covariant functor

Sq ! modL. Recall that LG kðG; rÞ, where G is a quiver whose set of vertices is 2½n�,

and modL GRepðG ; rÞ. If M is a squarefree module, FðMÞ corresponds to the rep-

resentation ðV ; f Þ A RepðG ; rÞ with VðF Þ ¼ MF and fFUfig;F : VðF Þ ¼ MF C y 7! xi y A

MFUfig ¼ VðF U figÞ for F H ½n� and i A ½n�nF . In [26], the author used sheaves on

a poset to understand squarefree modules. But this notion is equivalent to that of

representations of ðG ; rÞ in our context.

Proposition 2.2 ([26], [27]). Let L ¼ Ið2½n�; kÞ be the incidence algebra. The

functor F constructed above gives an equivalence SqGmodL.

For a subset F H ½n�, PF denotes the monomial prime ideal ðxi j i B FÞ of S. The

next result follows from Proposition 2.2 and [2, §III. 1].

Corollary 2.3 ([25]). Sq is an abelian category, and has enough projectives and

injectives. An indecomposable projective (resp. injective) object in Sq is isomorphic to

Sð�FÞ (resp. S=PF ) for some F H ½n�. For any squarefree module M, both proj: dimSq M

and inj: dimSq M are at most n.

Many invariants of squarefree modules are naturally described in terms of L. For

example, if M is a squarefree module with N :¼ FðMÞ, dimS M ¼ maxfjF j jNF 0 0g ¼

n�minfi jExt iLðN;LÞ0 0g and proj: dimS M ¼ proj: dimL N ¼ maxfi jExt iLðN;LÞ0 0g.

See Remark 3.3 below for information on Ext iLðN;LÞ.

We also remark that Sq admits the Jordan-Hölder theorem and the Krull-Schmidt

theorem and a simple object in Sq (i.e., a non-zero squarefree module without non-trivial

squarefree submodule) is isomorphic to ðS=PF Þð�FÞ for some F .

Definition 2.4 ([25]). A Z
n-graded S-module M ¼ 0

a AZ n Ma is called straight,

if the following two conditions are satisfied.

(a) dimk Ma < y for all a A Z
n.

(b) The multiplication map Ma C y 7! xby A Maþb is bijective for all a A Z
n and

b A N
n with suppþðaþ bÞ ¼ suppþðaÞ.

For a Z
n-graded S-module M ¼ 0

a AZ n Ma, we call the submodule 0
a AN n Ma the

N
n-graded part of M, and denote it by NðMÞ. If M is straight then NðMÞ is

squarefree. Conversely, for any squarefree module N, there is a unique (up to isomor-

phism) straight module ZðNÞ whose N
n-graded part is isomorphic to N. For exam-

ple, ZðS=PF ÞG �EðS=PF Þ, where
�EðS=PF Þ is the injective envelope of S=PF in �Mod.

Denote by StrS (or simply Str) the full subcategory of �Mod consisting of all the straight

S-modules.
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Proposition 2.5 ([25, Proposition 2.7]). The functors N : Str ! Sq and Z :

Sq ! Str give an equivalence SqGStr.

Let CombðSqÞ be the category of bounded cochain complexes of squarefree mod-

ules, and DbðSqÞ the bounded derived category of Sq. A squarefree module M can be

regarded as a complex � � � ! 0 ! M ! 0 ! � � � with M at the 0 th place. For a com-

plex M � and an integer p, let M �½ p� be the p th translation of M �. That is, M �½ p� is a

complex with M i½ p� ¼ M iþp and dM½ p� ¼ ð�1Þ pdM .

A complex M � A CombðSqÞ has a projective resolution P� A CombðSqÞ. That is,

there is a quasi-isomorphism P� ! M � and each P i is projective in Sq. We say P� is

minimal if dPðP
i�1ÞHmP i for all i. A minimal projective resolution of M � A CombðSqÞ

in Sq is a Z
n-graded minimal S-free resolution of M �. Under the same notation as

Proposition 2.2, a projective resolution P� A CombðSqÞ is minimal if and only if so is

Q�
:¼ FðP�Þ A CombðmodLÞ, that is, dQðQ

i�1ÞH rQ i for all i. Here r ¼ heF ;G jF XGi

is the Jacobson radical of L. Hence every M � A CombðSqÞ has a unique minimal pro-

jective resolution, and any projective resolution is a direct sum of a minimal one and

an exact complex. Let P� be a minimal projective resolution of M � A CombðSqÞ. We

define biðF ;M
�Þ A N so that

P�i G 0
FH½n�

Sð�F ÞbiðF ;M
�Þ:

Similarly, every M � A CombðSqÞ has an injective resolution I � A CombðSqÞ. That

is, there is a quasi-isomorphism M � ! I � and each I i is injective in Sq. We say I � is

minimal if I i is a *essential extension of kerðd i
I Þ for all i (i.e., LV kerðd i

I Þ0 f0g for any

non-zero Z
n-graded submodule L of I i). As projective resolutions, I � is minimal if

and only if so is J �
:¼ FðI �Þ (i.e., each J i is an essential extension of kerðd i

JÞ). Thus

every M � A CombðSqÞ has a unique minimal injective resolution, and any injective re-

solution is a direct sum of a minimal one and an exact complex. For M � A CombðSqÞ

and F H ½n�, we define natural numbers m iðF ;M �Þ so that

I i G 0
FH½n�

ðS=PF Þ
m iðF ;M �Þ;

where I � A CombðSqÞ is a minimal injective resolution of M �. If I � A CombðSqÞ is a

(minimal) injective resolution of M � A CombðSqÞ, then ZðI �Þ is a (minimal) injective

resolution of ZðM �Þ in �Mod. Hence

m iðF ;M �Þ ¼ m iðPF ;ZðM �ÞÞ;

where m ið�Þ is the usual Bass number of a complex (cf. [19]).

Note that biðF ;�Þ and m iðF ;�Þ are invariants of isomorphic classes in DbðSqÞ.

For M � and N �, we define a complex Hom�
SðM

�;N �Þ by Hom i
SðM

�;N �Þ ¼
Q

j AZ HomSðM
j;N iþjÞ and the di¤erential d ið f Þ ¼ ðð�1Þ ifjþ1d

j
M þ d

iþj
N fjÞj AZ for f ¼

ð fjÞj AZ A Hom i
SðM

�;N �Þ. Note that if M �;N � A Combð�ModÞ and each M i is finitely

generated then Hom�
SðM

�;N �Þ A Combð�ModÞ.
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Lemma 2.6. Let I � be a (not necessarily minimal ) injective resolution of M � A

CombðSqÞ. For F H ½n�, we have

m iðF ;M �Þ ¼ dimk½H
iðHom�

SðS=PF ; I
�ÞÞ�F :

Proof. If E � A CombðSqÞ is an exact complex consisting of injective objects, then

E � splits and Hom�
SðS=PF ;E

�Þ is clearly exact. So we may assume that I � is minimal.

Note that HomSðS=PF ;S=PGÞ is isomorphic to S=PG if F IG, and 0 otherwise. Hence

we have ½Hom i
SðS=PF ; I

�Þ�F ¼ km iðF ;M �Þ and the di¤erentials of ½Hom�
SðS=PF ; I

�Þ�F are

0. So we are done. r

3. Functors on the derived category of squarefree modules.

Let L be the incidence algebra of 2½n�. If N A modL, then HomkðN; kÞ has a right

L-module (i.e., a left Lop-module) structure such that ð f lÞðaÞ ¼ f ðlaÞ for l A L and

a A N, see [2, §II. 3]. But the opposite ring Lop of L is isomorphic to L itself by

Lop C eF ;G 7! eG c;F c A L, where F c
:¼ ½n�nF . Thus Homkð�; kÞ gives a contravariant

functor from modL to itself. By the equivalence SqGmodL of Proposition 2.2, we have

an exact contravariant functor from Sq to itself. We call this functor the Alexander

duality functor, and denote it by A. We have A � AG IdSq, see [2, II, Theorem 3.3].

The functor A was defined independently by Miller [15] and Römer [20] extending

an idea of Eagon-Reiner [8]. But their constructions of A are di¤erent from the above

one. Römer’s definition is similar to ours, but it uses squarefree modules over an

exterior algebra. Miller’s definition uses straight modules and the Matlis duality. In

fact, we have AðMÞGNð�HomSðZðMÞ; �EðkÞÞð�1ÞÞ.

It is easy to see that AðMÞF is the k-dual of MF c , and the multiplication AðMÞF C

y 7! xi y A AðMÞFUfig for i B F is the k-dual of MF cnfig C y 7! xi y A MF c . For exam-

ple, AðSð�F ÞÞ ¼ S=PF c and AðS=IDÞ ¼ ID � , where D�
:¼ fF H ½n� jF c B Dg is (Eagon-

Reiner’s) Alexander dual complex ([8]) of D.

A complex I � A CombðSqÞ is a (minimal) injective resolution of M � if and only if

the Alexander dual AðI �Þ is a (minimal) projective resolution of AðM �Þ. Hence we

have m iðF ;M �Þ ¼ biðF
c;AðM �ÞÞ.

The following is a key lemma of this section.

Lemma 3.1 ([25, Lemma 3.20]). For a squarefree module M and a subset F H ½n�,

NðHomSðM; �EðS=PF ÞÞÞ is isomorphic to ðMF Þ
�
nk ðS=PF Þ. Here ðMF Þ

�
is the dual

k-vector space of MF , but we set the degree of ðMF Þ
�
to be 0 (since it is essentially

HomkðMF ; ½S=PF �F Þ). In particular, NðHomSðM; �EðS=PF ÞÞÞ is squarefree.

Let o� be a minimal injective resolution of oS½n� in
�Mod (according to the usual

convention on dualizing complexes, we use oS½n� instead of oS itself ). The complex o�

is of the form

o�
: 0 ! o�n ! o�nþ1 ! � � � ! o0 ! 0;ð1Þ

o i ¼ 0
FH½n�
jF j¼�i

�EðS=PF Þ;

and the di¤erential is composed of ð�1Það j;FÞ � nat : �EðS=PF Þ !
�EðS=PF nf jgÞ for j A F ,
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where nat : �EðS=PF Þ !
�EðS=PF nf jgÞ is induced by the natural surjection S=PF !

S=PF nf jg, and að j;F Þ :¼ #fi A F j i < jg. See [7, §5.7].

Proposition 3.2. Let M � A CombðSqÞ, and P� A CombðSqÞ its projective resolution.

Then NðHom�
SðM

�;o�ÞÞ;NðHom�
SðP

�;o�ÞÞ and Hom�
SðP

�;oS½n�Þ belong to CombðSqÞ,

and are isomorphic in DbðSqÞ.

Proof. By Lemma 3.1, NðHom�
SðM

�;o�ÞÞ and NðHom�
SðP

�;o�ÞÞ are in

CombðSqÞ. Since HomSðSð�FÞ;oSÞGSð�F cÞ, Hom�
SðP

�;oS½n�Þ also belongs to

CombðSqÞ. Applying [11, Exercise III 5.1] to �Mod, we have Z
n-graded quasi-

isomorphisms Hom�
SðM

�;o�Þ ! Hom�
SðP

�;o�Þ and Hom�
SðP

�;oS½n�Þ ! Hom�
SðP

�;o�Þ.

Hence we have quasi-isomorphisms

NðHom�
SðM

�;o�ÞÞ ! NðHom�
SðP

�;o�ÞÞ

and

Hom�
SðP

�;oS½n�Þ ¼ NðHom�
SðP

�;oS½n�ÞÞ ! NðHom�
SðP

�;o�ÞÞ: r

It is easy to see that D : M � 7! NðHom�
SðM

�;o�ÞÞ defines a contravariant func-

tor from DbðSqÞ to itself. If P� is a projective resolution of M �;Hom�
SðP

�;oS½n�Þ and

NðHom�
SðP

�;o�ÞÞ are isomorphic to DðM �Þ in DbðSqÞ by Proposition 3.2. Hence

H iðDðM �ÞÞ ¼ Extnþi
S ðM �;oSÞ and D �DG IdD bðSqÞ.

Remark 3.3. Let L be the incidence algebra of 2½n�. For N A modL, the right L-

module HomLðN;LÞ can be seen as a left L-module by the isomorphism Lop
GL given

in the beginning of this section. Similarly, Ext iLðN;LÞ A modL. Let F : Sq ! modL be

the functor of Proposition 2.2, and let PSq (resp. PL) be the full subcategory of Sq (resp.

modL) consisting of projective objects. Then the homotopic categories K bðPSqÞ and

K bðPLÞ are equivalent to DbðSqÞ and DbðmodLÞ respectively. Both Hom�
LðFð�Þ;LÞ

and F �Hom�
Sð�;oSÞ define functors from K bðSqÞðGDbðSqÞÞ to K bðPLÞðGD

bðmodLÞÞ

and the isomorphisms

HomLðFðSð�F ÞÞ;LÞGHomLðLeF ;LÞGLeF c GFðHomSðSð�F Þ;oSÞÞ

give a natural equivalence Hom�
LðFð�Þ;LÞGF �Hom�

Sð�;oSÞ. Hence if M is a

squarefree module, then Ext iLðFðMÞ;LÞGFðExt iSðM;oSÞÞ. Moreover D corresponds

to the right derived functor RHom�
Lð�;LÞ up to translation.

For N A modL, we have HomkðN; kÞGHomLðN;EÞ as left Lop ðGLÞ-modules,

where E is the injective envelope of L=r as a left L-module, see [2, §II. 3]. So A is a

representable functor too.

Let I � be a minimal injective resolution of M � A Combð�ModÞ in �Mod. For

a A Z
n and i A N , let m iðm;M �Þ

a
be the number of copies of �EðS=mÞðaÞ which appear

in the Krull-Schmidt decomposition of I i.

Proposition 3.4. If M � A DbðSqÞ, then m iðm;M �Þ
a
0 0 implies a is squarefree.

Moreover m iðm;M �ÞF ¼ biðF ; DðM �ÞÞ for all F H ½n�.

Proof. Since HomSðSð�aÞ; �EðkÞÞ ¼ �EðkÞðaÞ, the argument of [19, Theorem 3.6]

also works here. r
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For a squarefree module M, we can describe DðMÞ ¼ NðHom�ðM;o�ÞÞ explicitly.

By Lemma 3.1, we have

DðMÞ : 0 ! D
�nðMÞ ! D

�nþ1ðMÞ ! � � � ! D
0ðMÞ ! 0;ð2Þ

D
iðMÞ ¼ 0

FH½n�
jF j¼�i

ðMF Þ
�
nk ðS=PF Þ:

As in the lemma, the degree of ðMF Þ
� is 0 A Z

n. The di¤erential is composed of the

maps

ð�1Það j;FÞ � ðvjÞ
�
nk nat : ðMF Þ

�
nk S=PF ! ðMF nf jgÞ

�
nk S=PF nf jg

for j A F . Here ðvjÞ
� is the k-dual of the multiplication map vj : MF nf jg C y 7! xj y A

MF and ‘‘nat’’ is the natural surjection S=PF ! S=PF nf jg. Note that DðMÞ is a com-

plex of injective objects in Sq and it is minimal. Thus we have

m iðF ;DðMÞÞ ¼
dimk MF if i ¼ �jF j;

0 otherwise.

�

For a complex M � ¼ fM i; d ig A CombðSqÞ, we can also describe the complex

DðM �Þ in a similar way. In fact,

D
tðM �Þ ¼ 0

i�j¼t

D
iðM jÞ ¼ 0

�jF j� j¼t

ðM j
F Þ

�
nk ðS=PF Þ;

and the di¤erential is given by

D
tðM �ÞI ðM j

F Þ
�
nk ðS=PF Þ C xn y 7! dDðM jÞðxn yÞ þ ð�1Þ tðd�ðxÞn yÞ A D

tþ1ðM �Þ;

where d� : ðM j
F Þ

� ! ðM j�1
F Þ� is the k-dual of d

j�1
F : M

j�1
F ! M

j
F , and dDðM jÞ is the

�jF j th di¤erential of DðM jÞ. The complex DðM �Þ is a complex of injective objects,

but it is not minimal in general.

Proposition 3.5 (cf. [25, Proposition 3.8]). If M � A CombðSqÞ, then

m iðF ;M �Þ ¼ m iðPF ;ZðM �ÞÞ ¼ dimk½Ext
n�jF j�i
S ðM �;oSÞ�F :

Proof. Since D
2 G IdSq, it su‰ces to show m iðF ;DðM �ÞÞ ¼ dimk½H

�jF j�iðM �Þ�F .

To see this, we use Lemma 2.6. The di¤erential dDðM jÞ induces the zero map on

½Hom�
SðS=PF ;DðM �ÞÞ�F . Thus the complex ½Hom�

SðS=PF ;DðM �ÞÞ�F of k-vector spaces

is isomorphic to the complex ðM �
F Þ

�½jF j�. So we are done. r

The next result was proved in [21, Theorem 2.6] for the module case.

Corollary 3.6. If M � A CombðSqÞ, then

biðF ;M
�Þ ¼ dimk½Ext

jF j�i
S ðAðM �Þ;oSÞ�F c :

Proof. We have biðF ;M
�Þ ¼ m iðF c;AðM �ÞÞ ¼ dimk½H

�jF cj�iðD � AðM �ÞÞ�F c . r

Let M be a squarefree module. Next we will describe the complex
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FðMÞ :¼ A �DðMÞ ¼ AðNðHom�ðM;o�ÞÞÞ:

For each F H ½n�, ðMF Þ
� denotes a k-vector space with a bijection cF : MF ! ðMF Þ

�.

We denote cF ðyÞ A ðMF Þ
� by y�, and set degðy�Þ ¼ 0. (The essential meaning of M�

F is

the k-dual of HomkðMF ; ðS=PF ÞF Þ.) Then

F
iðMÞ ¼ 0

jF j¼i

ðMF Þ
�
nk Sð�F cÞ

and the di¤erential map is given by

dðy� n sÞ ¼
X

j BF

ð�1Það j;FÞðxj yÞ
�
n xjs:

Since A is faithful and exact, we have the following.

Corollary 3.7 (cf. [24, Theorem 2.10]). For all i A Z and all M A Sq, we have

H iðFðMÞÞ ¼ AðExtn�i
S ðM;oSÞÞ. In particular, H iðFðMÞÞ ¼ 0 for all i0 d if and only

if M is a Cohen-Macaulay module of dimension d or M ¼ 0.

For a complex M � ¼ fM i; d ig A CombðSqÞ, we can also describe FðM �Þ ¼

A �DðM �Þ in the following way:

F
tðM �Þ ¼ 0

iþj¼t

F
iðM jÞ ¼ 0

jF jþj¼t

ðM j
F Þ

�
nk Sð�F cÞ;

and the di¤erential is given by

F
tðM �ÞI ðM j

F Þ
�
nk Sð�F cÞ C y�n s 7! dFðM jÞðy

�n sÞ þ ð�1Þ td jðy�Þn s A F
tþ1ðM �Þ:

Here dFðM jÞ is the jF j th di¤erential of FðM jÞ, and d j
: ðM j

F Þ
� ! ðM jþ1

F Þ� is induced by

d j
: M j ! M jþ1. Note that FðM �Þ is a complex of projective objects, but not mini-

mal in general.

Let P� be a minimal projective resolution of M � A CombðSqÞ. Thus

P j ¼ 0
FH½n�

Sð�FÞb�jðF ;M
�Þ:

For an integer i, the i-linear strand P�
hii is defined to be the complex such that

P
j
hii ¼ 0

jF j¼i�j

Sð�F Þb�jðF ;M
�Þ

is a direct summand of P j and the di¤erential P j
hii ! P

jþ1
hii is the corresponding com-

ponent of the di¤erential P j ! P jþ1 of P� (so this map is represented by a matrix of

linear forms). The next result generalizes [24, Theorem 4.1].

Theorem 3.8. If M � A DbðSqÞ, the i-linear strand P�
hii of M � is isomorphic to

FðExt iSðAðM
�Þ;oSÞÞ½n� i�.

The following is immediate from Corollary 3.7 and Theorem 3.8.

Corollary 3.9 (Römer [21]). Let M be a squarefree module. Then M is com-

ponentwise linear (i.e., the i-linear strand P�
hii is acyclic for any i) if and only if AðMÞ
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is sequentially Cohen-Macaulay (i.e., Ext iSðAðMÞ;oSÞ is a Cohen-Macaulay module of

dimension n� i for all i).

To prove Theorem 3.8, we reconstruct P�
hii using the spectral sequence. Let Q� be

a (not necessarily minimal) projective resolution of M � A CombðSqÞ. Consider the

m-adic filtration Q� ¼ F0Q
� IF1Q

� I � � � of Q� with FiQ
� ¼ m iQ�. Set gr

m
ðMÞ :¼

0
ib0
m

iM=m iþ1M for an S-module M, and regard it as a module over gr
m
S ¼

0
ib0
m

i=m iþ1 GS. Since Q t is a free S-module, Q t
0 :¼ 0

pþq¼t
E

p;q
0 ¼ 0

pb0
m

pQ t=

m
pþ1Q t ¼ gr

m
Q t is isomorphic to Q t (if we identify gr

m
S with S). The maps d

p;q
0 :

E
p;q
0 ! E

p;qþ1
0 make Q�

0 a cochain complex of free gr
m
ðSÞ-modules. Consider the

decomposition Q� ¼ P� lC �, where P� is minimal and C � is exact. If we identify Q t
0

with Q t ¼ P t lC t, the di¤erential d0 of Q�
0 is given by ð0; dCÞ. Hence we have

Q t
1 ¼ 0

pþq¼t
E

p;q
1 GP t. The maps d p;q

1 : E
p;q
1 ¼ m pP t=m pþ1P t ! E

pþ1;q
1 ¼ m pþ1P tþ1=

m
pþ2P tþ1 make Q�

1 a cochain complex of free gr
m
ðSÞðGSÞ-modules whose di¤erential

is the ‘‘linear term’’ of the di¤erential dP of P�. Thus, under the identification Q t
1 ¼ P t,

the complex Q�
1 is isomorphic to 0

i AZ
P�
hii.

Proof of Theorem 3.8. Since A �D �D � AG IdD bðSqÞ, it su‰ces to prove the

i-linear strand of A �DðM �Þ is isomorphic to FðH�nþiðM �ÞÞ½n� i�. Recall that

FðM �Þ ¼ A �DðM �Þ is a complex of projective objects. Set Q� ¼ FðM �Þ, and con-

sider the m-adic filtration FiQ
� ¼ m iQ� of Q�. Under the above notation, the dif-

ferential d t
0 : Q

t
0 GF

tðM �Þ ! Q tþ1
0 GF

tþ1ðM �Þ is given by ð�1Þ td. Thus

Q t
1 G 0

jF jþj¼t

H jðM �ÞF nk Sð�F cÞ ¼ 0
lþj¼t

F
lðH jðM �ÞÞ;

and the di¤erential of Q�
1 is induced by that of FðM jÞ. Hence we can easily check

that Q�
1 is isomorphic to 0

j AZ
FðH jðM �ÞÞ½� j�. By the remark before this proof, the

i-linear strand of A �DðM �Þ is isomorphic to FðH�nþiðM �ÞÞ½n� i�. r

Theorem 3.10. We have a natural equivalence D � A �D � A �D � AGT
2n in

DbðSqÞ, where T is the translation functor (i.e., T
2n

: M � 7! M �½2n�).

Proof. For M � ¼ fM i; d ig A CombðSqÞ, the complex Hom�
SðFðM �Þ;oS½n�Þ is iso-

morphic to D � A �DðM �Þ in DbðSqÞ. We have

Hom i
SðFðM �Þ;oS½n�Þ ¼ HomS 0

�i�n¼jF jþj

ðM j
F Þ

�
nk Sð�F cÞ;oS

 !

¼ 0
�i�n¼jF jþ j

ðM j
F Þ

�
nk Sð�F Þ

¼ 0
i¼�n�jF jþ j

ðM�j
F Þ� nk Sð�FÞ:

Here we simply denote the dual vector space of ðM�j
F Þ� by ðM�j

F Þ�, since ðM�j
F Þ� GM

�j
F

as k-vector spaces (only the degrees are di¤erent). Also here degðM�j
F Þ� ¼ 0 A Z

n.

The di¤erential of Hom�
SðFðM �Þ;oS½n�Þ is given by
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ðM�j
F Þ� nk Sð�F Þ C yn s 7!

X

l AF

ð�1Þaðl;FÞþnþjF j�j
v�l ðyÞn xlsþ ð�1Þn�1

d�ðyÞn s;

where v�l : ðM�j
F Þ� ! ðM�j

F nflgÞ
�

is the k-dual of vl : M
�j

F nflg C z 7! xlz A M
�j
F , and d� :

ðM�j
F Þ� ! ðM�j�1

F Þ� is the k-dual of d�j�1
: M

�j�1
F ! M

�j
F .

Similarly, FðAðM �ÞÞ represents A �D � AðM �Þ in DbðSqÞ, and we have

F
iðAðM �ÞÞ ¼ 0

i¼jF jþj

ðA jðMÞF Þ
�
nk Sð�F cÞ

¼ 0
i¼jF jþj

ðM�j
F cÞ

�
nk Sð�F cÞ

¼ 0
i¼n�jF jþj

ðM�j
F Þ� nk Sð�FÞ:

Also here, we simply denote ðAðM�jÞF Þ
� ¼ ððM�j

F cÞ
�Þ� by ðM�j

F cÞ
�
. The di¤erential of

the above complex is given by

ðM�j
F Þ� nk Sð�FÞ C yn s 7!

X

l AF

ð�1Þaðl;F
cÞ
v�l ðyÞn xlsþ ð�1ÞjF

cjþj
d�ðyÞn s:

For an integer l A Z, set bðlÞ :¼ 1 if l1 1; 2 ðmod4Þ, and bðlÞ :¼ 0 if l1 3; 0

ðmod4Þ. We also set aðA;BÞ :¼ #fða; bÞ j a > b; a A A; b A Bg for A;BH ½n�. Then the

multiplication by ð�1ÞaðF ; ½n�ÞþbðjF j� jÞþjF jnþj
on ðM�j

F Þ� nk Sð�FÞ, which can be regarded

as a submodule of both Hom
�n�jF jþ j
S ðFðM �Þ;oS½n�Þ and F

n�jF jþjðAðM �ÞÞ, induces

quasi-isomorphism between Hom�
SðFðM �Þ;oS½n�Þ and T

2n �FðAðM �ÞÞ. So D � A �

DGT
2n � A �D � A as a functor on DbðSqÞ. Since ðA �D � AÞ � ðA �D � AÞG IdD bðSqÞ,

we get the assertion. r

Example 3.11. For F H ½n�, we have the following.

D � A �D � A �D � AðSð�FÞÞ ¼ D � A �D � A �DðS=PF cÞ

¼ D � A �D � AððS=PF cÞð�F cÞ½�jF j þ n�Þ

¼ D � A �DððS=PF Þð�FÞ½jF j � n�Þ

¼ D � A ððS=PF Þ½n�Þ

¼ D ðSð�F cÞ½�n�Þ

¼ Sð�F Þ½2n�:

4. Relation to Koszul duality.

Let S ¼ k½x1; . . . ; xn� be a polynomial ring as in the previous sections, and E :¼

5S �
1 ¼ khe1; . . . ; eni an exterior algebra. E is a Z

n-graded ring with degðeiÞ ¼ ð0; . . . ;

0;�1; 0; . . . ; 0Þ ¼ �degðxiÞ where �1 is in the i th position. When we regard S and E as

Z-graded rings, we set degðxiÞ ¼ 1 and degðeiÞ ¼ �1 for all i. In this paper, E-modules

are left E-modules unless otherwise specified. For a Z
n-graded E-module M and
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a A Z
n, Ma means the degree a component of M, and MðaÞ is the shifted module with

MðaÞ
b
¼ Maþb as in the polynomial ring case.

Denote the category of finitely generated Z-graded S-modules (resp. E-modules)

by modS (resp. modE). Although modS and modE are far from equivalent, a famous

theorem of Bernstein-Gel’fand-Gel’fand [4] states that DbðmodSÞGDbðmodEÞ as tri-

angulated categories. First, we will see that this equivalence also holds in the Z
n-

graded context. Denote the category of finitely generated Z
n-graded S-modules (resp.

E-modules) by �
modS (resp. �

modE).

There are several papers concerning the Bernstein-Gel’fand-Gel’fand correspon-

dence. But their conventions are not quite the same. In this paper, we basically follow

[10], which is well suited for our purpose. Here we give functors defining Dbð�modSÞG
Dbð�modEÞ. For M A �

modS, we define RðMÞ ¼ HomkðEð�1Þ;MÞ to be a Z
n-graded

cochain complex of free E-modules as follows. (The original definition is RðMÞ ¼

HomkðE;MÞ, but we use this grading. We will also shift the grading of LðNÞ defined

below.) We can define a Z
n-graded left E-module structure on HomkðEð�1Þ;MaÞ

by ðaf ÞðeÞ ¼ f ðeaÞ. Then HomkðEð�1Þ;MaÞGEð�aÞldimk Ma . Set the cohomological

degree of HomkðEð�1Þ;MaÞ to be kak :¼
P

j A ½n� aj. The di¤erential of RðMÞ is defined

by

HomkðEð�1Þ;MaÞ C f 7! e 7!
X

i A ½n�

xi f ðeieÞ

2

4

3

5 A 0
i A ½n�

HomkðEð�1Þ;Maþei
Þ;

where ei A N
n is the squarefree vector whose support is fig. We also define the com-

plex RðM �Þ ¼ 0
j AZ

HomkðEð�1Þ;M jÞ for a complex M � ¼ fM j
; d

jg in �
modS. The

cohomological degree i component of RðM �Þ is 0
i¼jþkak HomkðEð�1Þ;M j

a
Þ and the

di¤erential is given by

R
iðM �ÞIHomkðEð�1Þ;M j

a
Þ C f 7! dRðM jÞð f Þ þ ð�1Þ iðd j � f Þ A R

iþ1ðM �Þ;

where dRðM jÞ is the kak th di¤erential of RðM jÞ. We can apply R to a Z-graded

complex M � A CombðmodSÞ (in this case, we replace Eð�1Þ by Eð�nÞ). Then R is

equivalent to the functor given in [4], [3], [10] up to degree shifting. For M � A

Combð�modSÞ, RðM �Þ has only finitely many non-vanishing cohomologies. And R

induces a covariant functor from Dbð�modSÞ to Dbð�modEÞ, which is also denoted by R.

Next, we will define the functor L : Combð�modEÞ ! Combð�modSÞ. Set LðN �Þ ¼

0
i AZ

Sð�1Þnk N
i for a complex N � ¼ fN i

; d
ig in �

modE . The cohomological degree

of LðN �Þ is given by L
iðN �Þ ¼ 0

i¼j�kak Sð�1Þnk N
j
a
. And the di¤erential is defined

by

L
iðN �ÞISð�1Þnk N

j
a
C sn y 7!

X

l A ½n�

xlsn el yþ ð�1Þ iðsn d
jðyÞÞ A L

iþ1ðN �Þ:

If we apply L to Z-graded complexes, it is equivalent to the functor given in [4], [3],

[10] up to degree shifting. If N � is bounded, so is LðN �Þ. And L induces a covariant

functor from Dbð�modEÞ to Dbð�modSÞ, which is also denoted by L.

In the Z-graded case, Bernstein-Gel’fand-Gel’fand [4] (see also [3], [10]) states that
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L : CombðmodEÞ ! CombðmodSÞ is a left adjoint to R : CombðmodSÞ ! CombðmodEÞ,

that is, we have a natural isomorphism

j : HomCom bðmodSÞ
ðLðN �Þ;M �Þ !

G
HomCom bðmodEÞ

ðN �;RðM �ÞÞ

for M � A CombðmodSÞ and N � A CombðmodEÞ. Moreover, the map L �RðM �Þ ! M �

associated to the identity map RðM �Þ ! RðM �Þ is a quasi-isomorphism. Similarly,

the map N � ! R �LðN �Þ associated to the identity map LðN �Þ ! LðN �Þ is a quasi-

isomorphism. Hence R and L define an equivalence DbðmodSÞGDbðmodEÞ.

We can regard a Z
n-graded module as a Z-graded module by Mi ¼ 0kak¼i

Ma.

In this sense, Combð�modSÞ and Combð�modEÞ are (non-full) subcategories of

CombðmodSÞ and CombðmodEÞ respectively. If M � A Combð�modSÞ and N � A Comb �

ð�modEÞ, then the restriction of j gives the isomorphism

HomCom bð�modSÞ
ðLðN �Þ;M �ÞGHomCom bð�modEÞ

ðN �;RðM �ÞÞ:

Thus the quasi-isomorphisms L �RðM �Þ ! M � and N � ! R �LðN �Þ are Z
n-graded.

Hence we have the following.

Theorem 4.1 (BGG correspondence (Z n-graded version)). The functors R and L

define an equivalence of triangulated categories Dbð�modSÞGDbð�modEÞ.

The functors R and L are closely related to D and A of the previous section. To

see this, we recall the definition of a squarefree module over E.

Definition 4.2 (Römer [20]). A Z
n-graded E-module N ¼ 0

a AZ n Na is squarefree

if N is finitely generated and N ¼ 0
FH½n� N�F .

For example, a monomial ideal of E is always squarefree. We denote the full

subcategory of �modE consisting of all the squarefree E-modules by SqE . We have the

functors S : SqE ! SqS and E : SqS ! SqE giving an equivalence SqS GSqE . Here

SðNÞF ¼ N�F for N A SqE , and the multiplication map SðNÞF C y 7! xi y A SðNÞFUfig

for i B F is given by SðNÞF ¼ N�F C z 7! ð�1Þaði;FÞeiz A N�ðFUfigÞ ¼ SðNÞFUfig. See

[20] for further information.

We have DbðSqSÞGDb
SqS

ð�modSÞ by [11, Exercises III 2.2] (but use projective reso-

lutions instead of injective resolutions). So DbðSqSÞ can be seen as a full subcategory

of Dbð�modSÞ. On the other hand, for N A �modE , set

N 0
:¼ 0

a AN n

N�a and N 00
:¼ 0

a AN n and a is
not squarefree

N�a HN 0:

Note that N 0 and N 00 are E-modules, and NðNÞ :¼ N 0=N 00 is squarefree. If all co-

homologies of N � A Combð�modEÞ are squarefree, then NðN �Þ and N � are isomorphic

in Dbð�modEÞ. Hence we have Db
SqE

ð�modEÞGDbðSqEÞ.

Comparing L and F ¼ A �D defined in the last section, we have the following.

Proposition 4.3. If N � is a (bounded ) complex of squarefree E-modules, then

LðN �Þ ¼ Sð�1Þnk N
� is a (bounded ) complex of squarefree S-modules. Hence L

gives a functor from DbðSqEÞ to DbðSqSÞ. Moreover, for M � A CombðSqSÞ, we have

L � EðM �Þ ¼ A �DðM �Þ.
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On the other hand, RðMÞ is not a complex of squarefree E-modules. In fact, a

free E-module Eð�aÞ is not squarefree unless a ¼ 0. But we have the following.

Proposition 4.4. If M � A DbðSqSÞ, then RðM �Þ A Db
SqE

ð�modEÞGDbðSqEÞ.

Moreover, we have a natural equivalence S �RGD � A.

Proof. We have M � GA �D �D � AðM �Þ ¼ L � E �D � AðM �Þ in DbðSqSÞ (and

in Dbð�modSÞ) by Proposition 4.3. From Theorem 4.1, RðM �ÞGR �L � E �D �

AðM �ÞGE �D � AðM �Þ A Db
SqE

ð�modEÞ. Since S � EG IdD bðSqSÞ
, we are done. r

Let R ¼ 0
ib0

Ri be an N-graded associative k-algebra such that dimk Ri < y for

all i and R0 G km for some m A N as an algebra. Then r :¼ 0
i>0

Ri is the graded

Jacobson radical. We say R is Koszul, if a left R-module R=r admits a graded

projective resolution

� � � ! P�2 ! P�1 ! P0 ! R=r ! 0

such that P�i is generated by its degree i component, that is, P�i ¼ RP�i
i (we say such a

resolution is a linear resolution). If R is Koszul, it is a quadratic ring, and its quadratic

dual ring R! (see [3, Definition 2.8.1]) is Koszul again, and isomorphic to the opposite

ring of the Yoneda algebra EðRÞ :¼ 0
ib0

Ext iRðR=r;R=rÞ.

Let gr.modR be the category of finitely generated Z-graded left R-modules. If R

is a Koszul algebra with Ri ¼ 0 for ig 0, and R! is left noetherian, we have functors

DF : Dbðgr.modRÞ C N � 7! R! nR0
N � A Dbðgr.modR !Þ

and

DG : Dbðgr.modR !Þ C M � 7! HomR0
ðR;M �Þ A Dbðgr.modRÞ

giving the equivalence Dbðgr.modRÞGDbðgr.modR !Þ called Koszul duality, see [3, The-

orem 2.12.6]. The exterior algebra E is a Koszul algebra with E ! GS. Thus the

Bernstein-Gel’fand-Gel’fand correspondence is a classical example of Koszul duality.

Let L be the incidence algebra of 2½n� over k. Then L has an N-grading with

degðeF ;GÞ ¼ jF nGj. Note that L0 ¼ 0
FH½n� keF G k2n

. For each i A Z, let gr.mod
L
ðiÞ

be the full subcategory of gr.mod
L
consisting of N A gr.mod

L
such that Nj ¼ 0jF j¼iþj

NF

for all j A Z. The forgetful functor gives an equivalence gr.mod
L
ðiÞGmodL for all

i A Z, and Dbðgr.mod
L
ðiÞÞGDb

gr.modLðiÞ
ðgr.mod

L
Þ is a full subcategory of Dbðgr.mod

L
Þ.

Since L=rLG0
FH½n� keF as left L-modules, and each keF has a linear projective

resolution

� � � ! 0
GIF

jGj¼jF jþ2

LeG ! 0
GIF

jGj¼jF jþ1

LeG ! LeF ! keF ! 0

(here we regard keF and LeG as objects in gr.mod
L
ðjF jÞ), L is Koszul. To see this we

can use Proposition 2.2. In fact, a minimal free resolution of a squarefree module

ðS=PF Þð�FÞ, which corresponds to keF , is given by the Koszul complex with respect to

fxi j i B Fg.

Lemma 4.5. The quadratic dual ring L
! of L is isomorphic to L itself.
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One might think L
! should be a ‘‘negatively graded ring’’, since L

! is generated by

HomL0
ðL1;L0Þ as a L

!

0-algebra. But we use the same convention as [3] here, so we

regard L
! as a positively graded ring with L

!

1 ¼ HomL0
ðL1;L0Þ.

Proof. Let T :¼ TL0
L1 ¼ L0 lL1 l ðL1 nL0

L1Þl � � � ¼ 0
ib0

L
ni
1 be the tensor

ring of L1 ¼ heFUfig;F jF H ½n�; i B Fi. (See [3, §2.7] for the linear algebra over a semi-

simple algebra L0 used here.) Then LGT=I , where

I ¼ ðeFUfi; jg;FUfig n eFUfig;F � eFUfi; jg;FUf jg n eFUf jg;F jF H ½n�; i; j B F Þ

is a two sided ideal. Let L
�
1 :¼ HomL0

ðL1;L0Þ be the dual of the left L0-module L1.

Then L
�
1 has a right L0-module structure such that ð faÞðvÞ ¼ ð f ðvÞÞa, and a left L0-

module structure such that ðaf ÞðvÞ ¼ f ðvaÞ, where a A L0, f A L
�
1 , v A L1. As a left (or

right) L0-module, L
�
1 is generated by fe�F ;FUfig jF H ½n�; i B Fg, where

e�F ;FUfigðeGUf jg;GÞ ¼ dF ;Gdi; jeFUfig:

Let T � ¼ TL0
L

�
1 be the tensor ring of L

�
1 . Note that e�F ;FUfig n e�G;GUf jg 0 0 if and

only if F U fig ¼ G. We have that ðL�
1 nL0

L
�
1 Þ is isomorphic to ðL1 nL0

L1Þ
� ¼

HomL0
ðL1 nL0

L1;L0Þ via ð f n gÞðvnwÞ ¼ gðvf ðwÞÞ, where f ; g A L
�
1 and v;w A L1.

In particular,

ðe�F ;FUfig n e�FUfig;FUfi; jgÞðeFUfi; jg;FUfig n eFUfig;F Þ ¼ eFUfi; jg:

Easy computation shows that the quadratic dual ideal

I? ¼ ð f A L
�
1 nL

�
1 j f ðvÞ ¼ 0 for all v A I2 HL1 nL1 ¼ T2ÞHT �

of I is equal to

ðe�F ;FUfig n e�FUfig;FUfi; jg þ e�F ;FUf jg n e�FUf jg;FUfi; jg jF H ½n�; i; j B F ; i0 jÞ:

The k-algebra homomorphism defined by

L0 C eF 7! eF c A L
!

0ð¼ L0Þ and L1 C eFUfig;F 7! ð�1Þaði;FÞe�ðFUfigÞc;F c A L
!

1

gives a graded isomorphism LGL
!. r

Since LðGL
!Þ is an artinian algebra, we have the functors DF and DG defining

Dbðgr.modLÞGDbðgr.mod
L

!Þ. In the next result, we will denote the contravariant

functors from DbðmodLÞ to itself induced by D and A for DbðSqÞ (under the equivalence

SqGmodL of Proposition 2.2) also by D and A.

Theorem 4.6. Let the notation be as above. If N � A Dbðgr.modLð0ÞÞ, then we

have DF ðN �Þ A Dbðgr.modLðnÞÞ and DGðN �Þ A Dbðgr.modLð�nÞÞ under the isomor-

phism L
! GL of Lemma 4.5. By the equivalence gr.modLð jÞGmodL, DF and DG

give endofunctors of DbðmodLÞ. Then DF GA �D and DGGD � A as endofunctors of

DbðmodLÞ.

Proof. First, we recall the construction of DF : Dbðgr.modLÞ C N � 7! L
! nL0

N �

A Dbðgr.mod
L

!Þ under the same notation as the proof of the previous lemma. Note

that L
!

0 ¼ L0 ¼ 0
FH½n� keF . The component ðDF Þ tðN �Þ of cohomological degree t is

0
t¼iþj

L
! nL0

N i
j . For N A gr.modL, a left L

!-module L
! nL0

N ¼ 0
FH½n� L

!eF nk NF
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is generated by feF n nF jF H ½n� and nF A NFg. If N A gr.modLð0Þ, the degree of

eF n nF is degðeF Þ � degðnF Þ ¼ �jF j. For N � ¼ fN i; d ig A Combðgr.modLÞ, the di¤er-

ential of DF ðN �Þ is given by

ðDF Þ tðN �Þ C eF n nF 7! ð�1Þ t
X

l BF

e�F ;FUflg n ðeFUflg;F � nF Þ þ eF n dðnF Þ;

see [3, Theorem 2.12.1].

The graded isomorphism L !
G

L! makes M A gr.modL! a graded left L-module

(without changing the grading of M), and gives an equivalence gr.modL! G gr.modL.

From now on, we regard DF as an endofunctor of Dbðgr.modLÞ by the equivalence

gr.modL! G gr.modL. So we have DF ðNÞ ¼ 0
FH½n� LeF c nk NF for N A gr.modL. If

N A gr.modLð0Þ, then the degree of eF c n nF A LeF c nk NF HDF ðNÞ is �jF j ¼ jF cj � n.

Thus DF ðNÞ A gr.modLðnÞ. For N � A Dbðgr.modLð0ÞÞ, the cohomological degree of

DF ðN �Þ is given by ðDF Þ tðN �Þ ¼ 0
t¼jþjF j LeF c nk N

j
F , and the di¤erential sends

eF c n nF A ðDF Þ tðN �Þ to

X

l BF

ð�1Þ tþaðl;FÞ
eF c; ðFUflgÞc n ðeFUflg;F � nF Þ þ eF c n dðnF Þ:

In Section 3, we study the endofunctor F ¼ A �D on DbðSqÞ. Under the equiv-

alence SqGmodL of Proposition 2.2, this functor induces an endofunctor of DbðmodLÞ.

We also denote it by A �D. Then for N � A DbðmodLÞ, the component ðA �DÞ tðN �Þ of

cohomological degree t is 0
t¼jþjF j LeF c nk N

j
F , and an element eF c n nF A LeF c nk

NF H ðA �DÞ tðN �Þ is sent to

X

l BF

ð�1Þaðl;FÞeF c; ðFUflgÞc n ðeFUflg;F � nF Þ þ ð�1Þ teF c n dðnF Þ

by the di¤erential. A quasi-isomorphism ðDF Þ tðN �Þ C x 7! ð�1Þbðt�1Þ
x A ðA �DÞ tðN �Þ

gives a natural equivalence DF GA �D, where bð�Þ is the function defined in the

proof of Theorem 3.10. The natural equivalence DGGD � A can be proved in a

similar way. r

5. Local cohomology modules as holonomic D-modules.

In this section, we study a local cohomology module H i
ID
ðSÞ. The following result

was essentially obtained by Mustaţǎ [17] and Terai [23], and can be proved by the same

argument as the proof of [25, Theorem 2.11].

Theorem 5.1 (cf. [17], [23], [25]). Let GID be the local cohomology functor with

supports in ID. Then GIDðo
�Þ A DbðStrÞ and Z �DðS=IDÞGGIDðo

�Þ. In particular,

H i
ID
ðSÞð�1ÞGH i

ID
ðoSÞGZðExt iSðS=ID;oSÞÞ.

See [16], [27] for further results on minimal flat resolutions of GIDðo
�Þ.

In the rest of this section, we assume that charðkÞ ¼ 0. Let

A :¼ AnðkÞ ¼ khx1; . . . ; xn; q1; . . . ; qni
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be the Weyl algebra acting on S, and let fFigib0 with Fi ¼ hxa
q
b j jaj þ jbja ii be the

Bernstein filtration of A. Here jaj ¼
Pn

i¼1 jaij for a ¼ ða1; . . . ; anÞ. Then the associated

graded ring grA :¼ 0
ib0

Fi=Fi�1 is isomorphic to the polynomial ring k½x1; . . . ; xn;

q1; . . . ; qn� of 2n variables. See, for example, [5].

In [25], the author pointed out that a straight S-module M has a holonomic A-

module structure. But if we consider the Z
n-grading, the left A-module structure given

in [25] is somewhat unnatural. So we will give a more natural treatment here.

Let M be a left A-module. Set

Mrat :¼ 0
a AZ n

Ma; where Ma ¼ fy A M j ðxiqiÞy ¼ ai y for all ig:ð3Þ

Then Mrat is an A-submodule with xiMa HMaþei
and qiMa HMa�ei

. In particular,

Mrat is a Z
n-graded S-module. For example, Srat ¼ S and the Z

n-grading given by

(3) coincides with the usual one. If ai 0�1, the map Ma C y 7! xi y A Maþei
is bijec-

tive. In fact, its inverse is ð1=ðai þ 1ÞÞqi : Maþei
! Ma. If M is a finitely generated left

A-module, then dimk Ma < y for all a A Z
n. (In fact, if V HMa is a k-vector sub-

space and M 0
:¼ AV HM is the submodule generated by V , then M 0 VMa ¼ V by the

construction. Since M is a noetherian A-module, Ma is finite dimensional.) Hence

Mratð�1Þ is a straight S-module in this case.

While Mrat ¼ 0 in many cases, we have the following.

Proposition 5.2. Let modA be the category of finitely generated left A-modules.

Then ð�Þratð�1Þ : modA ! Str is a dense functor.

Proof. If f : M ! N is an A-homomorphism, we have f ðMaÞHNa for all

a A Z
n. So ð�Þratð�1Þ gives a functor. Next we prove the density. Let M be a Z

n-

graded S-module with Mð�1Þ A Str. We will define qi y for y A Ma as follows.

(*) If ai 0 0, the map Ma�ei
C z 7! xiz A Ma is bijective, hence there is a unique

element y 0 A Ma�ei such that xi y
0 ¼ y. Set qi y :¼ ai y

0. If ai ¼ 0, we set qi y ¼ 0.

It is easy to check that (*) makes M a left A-module with M ¼ Mrat. r

In the situation of the proof of Proposition 5.2, (*) is not a unique way to make

M an A-module. Consider the case n ¼ 1 (i.e., S ¼ k½x�). Set M :¼ A=Axq. Then

M has a k-basis f1; x; x2; . . . ; q; q2; . . .g. So M ¼ Mrat and Mð�1ÞGoS l
�EðkÞ as

S-modules. Since qM0 0 0, the A-module structure of M is not given by (*).

We say a finitely generated left A-module M is a straight A-module if M ¼ Mrat

and its A-module structure is given by (*). If M and N are straight A-modules, then

an A-homomorphism f : M ! N is nothing other than a Z
n-graded S-homomorphism.

Thus the category StrA of straight A-modules is equivalent to StrS.

A local cohomology module H i
I ðSÞ has a natural A-module structure for any ideal

I (cf. [14]). In the monomial ideal case, we have the following.

Proposition 5.3. Let ID be a squarefree monomial ideal. Then H i
ID
ðSÞ is a straight

A-module (i.e., the A-module structure is given by (*)).

Proof. Recall that H i
ID
ðSÞ is the i th cohomology of the Čech complex C � with

respect to monomial generators of ID. Each term of C � is a direct sum of copies of the
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localizations SxF of S at fxF ; x2F ; . . .g. Note that SxF ð�1ÞGZðSð�F cÞÞ is a straight

S-module, and its A-module structure as a localization of S is give by (*). Thus C � is a

complex of straight A-modules. The natural A-module structure of H i
ID
ðSÞGH iðC �Þ is

given in this way. So we are done. r

Usually, the canonical module oS, which is a straight S-module, is regarded as a

right A-module using Lie di¤erentials. So it seems that a straight S-module M itself

(not the shifted module Mð1Þ) should be a right A-module.

For a right A-module M, consider an A-submodule

Mrat :¼ 0
a AZ n

Ma; where Ma ¼ fy A M j yðxiqiÞ ¼ �ai y for all ig:ð4Þ

If M is finitely generated, Mrat is a straight S-module by the same argument as left A-

modules. Conversely, any straight S-module can be a right A-module with Mrat ¼ M

as Proposition 5.2. The right A-module oS satisfies oS ¼ ðoSÞrat, and the Z
n-grading

given by (4) coincides with the one given by oS GSð�1Þ.

It is well-known that a left A-module M can be viewed as a right A-module, if we

set yxi ¼ xi y and yqi ¼ �qi y for y A M. When we regard M as a right A-module in

this way, we denote it by MA. Then ðMAÞrat GMratð�1Þ as S-modules. So the degree

shifting by �1 also appears here. It is also noteworthy that, for a Z
n-graded S-module

M, the shifted module Mð�1Þ is straight if and only if so is the graded Matlis dual
�HomSðM; �EðkÞÞ. Related arguments for straight modules over a normal semigroup

ring are found in §6 of [27].

Proposition 5.4. If M is a finitely generated left A-module, then Mrat is holonomic.

Proof. We may assume that M ¼ Mrat. Consider the filtration G0 HG1 H � � �

with Gi :¼
P

jajai Ma of M. Then FiGj HGiþj for all i; jb 0, where fFig is the Bern-

stein filtration of A. Hence grM has a grA-module structure. Moreover, grM is a

Z
2n-graded grA ¼ k½x1; . . . ; xn; q1; . . . ; qn�-module such that the degree of the image of

y A Ma, a A Z
n, in grM is b A Z

2n, where

bi ¼

ai if ia n and aib 0;

�ai�n if i > n and ai�n < 0;

0 otherwise.

8

<

:

It is easy to see that grM is a squarefree grA-module, in particular, finitely generated.

If ½grM�I 0 0 for some I H ½2n�, then jI ja n. Thus dimgrAðgrMÞa n (if M0 0,

dimgrAðgrMÞ ¼ n), that is, M is holonomic. r

Let M be a finitely generated left A-module. Then M admits a good filtration

fGigib0, that is, the associated graded module grM :¼ 0
ib0

Gi=Gi�1 is a finitely gen-

erated grA-module (cf. [5]). We denote the set of minimal associated primes of grM as

a grA-module by SSðMÞ. For Q A SSðMÞ, we denote the multiplicity of the grA-

module grM at Q by eQðMÞ (cf. [6, A.3]). It is known that SSðMÞ and eQðMÞ do not

depend on the particular choice of a good filtration of M.

For F H ½n�, we denote the monomial prime ideal ðxi j i B F Þ þ ðqj j j A FÞ of grA ¼

k½x1; . . . ; xn; q1; . . . ; qn� by QF . It is easy to see that QF is an involutive ideal (i.e.,
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closed under the Poisson product, see [6, A.3]) of dimension n. Conversely, every

involutive monomial prime ideal of dimension n is of the form QF for some F .

Proposition 5.5. Let M be a finitely generated left A-module. Then

SSðMratÞ ¼ fQF jMF�1 0 0g and eQF
ðMratÞ ¼ dimk MF�1:

Here F represents the squarefree vector whose support is F H ½n�.

We need the following lemma.

Lemma 5.6. Let M be a finitely generated left A-module with M ¼ Mrat. If M is

not a straight A-module, then M is not simple as an A-module.

Proof. Since M is not straight, there are some a A Z
n, i A ½n�, and y A Ma such

that ai ¼ 0 and qi y0 0. Let N :¼ Aðqi yÞ be the submodule of M. Since xiðqi yÞ ¼

ai y ¼ 0, we have y B N. Hence N0 0;M. r

Proof of Proposition 5.5. We may assume that M ¼ Mrat. Note that the sub-

module N constructed in the proof of Lemma 5.6 satisfies N ¼ Nrat. (More generally, if

M ¼ Mrat, any submodule M 0 of M satisfies M 0 ¼ ðM 0Þrat.) By Lemma 5.6, we have a

filtration 0 ¼ M0 HM1 H � � �HMt ¼ M such that Mi ¼ ðMiÞrat and Mi=Mi�1 is straight

for each i. Recall that StrA GStrS GSqS and a simple object in Sq is isomorphic to

ðS=PF Þð�FÞ for some F H ½n�. So we may assume that Mi=Mi�1 GZðS=PF ð�F ÞÞð1Þ

¼: L½F �. Take the filtration G of L½F � given in the proof of Proposition 5.4. Then we

have grðL½F �Þ ¼ ðgrAÞ=QF . Hence SSðL½F �Þ ¼ fQFg and eQF
ðL½F �Þ ¼ 1. On the other

hand, we have dimk L½F �F 0�1 ¼ dF ;F 0 for all F 0
H ½n�. Since eQF

ð�Þ is additive, we are

done. r

The characteristic cycle of H i
ID
ðSÞ as an A-module (i.e., eQF

ðH i
ID
ðSÞÞ for QF A

SSðH i
ID
ðSÞÞ) was studied in [1], but we will give another approach here. The next

corollary shows that Hochster’s formula ([22, Theorem II.4.1]) on the Hilbert function of

H i
m
ðS=IDÞ is also a formula on the characteristic cycle of H

j
ID
ðSÞ.

Corollary 5.7. Let ID be the Stanley-Reisner ideal of a simplicial complex

DH 2½n�. For all F H ½n� and all ib 0, we have

eQF
ðH i

ID
ðSÞÞ ¼ dimk

~HHn�iþjF jþ1ðlkD F ; kÞ;

where lkD F ¼ fGH ½n� jGVF ¼ q and F UG A Dg.

Proof. By Propositions 5.3 and 5.5, we have eQF
ðH i

ID
ðSÞÞ ¼ dimk½H

i
ID
ðoSÞ�F . But

dimk½H
i
ID
ðoSÞ�F ¼ dimk

~HHn�iþjF jþ1ðlkD F ; kÞ by Terai’s formula ([23]). r

Remark 5.8. The relation between Hochster’s formula and Terai’s formula is ex-

plained by the isomorphisms NðH i
ID
ðoSÞÞGExt iSðS=ID;oSÞGH n�i

m
ðS=IDÞ

�, where ð�Þ�

means the graded Matlis dual.
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