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Abstract. In a complex domain V' <= C”", let P be a linear holomorphic partial dif-
ferential operator and K be its characteristic hypersurface. When the localization of P at
K is a Fuchsian operator having a non-negative integral characteristic index, it is proved,
under some conditions, that every holomorphic solution to Pu=0 in V'\K has a holo-
morphic extension in V. Besides, it is applied to the propagation of singularities for
equations with non-involutive double characteristics.

1. Introduction.

We employ the following notation in this paper. z=(zj,...,z,) e C", z/ =
Z,...,zn), 2" =1(z2,...,24—1), Di=0/0z;, D= (Dy,...,D,), D*= D" ...D* and
( ) J ] 1 n
ol =0y +---+ o, for multi-index o = (ay,...,2,), D” and o” are same as z”, N =
| | ) ) b b)
{0,1,2,...}.

Let n>2, m>r>1 and 0 <o <1. For simplicity, we call P(z,D) a locally
Fuchsian operator of class (m,r,o) and write P e " "° if it is written in the form

P(z,D) = Zr:as(z)(lel)r*s D"+ Z Zf(“)aa(z)D“ (1.1)
s=0

0<s<m,oeA(s)

where A(s) ={a;|a| =m —s,0, <m—r,a# (r—s,0,...,0,m —r)}, coefficients are all
holomorphic in V = {z;|z;| < r;,Vi} (r; >0), a9(0) # 0 and /(«) are non-negative inte-
gers satisfying

al(a)+ (1 —o)yy >r—s for |o|=m—s. (1.2)
We note that the hyperplane z, = & is characteristic for P for every h. Set
0(z01,0") = 3 HPa(zD0. (1.3)
a=(oty, ", m—j)

By I(z,z1D1)D"™" denote the first term of the right hand side of (1.1), then one can
write P = MD)""+ 37" ., O;D,'~/, where
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M(Z,Dl,D”) :I(Z,ZlDl)—l-Qr(Z,D],D”). (14)

M (zy,z",h, Dy, D") is called the localization of P at z, = h and, by the condition (1.2), it
is easy to see that M(z;,z", h,D;,D") is a Fuchsian partial differential operator on the
characteristic hyperplane z, = & with respect to z; of weight 0 for every || < r,. (This
is why we call P a locally Fuchsian operator.) As we saw in [6], this class is closely
related with operators having non-involutive multiple characteristics.

Denote K = {z;z, =0} and define the indicial polynomial by

1(z,) = Z ay(z) A (1.5)
s=0

then the following theorem holds.
THEOREM 1.1 ([4]). Let P(z,D) be a locally Fuchsian operator of class (m,r,o). If
1(0,k) #0 VkeN (1.6)

then every holomorphic solution of Pu = 0 on the universal covering of V\K has a unique
holomorphic extension in V.

Our purpose in this paper is to investigate the case where the indicial polynomial
1(0,4) has a non-negative integral root. We assume
(A.1) there exists ve N such that I(z,v) =0 on z; =0 but 7(0,k) # 0 for all
ke N\{v},
(A.2) o=1/p with some pe{l,2,...,r+1},
(A3) of(a)+ (1l —0)ay >r—s when || =m—s and r — 5 > 0.
Let © denote the restriction of functions onto z; = 0, namely

nf(z') = f(0,2)
then the following proposition holds.

PropOSITION 1.2. Let M be defined by (1.4) and suppose (A.1). Then

1) there exists a unique operator L(z',Dy,D") =37, Lj(z’,D”)D{ with L, =1
such that LM = 0,

2) there exists a unique operator R(zy,z',D") = ZijRj(z’,D”)z{/j! with R, =1
such that MRn =0,

3) if (A.3) is also supposed, the operator nLQ,.1Rn is free from D", namely a
function of z'.

Set
q(z') = nLQ,1 1 Rx. (1.7)
Then the main result of this paper is the following theorem.

THEOREM 1.3. Let P(z,D) be a locally Fuchsian operator of class (m,r,c) and sup-
pose (A.1), (A.2) and (A.3). Then, if

g(0) # 0 (1.8)
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every holomorphic solution u(z) to Pu= 0 on the universal covering of V\K has a unique
holomorphic extension in V.

This theorem will be applied to the propagation of singularities for equations with
non-involutive double characteristics in §6. The definition (1.7) looks implicit, however,
an algorithm to obtain ¢(z’) will be given in §2. The following example explains the
role of the condition (1.8).

/

ExampLE 1.4. Let b,ce C and consider
P =D} +zDD, —bD, +c.

K = {z;z, = 0} is characteristic. Since P = (z;D; —b)D,+ D? + ¢, it is easy to see
that P is a locally Fuchsian operator of class (2,1,1/2) and I(1) = A —b. Therefore
applies when b ¢ N.

When b e N, the conditions (A.l1), (A.2) and (A.3) hold. Since M =z D; — b,
one can easily see that L = D, R =z} /b! and ¢ = c¢. Therefore applies if
c #0.

When ¢ =0, the equation Pu =0 has two solutions

uy = Z;(b+1)/2<zn o 212/2)17/2’ Uy = Z]Z;(b+2)/2(zn o Z%/2>(b—1)/2

If be N, one of u,u, is singular only on z, = 0, namely the conclusion of
is not true when be N and ¢ = 0.

REMARKS. 1) Let o< f and denote V,3 ={ze V;a <argz, <pf}. Under the
same assumptions as in [Theorem 1.3, one can prove that every holomorphic solution to
Pu=0 in Vs has a holomorphic extension to a neighborhood of z = 0.

2) Let P be a linear holomorphic partial differential operator in V' for which K is
characteristic. The existence of a singular solution, namely a solution to Pu = 0 holo-
morphic in ¥\K but singular at K, has been studied by several authors. (See [8],
and their references. Cf. [2], [7], as well.) Especially, there exist singular solutions
when the localization of the principal part of P at K is a non-degenerate partial differ-
ential operator on K of order > 1. (See S. Ouchi [8]) In our case, the localization
M(zy,2",0,D;,D") of whole P at K degenerates at z; =0 to be a Fuchsian operator,
and the Theorems [L1 and imply the non-existence of singular solutions.

3) In C? let P= D} +z1D1Dy—b(z)Ds + ¢(z). In [5], the corresponding result
was obtained when 5(0,z;) =0,1,2,.... When 5(0) =0,1,2,... but D,h(0) # 0, the
existence of a singular solution was also verified, namely does not hold in
general by assuming only /(0,v) =0 instead of (A.l).

4) In C° let P=z/D\D3+z}DsD3+ Dy +c. Then P is a locally Fuchsian op-
erator whose characteristic index is 0 but does not satisfy the condition (A.3). Since
u = (1/z3) exp[—c(z2 — z3/2)] is a solution to the equation Pu = 0, we see [Theorem 1.3 is
not true in general without assuming (A.3).

The theorem will be proved as follows. Take 0 < |h| <r, and a branch of u(z)
near z, = h arbitrarily. We will prove that if 4 is sufficiently small, there exists a unique
holomorphic solution in some neighborhood W of z = (0,...,0,/) containing the origin
z =0 to the characteristic Cauchy problem
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Pv=0, D/v=D/u onz,=h j=0,1,....m—r—1. (1.9)

(Theorem 3.1.) Since u(z) is a solution of Pu =0, the uniqueness means v(z) gives a
holomorphic extension of u up to the origin. Then it is well known that u(z) has a
unique holomorphic extension in V. (Cf. [6, Proposition 3.3].)

In §2, the operator M will be studied. The characteristic Cauchy problem (1.9)
will be reduced to a pair of integro-differential equations in §3. We will introduce two
Banach spaces # and %’ of holomorphic functions in §4 and prove [Theorem 3.1 by
means of contraction principle in §5.

2. Operator M.

2.1. Proof of Proposition 1.2.
First, in this subsection, we prove [Proposition 1.2,  When o, = m — r and o” # 0, it
follows from (A.3) that

ol —o) >r—s—o = |a"] >0 (2.1)

and therefore / > ocl (It means M is a Fuchsian operator)
Since z{D* = z{"*z: D" and z{D] = S°/_, ¢ x(z1D1)* with certain constants ¢;
(¢j; =1), one can write

,
M(z,D,,D") = M(z,D")(z;Dy)""*
s=0

with M,(z, D") = Z|a~|<521 &= (z)D*", where by, are all holomorphic in V,,
M(z,0) = a,(z) and |a"| < o/ for o” # 0 because of (2.1).

Denote
0'M,

Ms,f(zl7 C”) == (3Zi
1

(O,Z/, C//)-

If i < /, then 6i(z{béal/)/5z{ =0 on z; = 0 for any function b. Hence oi > o/ > |a"| for
a” #0. It means

orderpr My ; < oi  for i > 0.

Using D{(z;D)"* = (z;Dy + j)"*D{, we have

RLMf = ZZZL() M. jj"7D]J.

i=0 s=0 j=0

Set

r

py(z', D") = (?)Msvi—j(z’71)//)frs (2.2)
0

S=

then we have 7L M =0 if and only if



Removable singularities of holomorphic solutions 91

ZL,-(Z’,D”),uij(z', D"y=0, j=0,...,v. (2.3)

i=j

Note that u; ; =1(0,z',j). Since 1(0,z',v) =0 and 1(0,0,/) #0 for j#v by the
assumption (A.l), we see L; are uniquely determined by these relations with L, = 1.
Besides, because orderpr u; < a(i — j) when i > j, one can easily see that

orderpr L; < a(v — j) for j <. (2.4)

Thus the first part 1) of [Proposition 1.2] has been proved.
Since

) i r l o i
aD{MRaf =Y > ( j>Ms, i) T Rf = uyRinf

Jj=v s=0 J=v

we have MRz =0 if and only if

Z,uij(z', D")R;(z/,D")=0 for i=v,v+1,v+2,.... (2.5)
Jj=v

Therefore R; (i > v) are uniquely determined with R, =1 and
orderpr R; < (i —v) for i>v. (2.6)

Thus the second part 2) has been proved, too.

The operator Q,,; is the sum of zf(“)aaD(“lv“"’o) with o = (o, 0", m—r—1), o +
o’ =r4+1—sand 0 <s<r+1. Whenoa” #0, wehave r —s—a; =|a"| —1>0. It
then follows from the assumption (A.3) that o(/ — o) >r—s—oy >0, and hence 7 > o;.
Because i <v < j, the power of z; in the term

J
-, ” z
L:D}z{a,D®*"" Tl'Rj

is at least /+ j—i—o; >/ —a; >0, and therefore we have
nLz{a,D**" 9 Ry = 0.

When o” =0, we have r —s —o; = —1. From the assumption (1.2) it follows that
o/ —oy) >r—s—o; =—1, and therefore a(oy —/)<1. If v—i>0 or o+ j >,
because of (2.3) and (2.4), we have

i .
OI‘deI‘DN{Li<j>D{ J(Z{aa)RjJral} < 0'(061 +j — i).
Since the terms with i — j < / all vanish on z; = 0, one may suppose i — j > /. Then
ol +j—1i) <oy —¢) <1

It means the order of D” is zero. If v—i=0 and o +j = v, the term is evidently free
from D”. Thus the last part 3) has been proved.
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2.2. Function ¢(z’).
Next, we explain how to calculate ¢(z’) defined by (1.7). Since M(z,0) = a,(z), we
have

1y (2/,0) = ( )51 4 (0,20 ~ (! )a’ o)

ﬁzi / 52; /
Next, set
L) = Li=,0), n(z) = Ri(Z',0).

Then ¢ (v—p<i<v)and r; (v<j<v+ p) are given by the relations

Z/ ,ul]zO—() j=v—1,...,v—p

Zﬂij(z/ﬂo)”j(z/) =0, i=v+1,...,v+p

with 4, =r, = 1.
When o = (k,0,m —r — 1), as seen above, / —k > —1/a = —p. Therefore one can
write

r+1 .
0r1(z.D1,0) = Y _ar()Df, e =0("") as 21— 0
k=0

where (k — p)™ = max{k — p,0}. Hence

q(z") =n)_ Li(z',0)D{ck(z) DI Ry(z',0){ /]!
i,j,k

=MZ7kLi<z/,0><]')ck ) Ryi(,0)

where ¢ ;(z') = (0'ck/0z1)(0,2') and the sum is taken for
0<k<r+1, i<v, j+k=v, i—j=(k-p".

The last inequality is equal to that j+ k —i < min{k, p}. Especially we have j+k <
v+ p and i > v — p and therefore ¢(z’) is given by

;{f ( )Ckz (2 (). (2.7)

2.3. Equation M"v = g.
We next consider the problem
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near z = (0,...,0,/), where M"(zy,z",Dy,D") = M(z1,z",h,Dy,D"). So are L",R" q"
and u.

PropPOSITION 2.1. Let f(z) and ¢(z") be holomorphic functions near (0,...,0,h).
Then the problem (2.8) has a unique holomorphic solution v(z) if and only if

nL'g =0. (2.9)

If we denote the solution to the equation M"v = g satisfying nD{v =0 by (Mh)_lg, then
the solution to (2.8) is given by

v=(M"""g+ R (2.10)

The proof will be given in §5. For its preparation, we here explain the role of the
condition [2.9). Since nL"M" =0, we have nL"g = nL"M"v=0. Hence the condi-
tion is necessary.

Denote nD}g = g;, then we have

Z( )Z b Zuyu,—g,, i=0,1,2,....

j=0

Note that u' = 1(0,z",h,i), ul #0 for i #v and u" =0. Then we see that, by setting
=@, vj (j #v) are uniquely determined by these relations if and only if

( i
Sl =g =012
j=0

Zﬂvjvj =9y

The first v relations give one to one correspondence between (vp,...,v,—;) and
(go,.-.,9v-1). Under these correspondence, the last relation is equivalent to nL"g = 0.
In fact,

v—1
St = =33t
i=0

i=0 j=0

v—1
SE9 9 STE) P SFEVED o/
j=0

where we have used nL"g =Y " Ll'g; and Y. L', = 0.
Lastly consider the case where g = 0 and nDlv = ¢. In this case, v; =0 for j <,
=@ and v; (j > v) are determined uniquely by

i
>ty =0.
J=v

Because Z _ MR =0 by the definition of R/, we see v; = R''¢ and hence v = R"¢p.
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3. A characteristic Cauchy problem.

Let e C be a parameter and consider the Cauchy problem with characteristic
initial hyperplane z, = h.

{P“:f (3.1)

u=0{(z,—h)""} asz,—h
Recall that
m .
Pu=M"D}""u+ (M - M"\D)"u+ Y 0Dy u
j=

where M =1+ Q,. Since nL"M" =0, nL"(M — M") =0 on z, = h and the third term
vanishes on z, = /i by the initial condition, it is necessary for f to satisfy the compati-
bility condition

nL"f =0 on z,=h. (3.2)

THEOREM 3.1. Let P be a locally Fuchsian operator of class (m,r,o) and assume
(A.1), (A.2) and (A.3). Then there exists a constant 6 >0 such that, for any |h| <o
and any holomorphic function f(z) in V, satisfying the compatibility condition (3.2), there

exists a unique holomorphic solution u(z) to the Cauchy problem (3.1) in Wy s = {z;|zi| <
0 (i<n),|zy —h| <}

Here we explain how to apply the above theorem to the Cauchy problem (1.9). Set

m—r—1 j
. L —h)’
u* = Z D,ﬁu(zl,z",h)u

j=0 /!
and v =u* —w. Then (1.9) is equivalent to
Pw=Pu*, w=0{(z, —h)" "}
Now that zL"M" =0 and zL"(M — M") =0 on z, = h, we see

al"Pu* = Y 2L"QDyut = Y wL" QD) u=7L"Pu=0
o) s
on z, = h. Thus the compatibility condition (3.2) is fulfilled and therefore the
3.1 is applicable.

Mheorem 3.1 will be proved by using the contraction principle. For that purpose
we rewrite the Cauchy problem (3.1). Denote

i = D"y

D1 = [ sz da (33)

h
Q:I_i_Qr_Mh_i_QrJrlD;l_’__”_i_Qmemﬁﬂ.

Then the Cauchy problem (3.1) is written
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M"i+ Qi =f. (3.1
Set
Y ==Dji, v=i—-R"Y. (3.4)
Then, because M"R™"j =0, we have
M" + Qv+ ORM) = f.
Operating nL" and noting nL"M" = 0, we have
nL"Qu+ nL"QR"y = nL"f.

It is easy to see that mL"IR"jy = 1(0,z",z,,v){y =0. Since each term of O, has the
form z{aD®-*"0) with a; + |¢”| = r — s and o” # 0, it follows from the condition (A.3)
that / —oy > 0(/ — o) >r—s—o =|o”| >0 and therefore we see 7L"Q,R"j =0. Be-
cause R" and D;! are commutative, we have

AL"Q" DT RM = ¢" D7y
where Q| = Q,1(z1,2",h, Dy, D"). Thus, if we denote
p=D ", w=M"
{Q=@m— F)D A+ QD e+ QDT
then the Cauchy problem (3.1) is reduced to

W+ Q(M") " w+ QD Rig = f (36)
0 _}_qhn[‘le(Mh)*lW + thELhQDnRhw _ th[th ’

(3.5)

where §" =1/q".

4. Banach spaces % and %’.

To consider the equations (3.6), Banach spaces are introduced and some of their
fundamental properties are proved in this section.

4.1. A lemma.
The following lemma will play an important role.

LemMA 4.1. Let r>1, p>1 and v >0 be integers. Then there exists a corre-
spondence i — i* from N to N such that the following 1)-6) hold with some iy € N.

1) if<iy if i <ip

2) (v=p) =V

3) vi+p=(+1)

4) (i+p)f—-p=<i*

5) (i—-kp—1)"+kp<i* if 1<k<r+1ori<v

6) i">i Vi and i*=1i for i>i
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Proor. Define i* by
v =

‘ . vpi+p if b+ 1) >
/) = .
(v+pi+7) {v+pj+/ if (r+1)/<j
for j:0,1,2,... and /:1,2aap7
v=1—pi+0) =v—pi+p
fOI’ ]:1727 and/:17277p

Then it is easy to show 1), 2), 3) and the first half of 6).
Set A= (i+p)" —i*. When i>v, write i=v+pj+/ (j>0,1 </ < p). Since
(r+1)/ < j implies (r+1)/ < j+1, we have

A=W+jp+p+) —(+jp+¢) < p+max{0,/— p} = p.
When i+ p<v, write i+ p=v—1—jp+¢ (j=1,1</<p). Then
A=@—1=jp+0) —(v=1-jp—p+{) =p.
When i <v<i+p, note i+p<v+pand i >v—p. Then
A=(@{+p)—v <(+p) —v =p

Thus 4) has been proved.
Denote B=i*—(i—kp—1)". When i—kp—1>v, writte i—kp—1=v+ jp+/
(j=0,1</<p). Then

B=W+{+kp+/+1) —(+jp+70).
If /= p, we have
B>v+ (j+k+ 1)p+min{l, p} — (v+ jp+ p) = kp.
If /< p, we have
B>v+ (j+k)p—(v+ jp) +min{l,0,p — /} > kp.

Here we have used that (r+ 1)/ < jwhen (r+1)(/+1)<j+k. Wheni—kp—1=v,
we have

B=U0+kp+ 1) —v'>2v+kp+1—v>kp.

When i—kp—1<v<i, write i—kp—1=v—1—jp+¢ (j=1,1 </ <p). Since
i=v+(k—j)p+¢ >v, we have k > j and therefore (r+ 1)/ >r+1>k>k—j>0.
Hence

B=0+(k—-)p+) —(v—1—jp+{)
=v+(k—=j)p+p—(v—jp+p)=kp.
When i =,
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B=v'—(v—kp—1)"=v—(v—kp)=kp
for all k> 0.
When i <v, write i=v—1—jp+/ (j=>1,1</<p). Then
B>i"—(i—kp)' =i*—(v=1—jp—kp+¢)*
=v—jp+p—(v—jp—kp+p)=kp

for all £ > 0. Thus we get 5).

For i > v, one can write i=v+ pj+¢ with j >0 and 1 </ <p. Set ip=v+
p>(r+ 1)+ 1. Then, if i > io, we have j > p(r+1) > /(r + 1) and therefore the second
half of 6) holds. We have thus finished the proof the lemma. ]

4.2. Definition of £ and A’
Letting i — i* be a correspondence satisfying this lemma, we introduce two Banach
spaces 4 and #’. Let 0<p<1, Ry>1, R.>1, R, > 1, and set

|B" |48,
=g TT 87 + o) (4.1)
j=1
G(B) = g(B)p* P Rl RV'IRE: (4.2)

~

L, h=(0,...,0,h) and (z — h)F =

n-

for multi-index = (f,,...,5,). Denote gl =p,!---f
z{f' > ﬁ " (zn — h)’. We say a power series

Zf/; 2=l (fe0)

belongs to # and write f e # if

7
“PGp)

Denote the left hand side by || f]|, then it defines a norm, with which % is a Banach
space.
In the same way, denoting z’ = (z,...,2,), We say a power series

< 0. (4.3)

(/)(Z)—Z(/)ﬁ /ﬁ' (pp € C)

belongs to #’ and write ¢ € %’ if

\(0/3”
G0,

Denote the left hand side by ||p||’, then it also defines a norm, with which %’ is a
Banach space.

If f(z) is holomorphic in {z;|z;| <r/ (1 <i<n-—1),|z, —h| <r}, then it belongs
to #if Ry > 1/r;, R > 1/(prl) and R, > 1/(pr,), where r. = min{r,,...,r,_1}. In fact

< 0. (4.4)
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IDf(e)] < c(i)ﬂ -(; )ﬁ"ﬂl! B

)
1 n
‘ﬁ”‘+ﬂn l[f* ﬁ 1 ﬁl* 1 |/}”| 1 :Bn
con T (0 (G
1 ]!;[1 ( 1 ) V{ pl’é prl/1

In the same way, one can see that if ¢(z’) is holomorphic in {z;|z;| <r/ 2<i<n-—-1),

|zo — h| <}, then it belongs to 4’ if R, >1/(pr.) and R, > 1/(pr)).
Conversely, if f € %4, then it is holomorphic in

Ri|z1| + (n = 2)pR.|Z"| + pRylzn — h| < 1
where |z"| = maxs<j<,i|zi]. In fact, | Y, f3(z — )’ /B)] is estimated
1B"|+B,

‘ . - p
< Cl\lfllzﬁ—l, [T 87 +kp)pPi Ry |z )P (Relz" )P (Ru |20 — B])P
g Pok=1

* f 4k
<ol 30 PP () - 2R ) Rl — )
ﬁlvﬁmﬁn VPP’

o0
< Gl I )_(Rilzi| + (n = 2)pRe|2"| + pRylzy = h])™.

m=0

If p(z') € %', in the same way, one can verify that it is holomorphic in
(n—2)pR.|Z"| + pRy|z, — ] < 1.

4.3. Propositions.

(4.5)

To apply the contraction principle to (3.6), we will need to estimate ||Q(M;) '],
|OD,R"¢||, ||zL"f|]" and ||OD,R"p|’. We make here some preparations, employing

the notation (f), = D’f(h) and (k), = k(k—1)---(k—/+1).
Denote

Io(z1Dy) = zr: as(0)(z1D1)",
5s=0

L) = al0)(A)"".
s=0

Then, by the assumption (A.l), there exists a positive constant ¢y such that
|L(k)| = co(k +1)" Vke N\{v}.

Therefore, for any holomorphic function g(z) with zD{g =0, the problem
Iy(z1Dy)v(z) = ¢g(z), nDjv=0

has a unique holomorphic solution v(z), which we denote by v = I;g.

(4.7)

(4.8)
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PROPOSITION 4.2.  Let (/,0) with o, < m —r satisfy the conditions (1.2), (A.2) and
(A3),orlet /! =oy =r—sand oy =m —r. Assume (A.1) and pRy > 1, then there exists
a positive constant C independent of p, R, R., R, such that

. R. |o”| RPN\
|z{D*D, ™ I w|| < C(Rp) <R—1) | w]] (4.9)
n
for any we A.
PrROOF. Since D¥(z1Dy) = (z1Dy + k)D¥, we have

(1),

+
( D%D " rI W)ﬁ IO(ﬁl /_I_(xl)Wﬁl—/+o€1,ﬁ’l+d”7ﬁ,,+otn—m+r'

From the definition of I;!, one may suppose B, — ¢ + oy # v.
Set

(B1),
[o(fy — ¢ + o))

and note |a”|+a, —m+r=r—s—a;. Then we have

A= gpy =L+, + " p,+ o —m+r)

4 (ﬂl) (ﬂ — /4y )*'|ﬂ”|+ﬁﬁsa1{(ﬂ —/+u )*—i-kp}
(B — £ + o) M - | | |

It follows from the conditions (1.2), (A.2) and (A.3) that

Br—¢—ou) +(r—s—o)p <py.

In fact, when r—s—o; >0, we have / —o; > p(r—s—o;) by (A.2) and (A.3), and
therefore / — oy > p(r—s—a;) + 1 (because both sides are integers). When r—s—o; <
0, we have / — oy > p(r —s — o) by (1.2) and (A.2), namely oy — 7 < p(oy —r+s). In
both cases, the inequality follows from 4) and 5) of [Lemma 4.1.

When r —s—a; > 0, it holds that

By =4 +o), "1
|Io(ﬁ1—/+o<1 )i H s

—(4o) +kp} < C

with a positive constant C; independent of ;. Therefore

Iﬁ”Hﬂn
A< Ci(Br), g (Br =+ o) H {(Br =L+ o) + (r—s—ou)p+kp}

IB” 148,
< Gt T A +kp)} = Cag(B)
k=1

where we used B = 8, for large B, (Cemma 4.1).
When r — s —a; <0, it holds that

{(py =/ +o)}, -
o (B — £ + o) Tlp—y gy ir LBy — £ +00)" + kp} —
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with a positive constant C; independent of ;. Therefore

18" |+,

A< GBE)AB —C+u) —a}t [] {(B—C+0) +(r—s—ou)p+kp}
k=1

1B" [+,
< Gt I i +h)) = Caglp)
k_

=1

where we used f; = f5, for large f, again.
On the other hand, if 0 < p <1 and pR; > 1, then

p(ﬁﬁ/”r“l)**(ﬂl*/+&1)R§ﬂl */Jrfll)*Rlc,b’"+a”\Rg,,+anﬂn+r

— pﬁf*ﬁlRlc{f"\Rgnp/fal (pRl)(/)’1*/ﬂu)**ﬁf‘RL#’/lRernH

. , R. [oe”| Rp m—r—oy,
< p/fl =B le ‘Rgn (R_;’> (R_1>
1 n

where we used / — oy > p(r —s—oy) = p(|a”| + o, —m+r). Thus the proof has been

finished.

[

ProrosiTiON 4.3, Suppose pRy > 1. Then there exists a positive constant C inde-

pendent of p, Ry, R. and R, such that

) ly
I e = 7wl < O ()

//‘

1 Vn
() vl

for any y = (y1,y",7,) and any we A.

Proor.

(11" (20 = B)"w)gl = (B),, (B"),0 (B,

Wﬁlfﬂ/l 1/3”*7"7/’7»1*3’" |

< (B1)y, (B")yr(Ba),, G(Br = v1, B = 9" By = wa) Wl

Since f; = f;, we have

Bo),, By =v)™t (B =) (B =) kR
|/ S (R A M L R

and therefore

(ﬁl)yl (ﬂ”)y"(ﬂn)yng(ﬁl - ylaﬁ” - V”aﬁn - J)n)

V)’//*y//‘+/))n*yn
< CBNB"), (B,  T] (B +kp)
k=1
., 18" |+,
< g 1T (87 + k)
k=1

where C = maxy<;, k*!/k!.

(4.10)
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On the other hand, pR; > 1 implies
p(ﬁ1*71)**(ﬂ1*Vl)Rgﬁl_71)*R\cﬁ”*7”|R5n*7n
= 7 (pRy) B R R R RY RS
< pn R;l?"lR;Vnpﬁf—ﬁl R{grR‘fﬂle".
Thus we get (4.10). O
PROPOSITION 4.4.  Suppose a(z) satisfies
|D7a(h)| < Aoy!R} (4.11)
for all y with positive constants Ay and Ry. Then, if

1 Ry 1 Ry 1
Ry < = -
PROS3 JR.S20 PR, 2

pR; > 1 (4.12)

there exists a constant C independent of p, Ry, R., R, such that

law|| < CAollw|, weB. (4.13)

PrOOF. In the same way as in the proof of [Proposition 4.3, we have

S0
b4

< > Ao(Br),, (B ) (By), RYTG(B =91, B =" By = vl
b

[(aw)sl =

[»"] Tn
< 401 o)’ (1%) (pRT?) ().

Therefore, if (4.12) is fulfilled, the inequality holds with a positive constant C
independent of p, R;, R. and R,,. ]

Now, one can write L" appearing in [Proposition 2.1 as

L'= > bl . (")DP D"

oo’ <v

where b£170 =1, || <o(v—oy) if o <v and bgha,,(z”) are holomorphic functions.
Taking ¢ sufficiently small, one may suppose

ID""B"_,(0)] < Agy"'R" (4.14)

oy, o
for all y” with positive constants A4y, Ry independent of |h| < and (oy,a”).
PROPOSITION 4.5.  Take & sufficiently small and suppose (4.12), (4.14), (R./R}) <1

and |h| < 6. Then there is a positive constant C independent of h,p, Ri, R. and R, such
that

Iz < ClIf 1. (4.15)
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Proor. It follows from the definition of the norm | -’ that

lzDy 1" < |1 £1I-

Next, consider the remainder terms.

(=D D™ ) gr g | = oy i ] < G, o + B BN

Since pla”| <v—o; and p is an integer, we have o) <v—1— pla”|. Therefore it
follows from that

/l|

o < (v—1—pla")" <v* — pla

It means af + ploe”| <v* =v, and therefore we have

145, ] B 15,
it [ e +kp) <ot [[ (o5 +hp) T O +hp)
k=1 k=1 k=1
18”148,
N " "
<vy ! H (V +kp):g(v7ﬁ 7ﬁn)
k=1

On the other hand, because p <1 and R} > 1,
p“T*alR;‘FR\g”w”len < Ri‘l**v*R|Co¢"|pv*valv*R|C[5’”|Rg,7

< (R/R))™p" "Ry RVIR < p" 'Ry RIIRY:.

Using [Proposition 4.4, one can complete the proof easily. O]

PROPOSITION 4.6. If £, 0 with o, <m —r and o # (r — 5,0,m — r) satisfy the condi-
tions (1.2), (A.2) and (A.3), then there exists a positive constant C independent of p,
Ry, R. and R, such that the following inequality holds for all ¢ € %#'.

/ —mr+1 o 1 o Re - R} i !
DD, ol < ot () () el
1 n

Besides it holds that
Ny 1—p Ruy
[21Dnpp(2") 21 ! < Cp ”R—fll(ﬂll :
PROOF.
|(z(D*D," ()2 9D gl = 1(B1) P s i, —mer1

< CGv,od" + " op+ B, —m+r+1)]o|’

where f; —/+o; =v and C is a constant depending on v.
In the same way as in the proof of |Proposition 4.2, by [Lemma 4.1, it follows from
the conditions (1.2), (A.2) and (A.3) that

Br—C4o—p) +plr—s—or+1) <py.
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(Note this is not true when r—s=ao; =/.) Since v =(v—p) = -/ 4o —p)°
and r —s—oa; + 1= |o"| + o, —m+r+ 1, this inequality implies
v+ p(lo| o —m+r+1) <.
Then it is easy to see that

o +B" |+ o +B,—m+r+1

vl 11 (v +kp) < g(B)-
k=1

On the other hand, taking f;, —v=1/— oy > p(|o”| + o, —m+r) into account as
well, we have

*_ * " " . .
pv va R|c?< +p |Rzn+/)’,, m+r+1

_ pﬁl—v<pR1)v**ﬁfRL?‘”\RZ”—M—Q—r—&-lpﬁ,*—ﬁl R'IBI*R‘leRE"
R ‘OC//l Rp Wl_r_l_an * ol "
- _c> (_1) Bi=b RB RIB"| RFs
P <Rf Rn P 1 c n
Thus we have obtained the first half of the assertion. Now let us work on the second
half.
(21D (221 V) gl = 1B10g7 5 1] < CG(v, 8", B, + Dl

where #; — 1 = v and C is a constant depending on v. Since v + p = (v+1)" = f], we
have

g, ", B, + 1) < g(B)-

Moreover, we see
Pk * n _ *__ % *_ . "
p" 'Rl Rlcﬁ |R£n+1 :pﬁ1 "(pRy)" B Rnpﬁl ﬁlR{lRLﬁ |R5n
= p(pR1) " Rup” P RY RIIRD.

Therefore the second half of the Proposition has been proved. ]

5. Proof of Theorem 3.1.

In this section, the [Theorem 3.1 is proved by applying the contraction principle to
the reduced equations (3.6). Since all the coefficients of P, M" 0, 0,L" and §" = 1/¢"
itself are holomorphic near the origin, one may suppose there are positive constants dy,
Ay and Rj such that all the coefficients and g satisfy (4.11), (4.12) of [Proposition 4.4]
and (R./RY) < 1/2, for any |h| <Jy. Then one may use all propositions prepared in
the former section.

5.1. Estimate of (M")~!.
First, we obtain an a priori estimate of the solution to

M'v=g, nDlv=0 (5.1)

where nL"g = 0 is supposed.
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Since nDJv = 0, it holds that v = I; 'Ijv (See (4.8)), and therefore the equation can
be written as

Iov+ (M" — I)I; ' Tov = g

where

M"— Iy = {a(z1,2",h) — a,(0,0,0)}(z:Dy)"™
s=0

r
/ " or,a”,0
+ g E 21y, 0 m—r) (21,2 ,h)D( Ba’,0),
s=0 oy +|o"|=r—s,a” #0

By |Proposition 4.2, we have

//‘

" — RC ‘O(
1

1(z1D1)" "Iy o) < C|lhov]].

One can write

—

as(z1,2",h) — ag(0,0,0) = > a;(z1,2", h)z; + hay(z1,2", h)
1

~.
Il

and suppose all a; and a(,, ,» n—r fulfill (4.11) and [4.12) in [Proposition 4.4 for any
|h| < dy, by replacing dy, Ay and R, with other ones if necessary. Thus, by Propositions
4.3 and B4, we have

_ R, 1
(0"~ 115 ol < {5+ p+ -+ I ol
1 ¢

Therefore, there exists a positive constant 0; such that, if

1 R
_ ¢ )
p<517 Rc<517 Rf<51, ‘h|<51 (5 )
then
1
I(M" = Io) Iy Hovl| < 5 || ovl| (5.3)

and the solution to satisfies the inequality
col[o]l < [[Zov]| < 2||g]| (5.4)
where ¢ is the constant appearing in (4.7).

5.2. Proof of Proposition 2.1.

Next, we consider the problem |2.8), i.e.

Vg

M"o(z) = g(z), nD{u(z') = (')

supposing nL"g = 0, and complete the proof of [Proposition 2.1.
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Set w =", v;(z')z]/j! with v, =¢. Recall that v; (i <v) are determined by

]
i—1
h,, h
MiiVi = gi — E HifUj
Jj=0

where 41(z1,z") # 0 and orderpr ﬂ{}(zl,z”,D”) < o(i—j) for j<i. One can write

h h m e
lul] — Z luijo(" (ZI,Z )D

ploe/|<i=j

and suppose 1/uft, ult,/uft all satisfy [4.11) and [4.12] in [Proposition 4.4 for any |h] < dy
by replacing Jy, 49 and Ry with other ones if necessary.

It follows from the definition of the norm that ||g;(z")z{/2| < [|gl|. By
4.4, we have |vo| < Collgll. Suppose |lv;z{/j!| < Cillg|| for all j <i<v. Then

Zi " .
(o) ‘ = [0, < GllgIGU. "+ B',,)
| B

where ff; =i. Since pl|o”|<i—j, we have j+ pla”|+1<i and therefore j*+
plo”| <i* by [Lemma 4.1. It is then easy to see that, if p < 1, pR; > 1 and R./R} < 1,
then G(j,o" + ", B,) < G(p) and |jv;z{/i!|| < Cil|g|| with some constant C;. Thus we
have

lwll < Cligll + llell"-

Next we estimate M"w.

| D)ol = 1(B) gy .,
< CG(By — £+ o, a” + 7 B, wll

where C is a constant depending on v. Since (B, —7+o1)" + plo”'| < B] by
4.1 and the assumption (A.3), we see easily that, if p < 1, pR; > 1 and R./R] < 1, then
G(B, — ¢+ o, 0" +B",B,) < G(B). Then, taking [Proposition 4.4 into account, we get

1wl < C{ligll + lloll '}

and therefore M"'w e 4.
Set 9 =v—w and § =g — M"w, then we have

M"s = L+ (M" — Ip)I; ' b = §. (5.5)

By the consideration in §2, it follows from nL"g =0 that § = O(z}*!). So, defining
B=1{feBf=0("")}, we consider the equation (5.5) in this space.

Note j=g— M'weB if ge# and pe B, (M — I)I; ' Ipp = O(z]") if Iyp =
O(z;*!) and nL"f =0, nDlvf: 0 for fe%. Then, by the inequality (5.3) and the
contraction principle, we see the unique existence of solution & € % to the equation (5.5).
We have thus completed the proof of [Proposition 2.1l. Hereafter the constant p shall be
fixed.
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5.3. Estimate of ¢.
Next, we consider the equation

¢ +¢"nL"OD,R"p =y (5.6)
in the space 4’, where
OD,= Y asz{D'D;"" + 3" (z,— h)a,z{D D"
oy <m—r—2 oy=m—r—1

By replacing dy, A9 and R, with other ones if necessary, one may suppose (4.11) and
for all ay,a, and |h| <.

Set v; = gz{/v! and vy = R"¢ —v;. If R./R{ <1 and R}/R, < 1, by Propositions
43, 4.4 and 4.6, we have

1QDuw1 || < 1t R II(/)II + Cz—||</)|| <G 1 ||¢||

Here and hereafter C denotes a constant which may depend on p but not on R;, R., R,.
Since M"D,R" = M"R"D,, =0, v, fulfills

M"D,vy = —M"D,v;, nD}v,=0.

By [Proposition 4.6, if R./RY <1, we have

o, o R
124 D Doy || < CRp loll’s  llz1Da01]] < CR—ZHcﬂH’
1

for oy +|a"|=r—s and ¢ satisfying the condition (A.3). Note that I”(z;,z",
z1Dy)D,v; = I"(zy,z",v)D,v; = azyD,v; with some holomorphic function a. Since one
may suppose a satisfies (4.11) and [4.12) for any |A| < Jdy by replacing dy, Ao, Ry if nec-
essary, we have

R
|M" D] < C il
1
Hence, by the inequality (5.3), we have

o Dyoa|| < 2(|M" Dy | < e =7 el (5.7)
1

Therefore, by Propositions B2 and B4, we see

4

2
R,
100,21 = 1015 hDyeal| < €1 () IDuval < €2 2ol

n
Thus, by using Propositions 4.4 and 4.3, we obtain
“h_1hA hon' RY
1g"=L" @Dy R 9l|" < C = lol]"-
n

Therefore there exists a positive constant d, such that, if
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1

— <0 5.8

2 <o (53)

then ||g"L"QD,R"¢||' < (1/2)||p|" and by the contraction principle we see the unique
existence of solution to the equation (5.6), which satisfies

loll" = (1 +¢"=L" QD R") 'y < 2|[w||". (5.9)

5.4. Projection A.
We now consider the equation (3.6). It follows from its second equation that

¢ =(1+¢"2L"OD,R") "L {f — Q(M") " w}. (5.10)
With this expression, the first equation of (3.6) is written as
w+AQM")w = Af (5.11)
where
A=1-0D,R"(1 +¢"zL"QD,R") ' §"=nL". (5.12)

Denote % = {f € #;nL"f =0}. Then it is easy to see
Af e B if feB, Af=f if feB
It means A defines a projection from % to %. We consider the equation in the

~

space 4.

5.5. Contraction principle.
Recall

0= " DD+ 3 (24— W)az{D*D.

oy <m—r—1 oy =m—r
Then, by Propositions 4.2, B.3, 4.4 and the inequality (5.3), we first get
hy—1 1 hy~1 R{ -1 RY
1o(M™) " wif = [|QIy " Io(M") " wll < Ci = [[lo(M7) " wi| < Co 5~ [wl].
Next we estimate |QD,R"p|. As in the paragraph 5.3, set R'¢p = v + vy, v] =
pz{/vl. Since, by the assumption (A.1),
{I —I"yD,v, = {I(z,v) — I(z1,2",h,v)} Dyv = azi(z, — h)D,v;

with some holomorphic function a depending holomorphically on /4, it follows from
Propositions {3, B4 and 4.6 that ||[{I — I"}D,v,|| < (C/R?)|l¢||’. Then it is easy to see

19D ]| < Cllgll"

Since ||IyD,va|| < C(R,/RY)||||" by (5.7), in the same way as in the estimation of
O(M")"'w one can obtain

Rl’
10D, 2| = |0y ' T Dyos || < CIR—lllloDnvzH < Gllol’
n
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and therefore
10D, R 9|l < Cllo]".
Thus we have
1471 < |/l + | @D, R (1 + §"=L"QD, R")~'g"n L" ||
</l + (1 +¢"=L"QD,R") "' §"nL 1|

< I/ + Cllg"=L f|I" < GslI£ ]

where [Proposition 4.5 and were used. Therefore

_ _ R?
l4Q(M") ™ w|| < Gllo(M™) " 'w) < Camot Il
Hence, there is a constant 03 such that, if
Ry
— <0 5.13
R, <0 (5.13)

then by the contraction principle we see the unique existence of the solution w e % to
the equation for any /€ 4. Let w be this solution and define ¢ by (5.10), then
peB, u=(M""w+R'D 'pe# and it gives a solution to the equation (3.1') which
is equivalent to the Cauchy problem (3.1).

5.6. End of the proof.
If f(z) is holomorphic in V,, it belongs to # with
1 2

1
Ri>—, R.>—, R,>
r DPre Prn

for any |h| <r,/2. Set 6; =min{l/2,69,01,1/(2Ry)} and let

R

1
p<of, —<9j,
Ry

<oy, |h <d;, pRi>1.
R.

Fix p and set ; = min{r,/2,0;,02,03}. Then, if we take R, such that

Ry
— <05
R, 3

(we remark 0,03 depend on p), we see (4.12), (5.2), and (5.13) are satisfied and
therefore the solution # is holomorphic in Rj|zi|+ (n —2)pR.|z"| + pRy|z, — h| < 1.
Thus, by setting

0 = min ! ! ! 03
= 3R1’3(n_2)pR¢,3pRn, 3

we can finish the proof of [Theorem 3.1.
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6. Application to the propagation of singularities.

as well as can be applied to the propagation of sin-
gularities for equations with non-involutive double characteristics.

Let S={z;z; =0}, T ={z;z; =z, =0}, denote the dual variable of z by (=
({1,...,¢,) and suppose that P = P(z,D) is a linear partial differential operator of
second order with holomorphic coefficients in ¥ whose principal symbol P,(z,{), (z,{) €
V' x C", satisfies the following condition.

ConpiTIoN (N). There are holomorphic functions 2*(z,¢’), (k = 1,2), in a neigh-
borhood of (z,{") = (0,4), u' = (0,...,0,1) C""!, such that, if we denote X* = ¢, —
A¥(z,¢"), then

(N1)  Py(z,{) = aX'X?, where a(z) is the coefficient of D} in P,

(N2)  (0P2/0L1) g —jyzcny = 0 on {z1 = 0,("=u'},

(N3) (X' aX?}, _; .oy #0 at (z,{)=(0,4'), where {X' aX?} denotes the

Poisson bracket.

Let @X(z) be the solution to the Cauchy problem
D\®— ¥z, D'®) =0, &(0,7') =z, (6.1)

for each k = 1,2 and denote by K* the hypersurface {z;®*(z) =0}, which is a char-
acteristic hypersurface issued from 7. Replacing r; by smaller one if necessary, one
may suppose both K! and K? are connected in V.

DEFINITION 6.1. Let 2 be an open connected set in C”" and 0Q its boundary. Let
u(z) be a holomorphic function in a neighborhood of a point z° €  and have a holo-
morphic extension in the universal covering #(Q). We say Z € 022 is a point of strong
(weak respectively) analytic continuation of u(z) if it is analytically continued up to Z
along any (some respectively) path z =z(7), 0 < < 1, satisfying

2(0) =2 z(1)=%, z(1)eQ for 0<t<1.

Set

Ak = P porep), BRE) = (Pt PR ()
021 1 G,

and denote Q@ = V — K'UK?US. Then, if A'(0)k + B'(0) #0, Vk € N, the following

property holds ([6]).

ProPERTY (AC). Let u(z) be a holomorphic function in a neighborhood of a point
20 e Q, satisfy Pu= 0 and have a holomorphic extension on the universal covering R(R).
If u(z) has a point of strong analytic continuation z € K?> and a point of weak analytic
continuation a € (S — T), then it has a unique holomorphic extension in V.

This section aims to consider if this property can be true when 4'(0)v + B!(0) = 0,
dve N. We suppose

ConpiTiION (N').  Set
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1 <N 0%P,

P00 ==32 53
i=1 7R

+ Py

where P; denotes the first order term of P, then
(N4) A'(z)v+ B'(z) =0 on z; =0 for some ve N,
(NS) (0P2/3C1); s {X',aX?}, ;i and (P{); 1,2, are free from ("=
(CZ)"'vé:n—l) on {Zl = O}

Then the following proposition holds.

PrOPOSITION 6.2. Define

0(z, D) = Z or 2(z, DD (2))D; + B'(2) (6.2)

then, under the conditions (N) and (N'), it holds that _
i) there exists a unique operator L(z',D) = D{+3 ", Li(z',D")Dy"”’ such that

nlLQ =0,
i) there exists a unique operator R(z,D’) :zlv/v!+ZjZV+1Rj(z’,D’)Z{/j! such
that QRn = 0,
i) the operator nLPRx is free from D', namely a function of z'.
Denote
q'(z) = nLPRn. (6.3)
Then, by [Theorem 1.3, one can prove the following thorem.
THEOREM 6.3.  Assume Conditions (N), (N') and
q'(0) #0. (6.4)

Then the property (AC) holds true.

REMARK. If u(z) takes initial data on S holomorphic on S\7 but singular at
T, the theorem means at least weak singularities appear everywhere on K,. (In other
words, every point of K, is not of strong analytic continuation.) Concerning the ex-
istence of holomorphic solutions in the universal covering of V' — K; UK, US, see C.

Wagschal [13], J. Persson and S. Ouchi [8].

is proved as follows. The function u(z) has a holomorphic extension
in 2(V — K'US) (see [6, Proposition 3.4]) and consequently so does it in Z(V — K!)
(see [6, Proposition 3.5]). Therefore the proof is completed by the following propo-
sition.

PROPOSITION 6.4. If u(z) is holomorphic in #(V — K') and satisfies Pu =0, then it
has a unique holomorphic extension in V.

Hereafter we prove this proposition by applying Theorem 1.3.

PROPOSITION 6.5. The conditions (N), (N') and (6.4) are invariant under any regular
change of variables
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wi=zi, wi=fi(z) 2<j<n)

satisfying f;(0,z') = z;.

The proof of this proposition is elementary and so we omit it.
By the condition (N1), the operator P can be written in the form

/ 2 /
P=a (Dl + Z Clij) + Z aj DDy » + Z biD; + ¢
J Jik J

where all coefficients are holomorphic, ZJ' denotes the sum for 2 < j <n and ZJ' X
the sum for 2 < j, k<n. 1If we set o =,/— ;7kajkéjék by taking the branch appro-
priately, then ¢ is holomorphic in a neighborhood of (0,4’) and one may suppose A' =
~ Y@+ and 27 = -3 a;(; — 9.

Denoting by @;(z) (2 <j<n—1) the solution to the initial value problem

/
(Dl +> a,Dj> &=0, &0,7)=z
J

and by @,(z) the solution to
DD+ (z,D'®) =0, @(0,z') =z,
change the variables by
wir=zi, wi=®(z) (j=2).

Then, denoting w; by z; again, one can write P in the form

/
P = a{(D1 +a,D,)* + ZajijDk} +Y biDj+e
.j7k j

Since @' = @, =z, is a phase function, we have
2 _
a-(a;,+ ay) =0.

Now, from the conditions (N2) and (NS5) it follows that

aPz)
—= =2a0=0 on =0},
<561 . {z1 =0}

_ 26(a5)

1 2
{X ,aX }Clzﬂ.l 821

on {z; = 0}.

Since a,0 are holomorphic, we see by (N3) that there are two cases:
Case 1. a= 0O(zy), Dia(0) #0, 6(0,u") #0

0o

Case 2. 6= 0(z), a(0) #0, —
821

0,1") #0
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In the case 1, by the condition (N5), d(ad)/0z is free from {” on z; =0 and so
is 6. Therefore ajy = O(z;) for all j,k >2 except j=k=mn. By (N5), we also see
b;j=0(z;) for 2< j<n—1. Thus P can be written in the form

/ n—1
P =z1{ ay D} + ay,D1D, + z ZajijDk + 01Dy + 2 ijl)j +b,D, + ¢
Tk =

where a;1(0) # 0, a1,(0) # 0, a,,(z) =0, and the indicial equation (N4) is
ap,v+b,=0 on z; =0.

It is easy to see that Pe #>"! and all the conditions of are fulfilled.
In the case 2, ° = O(z?). Therefore ay = O(z}) for all j k>2 and (85/0z) -

(0,4') = D?ay,(0) # 0. Besides it follows from (N5) that ay = O(z;) for j,k > 2 except

j=k=nand bj=0O(z;) for 2< j<n—1. Thus P can be written in the form

/ n—1
P = ay; D} + z1a1,D1 D, + =} ZajijDk +Db1Dy + 21 ijDj +b,D, + ¢
Jik J=2

where a;1(0) # 0, a1,(0) # 0, a,,(z) =0, and the indicial equation (N4) is
ag,v+b,=0 on z; =0.

Therefore P e #*11/2 and all the conditions of are fulfilled. Thus we
have completed the proof in both cases.
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