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Abstract. The simultaneous universality of twisted automorphic L-functions, asso-

ciated with a new form with respect to a congruence subgroup of SLð2;ZÞ and twisted by

Dirichlet characters, is proved. Applications to the functional independence and the zero

density of linear combinations of those L-functions are given.

1. Introduction and statement of results.

In 1975, Voronin [29] proved the universality theorem for the Riemann zeta-

function zðsÞ. Let K be a compact subset in the strip D1 ¼ fs ¼ sþ it A C j 1=2 <

s < 1g with connected complement. Let FðKÞ be the family of functions which are

non-vanishing, continuous on K and holomorphic in the interior of K . We use the

notation

nTð� � �Þ ¼ T�1 measft A ½0;T � j . . .g

for T > 0, where measfAg denotes the Lebesgue measure of the set A, and in place of

dots we write some condition satisfied by t. Then Voronin’s theorem asserts

lim inf
T!y

nT sup
s AK

jzðsþ itÞ � f ðsÞj < e

� �

> 0 ð1:1Þ

for any f A FðKÞ and any e > 0 (see Chapter 6 of [13]).

After Voronin, the universality theorem was generalized by many mathematicians.

The following ‘‘joint universality’’ theorem for Dirichlet L-functions was shown by

Voronin [30], Gonek [6] and Bagchi [1], [2]. Let w1; . . . ; wm be pairwise non-equivalent

Dirichlet characters and Lðs; wjÞ the Dirichlet L-function attached to wj ð1a jamÞ.

Let Kj be a compact subset of D1 with connected complement, and fj A FðKjÞ ð1a

jamÞ. Then, for any e > 0,

lim inf
T!y

nT sup
1a jam

sup
s AKj

jLðsþ it; wjÞ � fjðsÞj < e

 !

> 0: ð1:2Þ

It is desirable to prove universality theorems for more general zeta and L-functions.

Recently, the universality of automorphic L-functions has been studied. Let FðzÞ be a

holomorphic normalized Hecke-eigen cusp form of weight k for the full modular group

SLð2;ZÞ. Then FðzÞ has the Fourier expansion of the form

FðzÞ ¼
X

y

n¼1

cðnÞe2pinz; cð1Þ ¼ 1: ð1:3Þ
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The associated Dirichlet series

Lðs;F Þ ¼
X

y

n¼1

cðnÞn�s ð1:4Þ

is convergent absolutely for s > ðkþ 1Þ=2, and can be continued to an entire function.

The universality of Lðs;FÞ was first discussed by Kačėnas-Laurinčikas [9], who proved

a certain conditional result. The general result of Laurinčikas [14] can also be applied

to Lðs;F Þ, which gives another conditional universality. Then in [18], the universality

of Lðs;FÞ was proved unconditionally. Let K be a compact subset in the strip D ¼

fs A C j k=2 < s < ðkþ 1Þ=2g with connected complement, and f A FðKÞ. Then it is

proved in [18] that

lim inf
T!y

nT sup
s AKj

jLðsþ it;FÞ � f ðsÞj < e

 !

> 0 ð1:5Þ

for any e > 0. In [19], this result has been generalized to the case when F is a new form

with respect to the congruence subgroup

G0ðMÞ ¼
a b

c d

� �

A SLð2;ZÞ j c1 0 ðmodMÞ

� �

;

where M is a positive integer.

To prove (1.5) unconditionally, a new idea was introduced in [18]; this idea is

called ‘‘the positive density method’’ in [21]. A similar idea was applied to prove the

joint universality of Lerch zeta-functions in [17].

It is the purpose of the present paper to combine this positive density method with

Bagchi’s idea [2] for the proof of (1.2), and establish the following joint universality

theorem for twisted automorphic L-functions.

Theorem 1. Let FðzÞ be a holomorphic normalized Hecke-eigen new form of weight

k with respect to G0ðMÞ, whose Fourier expansion is given by (1.3). Let qj be positive

integers prime to M (1a jam), wj be pairwise non-equivalent Dirichlet characters mod qj
ð1a jamÞ, and define the twisted L-functions

Ljðs;FÞ ¼
X

y

n¼1

cðnÞwjðnÞn
�s; ð1:6Þ

which can be continued to the whole complex plane. For each j, let Kj be a compact

subset of D with connected complement, and fj A FðKjÞ ð1a jamÞ. Then

lim inf
T!y

nT sup
1a jam

sup
s AKj

jLjðsþ it;FÞ � fjðsÞj < e

 !

> 0 ð1:7Þ

for any e > 0.

The following three results are simple consequences of Theorem 1. In the follow-

ing theorems, Ljðs;FÞ’s are the same as (1.6).
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Theorem 2. Let k=2 < s < ðkþ 1Þ=2, N be a positive integer, and c be the map-

ping from R to C
Nm defined by

cðtÞ ¼ ðL1ðsþ it;FÞ; . . . ;Lmðsþ it;F Þ;L 0
1ðsþ it;FÞ; . . . ;L 0

mðsþ it;FÞ; . . . ;

L
ðN�1Þ
1 ðsþ it;F Þ; . . . ;LðN�1Þ

m ðsþ it;F ÞÞ:

Then cðRÞ is dense in C
Nm.

This is an analogue of Voronin’s result [28] that

fðzðsþ itÞ; z 0ðsþ itÞ; . . . ; zðN�1Þðsþ itÞÞ j t A Rg

is dense in C
N for 1=2 < s < 1. Voronin proved this result earlier than his discovery

of the universality theorem, but now it is known that this result as well as the above

Theorem 2 is easily deduced from the universality.

Theorem 3. If continuous functions fl : C
Nm ! C ð0a laLÞ satisfy

XL

l¼0

s lflðL1ðs;FÞ; . . . ;Lmðs;FÞ;L
0
1ðs;FÞ; . . . ;L

0
mðs;FÞ; . . . ;

L
ðN�1Þ
1 ðs;FÞ; . . . ;LðN�1Þ

m ðs;F ÞÞ1 0 ð1:8Þ

for all s A C , then fl 1 0 ð0a laLÞ.

This result of functional independence is related with a problem mentioned in

Hilbert’s famous ‘‘Mathematische Probleme’’. Some history of this problem is written

in [5].

Theorem 4. Let mb 2, uj A C ð1a jamÞ, and assume at least two of ujs are

not zero. Let k=2 < s1 < s2 < ðkþ 1Þ=2, Tb 2, and Nðs1; s2;TÞ be the numbers of

zeros (counted with multiplicity) of the function

VðsÞ ¼
Xm

j¼1

ujLjðs;F Þ

in the rectangle s1a sa s2, 0a taT . Then we have, for T su‰ciently large,

Nðs1; s2;TÞbBT

with a constant B > 0.

This type of application of the universality theorem was first noticed again by

Voronin in his papers [31], [32], and studied further by Laurinčikas [11], [12], [15].

In Section 2 we will prove an analogue of the prime number theorem in arithmetic

progressions for Fourier coe‰cients of FðzÞ, which will be used in Section 5. In Section

3 we will prepare the probabilistic setting and will give a limit theorem, which is one of

the keys of the proof of Theorem 1. Another key is Lemma 4 (the ‘‘denseness’’ lemma),

which will be proved in Sections 4 and 5. Then in Section 6 we will complete the proof

of Theorem 1. Proofs of other theorems will be shown in the final section.
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2. A prime number theorem for the coe‰cients of cusp forms.

As was mentioned in Section 1, the universality of automorphic L-functions was

first fully proved in [18]. A key ingredient used in [18] is the prime number formula

X

pax

~ccðpÞ2 ¼
x

log x
ð1þ oð1ÞÞ ð2:1Þ

due to Rankin [27], where p runs over prime numbers up to x and ~ccðpÞ ¼ cðpÞp�ðk�1Þ=2.

Rankin proved (2.1) for M ¼ 1. For our present purpose it is necessary to generalize

(2.1) to the case of arbitrary M with adding the condition p1 h ðmod qÞ, ðh; qÞ ¼ 1,

where q is a positive integer prime to M. In this paper we will prove

Lemma 1. The formula

X

pax
p1h ðmod qÞ

~ccðpÞ2 ¼
1

jðqÞ

x

log x
ð1þ oð1ÞÞ ð2:2Þ

holds when ðh; qÞ ¼ 1, where jðqÞ is Euler’s totient function and the implied constant

depends on q.

Let F ðzÞ be a holomorphic normalized Hecke-eigen new form of weight k with

respect to G0ðMÞ. The associated Dirichlet series (1.4) has the Euler product expansion

Lðs;FÞ ¼
Y

p

ð1� cðpÞp�s þ c0ðpÞp
k�1�2sÞ�1;

where c0ðpÞ ¼ 1 if ðp;MÞ ¼ 1 and c0ðpÞ ¼ 0 if pjM. We write each Euler factor as

1� cðpÞp�s þ c0ðpÞp
k�1�2s ¼ ð1� aðpÞp�sÞð1� bðpÞp�sÞ;

bðpÞ ¼ aðpÞ if ðp;MÞ ¼ 1 and bðpÞ ¼ 0 if pjM. Hence aðpÞ þ bðpÞ ¼ cðpÞ, and if

ðp;MÞ ¼ 1, then aðpÞbðpÞ ¼ pk�1.

Let w be a Dirichlet character mod q. The twisted Rankin-Selberg L-function

attached to F and w is defined by

Lðs;F nF ; wÞ ¼ Lð2s;c0w
2Þ
X

y

n¼1

c2ðnÞwðnÞn1�k�s; ð2:3Þ

where Lð2s;c0w
2Þ is the Dirichlet L-function attached to c0w

2. The Euler product

expansion is

Lðs;F nF ; wÞ ¼
Y

paM

ð1� wðpÞaðpÞ2p1�k�sÞ�1ð1� wðpÞp�sÞ�2

�
�

1� wðpÞbðpÞ2p1�k�sÞ�1 �
Y

pjM

ð1� wðpÞcðpÞ2p1�k�sÞ�1: ð2:4Þ
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The expressions (2.3) and (2.4) are convergent absolutely for s > 1, but Lðs;F nF ; wÞ

can be continued to the whole plane, and is entire if w is non-principal. If w ¼ w0 is

principal, then it has a simple pole at s ¼ 1.

If w is primitive, then the twisted form

FwðzÞ ¼
Xy

n¼1

cðnÞwðnÞe2pinz ð2:5Þ

is a new form of level Mq2. Hence Lðs;F nF ; wÞ satisfies a standard form of func-

tional equation (Li [20]). Also Lð1þ it;F nF ; wÞ0 0 for any real t (cf. Ogg [24], Theo-

rem 4 and Rankin [27], Theorem 1). Hence, applying the lemma in p. 295 of Perelli

[25], we can see that

�
L 0

L
ðs;F nF ; wÞ �

ew

s� 1
ð2:6Þ

is holomorphic in the closed half-plane sb 1, where ew ¼ 1 if w is principal and ew ¼ 0

otherwise. Note that (2.6) is valid for any (not necessarily primitive) w, as we can see

easily by an argument similar to that in p. 89 of Davenport [4].

Define LF ðnÞ ¼ ðaðpÞm þ bðpÞmÞ2 log p if n ¼ pm is a prime power and LF ðnÞ ¼ 0

otherwise. Then we can write

�
L 0

L
ðs;F nF ; wÞ ¼

Xy

n¼1

LF ðnÞwðnÞn
1�k�s

when s > 1.

Now we quote the following Tauberian theorem.

Lemma 2 ([7, Chapter 5, Corollary 3]). Let aðnÞ; bðnÞ be arithmetical functions

satisfying aðnÞb 0, bðnÞ ¼ OðaðnÞÞ and

X

nax

aðnÞ ¼ OðxÞ: ð2:7Þ

If the Dirichlet series

AðsÞ ¼
Xy

n¼1

aðnÞ

ns
; BðsÞ ¼

Xy

n¼1

bðnÞ

ns

are holomorphic for s > 1 and

AðsÞ �
A0

s� 1
; BðsÞ �

B0

s� 1

(where A0;B0 are constants) are holomorphic for sb 1, then

X

nax

bðnÞ ¼ B0xð1þ oð1ÞÞ: ð2:8Þ
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We apply this lemma with aðnÞ ¼ LF ðnÞn
1�k and bðnÞ ¼ LF ðnÞwðnÞn

1�k. Then

AðsÞ ¼ �
L 0

L
ðs;F nFÞ; BðsÞ ¼ �

L 0

L
ðs;F nF ; wÞ:

Hence

AðsÞ �
1

s� 1
; BðsÞ �

ew

s� 1

are holomorphic for sb 1. Then conditions aðnÞb 0, bðnÞ ¼ OðaðnÞÞ are clearly valid.

Therefore, if we can show (2.7) for our present aðnÞ, we can deduce

X

nax

LF ðnÞwðnÞn
1�k ¼ ewxð1þ oð1ÞÞ ð2:9Þ

by Lemma 2.

To prove (2.7), we divide the sum as

X

nax

LF ðnÞn
1�k ¼

X

pax

LF ðpÞp
1�k þ

X

mb2

X

pmax

LF ðp
mÞpmð1�kÞ

¼ S1 þ S2;

say. If ðp;MÞ ¼ 1, then jaðpÞj ¼ jbðpÞj ¼ pðk�1Þ=2. If pjM, then bðpÞ ¼ 0 and jaðpÞj ¼

jcðpÞja pðk�2Þ=2 (see [22, Theorem 4.6.17]). Hence

jLF ðp
mÞpmð1�kÞja 4 log p

for any prime p and any mb 1. Therefore

S2 f
X

1amalog x=log 2

X

pax1=2

log pf x1=2ðlog xÞ2 ð2:10Þ

and

S1 f
X

pax

log pf x

by the classical prime number theorem. Hence (2.7) holds, and therefore (2.9) is

established.

Then, using (2.9), we have

X

nax
n1h ðmod qÞ

LF ðnÞn
1�k ¼

1

jðqÞ

X

wmod q

wðhÞ
X

nax

LF ðnÞwðnÞn
1�k

¼
x

jðqÞ
ð1þ oð1ÞÞ: ð2:11Þ

The left-hand side of the above is again divided as

X

pax
p1h ðmod qÞ

LF ðpÞp
1�k þ

X

mb2

X

pm
ax

pm1h ðmod qÞ

LF ðp
mÞpmð1�kÞ;
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and the second term is Oðx1=2ðlog xÞ2Þ by (2.10). Hence

X

pax
p1h ðmod qÞ

LF ðpÞp
1�k ¼

x

jðqÞ
ð1þ oð1ÞÞ: ð2:12Þ

Since LF ðpÞ ¼ cðpÞ2 log p, the assertion of Lemma 1 follows easily from (2.12) by partial

summation.

The above proof of Lemma 1 is an analogue of the proof of Theorem 1, Chapter 6

of [7].

It is possible to refine Lemma 1. In fact, as in Perelli [26] and Ichihara [8], we can

argue along the same line as in Davenport’s book [4] to obtain

X

pax
p1h ðmod qÞ

LF ðpÞp
1�k ¼

x

jðqÞ
þOðx expð�c1

ffiffiffiffiffiffiffiffiffiffi

log x
p

ÞÞ ð2:13Þ

with a certain c1 > 0. Since Lðs;F nF ; wÞ satisfies a functional equation, we can use

the results in Perelli [25] to prove (2.13). From (2.13) we can immediately obtain a

refinement of Lemma 1; or we may quote Remark 5.2.2 (especially formula (14)) of

Moreno’s paper [23]. However, Lemma 1 is enough for our present purpose.

3. A limit theorem.

Let l > 0, and put

Dl ¼ fs A C j k=2 < s < ðkþ 1Þ=2; jtj < lg:

By HðDlÞ we denote the space of functions analytic on Dl, equipped with the topology

of uniform convergence on compacta, and put Hm ¼ HðDlÞ
m (direct product). Denote

by BðSÞ the family of all Borel subsets of the space S. The measure PT , defined by

PTðAÞ ¼ nTððL1ðsþ it;FÞ; . . . ;Lmðsþ it;FÞÞ A AÞ

for Tb 2 and A A BðHmÞ, is a probability measure on ðHm;BðHmÞÞ.

Let g ¼ fs A C j jsj ¼ 1g, and W ¼
Q

p gp, where p runs over all primes and gp ¼ g

for any p. We may regard W as a compact abelian topological group, hence the

probability Haar measure mH exists. This gives a probability space ðW;BðWÞ;mHÞ.

By oðpÞ we denote the projection of o A W to the coordinate space gp. Define the Hm-

valued random element jðs;oÞ by

jðs;oÞ ¼ ðjðs;o;L1Þ; . . . ; jðs;o;LmÞÞ; ð3:1Þ

where o A W, s A Dl and

jðs;o;LjÞ ¼
Y

p

1�
aðpÞwjðpÞoðpÞ

p s

� ��1

1�
bðpÞwjðpÞoðpÞ

ps

� ��1

ð3:2Þ

for 1a jam. Let Pj be the distribution of jðs;oÞ, that is

PjðAÞ ¼ mHðo A W j jðs;oÞ A AÞ

for A A BðHmÞ. Then
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Lemma 3. The probability measure PT converges weakly to Pj as T ! y.

Proof. Let F1; . . . ;Fm be normalized eigenforms of weight k,

Lðs;FjÞ ¼
X

y

n¼1

cjðnÞn
�s ð1a jamÞ

the corresponding L-functions, D0 ¼ fs A C j <s > k=2g, Hm
0 ¼ HðD0Þ

m, and define

PT ;0ðAÞ ¼ nT ððLðsþ it;F1Þ; . . . ;Lðsþ it;FmÞÞ A AÞ

for A A BðHm
0 Þ. Also let

j0ðs;oÞ ¼
X

y

n¼1

c1ðnÞoðnÞ

ns
; . . . ;

X

y

n¼1

cmðnÞoðnÞ

ns

 !

;

where

oðnÞ ¼
Y

p akn

oðpÞa;

and Pj;0 be the distribution of the Hm
0 -valued random element j0. Then Laurinčikas

[16] proved that PT ;0 converges weakly to Pj;0 as T ! y. Actually Laurinčikas only

discussed the case when F1; . . . ;Fm are cusp forms with respect to SLð2;ZÞ, but we can

easily generalize his result to the case of congruence subgroups of higher level.

The function g : Hm
0 ! Hm defined by the coordinatewise restriction is continuous.

Hence, using a property of weak convergence of probability measures ([3, Theorem 5.1]),

we can replace Hm
0 in the above statement by Hm. Lemma 3 is a special case of this

assertion.

It is also possible to show Lemma 3 as a special case of Theorem 2 of Laurinčikas

[15].

4. A denseness lemma.

Let

fjpðs; apÞ ¼ �log 1�
aðpÞwjðpÞap

ps

� �

� log 1�
bðpÞwjðpÞap

ps

� �

for ap A g ð1a jamÞ, and

fpðs; apÞ ¼ ð f1pðs; apÞ; . . . ; fmpðs; apÞÞ:

Then we have

Lemma 4. The set of all series
P

p fpðs; apÞ, which are convergent in Hm, is dense in

Hm.

This is a generalization of Lemma 2 in [18], and one of the key ingredients of the

proof of Theorem 1. This and the next section are devoted to the proof of Lemma 4.
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Let p0 > 0, and put

f̂fpðsÞ ¼
fpðs; 1Þ if p > p0;

0 if pa p0:

�

Then there exists an âap A g for which

X

p

âap f̂fpðsÞ

is convergent in Hm. This can be shown similarly to the first step of the proof of

Lemma 2 in [18]. Let

gp ¼ ðg1p; . . . ; gmpÞ ¼ âap f̂fpðsÞ:

Then we have

Lemma 5. The set of all series
P

p apgp ðap A gÞ, which are convergent in Hm, is

dense in Hm.

By using this lemma, we can complete the proof of Lemma 4 similarly to the third

step of the proof of Lemma 2 in [18], the details being omitted here.

The proof of Lemma 5 is based on the following

Lemma 6. Let f l ¼ ð f1l ; . . . ; fmlÞ A Hm ðl ¼ 1; 2; 3; . . .Þ. Assume that the sequence

f f lg satisfies

(a) if m1; . . . ; mm are complex measures on ðC ;BðCÞÞ, whose supports are compact

and contained in Dl, and

X

y

l¼1

X

m

j¼1

ð

C

fjl dmj

�

�

�

�

�

�

�

�

�

�

< y;

then
ð

C

sr dmjðsÞ ¼ 0 ð4:1Þ

for 1a jam and r ¼ 0; 1; 2; . . . ;

(b) the series
P

y

l¼1 f l is convergent in Hm;

(c) for any compact subset Kj of Dl ð1a jamÞ,

X

y

l¼1

X

m

j¼1

sup
s AKj

j fjlðsÞj
2
< y:

Then the set of all convergent series
P

y

l¼1 al f l ðal A gÞ is dense in Hm.

This is Lemma 5.2.9 of Bagchi [1]. The proof in the case m ¼ 1 is given in [13]

(see Theorem 6.3.10), and the proof of the general case is similar.

We apply Lemma 6 to f l ¼ gp. The condition (b) is clearly satisfied by the defi-

nition of gp. Since

fjpðs; 1Þ ¼
cðpÞwjðpÞ

ps
þ rjpðsÞ ð4:2Þ

with rjpðsÞ ¼ Oðpk�2s�1Þ, it can be easily seen that the condition (c) is also satisfied.
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Next we check the condition (a). Let mj ð1a jamÞ be complex measures whose

supports are compact and contained in Dl, and

X

p

X

m

j¼1

ð

C

gjp dmj

�

�

�

�

�

�

�

�

�

�

< y: ð4:3Þ

Using (4.2), we find that (4.3) is equivalent to

X

p>p0

X

m

j¼1

ð

C

âapcðpÞwjðpÞp
�s dmjðsÞ

�

�

�

�

�

�

�

�

�

�

< y:

Since jâapj ¼ 1, this is further equivalent to

X

p>p0

~ccðpÞ
X

m

j¼1

wjðpÞ

ð

C

p�s dmjw
�1ðsÞ

�

�

�

�

�

�

�

�

�

�

< y; ð4:4Þ

where w is the mapping defined by wðsÞ ¼ s� ðk� 1Þ=2.

Let q be the least common multiple of q1; . . . ; qm, w
�
j be the character mod q induced

by wj ð1a jamÞ, and h be a positive integer satisfying 1a ha q, ðh; qÞ ¼ 1. If p1 h

ðmod qÞ, then wjðpÞ ¼ w�
j ðpÞ ¼ w�

j ðhÞ, hence from (4.4) we have

X

p1h ðmod qÞ

~ccðpÞ
X

m

j¼1

w�
j ðhÞ

ð

C

p�s dmjw
�1ðsÞ

�

�

�

�

�

�

�

�

�

�

< y;

or equivalently,

X

p1h ðmod qÞ

j~ccðpÞj jrðlog pÞj < y; ð4:5Þ

where

rðzÞ ¼

ð

C

e�sz dnhðsÞ ð4:6Þ

and

dnh ¼
X

m

j¼1

w�
j ðhÞ dmjw

�1: ð4:7Þ

In the next section we will show that (4.5) implies rðzÞ1 0. Then, di¤erentiating r-

times the equality rðzÞ1 0 and putting z ¼ 0, we obtain

ð

C

sr dnhðsÞ1 0 ðr ¼ 0; 1; 2; . . .Þ:

Hence

X

m

j¼1

w�
j ðhÞ

ð

C

sr dmjðsÞ1 0 ðr ¼ 0; 1; 2; . . .Þ
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for 1a ha q, ðh; qÞ ¼ 1. Multiplying the both sides of the above equality by w�
i ðhÞ and

summing with respect to h, we have

0 ¼
X

1ahaq
ðh;qÞ¼1

X

m

j¼1

w�
j ðhÞw

�
i ðhÞ

ð

C

sr dmjðsÞ

¼
X

m

j¼1

X

1ahaq
ðh;qÞ¼1

w�
j ðhÞw

�
i ðhÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð

C

sr dmjðsÞ

¼ jðqÞ

ð

C

sr dmiðsÞ

for 1a iam, hence (4.1) follows. All the conditions of Lemma 6 are now verified,

hence, applying Lemma 6, we obtain the assertion of Lemma 5.

The above argument of deducing (4.1) from (4.3), by using the orthogonality of

Dirichlet characters, is analogous to the proof of Lemma 4.9 of Bagchi [2]. Bagchi

assumed that all the characters are of the same modulus, but this restriction can be

easily removed as above. This point was inspired by Section 7.3 of Karatsuba-Voronin

[10].

5. A vanishing lemma.

To complete the proof of Lemma 4, now the only remaining task is to establish

Lemma 7. The function rðzÞ defined by (4.6) is identically equal to zero.

This is a generalization of Lemma 6 in [18]. The positive density method men-

tioned in Section 1 is used in the proof of this lemma. Let 0 < y < 1, and PyðhÞ be the

set of primes satisfying p1 h ðmod qÞ and j~ccðpÞj > y. From (4.5) we have

X

p APyðhÞ

jrðlog pÞj < y: ð5:1Þ

Let b be a positive number satisfying

bl < p; ð5:2Þ

and put a ¼ aðmÞ ¼ expððm� ð1=4ÞÞbÞ, b ¼ bðmÞ ¼ expððmþ ð1=4ÞÞbÞ. Denote by A

the set of all integers m such that there exists an r A ðlog a; log b� with jrðrÞja e�r. Then

X

p APyðhÞ

jrðlog pÞjb
X

m BA

X

p APyðhÞ
a<pab

jrðlog pÞjb
X

m BA

X

p APyðhÞ
a<pab

p�1;

hence with (5.1) we obtain
X

m BA

X

p APyðhÞ
a<pab

p�1 < y: ð5:3Þ
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Next, let d be a positive number with 1þ d < minf3=2; eb=2g, and assume 0 < e <

d=100. Using Lemma 1, analogously to (4.9) of [18], we obtain

X

p APyðhÞ
a<pab

p�1
b

1� y2

4� y2

X

að1þdÞ<pab

p1h ðmod qÞ

p�1

0

B

B

@

1

C

C

A

ð1þ oð1ÞÞ ð5:4Þ

as m ! y. Here we mention that there are misprints on the right-hand side of the first

line of (4.9) of [18]; it is to be read as

X

p APm

a<pab

1

0

B

B

@

1

C

C

A

1

b
þ

ð b

a

X

p APm

a<pau

1

0

B

B

@

1

C

C

A

du

u2
:

Let pðx; q; hÞ be the number of primes up to x satisfying p1 h ðmod qÞ. Then the

Siegel-Walfisz theorem implies

pðx; q; hÞ ¼
1

jðqÞ

ð x

0

dt

log t
þOðx expð�c5ðeÞ

ffiffiffiffiffiffiffiffiffiffi

log x
p

ÞÞ ð5:5Þ

for xb expðqeÞ with a constant c5ðeÞ > 0. From (5.5) it can be easily deduced that

X

pax
p1h ðmod qÞ

p�1 ¼
1

jðqÞ
log log xþ BþOðexpð�c6

ffiffiffiffiffiffiffiffiffiffi

log x
p

ÞÞ; ð5:6Þ

where B; c6ð> 0Þ, and the implied constant depend on q. Using (5.6) we obtain

X

að1þdÞ<pab

p1hðqÞ

p�1 ¼
1

jðqÞ

1

2
�
logð1þ dÞ

b

� �

1

m
þO

1

m2

� �

: ð5:7Þ

Collecting (5.3), (5.4) and (5.7) we find

X

m BA

1

m
< y:

Hence, if we write A ¼ fam jm ¼ 1; 2; . . .g, a1 < a2 < � � � ; then

lim
m!y

am

m
¼ 1:

The definition of A implies that there exists a xm for each m such that ðam � ð1=4ÞÞb <

xma ðam þ ð1=4ÞÞb and jrðxmÞja expð�xmÞ. Hence

lim
m!y

xm

m
¼ b ð5:8Þ

and

lim sup
m!y

logjrðxmÞj

xm
a�1: ð5:9Þ

Now we quote the following
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Lemma 8. Let f ðsÞ be an entire function of exponential type, and let fxmg be a

sequence of complex numbers. Let l; h and o be positive numbers such that

lim sup
y!y

logj f ðGiyÞj

y
a l;

jxm � xnjbojm� nj;

lim
m!y

xm

m
¼ b;

and lb < p. Then

lim sup
m!y

logj f ðxmÞj

jxmj
¼ lim sup

r!y

logj f ðrÞj

r
:

For the proof of this lemma, see Theorem 6.4.12 of [13].

In view of (5.2) and (5.8), we can apply this lemma to f ¼ r. From (5.9) we obtain

lim sup
r!y

logjrðrÞj

r
a�1:

This corresponds to (4.12) of [18], and from this we can deduce the conclusion rðzÞ1 0

in much the same way as in [18]. The proof of Lemma 7, hence of Lemma 4, is now

complete.

6. Completion of the proof of Theorem 1.

Let Sl be the set of functions f A HðDlÞ such that f ðsÞ0 0 for any s A Dl, or

f 1 0. We first show

Lemma 9. The support of the random element jðs;oÞ is Sm
l .

This is a generalization of Lemma 8 of [18]. Instead of Lemma 10 of [18], we

use its multidimensional version, that is Lemma 2 of [17] (with replacing D by Dl).

Similarly to [18], we find that the support of the Hm-valued random element

X

p

f1pðs;oðpÞÞ; . . . ;
X

p

fmpðs;oðpÞÞ

 !

is the closure of the set of all convergent series of the form

X

p

fpðs; apÞ ðap A gÞ:

By Lemma 4 the latter set is dense in Hm. From this fact, again similarly to [18], we

obtain the conclusion of Lemma 9.

Now we can complete the proof of Theorem 1 in a standard way. For any given

Kj, we find a l su‰ciently large for which Kj HDl holds ð1a jamÞ. Let fj A FðKjÞ
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ð1a jamÞ, and first consider the case when all fjs have non-vanishing holomorphic

continuation to Dl. Let

G ¼ ðg1; . . . ; gmÞ A Hm j sup
1a jam

sup
s AKj

jgjðsÞ � fjðsÞj < e

( )

:

Then G is open, hence Lemma 3 implies

lim inf
T!y

PTðGÞbPjðGÞ: ð6:1Þ

Since G is an open neighbourhood of ð f1; . . . ; fmÞ, which is contained in the support of

Pj by Lemma 9, we have PjðGÞ > 0. This implies the assertion of Theorem 1, because

PT ðGÞ ¼ nT sup
1a jam

sup
s AKj

jLjðsþ it;F Þ � fjðsÞj < e

 !

:

When fjðsÞ cannot be continued to Dl for some j, then we use Mergelyan’s theorem

to find a polynomial qjðsÞ for which expðqjðsÞÞ approximates fjðsÞ su‰ciently (see the last

section of [18]). Therefore we can reduce the problem to the already proved case. The

proof of Theorem 1 is now complete.

7. Proofs of Theorems 2, 3 and 4.

The proofs presented in this section are simple modifications of known arguments,

but we describe the details for the convenience of readers.

The following proofs of Theorems 2 and 3 are similar to the proofs of Theorem

6.6.2 and Theorem 6.6.3 of [13].

Let snj be complex numbers ð0a naN � 1; 1a jamÞ, and assume s0j 0 0 ð1a

jamÞ. By Lemma 6.6.1 of [13] we can find polynomials pjðsÞ ¼
PN�1

n¼0 bnjs
n such that

snj ¼ ðexpðpjðsÞÞÞ
ðnÞjs¼0 ð0a naN � 1Þ:

Let k=2 < s1 < ðkþ 1Þ=2, and K be a compact subset of D with connected com-

plement such that s1 is contained in the interior of K . By d we denote the distance of

s1 from the boundary of K . Then from Theorem 1 we find a real t for which

sup
1a jam

sup
s AK

jLjðsþ it;FÞ � epjðs�s1Þj <
edN

2NN!

holds. Then, using Cauchy’s integral formula we have

jL
ðnÞ
j ðs1 þ it;FÞ � snjj ¼

n!

2p

ð

js�s1j¼d=2

jLjðsþ it;FÞ � epjðs�s1Þj

ðs� s1Þ
nþ1

ds

�

�

�

�

�

�

�

�

�

�

< e

for 0a naN � 1, which implies Theorem 2.

Next we prove Theorem 3. Suppose fL D 0. Then there exists a bounded region

RHC
Nm such that

j fLjbB0 > 0 ð7:1Þ
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in R, where B0 is a constant. Let k=2 < s < ðkþ 1Þ=2. From Theorem 2 we find a

sequence of real numbers ftkg satisfying limn!y tk ¼ þy and

xk ¼ ðL1ðsþ itk;F Þ; . . . ;Lmðsþ itk;F Þ;L
0
1ðsþ itk;F Þ; . . . ;L

0
mðsþ itk;FÞ; . . . ;

L
ðN�1Þ
1 ðsþ itk;FÞ; . . . ;L

ðN�1Þ
m ðsþ itk;F ÞÞ A R:

Substituting s ¼ sþ itk into (1.8) and dividing the both sides by ðsþ itkÞ
L, we have

X

L�1

l¼0

ðsþ itkÞ
l�L

flðxkÞ ¼ �fLðxkÞ: ð7:2Þ

Since R is bounded, j flðxkÞj is bounded ð0a laL� 1Þ. Hence the left-hand side of

(7.2) tends to zero as k ! y. On the other hand, j fLðxkÞjbB0 > 0 by (7.1). This

contradiction implies fL 1 0. Similarly we obtain fL�1 1 � � �1 f1 1 f0 1 0.

Finally we prove Theorem 4. The following argument is analogous to the proof of

Theorem 1 in Laurinčikas [15]. We may assume u1 0 0 and u2 0 0. Let h > 0, ŝs ¼

ðs1 þ s2Þ=2,

f1ðsÞ ¼
s� ŝsþ 3

u1
; f2ðsÞ ¼ �

3

u2
;

f3ðsÞ ¼ � � � ¼ fmðsÞ ¼ h;

and

K ¼ s A C j s�
k

2
þ
1

4

� ��

�

�

�

�

�

�

�

amax s1 �
k

2
þ
1

4

� ��

�

�

�

�

�

�

�

; s2 �
k

2
þ
1

4

� ��

�

�

�

�

�

�

�

� �� �

:

Applying Theorem 1 we find a t for which

sup
1a jam

sup
s AK

jLjðsþ it;F Þ � fjðsÞj < h: ð7:3Þ

Then

sup
s AKj

Vðsþ itÞ �
X

m

j¼1

uj fjðsÞ

�

�

�

�

�

�

�

�

�

�

< h

X

m

j¼1

jujj:

Since

X

m

j¼1

uj fjðsÞ ¼ s� ŝsþ ðu3 þ � � � þ umÞh;

we have

sup
s AK

jVðsþ itÞ � ðs� ŝsÞj < 2h
X

m

j¼1

jujj: ð7:4Þ

Let C be the circle fs A C j js� ŝsj ¼ ðs2 � s1Þ=2g. Then C is included in K . Choosing

h so small that it satisfies

2h
X

m

j¼1

jujj <
s2 � s1

4
;
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we find from (7.4) that

js� ŝsj > jVðsþ itÞ � ðs� ŝsÞj

for s A C. Hence by Rouché’s theorem we can conclude that Vðsþ itÞ has a zero in

js� ŝsja ðs2 � s1Þ=2. Since Theorem 1 further implies that the set of t A ½0;T � satisfy-

ing (7.3) has a positive lower density, we obtain the assertion of Theorem 4.
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