Construction of Z_{p}-extensions with prescribed Iwasawa modules

By Manabu Ozaki

(Received Jun. 3, 2002)
(Revised Mar. 3, 2003)

Abstract

We construct \boldsymbol{Z}_{p}-extensions whose Iwasawa modules have prescribed structure. Specifically, we give a \boldsymbol{Z}_{p}-extension with prescribed finite Iwasawa module. Also we show that there exists a \boldsymbol{Z}_{p}-extension with arbitrarily given Iwasawa μ-invariant. We apply the construction of such \boldsymbol{Z}_{p}-extensions to a certain capitulation problem.

1. Introduction.

Let K / k be a Z_{p}-extension and k_{n} its n-th layer. The Iwasawa module X_{K} of the \boldsymbol{Z}_{p}-extension K / k is defined to be the projective limit $\lim A\left(k_{n}\right)$ of the Sylow p-subgroup $A\left(k_{n}\right)$ of the ideal class group of k_{n} with respect to the norm maps. Otherwise, we can also define X_{K} to be the Galois group $\operatorname{Gal}(L(K) / K)$ of the maximal unramified pro-p abelian extension $L(K) / K$. Then the completed group ring $\Lambda_{K / k}=\boldsymbol{Z}_{p}[[\operatorname{Gal}(K / k)]]$ acts on X_{K} and Iwasawa showed that X_{K} is a finitely generated torsion $\Lambda_{K / k}$-module. In the arithmetic of the \boldsymbol{Z}_{p}-extension K / k, Iwasawa module X_{K} plays a crucial role. Iwasawa studied the $\Lambda_{K / k}$-module structure of X_{K} and deduced the following celebrated formula:

Theorem (Iwasawa). There exist non-negative integers $\lambda(K / k), \mu(K / k)$ and an integer $v(K / k)$ such that

$$
\# A\left(k_{n}\right)=p^{\lambda(K / k) n+\mu(K / k) p^{n}+\nu(K / k)}
$$

for all sufficiently large n.
Here the integers $\lambda(K / k), \mu(K / k)$ and $v(K / k)$ are called Iwasawa invariants of K / k. We remark that $\lambda(K / k)$ and $\mu(K / k)$ are the invariants of the $\Lambda_{K / k}$-module structure of X_{K}.

Now we raise the following natural question on the Iwasawa module:
Question A. Let p be a prime number and Γ a topological group isomorphic to \boldsymbol{Z}_{p}. Put $\Lambda=\boldsymbol{Z}_{p}[[\Gamma]]$. Then, for any finitely generated torsion Λ-module X, does there exist a \boldsymbol{Z}_{p}-extension K / k such that X_{K} is isomorphic to X as Λ-modules, regarding X_{K} as a Λ-module via some isomorphism $\operatorname{Gal}(K / k) \simeq \Gamma$?

We also raise the following question, which relates to Question A:

[^0]Question B. For any non-negative integers l and m, does there exist a \boldsymbol{Z}_{p}-extension K / k with $\lambda(K / k)=l$ and $\mu(K / k)=m$?

Here we note that if Question A is affirmative, then Question B is also affirmative.
In the present paper, we shall give partial answers to the above questions. Specifically, we shall answer to Question A affirmatively in the case where X is finite (Theorem 1). Also we shall answer to Question B for μ-invariants affirmatively (Theorem 2). In the final section, we shall apply the construction in the proof of Theorem 1 to a certain capitulation problem.

2. Main results.

On Question A, we shall give the following:
Theorem 1. Let p be a prime number and Γ a topological group isomorphic to \boldsymbol{Z}_{p}. Put $\Lambda=\boldsymbol{Z}_{p}[[\Gamma]]$. Then for any finite Λ-module X, there exists a cyclotomic \boldsymbol{Z}_{p}-extension K / k over a totally real number field k such that

$$
X_{K} \simeq X
$$

as Λ-modules, regarding X_{K} as a Λ-module via some isomorphism $\operatorname{Gal}(K / k) \simeq \Gamma$.
Greenberg conjectured that X_{K} is finite if K / k is the cyclotomic \boldsymbol{Z}_{p}-extension over a totally real number field k (see [3]). Therefore, assuming Greenberg's conjecture, Theorem 1 says that among the cyclotomic \boldsymbol{Z}_{p}-extensions over totally real number fields, every possible Λ-module could appear as an Iwasawa module.

On Question B, we shall give the following:
Theorem 2. Let p be an odd prime number. For any non-negative integer m, there exist a number field k and a \boldsymbol{Z}_{p}-extension K / k with $\mu(K / k)=m$ (and $\lambda(K / k)=0$), specifically, $X_{K} \simeq\left(\Lambda_{K / k} / p\right)^{\oplus m}$. Furthermore, we can take k to be an imaginary cyclic extension of degree $2 p$ over \boldsymbol{Q}.

Iwasawa conjectured that $\mu(K / k)=0$ for any cyclotomic \boldsymbol{Z}_{p}-extension K / k. This conjecture is valid if the base field k is abelian over \boldsymbol{Q} (the Ferrero-Washington theorem [1]). However Iwasawa [7] constructed non-cyclotomic \boldsymbol{Z}_{p}-extensions with arbitrarily large μ-invariant. Our method of construction of \boldsymbol{Z}_{p}-extension K / k in Theorem 2 is based on [7], hence K / k is a certain non-cyclotomic \boldsymbol{Z}_{p}-extension, so called the anticyclotomic \boldsymbol{Z}_{p}-extension.

To prove the theorems, we refine the idea in Yahagi [13], in which he constructed number fields with prescribed Sylow p-subgroup of the ideal class group. We extend his method so that we can impose the prescribed Galois module structure on the Sylow p-subgroup of the ideal class group.

3. Proof of Theorem 1.

Since X is finite, X is a $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]$-module for some integers $m_{0} \geq 1$ and $n_{0} \geq 0$, where $\Gamma_{n}=\Gamma / \Gamma^{p^{n}} \simeq \boldsymbol{Z} / p^{n}$ for $n \geq 0$.

Lemma 1. Assume that a \boldsymbol{Z}_{p}-extension K / k satisfies the following three conditions:
(i) K / k is totally ramified at every ramified prime.
(ii) $A\left(k_{n_{0}}\right) \simeq X$ as $\Gamma_{n_{0}}$-modules, viewing $A\left(k_{n_{0}}\right)$ as a $\Gamma_{n_{0}}$-module by some identification $\operatorname{Gal}(K / k)$ with Γ.
(iii) $A\left(k_{n_{0}}\right) \simeq A\left(k_{n_{0}+1}\right)$.

Then we have $X_{K} \simeq X$ as Λ-modules.
Proof. It follows from assumptions (i), (iii) and Fukuda [2] that $X_{K} \simeq A\left(k_{n_{0}}\right)$ as $\Lambda_{K / k}$-modules. Hence the assertion follows from assumption (ii).

By virtue of Lemma 1, our main aim is to construct a number field with prescribed Sylow p-subgroup of the ideal class group and Galois action on it. Yahagi [13] constructed number fields with prescribed Sylow p-subgroup of the ideal class group. We refine his method to construct a desired number field. Outline of the construction is as follows: We construct a cyclic extension k / \boldsymbol{Q}_{N} of degree $p^{m_{0}}$ for suitable N, \boldsymbol{Q}_{N} being the N-th layer of the cyclotomic \boldsymbol{Z}_{p}-extension over \boldsymbol{Q}, such that $A\left(k_{n_{0}}\right) /(\sigma-1) \simeq$ $A\left(k_{n_{0}+1}\right) /(\sigma-1) \simeq X$ as Γ-modules (identifying Γ with $\operatorname{Gal}\left(k_{\infty} / k\right)$) by "genus theoretic" method, where k_{∞} / k is the cyclotomic \boldsymbol{Z}_{p}-extension, $k_{n}(n \geq 0)$ is its n-th layer and σ is a generator of $\operatorname{Gal}\left(k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$. By selecting the ramified primes of k / \boldsymbol{Q}_{N} carefully, we can make the ideal classes in $A\left(k_{n_{0}+\delta}\right)$ containing σ-invariant ideals generate $A\left(k_{n_{0}+\delta}\right) /(\sigma-1)$ for $\delta=0,1$. Hence $A\left(k_{n_{0}+\delta}\right)=A\left(k_{n_{0}+\delta}\right) /(\sigma-1) \simeq X$ for $\delta=0,1$ by Nakayama's lemma. Thus the cyclotomic \boldsymbol{Z}_{p}-extension k_{∞} / k is a desired \boldsymbol{Z}_{p}-extension by Lemma 1 .

We fix a topological generator γ_{∞} of Γ and put $\gamma_{n}=\gamma_{\infty} \bmod \Gamma^{p^{n}} \in \Gamma_{n}$. Let

$$
\begin{equation*}
r:=\operatorname{dim}_{F_{p}} X /\left(p, \gamma_{n_{0}}-1\right) . \tag{1}
\end{equation*}
$$

Then r is the number of minimal generators of X over $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]$, and there exists an exact sequence of $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]$-modules

$$
\begin{equation*}
0 \rightarrow R_{n_{0}} \rightarrow \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]^{\oplus r} \rightarrow X \rightarrow 0 \tag{2}
\end{equation*}
$$

Let $\pi_{n_{0}+1, n_{0}}^{\prime}$ be the natural map from $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r}$ to $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]^{\oplus r}$ induced by the natural projection $\Gamma_{n_{0}+1} \rightarrow \Gamma_{n_{0}}$, and put $R_{n_{0}+1}=\pi_{n_{0}+1, n_{0}}^{\prime}{ }^{-1}\left(R_{n_{0}}\right)$. Then $\pi_{n_{0}+1, n_{0}}^{\prime}$ induces the isomorphism

$$
\begin{equation*}
\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r} / R_{n_{0}+1} \simeq X . \tag{3}
\end{equation*}
$$

We identify $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r} / R_{n_{0}+1}$ with X via the natural isomorphism (3).
We define the submodule $\tilde{R}_{n_{0}+\delta}(\delta=0,1)$ of $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1}$ as follows:

$$
\begin{align*}
\tilde{R}_{n_{0}+\delta}= & \left\{\left(\alpha_{i}\right)_{1 \leq i \leq r+1} \in \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1} \mid\right. \tag{4}\\
& \left.\left(\alpha_{i}\right)_{1 \leq i \leq r} \in R_{n_{0}+\delta}, \alpha_{r+1} \equiv \sum_{i=1}^{r} \alpha_{i}\left(\bmod \gamma_{n_{0}+\delta}-1\right)\right\} .
\end{align*}
$$

We put

$$
\begin{equation*}
\tilde{X}=\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} / \tilde{R}_{n_{0}+1} . \tag{5}
\end{equation*}
$$

We remark that there is a natural injection $X \rightarrow \tilde{X}$ given by $\left(x_{i}\right)_{1 \leq i \leq r} \bmod R_{n_{0}+1} \mapsto$ $\left(x_{1}, \ldots, x_{r}, \sum_{i=1}^{r} x_{i}\right) \bmod \tilde{R}_{n_{0}+1}$, whose cokernel is isomorphic to $\boldsymbol{Z} / p^{m_{0}}$.

Then the natural map $\pi_{n_{0}+1, n_{0}}: \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} \rightarrow \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]^{\oplus r+1}$ induced by the projection $\Gamma_{n_{0}+1} \rightarrow \Gamma_{n_{0}}$ gives the isomorphism

$$
\begin{equation*}
\tilde{X}=\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} / \tilde{R}_{n_{0}+1} \simeq \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]^{\oplus r+1} / \tilde{\boldsymbol{R}}_{n_{0}} \tag{6}
\end{equation*}
$$

because $\pi_{n_{0}+1, n_{0}}^{-1}\left(\tilde{R}_{n_{0}}\right)=\tilde{R}_{n_{0}+1}$.
Let g be the number of minimal generators of $\tilde{R}_{n_{0}+1}$ over $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]$, and we choose and fix once for all an integer N with the property

$$
\begin{equation*}
p^{N}-1 \geq g \quad \text { and } \quad N \geq m_{0} \tag{7}
\end{equation*}
$$

Now we shall identify Γ with $\operatorname{Gal}\left(\boldsymbol{Q}_{\infty} / \boldsymbol{Q}_{N}\right)$ by a fixed isomorphism $\Gamma \simeq$ $\operatorname{Gal}\left(\boldsymbol{Q}_{\infty} / \boldsymbol{Q}_{N}\right)$, where \boldsymbol{Q}_{∞} is the cyclotomic \boldsymbol{Z}_{p}-extension field of \boldsymbol{Q}. Then $\Gamma_{t}=$ $\operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}_{N}\right)$ for $t \geq 0$.

Let $\mathrm{I}_{i}(1 \leq i \leq r+1)$ be distinct degree one primes of \boldsymbol{Q}_{N} which decompose completely in $\boldsymbol{Q}_{N+n_{0}+1}$, say $\mathfrak{I}_{i}=\prod_{\gamma \in I_{n_{0}+1}} \gamma \mathfrak{Q}_{i, n_{0}+1}$. Furthermore, we assume that \mathfrak{I}_{i} decomposes completely in $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}:=\boldsymbol{Q}_{N+n_{0}+1}\left(\mu_{p}\right)($ if $p \neq 2)$ or $\boldsymbol{Q}_{N+n_{0}+1}\left(\mu_{4}\right)$ (if $p=2$). Put $\mathfrak{m}=\prod_{i=1}^{r+1} \mathfrak{l}_{i}$, and denote by $\mathfrak{L}_{i, n_{0}}$ the prime of $\boldsymbol{Q}_{N+n_{0}}$ below $\mathfrak{Q}_{i, n_{0}+1}$. For $t \geq 0$, we denote by $L_{t} / \boldsymbol{Q}_{N+t}$ the maximal abelian p-extension such that the conductor of $L_{t} / \boldsymbol{Q}_{N+t}$ divides \mathfrak{m} and the exponent of $\operatorname{Gal}\left(L_{t} / \boldsymbol{Q}_{N+t}\right)$ is less than or equal to $p^{m_{0}}$. Since the class number of $\boldsymbol{Q}_{N+n_{0}+\delta}$ is prime to p as well known, we get the exact sequence of Γ-modules

$$
\begin{equation*}
\mathcal{O}_{N+n_{0}+\delta}^{\times} / p^{m_{0}} \xrightarrow{\rho_{n_{0}+\delta}}\left(\mathcal{O}_{N+n_{0}+\delta} / \mathfrak{m}\right)^{\times} / p^{m_{0}} \xrightarrow{r_{n}+\delta} \operatorname{Gal}\left(L_{n_{0}+\delta} / \boldsymbol{Q}_{N+n_{0}+\delta}\right) \rightarrow 0, \tag{8}
\end{equation*}
$$

for $\delta=0,1$ by class field theory, where $\mathcal{O}_{N+n_{0}+\delta}$ denotes the ring of integers of $\boldsymbol{Q}_{N+n_{0}+\delta}$, $\rho_{n_{0}+\delta}$ is the natural map, and $r_{n_{0}+\delta}$ is the map induced by the reciprocity map. We can see that the middle term $\left(\mathcal{O}_{N+n_{0}+\delta} / \mathfrak{m}\right)^{\times} / p^{m_{0}}$ of (8) is isomorphic to $Z_{p}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1}$ via the following map:

$$
\begin{align*}
\left(\mathcal{O}_{N+n_{0}+\delta} / \mathfrak{m}\right)^{\times} / p^{m_{0}} & \simeq \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1}, \tag{9}\\
\text { the class of } \alpha & \mapsto\left(\sum_{\gamma \in \Gamma_{n_{0}+\delta}} \varphi\left(\left(\frac{\alpha}{\tilde{\gamma} \tilde{\boldsymbol{N}}_{i, n_{0}+\delta}}\right)_{n_{0}+\delta}\right) \gamma\right)_{1 \leq i \leq r+1} .
\end{align*}
$$

Notations in (9) are as follows: $\quad \tilde{\gamma} \in \operatorname{Gal}\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+\delta} / \tilde{\boldsymbol{Q}}_{N}\right)$ is the image of γ via the natural isomorphism $\Gamma_{n_{0}+\delta} \simeq \operatorname{Gal}\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+\delta} / \tilde{\boldsymbol{Q}}_{N}\right)$, where $\tilde{\boldsymbol{Q}}_{N+n_{0}+\delta}=\boldsymbol{Q}_{N+n_{0}+\delta}\left(\mu_{p}\right)$ (if $p \neq 2$) or $\boldsymbol{Q}_{N+n_{0}+\delta}\left(\mu_{4}\right)$ (if $p=2$). $\tilde{\mathfrak{Q}}_{i, n_{0}+1}$ are fixed primes of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ lying above $\mathfrak{Q}_{i, n_{0}+1}$, and $\tilde{\mathfrak{Z}}_{i, n_{0}}$ is the prime of $\tilde{\boldsymbol{Q}}_{N+n_{0}}$ below $\tilde{\mathfrak{Q}}_{i, n_{0}+1} . \quad(* / *)_{n_{0}+\delta} \in \mu_{p^{m_{0}}}$ is the $p^{m_{0}}$-th power residue symbol for $\tilde{\boldsymbol{Q}}_{N+n_{0}+\delta} . \quad \varphi$ is a fixed isomorphism $\mu_{p^{m_{0}}} \simeq \boldsymbol{Z} / p^{m_{0}}$. Here we note that $\mu_{p^{m_{0}}} \subseteq \tilde{\boldsymbol{Q}}_{N}$ by (7) hence $\left(\alpha / \tilde{\boldsymbol{Q}}_{i, n_{0}+\delta}\right)_{n_{0}+\delta}=\left(\gamma^{-1} \alpha / \tilde{\mathfrak{Q}}_{i, n_{0}+\delta}\right)_{n_{0}+\delta}$, and that $\mathcal{O}_{N+n_{0}+\delta} / \gamma \mathfrak{Q}_{i, n_{0}+\delta}$ $\simeq \tilde{\mathcal{O}}_{N+n_{0}+\delta} / \tilde{\gamma} \tilde{\boldsymbol{Q}}_{i, n_{0}+\delta}, \tilde{\mathcal{O}}_{N+n_{0}+\delta}$ being the ring of integers of $\tilde{\boldsymbol{Q}}_{N+n_{0}+\delta}$, since \mathfrak{I}_{i} decomposes completely in $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$.

In what follows we fix $\tilde{\mathfrak{S}}_{i, n_{0}+1}$ and φ once for all and identify $\left(\mathcal{O}_{N+n_{0}+\delta} / \mathfrak{m}\right)^{\times} / p^{m_{0}}$ with $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1}$ via the above isomorphism. Then we get the exact sequence

$$
\begin{equation*}
\mathcal{O}_{N+n_{0}+\delta}^{\times} / p^{m_{0}} \xrightarrow{\rho_{n_{0}+\delta}} \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+\delta}\right]^{\oplus r+1} \xrightarrow{r_{n_{0}+\delta}} \operatorname{Gal}\left(L_{n_{0}+\delta} / \boldsymbol{Q}_{N+n_{0}+\delta}\right) \rightarrow 0, \tag{10}
\end{equation*}
$$

from (8), and the map $\rho_{n_{0}+\delta}$ is given by

$$
\begin{equation*}
\rho_{n_{0}+\delta}(\varepsilon)=\left(\sum_{\gamma \in T_{n_{0}+\delta}} \varphi\left(\left(\frac{\varepsilon}{\tilde{\gamma} \tilde{\mathfrak{R}}_{i, n_{0}+\delta}}\right)_{n_{0}+\delta}\right) \gamma\right)_{1 \leq i \leq r+1} . \tag{11}
\end{equation*}
$$

It follows from (7) that $\mu_{2^{m_{0}+1}} \subseteq \tilde{\boldsymbol{Q}}_{N+n_{0}+\delta}$ when $p=2$. Hence $\rho_{n_{0}+\delta}(-1)=0$ for any prime number p by (11) since $-1 \in\left(\mu_{2^{m_{0}+1}}\right)^{2^{m} 0}$ when $p=2$. From exact sequences (10) for $\delta=0,1$ and the fact that $\rho_{n_{0}+\delta}(-1)=0$, we get the following exact commutative diagram:

$$
\begin{array}{cccc}
\overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}} \xrightarrow{\rho_{n_{0}+1}} \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} & \xrightarrow{r_{n_{0}+1}} \operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right) \longrightarrow 0 \\
\left.N_{n_{n_{0}+1, n_{0}}}\right) & \pi_{n_{0}+1, n_{0}} \downarrow & \operatorname{res}_{n_{0}+1, n_{0}} \downarrow \tag{12}\\
\overline{\mathcal{O}_{N+n_{0}}^{\times}} / p^{m_{0}} \xrightarrow{\rho_{n_{0}}} & \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}}\right]^{\oplus r+1} & \xrightarrow{r_{n_{0}}} & \operatorname{Gal}\left(L_{n_{0}} / \boldsymbol{Q}_{N+n_{0}}\right)
\end{array} \longrightarrow 0,
$$

where $\overline{\mathcal{O}_{N+n_{0}+\delta}^{\times}}=\mathcal{O}_{N+n_{0}+\delta}^{\times} /\{ \pm 1\}$ for $\delta=0,1, N_{n_{0}+1, n_{0}}$ is the norm map from $\boldsymbol{Q}_{N+n_{0}+1}$ to $\boldsymbol{Q}_{N+n_{0}}, \pi_{n_{0}+1, n_{0}}$ is the map induced by the natural projection $\Gamma_{n_{0}+1} \rightarrow \Gamma_{n_{0}}$, and $\operatorname{res}_{n_{0}+1, n_{0}}$ is the restriction map (Note that $L_{n_{0}} \subseteq L_{n_{0}+1}$). Commutativity follows from the fact $\tilde{\mathfrak{L}}_{i, n_{0}+1} \mid \tilde{\mathfrak{L}}_{i, n_{0}}$ and the properties of the $p^{m_{0}}$-th power residue symbol and the reciprocity map.

Lemma 2. (i) For any $t \geq 0$, we have

$$
\overline{\mathcal{O}_{N+t}^{\times}} / p^{m_{0}} \simeq \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{t}\right]^{\oplus p^{N}-1} \oplus \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{t}\right] / N_{\Gamma_{t}}
$$

as $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{t}\right]$-modules, where $N_{\Gamma_{t}}=\sum_{\gamma \in \Gamma_{t}} \gamma$.
(ii) In commutative diagram (12), the norm map $N_{n_{0}+1, n_{0}}: \overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}} \rightarrow \overline{\overline{\mathcal{O}}_{N+n_{0}}^{\times}} /$ $p^{m_{0}}$ is surjective.

Proof. Let $\left.\eta=N_{\boldsymbol{Q}\left(\mu_{p} N+t+1\right.}\right) / \boldsymbol{o}_{N+t}\left(\zeta_{p^{N+t+1}}-1\right)^{\sigma-1} \quad($ when $\quad p \neq 2)$, or $\eta=\zeta_{2^{N+++2}}^{-2}$. $\left(\left(\zeta_{2^{N+t+2}}^{5}-1\right) /\left(\zeta_{2^{N+t+2}}-1\right)\right)($ when $p=2)$, where σ is a generator of $\operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right)$ and ζ_{d} denotes a primitive d-th root of unity for $d \geq 1$. Then

$$
C_{N+t}=\left\langle-1, \tau \eta \mid \tau \in \operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right)\right\rangle
$$

is the group of cyclotomic units of \boldsymbol{Q}_{N+t} and $p \nmid\left[\mathcal{O}_{N+t}^{\times}: C_{N+t}\right]$ (for the various properties of the cyclotomic unit group, see [12, Chapter 8] for example). Hence $\overline{\mathcal{O}_{N+t}^{\times}} / p^{m_{0}} \simeq$ $\left(C_{N+t} /\{ \pm 1\}\right) / p^{m_{0}}$. Because

$$
\left.C_{N+t} /\{ \pm 1\} \simeq \boldsymbol{Z}\left[\operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right)\right] / N_{\operatorname{Gal}\left(\boldsymbol{Q}_{N+t}\right.} / \boldsymbol{Q}\right)
$$

as $\operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right)$-modules and

$$
\boldsymbol{Z}\left[\operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right)\right]=\bigoplus_{\tau \in \operatorname{Gal}\left(\boldsymbol{Q}_{N+t} / \boldsymbol{Q}\right) / \Gamma_{t}} \boldsymbol{Z}\left[\Gamma_{t}\right] \tau
$$

we can see that $C_{N+t} /\{ \pm 1\} \simeq \boldsymbol{Z}\left[\Gamma_{t}\right]^{\oplus p^{N}-1} \oplus \boldsymbol{Z}\left[\Gamma_{t}\right] / N_{\Gamma_{t}}$. Thus we have proved assertion (i).

Assertion (ii) follows from $\overline{\mathcal{O}_{N+n_{0}+\delta}^{\times}} / p^{m_{0}} \simeq\left(C_{N+n_{0}+\delta} /\{ \pm 1\}\right) / p^{m_{0}}$ and the fact that the norm map $N_{n_{0}+1, n_{0}}: C_{N+n_{0}+1} /\{ \pm 1\} \rightarrow C_{N+n_{0}} /\{ \pm 1\}$ is surjective.

Lemma 3. For any $\Gamma_{n_{0}+1}$-homomorphism $f: \overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}} \rightarrow \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]$, there exist infinitely many degree one primes $\mathfrak{\mathscr { L }}$ of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ such that

$$
f(\varepsilon)=\sum_{\gamma \in \Gamma_{n_{0}+1}} \varphi\left(\left(\frac{\varepsilon}{\tilde{\gamma} \tilde{\mathbf{Q}}}\right)_{n_{0}+1}\right) \gamma,
$$

for any $\varepsilon \in \overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}}$, where the notations in the above are as in (9). Furthermore, for any fixed finite abelian extension $M / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ with $M \cap \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\left(\sqrt[p^{m_{0}}]{\mathcal{O}_{N+n_{0}+1}^{\times}}\right)=\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ and $\tau \in \operatorname{Gal}\left(M / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\right)$, we can impose the condition

$$
\left(\frac{M / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}}{\tilde{\mathfrak{L}}}\right)=\tau
$$

on $\tilde{\mathfrak{D}}$.
Proof. From Lemma 2 (i), there exist $\varepsilon_{j}, \xi \in \mathcal{O}_{N+n_{0}+1}^{\times}\left(1 \leq j \leq p^{N}-1\right)$ such that

$$
\begin{equation*}
\overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}}=\bigoplus_{j=1}^{p^{N}-1} \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right] \overline{\varepsilon_{j}} \oplus\left(\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right] / N_{\Gamma_{n_{0}+1}}\right) \bar{\xi} \tag{13}
\end{equation*}
$$

where $\overline{\varepsilon_{j}}, \bar{\xi} \in \overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}}$ are the classes of ε_{j} and ξ, respectively.
Assume that $f\left(\varepsilon_{j}\right)=\sum_{\gamma \in \Gamma_{n_{0}+1}} c_{j, \gamma} \gamma$ and $f(\underset{\tilde{\mathscr{L}}}{\xi})=\sum_{\tilde{\boldsymbol{Q}}}^{\gamma \in \Gamma_{n_{0}+1}} d_{\gamma} \gamma$. We shall show that there exist infinitely many degree one primes $\tilde{\mathfrak{L}}$ of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ such that

$$
\begin{align*}
& \left(\frac{\varepsilon_{j}}{\tilde{\gamma} \tilde{\mathbf{Q}}}\right)_{n_{0}+1}=\varphi^{-1}\left(c_{j, \gamma}\right) \quad\left(1 \leq j \leq p^{N}-1, \gamma \in \Gamma_{n_{0}+1}\right), \\
& \left(\frac{\xi}{\tilde{\gamma} \tilde{\mathbf{Q}}}\right)_{n_{0}+1}=\varphi^{-1}\left(d_{\gamma}\right) \quad\left(\gamma \in \Gamma_{n_{0}+1}-\{1\}\right) . \tag{14}
\end{align*}
$$

We note that if the above conditions hold, then the condition

$$
\left(\frac{\xi}{\tilde{\mathfrak{L}}}\right)_{n_{0}+1}=\varphi^{-1}\left(d_{1}\right)
$$

also holds, because $\prod_{\gamma \in \Gamma_{n_{0}+1}}(\xi /(\tilde{\gamma} \tilde{\mathfrak{Z}}))_{n_{0}+1}=\left(\prod_{\gamma \in \Gamma_{n_{0}+1}} \gamma \xi / \tilde{\mathfrak{L}}\right)_{n_{0}+1}=1$ and $\sum_{\gamma \in \Gamma_{n_{0}+1}} d_{\gamma}=0$. We also note that

$$
\begin{equation*}
\left(\frac{\varepsilon}{\tilde{\gamma} \tilde{\mathfrak{Q}}}\right)_{n_{0}+1}=\left(\frac{\tilde{\boldsymbol{Q}}_{N+n_{0}+1}\left(\sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \varepsilon}\right) / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}}{\tilde{\mathfrak{L}}}\right)\left(\sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \varepsilon}\right) /\left(\sqrt\left[\left(p^{m_{0}}\right]{\tilde{\gamma}^{-1} \varepsilon}\right)\right. \tag{15}
\end{equation*}
$$

for any $\varepsilon \in \mathcal{O}_{N+n_{0}+1}^{\times}$.
We need the following lemma:
Lemma 4. The natural map $\overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}} \rightarrow \tilde{\mathcal{O}}_{N+n_{0}+1}^{\times} / p^{m_{0}}$ is injective (note that $-1 \in$ $\left.\left(\tilde{\mathcal{O}}_{N+n_{0}+1}^{\times}\right)^{p^{m_{0}}}\right)$.

Proof. From the exact sequence

$$
0 \longrightarrow \mu_{p^{m_{0}}} \longrightarrow \tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times} \xrightarrow{p^{m_{0}}}\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times}\right)^{p^{m_{0}}} \longrightarrow 0
$$

we get the exact $G=\operatorname{Gal}\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$-cohomology sequence

$$
\boldsymbol{Q}_{N+n_{0}+1}^{\times} \xrightarrow{p^{m_{0}}}\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times}\right)^{p^{m_{0}}} \cap \boldsymbol{Q}_{N+n_{0}+1} \longrightarrow H^{1}\left(G, \mu_{p^{m_{0}}}\right) \longrightarrow 0 .
$$

If $p \neq 2, H^{1}\left(G, \mu_{p^{m_{0}}}\right)=0$ since $\# G$ is prime to p. Hence we have $\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}\right)^{p^{m_{0}}} \cap$ $\boldsymbol{Q}_{N+n_{0}+1}=\left(\boldsymbol{Q}_{N+n_{0}+1}^{\times}\right)^{p^{m_{0}}}$. Therefore the assertion of the lemma follows.

We assume that $p=2$. Then we can see $H^{1}\left(G, \mu_{2^{m_{0}}}\right) \simeq \boldsymbol{Z} / 2$. Hence we have $\left(\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}} \cap \boldsymbol{Q}_{N+n_{0}+1}\right) /\left(\boldsymbol{Q}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}} \simeq \boldsymbol{Z} / 2$. Since $-1 \in\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}}-\left(\boldsymbol{Q}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}}$, the kernel of the natural map $\mathcal{O}_{N+n_{0}+1}^{\times} / 2^{m_{0}} \rightarrow \tilde{\mathcal{O}}_{N+n_{0}+1}^{\times} / 2^{m_{0}}$, which is contained in $\left(\left(\tilde{\boldsymbol{Q}}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}} \cap \boldsymbol{Q}_{N+n_{0}+1}\right) /\left(\boldsymbol{Q}_{N+n_{0}+1}^{\times}\right)^{2^{m_{0}}}$, is generated by the class of -1 . Thus we also obtain the lemma in the case $p=2$.

Proof of Lemma 3. Put $F_{j}=\tilde{\boldsymbol{Q}}_{N+n_{0}+1} \sqrt\left[\left(p^{m_{0}}\right]{\tilde{\gamma}^{-1} \varepsilon_{j}} \mid \gamma \in \Gamma_{n_{0}+1}\right)$ and $E=\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$. $\left(\sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \xi} \mid \gamma \in \Gamma_{n_{0}+1}\right)$. Then it follows from Lemma 4 and (13) that the abelian extensions $F_{j} / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\left(1 \leq j \leq p^{N}-1\right)$ and $E / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ are independent, and that

$$
\begin{aligned}
& \operatorname{Gal}\left(F_{j} / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\right) \simeq \bigoplus_{\gamma \in \Gamma_{n_{0}+1}} \mu_{p^{m_{0}}}, \quad \sigma \mapsto\left(\sigma\left(\sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \varepsilon_{j}}\right) / \sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \varepsilon_{j}}\right)_{\gamma \in I_{n_{0}+1}} \\
& \operatorname{Gal}\left(E / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\right) \simeq \bigoplus_{\gamma \in \Gamma_{n_{0}+1}-\{1\}} \mu_{p^{m_{0}}}, \quad \sigma \mapsto\left(\sigma\left(\sqrt[p^{m_{0}}]{ } \sqrt{\tilde{\gamma}^{-1} \xi}\right) / \sqrt[p^{m_{0}}]{\tilde{\gamma}^{-1} \xi}\right)_{\gamma \in I_{n_{0}+1}-\{1\}}
\end{aligned}
$$

Therefore, by the Čebotarev density theorem and (15), there exist infinitely many degree one primes of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ satisfying (14). Furthermore, we can impose the condition

$$
\left(\frac{M / \tilde{\boldsymbol{Q}}_{N+n_{0}+1}}{\tilde{\mathfrak{Q}}}\right)=\tau
$$

on $\tilde{\mathcal{Q}}$, since $M \cap \tilde{\boldsymbol{Q}}_{N+n_{0}+1}\left(\sqrt[p^{m_{0}}]{\mathcal{O}_{N+n_{0}+1}^{\times}}\right)=\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$.
Now we choose the primes $\tilde{\mathfrak{L}}_{i, n_{0}+1}$ and I_{i}. From (7) and Lemma 2 (i), there exists a $\Gamma_{n_{0}+1}$-homomorphism $h: \overline{\mathcal{O}_{N+n_{0}+1}^{\times}} / p^{m_{0}} \rightarrow \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1}$ such that $\operatorname{Im}(h)=\tilde{R}_{n_{0}+1}$. Assume the following condition on the primes $\tilde{\mathfrak{L}}_{i, n_{0}+1}(1 \leq i \leq r+1)$:

Condition A.

$$
\operatorname{pr}_{i} \circ h=\sum_{\gamma \in \Gamma_{n_{0}+1}} \varphi\left(\left(\frac{*}{\tilde{\gamma} \tilde{\mathbf{S}}_{i, n_{0}+1}}\right)_{n_{0}+1}\right) \gamma
$$

for $1 \leq i \leq r+1$, where $\operatorname{pr}_{i}: \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} \rightarrow \boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]$ denotes the projection map to the i-th component.

By virtue of Lemma 33, there exist degree one primes $\tilde{\mathfrak{L}}_{i, n_{0}+1}$ of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ satisfying Condition A such that $\tilde{\mathfrak{L}}_{i, n_{0}+1}$'s are lying over distinct rational primes. We choose the prime of \boldsymbol{Q}_{N} (resp. $\boldsymbol{Q}_{N+n_{0}+\delta}$) below $\tilde{\mathfrak{Z}}_{i, n_{0}+1}$ as $\mathfrak{I}_{i}\left(\right.$ resp. $\mathfrak{L}_{i, n_{0}+\delta}(\delta=0,1)$), and put $\mathfrak{m}=\prod_{i=1}^{r+1} \mathfrak{I}_{i}$. Then we have $\operatorname{Im}\left(\rho_{n_{0}+1}\right)=\operatorname{Im}(h)=\tilde{R}_{n_{0}+1}$ by (11), hence $r_{n_{0}+1}$ induces the isomorphism

$$
\begin{equation*}
\tilde{X}=\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} / \tilde{R}_{n_{0}+1} \simeq \operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right) . \tag{16}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right) \simeq \operatorname{Gal}\left(L_{n_{0}} / \boldsymbol{Q}_{N+n_{0}}\right), \tag{17}
\end{equation*}
$$

because $\operatorname{Im}\left(\rho_{n_{0}}\right)=\tilde{R}_{n_{0}}$ and $\operatorname{Gal}\left(L_{n_{0}} / \boldsymbol{Q}_{N+n_{0}}\right) \simeq \boldsymbol{Z}\left[\Gamma_{n_{0}}\right]^{\oplus r+1} / \tilde{R}_{n_{0}} \simeq \tilde{X}$ by Lemma 2 (ii), commutative diagram (12), and the fact $\tilde{R}_{n_{0}+1}=\pi_{n_{0}+1, n_{0}}^{-1}\left(\tilde{R}_{n_{0}}\right)$. We identify $\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$ with \tilde{X} via the isomorphism (16).

We regard $X=\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r} / R_{n_{0}+1}$ as a submodule of $\tilde{X}=\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} /$ $\tilde{R}_{n_{0}+1}$ via the embedding $\left(x_{i}\right)_{1 \leq i \leq r} \bmod R_{n_{0}+1} \mapsto\left(x_{1}, \ldots, x_{r}, \sum_{i=1}^{r} x_{i}\right) \bmod \tilde{R}_{n_{0}+1}$. We define F to be the intermediate field of $L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$ with

$$
\begin{equation*}
X=\operatorname{Gal}\left(L_{n_{0}+1} / F\right) \tag{18}
\end{equation*}
$$

Lemma 5. (i) There exists the unique cyclic extension k / \boldsymbol{Q}_{N} of degree $p^{m_{0}}$ with conductor dividing \mathfrak{m} such that $F=k_{n_{0}+1}\left(=k \boldsymbol{Q}_{N+n_{0}+1}\right)$.
(ii) Primes $\gamma \mathfrak{Q}_{i, n_{0}+\delta}\left(\gamma \in \Gamma_{n_{0}+\delta}, 1 \leq i \leq r+1\right)$ are totally ramified in $k_{n_{0}+\delta} / \boldsymbol{Q}_{N+n_{0}+\delta}$. Also primes $\mathfrak{I}_{i}(1 \leq i \leq r+1)$ are totally ramified in k.
(iii) $L_{n_{0}+\delta}$ is the genus p-class field of $k_{n_{0}+\delta} / \boldsymbol{Q}_{N+n_{0}+\delta}$ for $\delta=0,1$.

Proof. (i) Since \tilde{X} / X is generated by the class of $(0, \ldots 0,1), \operatorname{Gal}\left(F / \boldsymbol{Q}_{N+n_{0}+1}\right) \simeq$ $\tilde{X} / X \simeq \boldsymbol{Z} / p^{m_{0}}$ with trivial $\Gamma_{n_{0}+1}$-action. Hence F / \boldsymbol{Q}_{N} is an abelian extension and $\operatorname{Gal}\left(F / \boldsymbol{Q}_{N}\right)=\operatorname{Gal}\left(F / \boldsymbol{Q}_{N+n_{0}+1}\right) \times I_{p}$, where $I_{p} \subseteq \operatorname{Gal}\left(F / \boldsymbol{Q}_{N}\right)$ is the inertia subgroup for the unique prime of \boldsymbol{Q}_{N} lying over p. Let k be the fixed field of I_{p}. Then k is the desired field.
(ii) In (12), the inertia subgroup of $\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$ for $\gamma \mathbb{S}_{i, n_{0}+1}$ is generated by $r_{n_{0}+1}((0, \ldots, \stackrel{\zeta}{\gamma} \ldots, 0))$ over $\boldsymbol{Z} / p^{m_{0}}$. One can easily see that the order of $(0, \ldots$, $\stackrel{i}{\gamma} \ldots, 0) \bmod \tilde{R}_{n_{0}+1}$ is $p^{m_{0}}$ and that $\boldsymbol{Z} / p^{m_{0}}\left((0, \ldots, \stackrel{i}{\gamma} \ldots, 0) \bmod \tilde{R}_{n_{0}+1}\right) \cap X=0$. Hence the prime $\gamma \mathfrak{Q}_{i, n_{0}+1}$ is totally ramified in $k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$ and $L_{n_{0}+1} / k_{n_{0}+1}$ is an unramified extension. The remaining assertions follow from this fact because $k_{n_{0}+1}=k_{n_{0}} \boldsymbol{Q}_{N+n_{0}+1}$ $=k \boldsymbol{Q}_{N+n_{0}+1}$.
(iii) Let L^{\prime} be the genus p-class field of $k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$. Then $L_{n_{0}+1} \subseteq L^{\prime}$ since $L_{n_{0}+1} / k_{n_{0}+1}$ is an unramified abelian p-extension and $L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$ is abelian. Now we show $L^{\prime} \subseteq L_{n_{0}+1}$. Since the class number of $\boldsymbol{Q}_{N+n_{0}+1}$ is prime to $p, \operatorname{Gal}\left(L^{\prime} / k_{n_{0}+1}\right)$ is annihilated by $p^{m_{0}}=\left[k_{n_{0}+1}: \boldsymbol{Q}_{N+n_{0}+1}\right]$. Since the prime $\mathcal{S}_{i, n_{0}+1}$ is totally ramified in $k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$, we have $\operatorname{Gal}\left(L^{\prime} / \boldsymbol{Q}_{N+n_{0}+1}\right) \simeq \operatorname{Gal}\left(L^{\prime} / k_{n_{0}+1}\right) \times \operatorname{Gal}\left(k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$. Hence $\operatorname{Gal}\left(L^{\prime} / \boldsymbol{Q}_{N+n_{0}+1}\right)$ is annihilated by $p^{m_{0}}$. Since the conductor of $L^{\prime} / \boldsymbol{Q}_{N+n_{0}+1}$ divides \mathfrak{m}, we obtain $L^{\prime} \subseteq L_{n_{0}+1}$. Thus we have shown that $L_{n_{0}+1}$ is the genus p-class field of $k_{n_{0}+1}$. The assertion for $L_{n_{0}}$ also follows by the same argument.

It follows from Lemmas 1, 5, (18), and (17) that if $L_{n_{0}+\delta}$ is the Hilbert p-class field of $k_{n_{0}+\delta}$ for $\delta=0,1$, the cyclotomic \boldsymbol{Z}_{p}-extension over k is a desired \boldsymbol{Z}_{p}-extension.

Let $H_{n_{0}+\delta}^{(p)}$ be the Hilbert p-class field of $k_{n_{0}+\delta}$ for $\delta=0,1$ and σ a generator of $\operatorname{Gal}\left(k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)$. Then we have

$$
\begin{equation*}
\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right) \simeq \operatorname{Gal}\left(H_{n_{0}+1}^{(p)} / k_{n_{0}+1}\right) /(\sigma-1) \tag{19}
\end{equation*}
$$

by Lemma 5 (iii). Denote by $\overline{\mathfrak{Q}}_{i, n_{0}+1}$ the unique prime of $k_{n_{0}+1}$ lying over $\mathfrak{L}_{i, n_{0}+1}$ (Lemma 5 (ii)). If $\left\{\left(\overline{\mathfrak{S}}_{i, n_{0}+1}, L_{n_{0}+1} / k_{n_{0}+1}\right) \mid 1 \leq i \leq r+1\right\}$ generates $\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right)$
over $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]$, then $L_{n_{0}+1}=H_{n_{0}+1}^{(p)}$ by (19) and Nakayama's lemma because $\gamma \overline{\mathbb{B}}_{i, n_{0}+1}$ $\left(\gamma \in \Gamma_{n_{0}+1}, 1 \leq i \leq r+1\right)$ is invariant under the action of σ. Since $H_{n_{0}}^{(p)} k_{n_{0}+1} \subseteq H_{n_{0}+1}^{(p)}$ and $L_{n_{0}+1}=L_{n_{0}} k_{n_{0}+1}$ by (17), if $L_{n_{0}+1}=H_{n_{0}+1}^{(p)}$ holds then $L_{n_{0}}=H_{n_{0}}^{(p)}$ also holds.

Lemma 6. The restriction induces the isomorphisms

$$
\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)_{\Gamma_{n_{0}+1}} \simeq \operatorname{Gal}\left(L_{0} / \boldsymbol{Q}_{N}\right)
$$

and

$$
\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right)_{\Gamma_{n_{0}+1}} \simeq \operatorname{Gal}\left(L_{0} / k\right) .
$$

Proof. Let M be the intermediate field of $L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}$ with $\operatorname{Gal}\left(L_{n_{0}+1} / M\right)=$ $\left(\gamma_{n_{0}+1}-1\right) \operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right), \gamma_{n_{0}+1}$ being a generator of $\Gamma_{n_{0}+1}$.

Then $\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)_{\Gamma_{n_{0}+1}}=\operatorname{Gal}\left(M / \boldsymbol{Q}_{N+n_{0}+1}\right)$ and M / \boldsymbol{Q}_{N} is an abelian extension. It is obvious that $L_{0} \boldsymbol{Q}_{N+n_{0}+1} \subseteq M$. Let $I_{p} \subseteq \operatorname{Gal}\left(M / \boldsymbol{Q}_{N}\right)$ be the inertia subgroup for the unique prime of \boldsymbol{Q}_{N} lying over p. Then $\operatorname{Gal}\left(M / \boldsymbol{Q}_{N}\right)=$ $\operatorname{Gal}\left(M / \boldsymbol{Q}_{N+n_{0}+1}\right) \times I_{p}$ and the fixed field of I_{p} is contained in L_{0}. Therefore we have $L_{0} \boldsymbol{Q}_{N+n_{0}+1}=M$ and $\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)_{\Gamma_{n_{0}+1}} \simeq \operatorname{Gal}\left(L_{0} / \boldsymbol{Q}_{N}\right)$ since $L_{0} \cap \boldsymbol{Q}_{N+n_{0}+1}=\boldsymbol{Q}_{N}$.

To show the second assertion, it is enough to show $\left(\gamma_{n_{0}+1}-1\right) X=\left(\gamma_{n_{0}+1}-1\right) \tilde{X}$ because $\left(\gamma_{n_{0}+1}-1\right) \tilde{X}=\operatorname{Gal}\left(L_{n_{0}+1} / L_{0} \boldsymbol{Q}_{N+n_{0}+1}\right)$ by the first assertion. Let $\overline{\left(x_{i}\right)} \in \tilde{X}=$ $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]^{\oplus r+1} / \tilde{R}_{n_{0}+1}$ be any element. Since

$$
\left(0, \ldots, 0,\left(\gamma_{n_{0}+1}-1\right)\left(\sum_{i=1}^{r} x_{i}-x_{r+1}\right)\right) \in \tilde{R}_{n_{0}+1}
$$

we have

$$
\begin{align*}
\left(\gamma_{n_{0}+1}-1\right) \overline{\left(x_{i}\right)} & \left.=\overline{\left(\left(\gamma_{n_{0}+1}-1\right) x_{i}\right.}\right) \tag{20}\\
& =\overline{\left(\left(\gamma_{n_{0}+1}-1\right) x_{1}, \ldots,\left(\gamma_{n_{0}+1}-1\right) x_{r},\left(\gamma_{n_{0}+1}-1\right) \sum_{i=1}^{r} x_{i}\right)} \\
& =\left(\gamma_{n_{0}+1}-1\right) \overline{\left(x_{1}, \ldots, x_{r}, \sum_{i=1}^{r} x_{i}\right)} \in\left(\gamma_{n_{0}+1}-1\right) X .
\end{align*}
$$

Hence $\left(\gamma_{n_{0}+1}-1\right) \tilde{X} \subseteq\left(\gamma_{n_{0}+1}-1\right) X$. Thus we have shown $\left(\gamma_{n_{0}+1}-1\right) \tilde{X}=\left(\gamma_{n_{0}+1}-1\right) X$.

Let $L_{0}^{(p)}$ and $L_{k}^{(p)}$ be the maximal elementary abelian p-subextension of $L_{0} / \boldsymbol{Q}_{N}$ and L_{0} / k, respectively. Denote by $k^{(p)}$ the intermediate field of k / \boldsymbol{Q}_{N} with $\left[k^{(p)}: \boldsymbol{Q}_{N}\right]=p$. Then we have

$$
\begin{align*}
\operatorname{Gal}\left(L_{0}^{(p)} / \boldsymbol{Q}_{N}\right) & \simeq\left(\operatorname{Gal}\left(L_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)_{\Gamma_{n_{0}+1}}\right) / p \tag{21}\\
& \simeq\left(\left(\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right) \times \operatorname{Gal}\left(k_{n_{0}+1} / \boldsymbol{Q}_{N+n_{0}+1}\right)\right)_{\Gamma_{n_{0}+1}}\right) / p \\
& \simeq(\boldsymbol{Z} / p)^{\oplus r+1}
\end{align*}
$$

by Lemmas 5, 6, (1) and (18). We find that $\operatorname{Gal}\left(L_{k}^{(p)} / \boldsymbol{Q}_{N}\right)=\operatorname{Gal}\left(L_{k}^{(p)} / k\right) \times$ $\operatorname{Gal}\left(k / \boldsymbol{Q}_{N}\right)$ because I_{i} is totally ramified in k / \boldsymbol{Q}_{N} and $L_{k}^{(p)} / k$ is unramified extension by Lemma 5. Hence $L_{k}^{(p)}=k L_{0}^{(p)}$ and

$$
\begin{equation*}
\left(\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right)_{\Gamma_{n_{0}+1}}\right) / p \simeq \operatorname{Gal}\left(L_{k}^{(p)} / k\right) \simeq \operatorname{Gal}\left(L_{0}^{(p)} / k^{(p)}\right) \tag{22}
\end{equation*}
$$

by Lemma 6, where isomorphisms in the above are given by the restriction. It follows from (22), the fact $\left.\left(\gamma \overline{\mathfrak{\Sigma}}_{i, n_{0}+1}, L_{n_{0}+1} / k_{n_{0}+1}\right)\right|_{L_{0}^{(p)}}=\left(\overline{\mathrm{I}}_{i}, L_{0}^{(p)} / k^{(p)}\right), \overline{\mathfrak{l}}_{i}$ being the unique prime of $k^{(p)}$ lying over \mathfrak{I}_{i}, and Nakayama's lemma that if $\left\{\left(\overline{\mathrm{I}}_{i}, L_{0}^{(p)} / k^{(p)}\right) \mid 1 \leq i \leq\right.$ $r+1\}$ generates $\operatorname{Gal}\left(L_{0}^{(p)} / k^{(p)}\right)$, then $\operatorname{Gal}\left(L_{n_{0}+1} / k_{n_{0}+1}\right)$ is generated by $\left\{\left(\overline{\mathfrak{L}}_{i, n_{0}+1}, L_{n_{0}+1} /\right.\right.$ $\left.\left.k_{n_{0}+1}\right) \mid 1 \leq i \leq r+1\right\}$ over $\boldsymbol{Z} / p^{m_{0}}\left[\Gamma_{n_{0}+1}\right]$, hence $L_{n_{0}+\delta}$ is the Hilbert p-class field of $k_{n_{0}+\delta}(\delta=0,1)$ as mentioned above. Let $I_{i}(1 \leq i \leq r+1)$ be the inertia subgroup of $\operatorname{Gal}\left(L_{0}^{(p)} / \boldsymbol{Q}_{N}\right)$ for the prime \mathfrak{I}_{i}. Then we have $I_{i} \simeq \boldsymbol{Z} / p$ and

$$
\begin{equation*}
\operatorname{Gal}\left(L_{0}^{(p)} / \boldsymbol{Q}_{N}\right)=\bigoplus_{i=1}^{r+1} I_{i} \tag{23}
\end{equation*}
$$

because \mathfrak{I}_{i} ramifies in $k^{(p)}$ by Lemma 5 and $\operatorname{Gal}\left(L_{0}^{(p)} / \boldsymbol{Q}_{N}\right) \simeq(\boldsymbol{Z} / p)^{\oplus r+1}$ by (21). Hence $L^{(p)} / \boldsymbol{Q}_{N}$ is the composite of the abelian extensions $\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{i}\right) / \boldsymbol{Q}_{N}(1 \leq i \leq r+1)$ of degree p with conductor \mathfrak{I}_{i}, and the restriction induces the isomorphism

$$
\begin{equation*}
\operatorname{Gal}\left(L_{0}^{(p)} / k^{(p)}\right) \simeq \bigoplus_{i=1}^{r} \operatorname{Gal}\left(\boldsymbol{Q}_{N}^{(p)}\left(\mathbf{I}_{i}\right) / \boldsymbol{Q}_{N}\right) \tag{24}
\end{equation*}
$$

Assume the following condition on $\mathfrak{I}_{i}(1 \leq i \leq r+1)$:
Condition B. The prime \mathfrak{I}_{2} is inert in $\boldsymbol{Q}_{N}^{(p)}\left(\mathfrak{I}_{1}\right)$. If $3 \leq i \leq r+1$, then the prime \mathfrak{I}_{i} splits in $\boldsymbol{Q}_{N}^{(p)}\left(\mathfrak{l}_{j}\right)$ for all j such that $1 \leq j \leq i-2$ and is inert in $\boldsymbol{Q}_{N}^{(p)}\left(\mathfrak{l}_{i-1}\right)$.

Then, under isomorphism (24),
$\left(\frac{L_{0}^{(p)} / k^{(p)}}{\overline{\mathrm{I}}_{2}}\right) \mapsto\left(\sigma_{1}, \ldots\right), \quad \sigma_{1} \in \operatorname{Gal}\left(\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{i}\right) / \boldsymbol{Q}_{N}\right), \sigma_{1} \neq 1$,
$\left(\frac{L_{0}^{(p)} / k^{(p)}}{\overline{\mathrm{I}}_{i}}\right) \mapsto\left(1, \ldots, 1, \sigma_{i-1}, \ldots\right), \quad \sigma_{i-1} \in \operatorname{Gal}\left(\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{i-1}\right) / \boldsymbol{Q}_{N}\right), \sigma_{i-1} \neq 1 \quad(3 \leq i \leq r+1)$.
Therefore $\left\{\left(\overline{\mathrm{I}}_{i}, L_{0}^{(p)} / k^{(p)}\right) \mid 1 \leq i \leq r+1\right\} \quad$ generates $\operatorname{Gal}\left(L_{0}^{(p)} / k^{(p)}\right)$, which implies $L_{n_{0}+\delta}=H_{n_{0}+\delta}^{(p)}(\delta=0,1)$, under Condition B. Condition B is equivalent to the following condition on $\tilde{\mathfrak{L}}_{i, n_{0}+1}$:

Condition B'. The prime $\tilde{\mathfrak{R}}_{2, n_{0}+1}$ is inert in $\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{1}\right) \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$. If $3 \leq i \leq r+1$, then the prime $\tilde{\mathfrak{R}}_{i, n_{0}+1}$ splits in $\boldsymbol{Q}_{N}^{(p)}\left(\mathfrak{I}_{j}\right) \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ for all j such that $1 \leq j \leq i-2$ and is inert in $\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{i-1}\right) \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$.

By virtue of Lemma 3, we can choose inductively the degree one primes $\tilde{\mathfrak{L}}_{i, n_{0}+1}$ of $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$ from $i=1$ to $r+1$ such that $\tilde{\mathfrak{Q}}_{i, n_{0}+1}$'s satisfy Conditions A and B^{\prime}, and that $\tilde{\mathfrak{L}}_{i, n_{0}+1}$'s are lying over distinct rational primes, because $\boldsymbol{Q}_{N}^{(p)}\left(\mathrm{I}_{j}\right) \tilde{\boldsymbol{Q}}_{N+n_{0}+1}$'s $(1 \leq j \leq$ $i-1)$ and $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}\left(\sqrt[p^{m_{0}}]{\boldsymbol{O}_{N+n_{0}+1}^{\times}}\right)$are independent over $\tilde{\boldsymbol{Q}}_{N+n_{0}+1}$. Thus the cyclotomic \boldsymbol{Z}_{p}-extension over totally real number field k given in Lemma 5 is a desired \boldsymbol{Z}_{p}-extension.

4. Proof of Theorem 2.

Let p be a given odd prime number and F an imaginary quadratic field such that the class number of F is prime to p and the prime p is inert in F. Such field F certainly exists by Horie [4]. Denote by F_{∞} / F the anti-cyclotomic \boldsymbol{Z}_{p}-extension, namely, the unique Z_{p}-extension over F which is non-abelian (dihedral) Galois extension over \boldsymbol{Q}. We write F_{n} for the n-th layer of F_{∞} / F and put $\Gamma_{n}=\operatorname{Gal}\left(F_{n} / F\right)$. It follows from Iwasawa [7, section 2] (see also [10, chapter 13, Theorem 5.2]) that if a prime I of F with $\mathfrak{I} \nmid p$ is inert in F / \boldsymbol{Q}, then \mathfrak{I} decomposes completely in F_{∞}. Let $l_{i}(1 \leq i \leq$ $m+1$) be distinct rational primes such that

$$
l_{i} \text { is inert in } F \text { and } l_{i} \equiv 1(\bmod p)
$$

and put $f=\prod_{i=1}^{m+1} l_{i}$. For $n \geq 0$, we define the field L_{n} to be the maximal elementary abelian p-extension field over F_{n} whose conductor divides f. It follows from the assumption on F and Iwasawa [5] that the class number of F_{n} is prime to p. Then we have the following exact sequence of Γ_{n}-modules by class field theory:

$$
\begin{equation*}
\mathcal{O}_{n}^{\times} / p \rightarrow\left(\mathcal{O}_{n} / f\right)^{\times} / p \rightarrow \operatorname{Gal}\left(L_{n} / F_{n}\right) \rightarrow 0 \tag{26}
\end{equation*}
$$

where \mathcal{O}_{n} denotes the integer ring of F_{n}. Since the prime l_{i} of F splits completely in F_{n}, we can see that $\left(\mathcal{O}_{n} / f\right)^{\times} / p \simeq \boldsymbol{Z} / p\left[\Gamma_{n}\right]^{\oplus m+1}$ as in the proof of Theorem 1]. Then, by taking the projective limit of exact sequence (26) for $n \geq 0$, we get the exact sequence of $\Lambda_{F_{\infty} / F}$-modules

$$
\begin{equation*}
\lim _{\leftrightarrows}\left(O_{n}^{\times} / p\right) \rightarrow\left(\Lambda_{F_{\infty} / F} / p\right)^{\oplus m+1} \rightarrow \operatorname{Gal}\left(L_{\infty} / F_{\infty}\right) \rightarrow 0, \tag{27}
\end{equation*}
$$

where the projective limit $\lim \left(\mathcal{O}_{n}^{\times} / p\right)$ is taken with respect to the norm maps and $L_{\infty}=\bigcup_{n \geq 0} L_{n}$.

Lemma 7. We have $\mathcal{O}_{n}^{\times} / p \simeq \boldsymbol{Z} / p\left[\Gamma_{n}\right] / \sum_{\gamma \in I_{n}} \gamma$, and $\lim \left(\mathcal{O}_{n}^{\times} / p\right) \simeq \Lambda_{F_{\infty} / F} / p$.
Proof. We assume that $\mathcal{O}_{n}^{\times} / p \simeq \bigoplus_{i=1}^{s} \boldsymbol{Z} / p\left[\Gamma_{n}\right] /\left(\gamma_{n}-1\right)^{a_{i}}$ for $1 \leq a_{i} \leq p^{n}$. Then $\sum_{i=1}^{s} a_{i}=\operatorname{dim}_{\boldsymbol{Z} / p} \mathcal{O}_{n}^{\times} / p=p^{n}-1$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{n}^{\times} \xrightarrow{p} \mathcal{O}_{n}^{\times} \rightarrow \mathcal{O}_{n}^{\times} / p \rightarrow 0
$$

and the fact that $\hat{H}^{2 i}\left(\Gamma_{n}, \mathcal{O}_{n}^{\times}\right)=0(i \in \boldsymbol{Z})$ (This follows from the fact that $\hat{H}^{0}\left(\Gamma_{n}, \mathcal{O}_{n}^{\times}\right)=$ $\mathscr{O}_{0}^{\times} /\left(\sum_{\gamma \in I_{n}} \gamma\right) \mathscr{O}_{n}^{\times}=0$ since $\# \mathscr{O}_{0}^{\times}$is finite and prime to p), we get the following exact cohomology sequence:

$$
\begin{equation*}
0 \rightarrow \hat{H}^{0}\left(\Gamma_{n}, \mathscr{O}_{n}^{\times} / p\right) \rightarrow H^{1}\left(\Gamma_{n}, \mathscr{O}_{n}^{\times}\right) \xrightarrow{p} H^{1}\left(\Gamma_{n}, \mathscr{O}_{n}^{\times}\right) \rightarrow H^{1}\left(\Gamma_{n}, \mathscr{O}_{n}^{\times} / p\right) \rightarrow 0 . \tag{28}
\end{equation*}
$$

One can show that $H^{1}\left(\Gamma_{n}, \mathcal{O}_{n}^{\times}\right) \simeq P_{n}^{\Gamma_{n}} / P_{0}, P_{n}$ being the principal ideal group of F_{n}. Because the class number h_{n} of F_{n} is prime to p and the prime \mathfrak{P}_{n} of F_{n} lying over p is the unique ramified prime in F_{n} / F, which is totally ramified, $P_{n}^{I_{n}} / P_{0}$ (note that $P_{n}^{\Gamma_{n}} / P_{0}$ has p-power order) is generated by the class of $\mathfrak{P}_{n}^{h_{n}}$, whose order is p^{n}. Hence $H^{1}\left(\Gamma_{n}, \mathcal{O}_{n}^{\times}\right) \simeq \boldsymbol{Z} / p^{n}$, which implies $H^{1}\left(\Gamma_{n}, \mathcal{O}_{n}^{\times} / p\right) \simeq \boldsymbol{Z} / p$ by (28). Since $H^{1}\left(\Gamma_{n}\right.$, $\left.\mathcal{O}_{n}^{\times} / p\right)=\oplus_{i=1}^{s} H^{1}\left(\Gamma_{n}, \boldsymbol{Z} / p\left[\Gamma_{n}\right] /\left(\gamma_{n}-1\right)^{a_{i}}\right)$ and $H^{1}\left(\Gamma_{n}, \boldsymbol{Z} / p\left[\Gamma_{n}\right] /\left(\gamma_{n}-1\right)^{a_{i}}\right)=0$ if and only if $a_{i}=p^{n}$, we have $\mathcal{O}_{n}^{\times} \simeq \boldsymbol{Z} / p\left[\Gamma_{n}\right] /\left(\gamma_{n}-1\right)^{p^{n}-1}=\boldsymbol{Z} / p\left[\Gamma_{n}\right] / \sum_{\gamma \in \Gamma_{n}} \gamma$.

By the similar way to the above, we can show that $H^{1}\left(F_{t} / F_{n}, \mathcal{O}_{t}^{\times}\right) \simeq \boldsymbol{Z} / p^{t-n}$ for $0 \leq n \leq t$. Then it follows from the fact $\# H^{1}\left(F_{t} / F_{n}, \mathcal{O}_{t}^{\times}\right) / \# \hat{H}^{0}\left(F_{t} / F_{n}, \mathcal{O}_{t}^{\times}\right)=\left[F_{t}: F_{n}\right]=$ p^{t-n} that $\hat{H}^{0}\left(F_{t} / F_{n}, \mathcal{O}_{t}^{\times}\right)=0$, which implies the norm map $\mathcal{O}_{t}^{\times} / p \rightarrow \mathcal{O}_{n}^{\times} / p$ is surjective. Hence we have $\lim _{\leftarrow} \mathcal{O}_{n}^{\times} / p \simeq \lim \boldsymbol{Z} / p\left[\Gamma_{n}\right] / \sum_{\gamma \in I_{n}} \gamma \simeq \lim \boldsymbol{Z} / p\left[\Gamma_{n}\right] \simeq \Lambda_{F_{\infty} / F} / p$, where the projective limit in the second and third terms are taken with respect to the maps induced by the natural surjection $\Gamma_{t} \rightarrow \Gamma_{n}$ for $0 \leq n \leq t$.

Let k / F be a degree p subextension of L_{0} / F in which all the primes $l_{i}(1 \leq i \leq$ $m+1)$ ramify. Then we will see that L_{n} / k_{n} is an unramified abelian p-extension, where $k_{n}=k F_{n}$. If L_{n} is the Hilbert p-class field of k_{n} for all $n \geq 0$ and the map $\lim _{\leftarrow}\left(\mathcal{O}_{n}^{\times} / p\right) \rightarrow$ $\left(\Lambda_{F_{\infty} / F} / p\right)^{\oplus m+1}$ in (27) is injective, then we have

$$
\begin{aligned}
X_{k_{\infty}} & =\operatorname{Gal}\left(L_{\infty} / k_{\infty}\right) \sim \operatorname{Gal}\left(L_{\infty} / F_{\infty}\right) \simeq \operatorname{coker}\left(\underset{\leftarrow}{\lim }\left(\mathcal{O}_{n}^{\times} / p\right) \rightarrow\left(\Lambda_{F_{\infty} / F} / p\right)^{\oplus m+1}\right) \\
& \sim\left(\Lambda_{F_{\infty} / F} / p\right)^{\oplus m} \simeq\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m}
\end{aligned}
$$

by Lemma 7, where $k_{\infty}=k F_{\infty}$ and \sim denotes a pseudo-isomorphism. In what follows, we shall choose the primes l_{i} and the field k so that the above conditions are satisfied.

For a prime $l \equiv 1(\bmod p)$, we denote by $\boldsymbol{Q}^{(p)}(l)$ the unique subfield of $\boldsymbol{Q}\left(\mu_{l}\right)$ of degree p. Now we impose the following condition on primes l_{i} :

Condition. p is inert in $\boldsymbol{Q}^{(p)}\left(l_{1}\right)$ and splits in $\boldsymbol{Q}^{(p)}\left(l_{i}\right)$ for $2 \leq i \leq m+1$. If $2 \leq$ $i \leq m+1$, then l_{i} splits in $\boldsymbol{Q}^{(p)}\left(l_{j}\right)$ for all j such that $1 \leq j \leq i-2$ and is inert in $\boldsymbol{Q}^{(p)}\left(l_{i-1}\right)$.

Lemma 8. There exist distinct prime numbers $l_{i}(1 \leq i \leq m+1)$ satisfying (25) and the above condition.

Proof. We first note that p is inert in $\boldsymbol{Q}^{(p)}(l)$ if and only if $p^{(l-1) / p} \not \equiv 1(\bmod l)$ for a prime number $l \equiv 1(\bmod p)$. Hence if the decomposition subgroup of $\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right) / \boldsymbol{Q}\right)$ for a prime of $\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right)$ lying over l is $\operatorname{Gal}\left(\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right) / \boldsymbol{Q}\left(\mu_{p}\right)\right)($ resp. trivial) then $l \equiv 1(\bmod p)$ and p is inert (resp. splits) in $\boldsymbol{Q}^{(p)}(l)$. Applying the Čebotarev density theorem to $\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right) F / \boldsymbol{Q}$, we can choose prime l_{1} satisfying (25) and the Condition since $\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right)$ and F are independent over \boldsymbol{Q}. We can choose the prime $l_{i}(2 \leq i \leq m+1)$ satisfying (25) and the Condition inductively from $i=2$ to $m+1$ by applying the Čebotarev density theorem to $\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right) F \boldsymbol{Q}^{(p)}\left(l_{1}\right) \cdots \boldsymbol{Q}^{(p)}\left(l_{i-1}\right) / \boldsymbol{Q}$ since $\boldsymbol{Q}\left(\mu_{p}, \sqrt[p]{p}\right), F$ and $\boldsymbol{Q}^{(p)}\left(l_{j}\right)$'s $(1 \leq j \leq i-1)$ are independent over \boldsymbol{Q}.

We assume that distinct prime numbers $l_{i}(1 \leq i \leq m+1)$ satisfy the Condition and (25). It follows from (26) for $n=0$ that $L_{0}=F \boldsymbol{Q}^{(p)}\left(l_{1}\right) \cdots \boldsymbol{Q}^{(p)}\left(l_{m+1}\right)$ and $\operatorname{Gal}\left(L_{0} / F\right)=$ $\oplus_{i=1}^{m+1} I_{l_{i}}$ where $I_{l_{i}} \simeq \boldsymbol{Z} / p$ is the inertia subgroup of $\operatorname{Gal}\left(L_{0} / F\right)$ for the prime l_{i}. Since the decomposition subgroup of $\operatorname{Gal}\left(L_{0} / F\right)$ for the prime p is $I_{l_{1}}$ by the Condition, there exists an intermediate field k of L_{0} / F with $[k: F]=p$ such that p is inert and l_{i} ramifies in k / F for any i. Then k / \boldsymbol{Q} is a cyclic extension of degree $2 p$ and k has the unique prime lying over p.

Lemma 9. (i) L_{n} is the genus p-class field of $k_{n} / F_{n}\left(k_{n}:=F_{n} k\right)$.
(ii) The restriction induces $\operatorname{Gal}\left(L_{n} / k_{n}\right)_{\Gamma_{n}} \simeq \operatorname{Gal}\left(L_{0} / k\right)$.

Proof. (i) Since the prime l_{i} ramifies in L_{0} / F and $L_{0} \subseteq L_{n}$, every prime of F_{n} lying over l_{i} ramifies in k_{n} / F_{n}. Hence L_{n} / k_{n} is an unramified p-extension, because in L_{n} / F_{n}, the ramification index of a prime of F_{n} lying over l_{i} is p. By a similar argument to the proof of Lemma 5 (iii), we have the assertion.
(ii) Let M be the maximal intermediate field of L_{n} / k_{n} which is abelian over k. Then $\operatorname{Gal}\left(L_{n} / k_{n}\right)_{\Gamma_{n}} \simeq \operatorname{Gal}\left(M / k_{n}\right)$ and M / F is abelian. We shall show that $M=k_{n} L_{0}$. $k_{n} L_{0} \subseteq M$ is obvious. Denote by I_{p} the inertia subgroup of $\operatorname{Gal}(M / k)$ for the unique prime of k lying over p. Then $\operatorname{Gal}(M / k)=I_{p} \times \operatorname{Gal}\left(M / k_{n}\right)$ and the fixed subfield $M^{I_{p}}$ of M by I_{p} is contained in L_{0}, because $M^{I_{p}} / k$ is unramified p-extension, M / F is abelian, and L_{0} is the genus p-class field of k / F by (i). Hence it follows that $M \subseteq L_{0} k_{n}$. Therefore we have $M=L_{0} k_{n}$ and $\operatorname{Gal}\left(L_{n} / k_{n}\right)_{\Gamma_{n}} \simeq \operatorname{Gal}\left(M / k_{n}\right) \simeq \operatorname{Gal}\left(L_{0} / k\right)$.

By virtue of Lemma 9 and Nakayama's lemma, we find that if $\left\{\left(l_{i}, L_{0} / k\right) \mid 1 \leq i \leq\right.$ $m+1\}$ generates $\operatorname{Gal}\left(L_{0} / k\right)$, then L_{n} is the Hilbert p-class field of k_{n} as in the proof of Theorem 1, where I_{i} denotes the unique prime of k lying over l_{i}. It follows from the Condition on l_{i} 's and the fact $L_{0}=k \boldsymbol{Q}^{(p)}\left(l_{1}\right) \cdots \boldsymbol{Q}^{(p)}\left(l_{m}\right)$ that $\left\{\left(\mathrm{l}_{i}, L_{0} / k\right) \mid 1 \leq i \leq\right.$ $m+1\}$ generates $\operatorname{Gal}\left(L_{0} / k\right)$. Therefore L_{n} is the Hilbert p-class field of k_{n} for all $n \geq 0$.

Next we shall show the injectivity of the map $\lim \theta_{n}^{\times} / p \rightarrow\left(\Lambda_{F_{\infty} / F} / p\right)^{\oplus m+1}$ in (27). It is enough to show that the map $\mathcal{O}_{n}^{\times} / p \rightarrow\left(\mathcal{O}_{n} / l_{1}\right)^{\times} / p$ is injective for all $n \geq 0$. Let $F_{n}^{(p)}\left(l_{1}\right)$ be the maximal elementary abelian p-extension field over F_{n} whose conductor divides l_{1}. Then we get the exact sequence

$$
\begin{equation*}
\mathcal{O}_{n}^{\times} / p \rightarrow\left(\mathcal{O}_{n} / l_{1}\right)^{\times} / p \rightarrow \operatorname{Gal}\left(F_{n}^{(p)}\left(l_{1}\right) / F_{n}\right) \rightarrow 0 . \tag{29}
\end{equation*}
$$

It follows from the above exact sequence for $n=0$ that $\left[F_{0}^{(p)}\left(l_{1}\right): F_{0}\right]=p$ and the prime l_{1} ramifies in $F_{0}^{(p)}\left(l_{1}\right) / F_{0}$. Hence $F_{n}^{(p)}\left(l_{1}\right) / F_{n} F_{0}^{(p)}\left(l_{1}\right)$ is an unramified abelian p extension. The class number of $F_{0}^{(p)}\left(l_{1}\right)$ is prime to p because the class number of F is prime to p and l_{1} is the only ramified prime in $F_{0}^{(p)}\left(l_{1}\right) / F$ (see Iwasawa [5]). Since there is the unique prime of $F_{0}^{(p)}\left(l_{1}\right)=F \boldsymbol{Q}^{(p)}\left(l_{1}\right)$ lying above p by the Condition, which is the unique prime ramifying in $F_{n} F_{0}^{(p)}\left(l_{1}\right) / F_{0}^{(p)}\left(l_{1}\right)$, the class number of $F_{n} F_{0}^{(p)}\left(l_{1}\right)$ is prime to p by Iwasawa's result mentioned above. Hence we have $F_{n}^{(p)}\left(l_{1}\right)=F_{n} F_{0}^{(p)}\left(l_{1}\right)$ and $\operatorname{Gal}\left(F_{n}^{(p)}\left(l_{1}\right) / F_{n}\right) \simeq \boldsymbol{Z} / p$, which implies the injectivity of the map $\mathscr{O}_{n}^{\times} / p \rightarrow\left(\mathcal{O}_{n} / l_{1}\right)^{\times} / p$ by (29) and the fact $\#\left(\left(\mathcal{O}_{n} / l_{1}\right)^{\times} / p\right) / \#\left(\mathcal{O}_{n}^{\times} / p\right)=p$.

Thus we have shown that k_{∞} / k is a Z_{p}-extension with $X_{k_{\infty}} \sim\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m}$.
Finally we shall show that $X_{k_{\infty}} \simeq\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m}$. Since $p X_{k_{\infty}}=p \lim \operatorname{Gal}\left(L_{n} / k_{n}\right)=$ $0, X_{k_{\infty}}$ is a finitely generated module over the principal ideal domain $\overleftarrow{\Lambda_{k_{\infty}} / k / p \text {. Because }}$ $X_{k_{\infty}} \sim\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m}$, we have

$$
\begin{equation*}
X_{k_{\infty}} \simeq\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m} \oplus \operatorname{Tor}_{\Lambda_{k_{\infty} / k} / p} X_{k_{\infty}} \tag{30}
\end{equation*}
$$

as $\Lambda_{k_{\infty} / k} / p$-modules. From the fact that there is the unique prime of k lying over p and k_{∞} / k is a totally ramified at that prime, we have $\operatorname{Gal}\left(L_{0} / k\right) \simeq X_{k_{\infty} / k} /\left(\gamma_{\infty}-1\right)$, where γ_{∞} is a topological generator of $\operatorname{Gal}\left(k_{\infty} / k\right)$ (see [6]). Hence it follows from $\operatorname{Gal}\left(L_{0} / k\right)=\operatorname{Gal}\left(F \boldsymbol{Q}^{(p)}\left(l_{1}\right) \cdots \boldsymbol{Q}^{(p)}\left(l_{m+1}\right) / k\right) \simeq(\boldsymbol{Z} / p)^{\oplus m}$ and (30) that $\operatorname{Tor}_{A_{k_{\infty} / k} / p} X_{k_{\infty}}=$ 0 . Thus we have $X_{k_{\infty}} \simeq\left(\Lambda_{k_{\infty} / k} / p\right)^{\oplus m}$ as $\Lambda_{k_{\infty} / k}$-modules.

Example. Put $p=3, F=\boldsymbol{Q}(\sqrt{-1})$, and let F_{∞} / F be the anti-cyclotomic $\boldsymbol{Z}_{3}{ }^{-}$ extension. Then p is inert in F and the class number of F is prime to p. Put
$f_{1}=7 \cdot 19, f_{2}=7 \cdot 19 \cdot 43, f_{3}=7 \cdot 19 \cdot 43 \cdot 1597$, and denote by $M_{s} / \boldsymbol{Q}(s=1,2,3)$ a cubic cyclic extension of conductor f_{s} such that the prime 3 is inert in M_{s}. Then it holds that $\mu\left(M_{s} F_{\infty} / M_{s} F\right)=s$ for $s=1,2,3$.

5. Application to a certain capitulation problem.

In this section we shall apply Theorem 1 to a certain capitulation problem. Let F be a number field with the ideal class group $\mathrm{Cl}(F)$. Then the principal ideal theorem says that:

Principal ideal theorem. Every ideal of F capitulates in the Hilbert class field H_{F} of F, namely, the natural map $\mathrm{Cl}(F) \rightarrow \mathrm{Cl}\left(H_{F}\right)$ is the zero map.

However it happens that all the ideals of F capitulate in a proper subextension field of H_{F} / F. Iwasawa constructed an infinite family of such number fields F by using the theory of \boldsymbol{Z}_{p}-extensions in [9]:

Theorem (Iwasawa [8], [9]). For any prime number p, there exist infinitely many number fields F with the following properties:
(i) $\mathrm{Cl}(F)(p) \simeq \boldsymbol{Z} / p^{r}$ with $r \geq 2, \mathrm{Cl}(F)(p)$ being the Sylow p-subgroup of $\mathrm{Cl}(F)$,
(ii) $\mathrm{Cl}(F)(p)$ capitulates in an unramified cyclic extension F^{\prime} / F of degree p.

In the above theorem, let M be the compositium of F^{\prime} and the Hilbert l-class fields of F for all the prime numbers $l \neq p$. Then $F \subseteq M \subsetneq H_{F}$ and $\mathrm{Cl}(F)$ capitulates in M.

In the paper [11], the author showed that for any given number N, there exists a number field F such that $\mathrm{Cl}(F)(p) \simeq \boldsymbol{Z} / p^{r}$ with $r \geq N$ and that F has property (ii) in Iwasawa's theorem. By using the construction of Theorem 1, we further improve the theorem:

Theorem 3. For any prime number p and finite abelian p-group A, there exists a number field F with the following properties:
(i) $\mathrm{Cl}(F)(p) \simeq A$,
(ii) $\mathrm{Cl}(F)(p)$ capitulates in an unramified cyclic extension F^{\prime} / F of degree $\exp (\mathrm{Cl}(F)(p))$, $\exp (\mathrm{Cl}(F)(p))$ being the exponent of $\mathrm{Cl}(F)(p)$.

Proof. Let p^{e} be the exponent of A and A^{\prime} a subgroup of A with $A \simeq A^{\prime} \oplus$ \boldsymbol{Z} / p^{e}. By the construction in the proof of Theorem 1 for $X=A^{\prime}$ with trivial Γ-action, $n_{0}=0$ and $m_{0}=e$, we get the cyclic extension k / \boldsymbol{Q}_{N} of degree p^{e} such that $\mathrm{Cl}\left(k_{t}\right)(p) \simeq$ A^{\prime} for any $t \geq 0$ and the Hilbert p-class field $H_{k}^{(p)}$ of k is the genus p-class field L_{0} of k / \boldsymbol{Q}_{N} (recall Lemma 5 (iii)). Let F be an intermediate field of $k_{e} / \boldsymbol{Q}_{N}$ such that $\operatorname{Gal}\left(F / \boldsymbol{Q}_{N}\right) \simeq \boldsymbol{Z} / p^{e}$ and $F \cap k=F \cap \boldsymbol{Q}_{N+e}=\boldsymbol{Q}_{N}$. Then we can see that k_{e} / F is an unramified cyclic extension of degree p^{e}. Denote by $H_{k_{e}}^{(p)}$ the Hilbert p-class field of k_{e}. Then $H_{k_{e}}^{(p)}=L_{0} k_{e}=L_{0} \boldsymbol{Q}_{N+e}$, hence $H_{k_{e}}^{(p)} / \boldsymbol{Q}_{N}$ is an abelian extension since $L_{0} / \boldsymbol{Q}_{N}$ is abelian. Therefore $H_{k_{e}}^{(p)} / F$ is an unramified abelian p-extension. Consequently, $H_{k_{e}}^{(p)}$ is the Hilbert p-class field of F. Since $H_{k_{e}}^{(p)}=L_{0} F$ and $L_{0} \cap F=\boldsymbol{Q}_{N}$, we have $\mathrm{Cl}(F)(p) \simeq \operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right)=\operatorname{Gal}\left(L_{0} F / F\right) \simeq \operatorname{Gal}\left(L_{0} / \boldsymbol{Q}_{N}\right) \simeq A^{\prime} \oplus \boldsymbol{Z} / p^{e} \simeq A$. Hence the field F satisfies condition (i).

Next we shall show that the field F satisfies condition (ii). From class field theory, we get the following commutative diagram:

where the horizontal maps are the reciprocity maps, the left vertical map is the natural map and the right vertical map is the transfer map from $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right)^{\mathrm{ab}}=\operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right)$ to $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / k_{e}\right)^{\mathrm{ab}}=\operatorname{Gal}\left(H_{k_{e}}^{(p)} / k_{e}\right)$. Since the transfer map $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right) \rightarrow \operatorname{Gal}\left(H_{k_{e}}^{(p)} / k_{e}\right)$ is equal to the multiplication-by- p^{e}-map when we regard $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / k_{e}\right)$ as a subgroup of $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right)$, it is equal to the zero-map by $\operatorname{Gal}\left(H_{k_{e}}^{(p)} / F\right) \simeq A$. Hence the natural map $\mathrm{Cl}(F)(p) \rightarrow \mathrm{Cl}\left(k_{e}\right)(p)$ is also the zero-map. Therefore $\mathrm{Cl}(F)(p)$ capitulates in an unramified cyclic extension k_{e} / F of degree $p^{e}=\exp (\mathrm{Cl}(F)(p))$.

References

[1] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. (2), $\mathbf{1 0 9}$ (1979), 377-395.
[2] T. Fukuda, Remarks on \boldsymbol{Z}_{p}-extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 264-266.
[3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284.
[4] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math., 88 (1987), 31-38.
[5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 257-258.
[6] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183-226.
[7] K. Iwasawa, On the μ-invariants of \boldsymbol{Z}_{ℓ}-extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 1-11.
[8] K. Iwasawa, A note on capitulation problem for number fields I, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 59-61.
[9] K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 183-186.
[10] S. Lang, Cyclotomic Fields I and II (2nd edition), Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.
[11] M. Ozaki, Iwasawa invariants of p-extensions of totally real number fields, preprint.
[12] L. C. Washington, Introduction to Cyclotomic Fields (2nd. edition), Grad. Texts in Math., 83, Springer-Verlag, New York, 1997.
[13] O. Yahagi, Construction of Number fields with prescribed l-class groups, Tokyo J. Math., 1 (1978), 275-283.

Manabu Ozaki
Department of Mathematics Faculty of Science and Engineering Shimane University Nishikawatsu-Cho 1060 Matsue 690-8504 Japan E-mail: ozaki@math.shimane-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 11R23; Secondary 11R29.
 Key Words and Phrases. Iwasawa module, Iwasawa invariant, capitulation of ideals.
 This research is partially supported by the Grant-in-Aid for Encouragement of Young Scientists, Ministry of Education, Science, Sports and Culture, Japan.

