Laplacian comparison and sub-mean-value theorem for multiplier Hermitian manifolds

By Tomonori Noda and Masashi Oda

(Received Nov. 5, 2001)
(Revised Aug. 20, 2003)

Abstract

In this note, we study the Laplacian comparison theorem and the sub-mean-value theorem for a special type of Hermitian manifolds called multiplier Hermitian manifolds. By conformal change of the metrics, this covers much wider objects than in the case of ordinary Kähler manifolds.

1. Introduction.

The purpose of this paper is to show a sub-mean-value property for multiplier Hermitian manifolds (cf. Theorem B below), where a key of the proof lies in proving a Laplacian comparison result (cf. Theorem A below; see Greene-Wu [3] for Riemannian cases) for multiplier Hermitian manifolds.

A multiplier Hermitian manifold (cf. $[\mathbf{8}])$ is a quantitive generalization of a KählerRicci soliton [11] (see also a recent result of Wang and Zhu [13]). A multiplier Hermitian manifold can possibly be noncompact, while by the associated conformal changes of a Kähler metric, we can have a large varieties of Ricci forms, as in passing from the theory of projective algebraic surfaces, in algebraic geometry, to that of open algebraic surfaces.

Let (M, ω) be an n-dimensional connected complete Kähler manifold with complex structure J. For a system of holomorphic local coordinates $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ on M, we write

$$
\omega=\sqrt{-1} \sum_{\alpha, \beta} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}} .
$$

Fix a holomorphic vector field $X \in H^{0}\left(M, \mathcal{O}\left(T^{1,0} M\right)\right)$ on M, assuming that the corresponding real vector field $X_{R}=X+\bar{X}$ is Hamiltonian, i.e. there exists a real-valued smooth function u on M satisfying $i\left(X_{\boldsymbol{R}}\right) \omega=d u$. Let I be the interval defined as the image of $u: M \rightarrow \boldsymbol{R}$. For a real-valued nonconstant smooth function σ on I, we put $\psi:=\sigma(u)$. Let $\tilde{\omega}$ be the conformal change of ω defined by

$$
\tilde{\omega}:=\exp (-\psi / n) \omega,
$$

and the pair $(M, \tilde{\omega})$ is called a multiplier Hermitian manifold (cf. [10]]). The associated Ricci form is

[^0]$$
\operatorname{Ric}^{\sigma}(\omega)=\sqrt{-1} \bar{\partial} \partial \log \left(\tilde{\omega}^{n}\right)=\operatorname{Ric}(\omega)+\sqrt{-1} \partial \bar{\partial} \psi
$$
where $\operatorname{Ric}(\omega)=\sqrt{-1} \bar{\partial} \partial \log \left(\omega^{n}\right)$ is the Ricci form of ω. As an operator on functions on M, the Laplacian \square_{σ} of the multiplier Hermitian manifold $(M, \tilde{\omega})$ is
\[

$$
\begin{equation*}
\square_{\sigma}:=\sum_{\alpha, \beta} g^{\bar{\beta} \alpha}\left(\partial^{2} / \partial z^{\alpha} \partial z^{\bar{\beta}}\right)-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha}\left(\partial \psi / \partial z^{\alpha}\right)\left(\partial / \partial z^{\bar{\beta}}\right)=\square+\sqrt{-1} \dot{\sigma}(u) \bar{X} \tag{1.1}
\end{equation*}
$$

\]

where \square is the Laplacian for the Kähler manifold (M, ω). This operator \square_{σ} plays an important role in the study of "Kähler-Einstein metrics" in the sense of [7]. Define the real part $\operatorname{Re} \square_{\sigma}$ of \square_{σ} by $2 \operatorname{Re} \square_{\sigma}:=\square_{\sigma}+\square_{\sigma}$.

Given a Riemannian manifold (K, g), a point p on K is called a pole if the exponential map $\exp _{p}: T_{p} K \rightarrow K$ is a diffeomorphism. It is easily seen that a manifold with a pole is always complete. For a geodesic γ joining p to a point q in $K \backslash\{p\}$, the vector field tangent to γ with unit speed is called a radial vector field and is denoted by $\dot{\gamma}$. A radial curvature is the restriction of the sectional curvature to a plane containing the radial vector field. For a pole p of K, the manifold K is called a model if every linear isometry φ of $T_{p} K$ extends to Φ_{*} for some isometry Φ of K satisfying $\Phi(p)=p$ and $\Phi_{*, p}=\varphi$. Namely if K is a model, then the linear isotropy group at p is the full orthogonal group. For a manifold K with a pole, we always denote by ρ_{K} the distance function on K from the pole.

Let $\left(N, \omega_{N}\right)$ be a Kähler manifold with a pole p_{N}, and let $\left(N^{\prime}, \omega_{N^{\prime}}\right)$ be a Kähler manifold with a point $p_{N^{\prime}}$ such that $\operatorname{dim} N=\operatorname{dim} N^{\prime}=n$. Let $X_{N}, X_{N^{\prime}}$ be holomorphic vector fields on N, N^{\prime} vanishing at $p_{N}, p_{N^{\prime}}$ respectively, so that

$$
i\left(\left(X_{N}\right)_{\boldsymbol{R}}\right) \omega_{N}=d u_{N} \quad \text { and } \quad i\left(\left(X_{N^{\prime}}\right)_{\boldsymbol{R}}\right) \omega_{N^{\prime}}=d u_{N^{\prime}}
$$

for some real-valued smooth functions $u_{N}, u_{N^{\prime}}$ on N, N^{\prime} respectively. Let $\rho_{N}, \rho_{N^{\prime}}$ be distance functions on N, N^{\prime} from $p_{N}, p_{N^{\prime}}$ respectively. Set $\psi_{N}:=\sigma_{N}\left(u_{N}\right)$ and $\psi_{N^{\prime}}:=$ $\sigma_{N^{\prime}}\left(u_{N^{\prime}}\right)$.

Theorem A. Assume that $\left(N, p_{N}\right)$ is a model with non-positive radial curvature. Assume furthermore that for any $\left(q, q^{\prime}\right) \in\left(N \backslash\left\{p_{N}\right\}\right) \times\left(N^{\prime} \backslash\left(\left\{p_{N^{\prime}}\right\} \cup \operatorname{Cut}\left(p_{N^{\prime}}\right)\right)\right)$, the inequalities

$$
\begin{align*}
& \operatorname{Ric}^{\sigma_{N^{\prime}}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq \operatorname{Ric}^{\sigma_{N}}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)(q), \tag{1.2}\\
& \sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq \sqrt{-1} \partial \bar{\partial} \psi_{N}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)(q) \tag{1.3}
\end{align*}
$$

hold whenever $\rho_{N}(q)=\rho_{N^{\prime}}\left(q^{\prime}\right)$, where $\operatorname{Cut}\left(p_{N^{\prime}}\right)$ denotes the cut locus of $p_{N^{\prime}}$ and $\gamma_{N}, \gamma_{N^{\prime}}$ are the geodesics in N, N^{\prime} joining $p_{N}, p_{N^{\prime}}$ with q, q^{\prime}, respectively. Then

$$
\begin{equation*}
\left\{\square_{\sigma_{N^{\prime}}} f\left(\rho_{N^{\prime}}\right)\right\}\left(q^{\prime}\right) \leq\left\{\square_{\sigma_{N}} f\left(\rho_{N}\right)\right\}(q) \tag{1.4}
\end{equation*}
$$

for all $\left(q, q^{\prime}\right)$ as above, if f is a non-decreasing smooth function on $[0, \infty)$.
Let $\operatorname{inj}_{p_{N^{\prime}}}$ be the injectivity radius of $\left(N^{\prime}, \omega_{N^{\prime}}\right)$ at $p_{N^{\prime}}$, and let $B=B(r), B^{\prime}=B^{\prime}(r)$ be balls of radius r less than $\operatorname{inj}_{p_{N^{\prime}}}$ centered at $p_{N}, p_{N^{\prime}}$ in N, N^{\prime}, respectively.

Theorem B. We assume that u_{N} is written as a function in ρ_{N} alone. Under the same assumption as in Theorem A, let h be a non-negative real-valued smooth function on N^{\prime} such that $\operatorname{Re} \square_{\sigma_{N^{\prime}}} h \leq 0$. Then

$$
\begin{equation*}
\int_{B^{\prime}} h \tilde{\omega}_{N^{\prime}}^{n} / n!\leq h\left(p_{N^{\prime}}\right) V \tag{1.5}
\end{equation*}
$$

where $\tilde{\omega}_{N}:=\exp \left(-\psi_{N} / n\right) \omega_{N}, \tilde{\omega}_{N^{\prime}}:=\exp \left(-\psi_{N^{\prime}} / n\right) \omega_{N^{\prime}}$ and $V:=\int_{B} \tilde{\omega}_{N}^{n} / n!$.
Next, we formulate special cases of the above theorems as a corollary.
Corollary. Let $\left(N^{\prime}, \omega_{N^{\prime}}\right)$ be a multiplier Hermitian manifold with $\psi_{N^{\prime}}$ such that $X_{N^{\prime}}$ vanishes at $p_{N^{\prime}}$ in N^{\prime}.
(i) Assume that, for all $q^{\prime} \in N^{\prime} \backslash\left(p_{N^{\prime}} \cup \operatorname{Cut}\left(p_{N^{\prime}}\right)\right)$, the inequalities

$$
\begin{array}{r}
\operatorname{Ric}^{\sigma_{N^{\prime}}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq 1, \\
\sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq 1, \tag{1.2a}
\end{array}
$$

hold, then for any non-negative real-valued smooth function h satisfying $\operatorname{Re} \square_{\sigma_{N}} h \leq 0$, the following holds:

$$
\begin{equation*}
\int_{B^{\prime}(r)} h \tilde{\omega}_{N^{\prime}}^{n} / n!\leq h\left(p_{N^{\prime}}\right)\left(1-\sum_{k=1}^{n} \frac{e^{-r^{2}} r^{2(n-k)}}{(n-k)!}\right) \pi^{n} \tag{1.4a}
\end{equation*}
$$

(ii) Assume that, for all $q^{\prime} \in N^{\prime} \backslash\left(p_{N^{\prime}} \cup \operatorname{Cut}\left(p_{N^{\prime}}\right)\right)$, the inequalities

$$
\begin{align*}
\operatorname{Ric}^{\sigma_{N^{\prime}}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq 0, \tag{1.1b}\\
\sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq 1 \tag{1.2b}
\end{align*}
$$

hold, then for any non-negative real-valued smooth function h satisfying $\operatorname{Re} \square_{\sigma_{N}} h \leq 0$,

$$
\begin{equation*}
\int_{B^{\prime}(r)} h \tilde{\omega}_{N^{\prime}}^{n} / n!\leq h\left(p_{N^{\prime}}\right) \Omega_{n} \tag{1.4b}
\end{equation*}
$$

where Ω_{n} denotes the volume of the unit ball of hyperbolic n-space.
To see (i) above, let $N=\boldsymbol{C}^{n}, \omega_{N}=\sqrt{-1} \sum d z^{\alpha} \wedge d z^{\bar{\alpha}}$ and $\sigma_{N}=\mathrm{id}$ in Theorem A. Then for $X_{N}=-\sqrt{-1} \sum z^{\alpha}\left(\partial / \partial z^{\alpha}\right)$ and $\sigma_{N^{\prime}}=\ell$ id, the conditions (1.2) and (1.3) in Theorem A reduce to (1.1a) and (1.2a). In additon, by taking $p_{N}=0$ in Thoerem B, we obtain (1.4a). We also have $\int_{B^{\prime}} e^{-\psi_{N^{\prime}}} \omega_{N^{\prime}}^{n} / n!\leq \pi r^{2 n} / n!$ by taking $X_{N}=0$ and $h=1$.

In the original comparison theorem as in Greene-Wu [3], the conditions (1.1a) and (1.2a) are replaced by the following condition on the Ricci curvature:

$$
\begin{equation*}
\operatorname{Ric}\left(\omega_{N^{\prime}}\right)\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\left(q^{\prime}\right) \geq 0 \quad \text { for all } q^{\prime} \in N^{\prime} \tag{1.6}
\end{equation*}
$$

By letting $\ell=0$, we obtain the ordinary Laplacian comparison theorem for Kähler manifolds. Moreover, in view of the equality $\operatorname{Ric}^{\sigma_{N^{\prime}}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)=\operatorname{Ric}\left(\omega_{N^{\prime}}\right)\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)+$ $\sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)$, choosing $\sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(q^{\prime}\right) \gg 1$, say by letting $\ell \gg 1$, we see that both (1.1a) and (1.2a) hold even if (1.6) does not hold. In this sense, Theorems A and B above give some generalization of the classical results of Greene-Wu and are ap-
plicable to many cases which the original comparison theorem in Greene-Wu [3] cannot cover.

We also obtain (ii) of the corollary by setting $N=\left\{z \in \boldsymbol{C}^{n} ;\|z\|<1\right\}$, $\omega_{N}=$ $\sqrt{-1} \sum\left\{\left(1-\|z\|^{2}\right) \delta_{\alpha \beta}+z^{\alpha} z^{\bar{\beta}}\right\}\left(1-\|z\|^{2}\right)^{-2} d z^{\alpha} \wedge d z^{\bar{\beta}}, \sigma_{N}=\mathrm{id}$ and $u_{N}=\log \left(1-\|z\|^{2}\right)^{-1}$.

We wish to thank Professor Toshiki Mabuchi for useful suggestions and encouragement.

2. Laplacian and star operators.

In this section, we define multiplier analogues of the star operator. For a multiplier Hermitian manifold $(M, \tilde{\omega})$, where $\tilde{\omega}$ is as in Introduction, we put $\check{x}=e^{-\psi} *$ and $\hat{*}=e^{\psi} *$, where $*$ is the Hodge star operator of the Kähler manifold (M, ω). For a real-valued smooth function f,

$$
\begin{aligned}
\hat{*} \partial \check{*} \bar{\partial} f & =e^{\psi} * \partial\left(e^{-\psi} * \bar{\partial} f\right)=e^{\psi} *\left(-e^{-\psi} \partial \psi \wedge * \bar{\partial} f+e^{-\psi} \partial * \bar{\partial} f\right) \\
& =-\langle\partial \psi, \partial f\rangle+* \partial * \bar{\partial} f=-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha}\left(\partial \psi / \partial z^{\alpha}\right)\left(\partial f / \partial z^{\bar{\beta}}\right)+\square f, \quad \text { i.e. } \quad \square_{\sigma}=\hat{*} \partial \check{*} \bar{\partial} .
\end{aligned}
$$

Remark 2.1. Both $\hat{*}$ and $\check{*}$ are real operators. Moreover we have the identities $\check{*} \hat{*}=\hat{*} \check{*}=*^{2}$.

Lemma 2.2. Let U be an open subset of M with smooth boundary ∂U. For any real-valued smooth functions h, h_{0} on a neighborhood of U,

$$
\int_{U}\left(h \square_{\sigma} h_{0}-h_{0} \bar{\square}_{\sigma} h\right) \tilde{\omega}^{n} / n!=\int_{\partial U}\left\{h\left(\check{*}^{\bar{*}} h_{0}\right)-h_{0}(\check{*} \partial h)\right\} .
$$

Proof. By $\bar{\partial} h \wedge \check{*} \partial h_{0}=\partial h_{0} \wedge \check{*} \partial \bar{\partial} h$, we have

$$
\begin{aligned}
& d\left\{h\left(\check{*} \bar{\partial} h_{0}\right)-h_{0}(\check{*} \partial h)\right\}=\partial h \wedge \check{*} \bar{\partial} h_{0}+h\left(\partial \check{*} \bar{\partial} h_{0}\right)-\bar{\partial} h_{0} \wedge \check{*} \partial h-h_{0}(\bar{\partial} \check{*} \partial h) \\
& =h\left(\check{*} \hat{*} \partial \check{*} \bar{\partial} h_{0}\right)-h_{0}(\check{*} \tilde{*} \hat{\partial} \tilde{*} \partial h)=\check{*}\left(h \square_{\sigma} h_{0}-h_{0} \square_{\sigma} h\right) .
\end{aligned}
$$

Hence, by Stokes' theorem and $\square_{\sigma}=\hat{*} \partial \check{\partial} \tilde{\partial}$, we have the required equality.

3. Preliminaries.

In this section, we show a couple of lemmas peculiar to multiplier Hermitian manifolds. For M, ω, X, u, ψ as in Introduction, fix a point p in M. Let $\rho_{M}: M \rightarrow\left[0, \mathrm{inj}_{p}\right)$ be the distance function from p and let $\gamma:\left[0, \mathrm{inj}_{p}\right) \rightarrow M$ be the geodesic emanating from p such that $\dot{\gamma}$ coincides with the gradient vector field of ρ_{M} restricted to γ.

Lemma 3.1. If X vanishes at $p \in M$, then $\left(X_{R}\right) \rho_{M}=(X+\bar{X}) \rho_{M}=0$.
Proof. We use a technique in Mabuchi $[\mathbf{8}]$. For a point $q \in M$, let $b \in \boldsymbol{R}$ such that $q=\gamma(b)$. On a small neighborhood of q in M, we choose a local coordinates $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ centered at q such that

$$
\dot{\gamma}(b)=\left(\partial / \partial x^{1}\right) \quad \text { and } \quad J \dot{\gamma}(b)=\left(\partial / \partial y^{1}\right) .
$$

Here $z^{\alpha}=x^{\alpha}+\sqrt{-1} y^{\alpha}$ for all α. We may assume that the local expression $g_{\alpha \bar{\beta}}$ of ω with respect to this holomorphic local coordinates satisfies $g_{\alpha \bar{\beta}}(q)=\delta_{\alpha \bar{\beta}} / 2$ and $d g_{\alpha \bar{\beta}}(q)=$ 0 . A direct calculation gives

$$
\begin{equation*}
2\left(\bar{X} \rho_{M}\right)(q)=\sqrt{-1}\left(\partial u / \partial z^{1}\right)(q) \tag{3.1}
\end{equation*}
$$

by $\bar{X}=\sqrt{-1} \sum\left(\partial u / \partial z^{\alpha}\right)\left(\partial / \partial z^{\bar{\alpha}}\right)$. Consider the exponential map $\exp _{q}: T_{q} M \rightarrow M$ at q. Defining $\xi(s):=\exp _{q}(s J \dot{\gamma}(b))$ on sufficiently small interval $-\varepsilon \leq s \leq \varepsilon$, we have

$$
\left\{\begin{array}{l}
\dot{\gamma}(t)=\gamma_{*}(\partial / \partial t)=\left(\partial / \partial x^{1}\right)+O\left(|t-b|^{2}\right) \tag{3.2}\\
\xi_{*}(\partial / \partial s)=\left(\partial / \partial y^{1}\right)+O\left(|s|^{2}\right)
\end{array}\right.
$$

in a neighborhood of q. Since X is holomorphic, we have $\left(\partial / \partial \bar{z}^{1}\right)^{2}(u)(q)=0$, i.e. $\left(\partial / \partial x^{1}\right)^{2}(u)(q)=\left(\partial / \partial y^{1}\right)^{2}(u)(q)=0$ and $\left(\partial^{2} / \partial x^{1} \partial y^{1}\right)(u)(q)=0$ in the corresponding real coordinates. Now we consider a map F from $[-\varepsilon, \varepsilon] \times[0, b]$ to M defined by $F(s, t):=\exp _{\gamma(t)}(s J \dot{\gamma}(t))$ and set $\tilde{u}:=F^{*} u$ and $\tilde{\psi}:=F^{*} \psi$. Obviously $\tilde{\psi}=\sigma(\tilde{u})$. It follows from (3.2) that

$$
\left\{\begin{array}{l}
\left.(\partial / \partial t)(\tilde{u})\right|_{s=0}=\gamma^{*}\left\{\left(\partial / \partial x^{1}\right) u\right\}+O\left(|t-b|^{2}\right) \tag{3.3}\\
\left.(\partial / \partial s)(\tilde{u})\right|_{t=b}=\xi^{*}\left\{\left(\partial / \partial y^{1}\right) u\right\}+O\left(|s|^{2}\right)
\end{array}\right.
$$

in a neighborhood of $(s, t)=(0, b)$. In (3.3), differentiating the upper equation with respect to t at $t=b$ and differentiating the lower equation with respect to s at $s=0$, we have $(\partial / \partial t)^{2}(\tilde{u})=(\partial / \partial s)^{2}(\tilde{u})$ on $\{0\} \times[0, b]$. From

$$
\left.\nabla_{\partial / \partial t}(\partial / \partial s)\right|_{(s, t)=(0, b)}=\left.\nabla_{\partial / \partial s}(\partial / \partial t)\right|_{(s, t)=(0, b)}=0 \quad \text { and }\left.\quad F_{*}(\partial / \partial s)\right|_{(s, t)=(0, b)}=\left(\partial / \partial y^{1}\right),
$$

we obtain $F_{*}(\partial / \partial s)=\left(\partial / \partial y^{1}\right)+O\left(|s|^{2}+|t-b|^{2}\right)$. Together with (3.2) and $\left(\partial^{2} / \partial x^{1} \partial y^{1}\right)(u)(x)=0$, we have $\left(\partial^{2} / \partial t \partial s\right)(\tilde{u})=0$ on $\{0\} \times[0, b]$. It follows that $\partial \tilde{u} / \partial s$ is constant on $\{0\} \times[0, b]$ and then for all t in $[0, b]$

$$
(\partial \tilde{u} / \partial s)(0,0)=(\partial \tilde{u} / \partial s)(0, t)=0,
$$

because u is critical at p. This together with (3.1) and (3.2) completes the proof.

Lemma 3.2. If X vanishes at p, then for $\gamma(t)$ as in the proof of Lemma 3.1,

$$
\int_{0}^{b} \sqrt{-1} \partial \bar{\partial} \psi(\dot{\gamma}, J \dot{\gamma}) d t=-2 \sqrt{-1} \dot{\sigma}(u)\left(\bar{X} \rho_{M}\right)(q)
$$

Proof. For the holomorphic coordinates as in Lemma 3.1, we have

$$
\begin{aligned}
\partial \bar{\partial} \psi(\dot{\gamma}, J \dot{\gamma}) & =\sum\left(\ddot{\sigma}(u)\left(\partial u / \partial z^{\alpha}\right)\left(\partial u / \partial z^{\bar{\beta}}\right)+\dot{\sigma}(u)\left(\partial^{2} u / \partial z^{\alpha} \partial z^{\bar{\beta}}\right)\right)\left(d z^{\alpha} \wedge d z^{\bar{\beta}}\right)(\dot{\gamma}, J \dot{\gamma}) \\
& =-2 \sqrt{-1}\left(\ddot{\sigma}(u)\left(\partial u / \partial z^{1}\right)\left(\partial u / \partial z^{\overline{1}}\right)+\dot{\sigma}(u)\left(\partial^{2} u / \partial z^{1} \partial z^{\overline{1}}\right)\right) \\
& =-2 \sqrt{-1}\left(\partial / \partial z^{\overline{1}}\right)\left(\dot{\sigma}(u)\left(\partial u / \partial z^{1}\right)\right) .
\end{aligned}
$$

Hence, $(\dot{\gamma}+\sqrt{-1} J \dot{\gamma})\left\{\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right\}=-\sqrt{-1} \partial \bar{\partial} \psi(\dot{\gamma}, J \dot{\gamma}) / 2=-I(t) / 2$. Using Lemma 3.1, we obtain

$$
\begin{aligned}
-\frac{1}{2} I(t) & =(\dot{\gamma}+\sqrt{-1} J \dot{\gamma})\left\{\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right\}=\operatorname{Re}\left\{(\dot{\gamma}+\sqrt{-1} J \dot{\gamma})\left(\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right)\right\} \\
& =\dot{\gamma}\left\{\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right\}=(d / d t)\left\{\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right\}
\end{aligned}
$$

Integrating this equalities, by our assumption $X\left(p_{M}\right)=0$, we now complete the proof.

4. Proof of Theorem A.

Let (K, g) be a Riemannian manifold with a fixed point p, and let q be a point in $B \backslash\{p\}$, where B is a ball centered at p with radius less than or equal to the injectivity radius at p. Let γ be the geodesic with unit speed such that $\gamma(0)=p$ and $\gamma(b)=q$ for a suitable $b>0$. Choose an orthonormal basis $\left\{E_{i}^{\#}\right\}, 2 \leq i \leq \operatorname{dim} K$, for the orthogonal complement of $\boldsymbol{R} \dot{\gamma}$ in the tangent space $T_{q} K$ at q. For each $i \in\{2, \ldots, \operatorname{dim} K\}$, choose a vector field $E_{i}(t), 0 \leq t \leq b$, along γ such that $E_{i}(0)=0, E_{i}(b)=E_{i}^{\#}$ and that $\left\|E_{i}(t)\right\|=$ $\left\|E_{j}(t)\right\|$ for all $t \in[0, b]$. We use the following fact in Greene-Wu [3, Proposition 2.15 and its proof]:

Fact 4.1. For the Laplacian Δ of (K, g),

$$
\Delta \rho \leq \int_{0}^{b}\left\{\sum_{i=2}^{\operatorname{dim} K}\left\|\dot{E}_{i}\right\|^{2}-\left\|E_{2}\right\|^{2} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma})\right\} d t
$$

The equality holds if and only if $E_{i}(t)$ is a Jacobi field along γ for all i.
Remark 4.2. In the case where K is the underlying Riemannian structure of $\left(N, \omega_{N}\right)$ in Theorem A, let $W_{i}(t), t \in[0, b]$, be the Jacobi field defined by $W_{i}(0)=0$ and $W_{i}(b)=E_{i}^{\#}$. Each $W_{i}(t)$ can be mapped to each $W_{j}(t)$ by an isometry of N fixing p_{N}, the orthogonality of $W_{i}(b), 2 \leq i \leq n$, shows $W_{i}(t), 2 \leq i \leq n$, are mutually orthogonal for every $t \in[0, b]$ (Greene-Wu [3, Corollary 2.14]). Hence if W_{i} 's are chosen as E_{i}^{\prime} 's, then the inequality in Fact 4.1 reduces to an equality.

Proof of Theorem A. Recall that $\square_{\sigma} f(\rho)=(1 / 2) \ddot{f}(\rho)+\dot{f} \square_{\sigma} \rho$ on N or N^{\prime}, according as (σ, ρ) is $\left(\sigma_{N}, \rho_{N}\right)$ or $\left(\sigma_{N^{\prime}}, \rho_{N^{\prime}}\right)$, respectively. Hence we may, without loss of generality, that $f=\mathrm{id}$ on $[0, \infty)$. It is now sufficient to show that $\left(\square_{\sigma_{N^{\prime}}} \rho_{N^{\prime}}\right)\left(q^{\prime}\right) \leq$ $\left(\square_{\sigma_{N}} \rho_{N}\right)(q)$. By (1.2), Lemma 3.2 and Remark 4.2, $\left(\square_{\sigma_{N}} \rho_{N}\right)(q)$ is

$$
\frac{1}{2} \int_{0}^{b}\left\{\sum_{i=2}^{2 n}\left\|\dot{W}_{i}\right\|^{2}-\left\|W_{2}\right\|^{2} \operatorname{Ric}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)-\sqrt{-1} \partial \bar{\partial} \psi\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)\right\} d t
$$

For vector fields $\left\{E_{i}\right\}, 2 \leq i \leq 2 n$, along $\gamma_{N^{\prime}}$ with valued in $T N^{\prime}$ satisfying $\left\|E_{i}\right\|(t)=$ $\left\|W_{i}\right\|(t)$ and $\left\|\dot{E}_{i}\right\|(t)=\left\|\dot{W}_{i}\right\|(t)$ for all $t \in[0, b]$, we see that $\left(\square{ }_{\sigma} \rho_{N^{\prime}}\right)\left(q^{\prime}\right)$ does not exceed

$$
\frac{1}{2} \int_{0}^{b}\left\{\sum_{i=2}^{2 n}\left\|\dot{E}_{i}\right\|^{2}-\left\|E_{2}\right\|^{2} \operatorname{Ric}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)-\sqrt{-1} \partial \bar{\partial} \psi\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\right\} d t
$$

by (1.2), Lemma 3.2 and Fact 4.1. Since $\left\|W_{2}\right\|^{2}(t)$ is a convex function in t because $\left(N, \omega_{N}\right)$ is of non-positive radius curvature and since $\left\|W_{2}\right\|^{2}(0)=0$ and $\left\|W_{2}\right\|^{2}(b)=1$ from our assumption, we have $0 \leq\left\|W_{2}\right\|^{2} \leq 1$ for all $t \in[0, b]$. Since $\left\|E_{i}\right\|^{2}=\left\|W_{i}\right\|^{2}$ holds for all $t \in[0, b]$, we have

$$
\begin{aligned}
& \left(\square_{\sigma_{N}} \rho_{N}\right)(x)-\left(\square_{\sigma_{N^{\prime}}} \rho_{N^{\prime}}\right)\left(x^{\prime}\right) \\
& \quad \geq \frac{1}{2} \int_{0}^{b}\left\{-\left\|W_{2}\right\|^{2}\left(\operatorname{Ric}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)-\operatorname{Ric}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\right)\right. \\
& \left.\quad-\sqrt{-1} \partial \bar{\partial} \psi_{N}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)+\sqrt{-1} \partial \bar{\partial} \psi_{N^{\prime}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\right\} d t \\
& \quad \geq \\
& \frac{1}{2} \int_{0}^{b}-\left\|W_{2}\right\|^{2}\left(\operatorname{Ric}^{\sigma_{N}}\left(\dot{\gamma}_{N}, J \dot{\gamma}_{N}\right)-\operatorname{Ric}^{\sigma_{N^{\prime}}}\left(\dot{\gamma}_{N^{\prime}}, J \dot{\gamma}_{N^{\prime}}\right)\right) d t
\end{aligned}
$$

where the last inequality follows from (1.3) and $0 \leq\left\|W_{2}\right\|^{2} \leq 1$. Finally by (1.2), we obtain the required inequality.

5. Proof of Theorem B.

For (M, ω) and $\psi=\sigma(u)$ as in Introduction we first observe
Lemma 5.1. Let $S(r)$ be the sphere in M centered at p of radius r and let $v(r)$ be the volume of $S(r)$ with respect to the multiplier Hermitian metric $\tilde{\omega}$. If u is written as a function in ρ_{M} alone, then $d v / d r=2\left(\square{ }_{\sigma} \rho_{M}\right) v$.

Proof. The volume $v(r)$ is nothing but $v(r)=\int_{S(r)} e^{-\psi} \Omega_{r}$, where Ω_{r} is the volume form on $S(r)$ induced by Kähler metric ω on M. Let Y be a complex gradient vector field of ρ_{M} with respect to the Kähler form ω on M, i.e. $Y=\sum_{\alpha, \beta} g^{\bar{\beta} \alpha}\left(\partial \rho_{M} / \partial z^{\bar{\beta}}\right)\left(\partial / \partial z^{\alpha}\right)$. By Lemma 3.1, $Y_{\boldsymbol{R}} \psi=-2 \sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}$. By Lemma 3.2, $\square \rho_{M}$ and $Y_{\boldsymbol{R}} \psi$ depends only on r, and so does $\square_{\sigma} \rho_{M}$. Hence,

$$
\begin{aligned}
\frac{d v}{d r} & =\frac{d}{d r} \int_{S(r)} e^{-\psi} \Omega_{r}=\int_{S(r)} L_{Y_{\mathbf{R}}}\left(e^{-\psi} \Omega_{r}\right)=\int_{S(r)}\left\{\left(-Y_{\boldsymbol{R}} \psi_{N}\right) e^{-\psi} \Omega_{r}+e^{-\psi} L_{Y_{R}} \Omega_{r}\right\} \\
& =\int_{S(r)}\left\{\left(-Y_{\boldsymbol{R}} \psi\right) e^{-\psi} \Omega_{r}+\left(\Delta \rho_{M}\right) e^{-\psi} \Omega_{r}\right\} \quad(\text { cf. }[\mathbf{2}, \text { p. } 273-274]) \\
& =2 \int_{S(r)}\left\{\square \rho_{M}+\sqrt{-1} \dot{\sigma}(u) \bar{X} \rho_{M}\right\} e^{-\psi} \Omega_{r}=2 \int_{S(r)}\left(\square_{\sigma} \rho_{M}\right) e^{-\psi} \Omega_{r} \\
& =2\left(\square_{\sigma} \rho_{M}\right) \int_{S(r)} e^{-\psi} \Omega_{r}=2\left(\square_{\sigma} \rho_{M}\right) v(r) .
\end{aligned}
$$

Proof of Theorem B. We define the real-valued function f on $[0, \infty)$ by

$$
f(r)=\int_{1}^{r} v(t)^{-1} d t
$$

where $v(t)$ is the volume of a sphere $S(t)$ in N centered at p_{N} of radius t. Since $2 \square_{\sigma_{N}} f\left(\rho_{N}\right)=\ddot{f}\left(\rho_{N}\right)+2 \dot{f} \square_{\sigma_{N}} \rho_{N}$, it follows that $\square_{\sigma} f\left(\rho_{N}\right)=0$ on $N \backslash\left\{p_{N}\right\}$ by Lemma
5.1. Next, we consider the real-valued function $f\left(\rho_{N^{\prime}}\right)$ on $N^{\prime} \backslash\left\{p_{N^{\prime}}\right\}$. By Theorem A, $\square \sigma_{\sigma_{N^{\prime}}} f\left(\rho_{N^{\prime}}\right) \leq 0$ on $N^{\prime} \backslash\left\{p_{N^{\prime}}\right\}$.

Let Ω_{t} be the volume form of $S(t)$ in terms of the multiplier Hermitian metric $\tilde{\omega}_{N^{\prime}}$, and let U be the open subset $B(r) \backslash \bar{B}\left(r_{0}\right)$ with $0<r_{0}<r$, where $\bar{B}\left(r_{0}\right)$ denotes the closure of $B\left(r_{0}\right)$ in N^{\prime}. By fixing r, we define a function h_{0} in $\rho_{N^{\prime}}$ by $h_{0}\left(\rho_{N^{\prime}}\right):=f(r)-f\left(\rho_{N^{\prime}}\right)$, so that $h_{0}(r)=0$ if $\rho_{N^{\prime}}=r$. We have that $\square_{\sigma_{N^{\prime}}} h_{0}=\square_{\sigma_{N^{\prime}}} h_{0}$ in view of Lemma 3.1. Since h and $\square_{\sigma} h_{0}$ are non-negative, Lemma 2.2 implies

$$
\begin{gathered}
\int_{U} h_{0}\left(\operatorname{Re} \square_{\sigma} h\right) \tilde{\omega}_{N^{\prime}}^{n} / n!\geq \int_{U}\left(h_{0} \operatorname{Re} \square_{\sigma} h-h \square_{\sigma} h_{0}\right) \tilde{\omega}_{N^{\prime}}^{n} / n! \\
=\int_{\partial U}\left\{h_{0}(\check{*} d h)-h\left(\check{*} d h_{0}\right)\right\}=P\left(r_{0}\right)+Q(r)-Q\left(r_{0}\right),
\end{gathered}
$$

where $P\left(r_{0}\right):=\left\{f\left(r_{0}\right)-f(r)\right\} \int_{S\left(r_{0}\right)} \check{*} d h$ and $Q(t):=v(t)^{-1} \int_{S(t)} h \check{*} d \rho_{N^{\prime}}$. Since h is smooth, there exists a positive real number M such that $\int_{S\left(r_{0}\right)} \dot{*} d h \leq \int_{S\left(r_{0}\right)} M e^{-\psi} \omega_{N^{\prime}}^{n} / n!$. By the definiton of $f\left(r_{0}\right)$, the vanishing order of $\int_{S\left(r_{0}\right)} M e^{-\psi} \omega_{N^{\prime}}^{n} / n!$ as $r_{0} \rightarrow 0$ is definitely greater than that of $f\left(r_{0}\right)$. Hence we have $P\left(r_{0}\right) \rightarrow 0$ as $r_{0} \rightarrow 0$. If $r_{0} \rightarrow 0$, then the open set U approaches to $B^{\prime}(r)$. Since $\tilde{*} d \rho_{N^{\prime}}$ restricted to $S(t)$ is Ω_{t}, we have $Q\left(r_{0}\right) \rightarrow$ $h\left(p_{N^{\prime}}\right)$ as $r_{0} \rightarrow 0$. By passing to the limit, we have

$$
0 \geq \int_{B^{\prime}(r)}\left\{\left(\operatorname{Re} \square_{\sigma_{N^{\prime}}} h\right) \int_{\rho_{N^{\prime}}}^{r} v(t)^{-1} d t\right\} \geq-h\left(p_{N^{\prime}}\right)+\frac{1}{v(r)} \int_{S(r)} h \Omega_{r} .
$$

Hence, $\int_{S(r)} h \Omega_{N} \leq v(r) h\left(p_{N^{\prime}}\right)$. We now conclude that

$$
\int_{B^{\prime}(r)} h \tilde{\omega}_{N^{\prime}}^{n} / n!=\int_{0}^{r} d t \int_{S(t)} h \Omega_{t} \leq h\left(p_{N^{\prime}}\right) \int_{0}^{r} v(t) d t=h\left(p_{N^{\prime}}\right) V(r),
$$

as required.

References

[1] Q. Ding, A new Laplacian comparison theorem and the estimate of eigenvalues, Chinese Ann. Math. Ser. B, 15 (1994), 35-42.
[2] R. E. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math., 27 (1974), 265-298.
[3] R. E. Greene and H. Wu, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math., 699, Springer-Verlag, Heidelberg, 1979.
[4] A. Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, Japan. J. Math., 8 (1982), 309-341.
[5] T. Kura, A Laplacian comparison theorem and its applications, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 7-9.
[6] Y. Kuramoto, On examples of open algebraic surfaces with $\bar{q}=1, \bar{P}_{2}=0$, Bull. Fac. Ed. Kagoshima Univ. Natur. Sci., 51 (1999), 1-15 (2000).
[7] T. Mabuchi, Einstein-Kähler metrics for manifolds with nonvanishing Futaki character, Tohoku Math. J. (2), 53 (2001), 171-181.
[8] T. Mabuchi, Multiplier Hermitian Structures On Kähler Manifolds, Nagoya Math. J., 170 (2003), 73115.
[9] T. Mabuchi, Heat kernel estimates and the Green functions on multiplier Hermitian manifolds, Tohoku Math. J. (2), 54 (2002), 261-277.
[10] T. Mabuchi, A theorem of Calabi-Matsushima's type, Osaka J. Math., 39 (2002), 49-57.
[11] G. Tian and X. H. Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math., 184 (2002), 271-305.
[12] H. Tsuji, Logarithmic Fano manifolds are simply connected, Tokyo J. Math., 11 (1988), 359-362.
[13] X. J. Wang and X. H. Zhu, Kähler-Ricci Solitons on Toric Manifolds with Positive First Chern Class, in preprint, 2002.

Tomonori Noda
Department of Mathematics Graduate school of science Osaka University
1-1 Machikaneyama, Toyonaka
Osaka 560-0043
Japan

Masashi Oda

Department of Mathematics Graduate school of science Osaka University
1-1 Machikaneyama, Toyonaka Osaka 560-0043
Japan

[^0]: 2000 Mathematics Subject Classification. 32Q05.
 Key Words and Phrases. Kähler, Ricci curvature, multiplier Hermitian, Laplacian comparison, sub-meanvalue.

