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Abstract. Transversely piecewise linear foliations of codimension one on closed 3-

manifolds are deformed by surgery. We will show the surgery formula for the discrete

Godbillon-Vey invariant of these foliations.

1. Introduction.

The Godbillon-Vey invariant was found for C2 foliations of codimension one as

a closed 3-form in 1971 ([7]). This is the first invariant defined for the foliations.

Thurston succeeded in describing it as a 2-cocycle of the groups of C2 di¤eomorphisms

of the circle using the area surrounded by closed curves ([1]). Because the second

derivatives of di¤eomorphisms are necessary to define it, we had no invariant for

foliations which have only lower di¤erentiabilities. In 1987, Ghys and Sergiescu [6]

defined a 2-cocycle of the groups of piecewise linear homeomorphisms of the circle using

the ‘‘discrete area.’’ This invariant is called the discrete Godbillon-Vey invariant. This is

extended to an invariant for transversely piecewise linear foliations of codimension one

on closed 3-manifolds by Tsuboi [11], which is denoted by GV. These foliations can be

deformed by surgery which is defined in Section 3. The surgery is topologically ð1; 1Þ

Dehn surgery. In this paper, we will describe the relation between GV and the surgery.

Theorem. Let M be an oriented closed 3-manifold and F0, a transversely oriented,

transversely piecewise linear foliation of codimension one on M. Suppose that there are

a leaf L and a simple closed curve CHL with a holonomy hl where hlðzÞ ¼ e�lz

ðl > 0Þ. If F is obtained from F0 by operating the surgery along C, then

GVðFÞ ¼ GVðF0Þ � l
2
:

In the last of this paper, using this theorem, we calculate the discrete Godbillon-Vey

invariants of the unstable foliations of the geodesic flows of some hyperbolic orbifolds.

From this result, we calculate the discrete Godbillon-Vey invariants in case of the

hyperbolic closed surfaces.
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2. Transversely piecewise linear foliations.

We begin in more general situation. Let M be a closed oriented 3-dimensional

manifold and F, a transversely oriented, transversely piecewise C2 foliation of codi-

mension one on M.

Lemma 1. There exist finite leaves L1;L2;L3; . . . ;Ll and a compact subset

K HL1 UL2 U � � �ULl such that F is of class C2 outside K .

Proof. For a foliated atlas, the changes of transverse coordinates are piecewise C2

homeomorphisms of intervals. Let K be the union of the closures of intersections of

plaques which correspond to the bending points of the changes of transverse coordinates.

Then F is of class C2 outside K . If K intersects infinitely many leaves, there exists

a change of transverse coordinates whose bending points are accumulated since M is

closed. Hence K is contained in only finite leaves L1;L2;L3; . . . ;Ll . By the same

argument, for all i ¼ 1; 2; . . . ; l, K VLi is compact in Li. r

Therefore, F is defined by a 1-form o on M � K and there exists a 1-form h

defined on M � K such that do ¼ o5h.

Let L ¼ L1 UL2 U � � �ULl .

Lemma 2. o and h are smoothly extended to the boundary of the closure of M � L.

Proof. Let B be the bending points of a piecewise C2 homeomorphism f defined

on an interval I HR. Because B has no accumulating points in R, each restriction of f

to a component of I � B smoothly extends to the boundary. Hence FjM�L induces a

smooth foliation on the closure M � L. Then o and h are smoothly extended to

qðM � LÞ. r

The extension of h is denoted by h. We set qðM � LÞ ¼ Lþ
1 UL�

1 ULþ
2 U � � �U

Lþ
l UL�

l where LG
i GLi and the transverse orientation of F is inward on Lþ

i and

outward on L�
i . Then hjLG

i
is regarded as the 1-form on Li which is denoted by hGLi

.

For each leaf L A F� fL1;L2; . . . ;Llg, we set hþL ¼ h�L ¼ hjL. Let EL be the 2-form

hþL5h�L for L A F.

Lemma 3. (1) hþLi
jLi�K ¼ h�Li

jLi�K .

(2) For L A F, EL is closed and compactly supported on L.

Proof. Since h is originally a smooth 1-form defined on M � K , hþLi
¼ h ¼ h�Li

on

Li � K . r

Lemma 4. For L A F, the compactly supported de Rham cohomology class repre-

sented by EL depends only on F.

Proof. hGL is uniquely determined by o as a 1-form on L. If we take other ~oo to

define F, ~oo ¼ vo outside a compact set which is contained in finite leaves where v is a

C 2 function and never vanishes.

d ~oo ¼ dv5oþ v do ¼ vo5 h�
dv

v

� �

¼ ~oo5ðh� d logjvjÞ.

So, we set ~hh ¼ h� d logjvj.
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We can define vGL in the same way as hGL . Then

~hhGL ¼ hGL � d logjvGL j:

~hhþL5~hh�L ¼ ðhþL � d logjvþL jÞ5ðh�L � d logjv�L jÞ

¼ hþL5h�L � dðlogjvþL jh
�
L � logjv�L jh

þ
L Þ þ d logjvþL j5d logjv�L j:

Because vþL ¼ v�L ¼ v outside a compact set of L, logjvþL jh
�
L � logjv�L jh

þ
L has a compact

support. Hence the second term is an exact 1-form of the de Rham complex with

compact supports. The third term is equal to

d
1

2
ðlogjvþL jd logjv

�
L j � logjv�L jd logjv

þ
L jÞ

� �

:

So, this term is also exact. r

The closed 1-forms hþLi
and h�Li

represent the infinitesimal holonomy class of Li.

hþLi
� h�Li

is also a compactly supported 1-form on Li. Let H
lf
1 ðLi;ZÞ be the locally

finite first homology group of Li. If D A H
lf
1 ðLi;ZÞ satisfies that m ¼

Ð

D
ðhþLi

� h�Li
Þ0 0,

then there are bending points along D. For every indivisible element D A H
lf
1 ðLi;ZÞ,

there is a simple closed curve C which represents the Poincaré dual of D in H1ðLi;ZÞ.

In particular, the intersection number C �D is equal to 1.

From now on, we suppose that F is transversely piecewise linear. For l > 0, let

hl be a linear map, z 7! e�lz, on a neighborhood of 0.

Theorem 1. If the holonomy of C is hl, then
ð

K0

ELi
¼ �lm

where K0 is the component of K VLi which contains C.

Proof. It is su‰cient to prove the statement in the case of a cylindrical leaf since

K0 is contained in a tubular neighborhood of C. Then we may assume that D is a

simple curve which connects two ends of the cylindrical leaf and that C is a simple

closed curve which intersects D with a point. In this case, we can realize a neigh-

borhood of this leaf as follows.

Put

N ¼ fðx; y; zÞ A R
3 j x > 0g ¼ f½x;Y ; f� A R

3 j x > 0;Yb 0;�pa fa pg

where ½x;Y ; f� is the cylindrical coordinate of R
3, i.e.,

½x;Y ; f� ¼ ðx;Y cos f;Y sin fÞ:

We also define

Nþ ¼ f½x;Y ; f� A N j 0a fa pg;

N� ¼ f½x;Y ; f� A N j �pa fa 0g

and

N 0
� ¼ N� � fðx; 0; 0Þ j x > 0g:

A surgery formula for the discrete Godbillon-Vey invariant 1205



N;Nþ and N� are given the trivial foliation whose leaves are half planes

ð0;yÞ � R� fzg:

We define two di¤eomorphisms Sl : N ! N and Fm : N
0
� ! N 0

� by Slð½x;Y ; f�Þ ¼

½elx; elY ; f� and Fmð½x;Y ; f�Þ ¼ ½eð1þf=pÞmx;Y ; f�.

We use these maps to make a transversely piecewise linear foliation in a solid

torus. We glue Nþ and N 0
� by identifying ½x;Y ; p� (resp. ½x;Y ; 0�) and ½x;Y ;�p� (resp.

Fmð½x;Y ; 0�Þ) in order to obtain N 0. Since SljN
0
� and Fm commute and they preserve

the trivial foliation, Sl induces a foliation preserving di¤eomorphisms S 0
l : N 0 ! N 0

and N0 ¼ N 0=½x;Y ; f�@S 0
l ð½x;Y ; f�Þ is a foliated solid torus. Let P be the projection

N ! N0.

Now we notice a neighborhood of the cylindrical leaf L0 induced from the x-y

plane. We will see that L0 satisfies the condition of the theorem.

o ¼ dz=r defines the trivial foliation of N and is invariant by Sl where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

.

do ¼ o5d log r:

Hence

hþ ¼ d log r:

Let NL be fðx; y; zÞ A N j y < 0g and NR, fðx; y; zÞ A N j y > 0g. Then

h�jPðN�VNLÞ
¼ d log r;

and

h�jPðN�VNRÞ
¼ d logðr � FmÞ:

Let D0 be the arc Pðfðcos y; sin y; 0Þ A Nþ j �p=2 < y < p=2gÞ in L0. D0 is given

the same orientation as the unit circle in the x-y plane.

ð

D0

ðhþ � h�Þ ¼

ð0

�p=2

ðd log r� d log rÞ þ

ð p=2

0

ðd log r� d logðr � FmÞÞ

¼

ð p=2

0

ðd log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 yþ sin2 y
p

� d log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2m cos2 yþ sin2 y
p

Þ dy

¼

ð p=2

0

ðe2m � 1Þ cos y sin y

e2m cos2 yþ sin2 y
dy

¼ m:

Let C0 be the simple closed curve in L0 which is induced from the x-axis. C0 is

also given the same orientation as the x-axis. Then the intersection number C0 �D0 is

equal to 1. It is easy to see that the holonomy of C0 is the linear map hl.

Hence, L0;C0 and D0 satisfy the condition of the theorem.

On the other hand, we can easily find a neighborhood of L in M which is

equivalent to a neighborhood of L0.

To finish the proof, we calculate
Ð

L 0
E.
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ð

L 0

E ¼

ð

L0

hþ5h�

¼

ð

L0VPðNLÞ

hþ5h� þ

ð

L0VPðNRÞ

hþ5h�

¼

ð

L0VPðNRÞ

d log r5d logðr � FmÞ

¼

ð

L0VPðNRÞ

d log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

5d log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2mx2 þ y2
p

¼

ð

L0VPðNRÞ

xy

ðx2 þ y2Þðe2mx2 þ y2Þ
ð1� e2mÞ dxdy

¼ ð1� e2mÞ

ð e l

1

dl

l

ð p=2

0

cos y sin y

e2m cos2 yþ sin2 y
dy

¼ �lm: r

3. Discrete Godbillon-Vey number and surgery formula.

Definition 1. We define the discrete Godbillon-Vey number for F by

GVðFÞ ¼
X

l

i¼1

ð

Li

Ei:

Remark 1. In [6], [5], the discrete Godbillon-Vey cocycle is defined as a two

cocycle of PLþðS
1Þ which is the group of orientation preserving piecewise linear

homeomorphisms of S1. For g1; g2 A PLþðS
1Þ,

GSGVðg1; g2Þ

¼
1

2

X

x AS 1

log g 0
2ðxþ 0Þ logðg1 � g2Þ

0ðxþ 0Þ

log g 0
2ðxþ 0Þ � log g 0

2ðx� 0Þ logðg1 � g2Þ
0ðxþ 0Þ � logðg1 � g2Þ

0ðx� 0Þ

�

�

�

�

�

�

�

�

:

Let F be a foliated S1 bundle over an oriented closed surface S and j : p1ðSÞ !

PLþðS
1Þ, the global holonomy of F. Then

GSGVðj�ð½S�ÞÞ ¼ GVðFÞ

where ½S � A H2ðS;ZÞ is the fundamental class of S. This is proved by using foliated S1

products as we have done in the case of the Godbillon-Vey invariant.

It is easy to define the surgery now.

Definition 2. For l > 0, the surgery along a simple closed curve in a leaf with the

holonomy hl, is defined by the operation used in order to obtain N0 from N=½x;Y ; f�@

Sl½x;Y ; f� with m ¼ l in the proof of Theorem 1.

Remark 2. This is topologically ð1; 1Þ Dehn surgery. Goodman and Fried define

the surgery for Anosov flows [8] [4] (see also [3]).
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From Theorem 1, we show

Theorem 2. Let F0 be a transversely oriented, transversely piecewise linear foliation

of codimension one on an oriented closed 3-manifold. If F is obtained from F0 by the

surgery, then

GVðFÞ ¼ GVðF0Þ � l
2:

We apply the surgery formula to some examples now. There is other good

application in [2].

Examples.

Let p; q; r be positive integers satisfying that ð1=pÞ þ ð1=qÞ þ ð1=rÞ < 1 and

Sðp; q; rÞ, the 2-sphere with three singular points whose cone angles are 2p=p; 2p=q and

2p=r. We consider Sðp; q; rÞ as a quotient space of the Poincaré disk by a triangle

group. Then its geodesic flow is defined in its unit tangent circle bundle Mðp; q; rÞ,

which is a Seifert fibered space, and of Anosov. Let Fu
p;q; r be the unstable foliation of

the geodesic flow. This flow is obtained from an element of SLð2;ZÞ (see [10]). For

example, if p ¼ q ¼ 2gþ 1 and r ¼ gþ 1 ðg ¼ 2; 3; 4; . . .Þ, then the geodesic flow is

obtained by two surgeries along closed orbits of the suspension flow of the di¤eo-

morphism of 2-torus induced by

A2gþ1;2gþ1;gþ1 ¼
2g2 � 1 4g

gðg2 � 1Þ 2g2 � 1

� �

A SLð2;ZÞ:

We can calculate the discrete Godbillon-Vey invariant from the surgery for-

mula. Since the unstable foliation of the suspension flow has no bending points and the

holonomy of closed orbits are hlog lg
,

GVðFu
2gþ1;2gþ1;gþ1Þ ¼ �2ðlog lgÞ

2

where lg is the larger eigenvalue of A2gþ1;2gþ1;gþ1.

Let Sg be a closed surface of genus g. Sg is given a hyperbolic metric. The

geodesic flow of Sg is of Anosov in the unite tangent bundle T1Sg. The unstable

foliation of the geodesic flow is denoted by F
u

g . There is a ð2gþ 2Þ-fold covering

T1Sg ! Mð2gþ 1; 2gþ 1; gþ 1Þ which preserves geodesic flows and unstable foliations.

Therefore,

GVðFu
g Þ ¼ �2ð2gþ 2Þðlog lgÞ

2:

In [9], we showed this from the definition of the discrete Godbillon-Vey cocycle by

another monotonous way.
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