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Abstract. In the framework of microlocal analysis, a boundary value morphism
is defined for solutions to the regular-specializable system of analytic linear partial
differential equations. This morphism can be regarded as a microlocal counterpart of
the boundary value morphism for hyperfunction solutions due to Monteiro Fernandes,
and the injectivity of this morphism (that is, the Holmgren type theorem) is proved.
Moreover, under a kind of hyperbolicity condition, it is proved that this morphism is
surjective (that is, the solvability).

Introduction.

In microlocal analysis, it is one of the main subjects to give an appropriate
formulation of the boundary value problems for hyperfunction or microfunction solu-
tions to a system of analytic linear partial differential equations (that is, a coherent (left)
2-Module, here in this paper, we shall write Module or Ring with capital letters, instead
of sheaf of modules or sheaf of rings). We shall recall the previous results:

When we impose the non-characteristic condition, we can obtain the following
satisfactory results: Suppose that the boundary is real analytic and non-characteristic
for the system. Then all the hyperfunction or microfunction solutions have bound-
ary values as hyperfunction or microfunction solutions to the induced system on the
boundary, and the local or microlocal uniqueness theorem (Holmgren type theorem)
hold. Note that in the case of hyperfunction solutions to a differential equation, these
results are given by Komatsu-Kawai and Schapira [Scl], and in the case of
a system, we can prove these facts by means of the theory of microsupports (cf.
Kashiwara-Kawai [K-K1]). See also Kataoka for microlocal boundary value
problems in the framework of the theory of mild microfunctions.

However, once we release the non-characteristic condition for the system, the
problem is much involved; In general, we must impose some regularity condition on
the solutions in order to define their boundary values as solutions to the induced
system. As this condition, Oaku [Oal], introduced the sheaf of F-mild hyper-
functions and of F-mild microfunctions as a microlocalization. For the F-mild hy-
perfunction or microfunction solutions to a Fuchsian system in the sense of Laurent-
Monteiro Fernandes [L-MFI], we can obtain the local or microlocal uniqueness theorem
for boundary value problem (see Oaku [Oal|, [Oa2|, and cf. Oaku and Yamazaki
[O-Y]).

On the other hand, if we assume the following condition to the Fuchsian system,
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all the hyperfunction solutions have boundary values and a local uniqueness theorem
holds as in the non-characteristic case: Suppose that the system is regular-specializable.
Then the nearby-cycle of the system is defined in the theory of Z-Modules. The
definitions of the regular-specializable -Module and its nearby-cycle are initiated by
Kashiwara [Kas], Kashiwara and Kawai and Malgrange for regular-
holonomic cases. Further the notion of nearby-cycle is extended to the specializable &-
Module (see Laurent [L2], Laurent and Malgrange [L-Ma] and Mebkhout [Me]). Note
that we do not have a definition of nearby-cycle for general Fuchsian systems at this
stage. After the results by Kashiwara-Oshima [K-O], Oshima and Schapira [Sc3],
[Scd], for the hyperfunction solution sheaf to regular-specializable system Monteiro
Fernandes defined a boundary value morphism which takes values in hyper-
function solutions to the nearby-cycle of the system instead of the induced system. This
morphism is injective (cf. [MF2]) and gives a generalization of the non-characteristic
boundary value morphism. Moreover Laurent-Monteiro Fernandes redefined
this morphism and discussed the solvability under a kind of hyperbolicity condition
(the near-hyperbolicity). Here we should remark that even in single equation cases,
some results due to Tahara can not be recovered by Laurent-Monteiro Fernandes
[L-MF2]. However, since this morphism is defined only for hyperfunction solutions,
a microlocal boundary value problem is not considered. Therefore in this paper, we
shall microlocalize this morphism in the framework of Oaku and Oaku-Yamazaki
and extend their result to our case; that is, for the regular-specializable system we
shall define a injective boundary value morphism as a microlocalization of the boundary
value morphism in the sense of Monteiro Fernandes [MF1], and prove this morphism is
surjective under the near-hyperbolicity condition.

We remark that for a Fuchsian system in the sense of Tahara [T], Oaku
defined an injective boundary value morphism under additional conditions of charac-
teristic exponents by using a detailed study due to Tahara [T].

The plan of this paper is as follows: In §1, we shall introduce the notation and
recall complementary results used in later sections. In §2, we shall define a general
boundary morphism for a complex of sheaves under some condition. Further, we shall
prove this morphism is isomorphic under the near-hyperbolicity condition in the sense of
Laurent and Monteiro Fernandes (cf. Kashiwara-Schapira [K-S1]). §§3 and 4
are preparations for §5; §3 is an exposition of the regular-specializable -Module. In
§4, we recall several sheaves and in particular, a sheaf %y, attached to the boundary
on some cotangent bundles in order to formulate our boundary value problem. We
remark that roughly speaking, @y 1s a microlocalization of the specialization of the
sheaf of hyperfunctions. 1In §5, for any %)) solutions to the regular-specializable
system, we shall define a boundary value morphism which takes values in microfunction
solutions to the nearby-cycle of the system, and prove this morphism is injective in
the zero-th cohomology (this means the microlocal uniqueness theorem). Note that the
restriction of our morphism to the zero-section coincides with that in the sense of
Monteiro Fernandes [MF1]. Finally §6 is devoted to examples.

We shall end this introduction with the following remarks: The non-characteristic,
Fuchsian or regular-specializable conditions are generalized to the higher-codimensional
case. If we impose non-characteristic or Fuchsian conditions, we can extend the results
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of the one-codimensional case mentioned above to that of the higher-codimensional
case in the framework of F-mild microfunctions (see Oaku-Yamazaki [O-Y]). On
the contrary, if we assume only the regular-specializable condition, we cannot define
boundary values for any hyperfunction solution as a natural extension of the boundary
values in the sense of Monteiro Fernandes [MFI]. Hence in this case, we need ad-
ditional conditions on the system in order to obtain an appropriate formulation of
the higher-codimensional boundary value problem (cf. Kashiwara-Oshima and
Oshima [Os2]).

The author would like to thank the referee for carefully reading the manuscript. In
particular, the proof of would be incomplete without the referee’s com-
ments.

1. Preliminaries.

In this section, we shall fix the notation and recall known results used in later
sections. General references are made to Kashiwara-Schapira [K-S2].

We denote by Z,R and C the sets of all the integers, real numbers and complex
numbers respectively. Moreover we set N :={ne Z;n>1} and Ny := NU{0}.

In this paper, all the manifolds are assumed to be paracompact. In general,
let 7: E— Z a vector bundle over a manifold Z. Then, set E := E\Z and 7 the
restriction of 7 to E. Let M be an (n + 1)-dimensional real analytic manifold and N
a one-codimensional closed real analytic submanifold of M. Let X and Y be com-
plexifications of M and N respectively such that Y is a closed submanifold of X and
that YN M = N. Moreover in this paper, we assume the existence of a partial com-
plexification of M in X; that is, there exists a (2n+ 1)-dimensional real analytic
submanifold L of X containing both M and Y such that the triplet (N, M, L) is
locally isomorphic to (R" x {0}, R""!,C" x R) by local coordinates (z,7) = (x + v—1y,
t++v/—1s) of X around each point of N. We say such local coordinates admissible.
By admissible coordinates we have locally the following relation:

N=R"x{0} =—— M=R"xR,

I

Y=C'"x{0} = L=C"xR, <~ X=C"xC,

and with these coordinates, we often identify 7yX and 7yL with X and L re-
spectively. We shall mainly follow the notation in Kashiwara-Schapira [K-S2]; we
denote by My and Ly the normal deformations of N and Y in M and L respectively
and regard My as a closed submanifold of Ly. The projection ty : TyL — Y induces
natural mappings:

TNY — TyM X Ty Y ﬁ T; uTyL,

Tyn

and by ty; we identify T7 ,TyL with TyM X TyY. Similarly by natural map-
pings
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Ty Ly%TNMxTNLy—>TTMTL

SLn
we identify TNMA;;N TA’EINLY with Ty uTyL.
We have the following commutative diagram'

TNM%MN<—‘>.Q

\/W\

<« X

o J
TyL l‘
PL )23
Y /'L

< L < X.

hz
S

TyL\TyY has two components with respect to its fiber. We denote by TyL" one
of them and represent (at least locally) by fixing admissible coordinates

TyL" = {(z,t) e TyL;t > 0}.
Moreover set TyM™* := TyLTNTyM. Define open embeddings f/ and fy by:

S
T}/L+ —— TyL

L ? L
In
TyM™ —— TyM.

Thus we regard TyM™ X TyY as an open set of 77 ., TyL. Moreover f induces
mappings:

) - . I
TTNM+TYL+ — TNM+ T;<MTTN TyL — TTNMTYL

l O l

TM* X T} Y ed, Ty M T3 Y.

Hence we identify 77 . TyL" with TyM™ X 7Y, and f; with fy x L.

REMARK 1.1. To define TyL" (or TyM™) by means of admissible coordinates
is equivalent to determining a local isomorphism ¢zy;; ~ Zy (or equivalently o7y ~
Zy). Here o1y, denotes the relative orientation sheaf.

Let 7y ar: T;ZNINJY — My and TIN|M T;NMTYL — TyM, be the natural projec-
tions. We denote by v.(x) and w, (%) the specialization and microlocalization functors
respectively. Let F be an object of Db(X ). Then, by Sato’s fundamental distinguished
triangle we have

.o~ .o~ . .o~ +1
Rirpr iy Flyz, ® oy — Ry (Rjvs pylip F) — Riy, aretyy, (Rivs pr i F) =,
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where wy; denotes the dualizing complex. Applying the functor sy}, we have
St (i b iy Flig,) = 57 Rin iy F = vy L F)] gy
5wl REy, (RjneprlipF) = sy 1" Rjvprin F @ o)) =~ 53/ Rivd Prip F @ of
~ 53 Ripp'yy iy F ® w%_]l}[ ~ 53} Rinsup ) ing F
= vy (iy F).
Further, since uy (RjL« p;li; F) is a conic object, it is easy to see that
Sut R, wrelyg, (RjePr ipF) = Riy\veSpattig, (Rizepy iy F).
Hence we obtain the following distinguished triangle:
VY(i!LF)|TNM ® w[\O)i[;ll, — iy (iy F) — RﬁN|M*SZ71/‘MN (Rjr«pr iy F) 3
By Kashiwara-Schapira [K-S2, Proposition 4.3.5], we have a natural morphism

_ SO I Ay =1 —1
SL;ﬂMN(R]L*lel'LF) - :uTNM(SLlR]L*lel'LF) X o7, p, ® W?NM/MN
~ piryp (Vy (ipF)),

and this morphism induces a natural morphism of distinguished triangles:

. — . . _ .o~ +1
VY(ZELFNTNM ® cha/Ll - VN<Z!MF> I RnNIM*SLiﬂMN (R]L*lel!LF) E—
‘ ®-1 +1

VY(i!LF)|TNM Qyy — R 7 m(vy(ip F)) —— RﬁN|M*ﬂTNM(VY(i!LF)) -

(see [Proposition 4.3 (3)).

Next, we shall recall a general result. Let Z be a complex manifold, 7: £ — Z
a complex vector bundle, and n: E* — Z its dual bundle. Then, as in the real case
(see for example Kashiwara-Schapira [K-S2, Section 5.5]) the action of C* := C\{0}
on E induces a natural mapping Op: T*E — C. Set SE:=0;'(0). Let (z,x) be
local coordinates of E such that z is coordinates of Z and x is linear coordinates.
Let (z,x;{,&) be associated coordinates of 7*E. Then 0 is written explicitly as
0 (z,x;C, &) = (x,&). Denote by D2.(E) the subcategory of D°(E) consisting of C*-
conic objects, and by SS(-) the microsupport. Then we have the following result which
seems to be first stated in Laurent-Monteiro Fernandes [L-MF2, Lemma 1.1.1]:

PROPOSITION 1.2.  The category D« (E) is the full subcategory of D°(E) consisting
of objects F such that SS(F) = S§.

Indeed, the proof in Kashiwara-Schapira [K-S2, Proposition 5.4.5] still works in
the complex case, and E x T*(E/C*)=E X SE. Hence by the same proof as in
E/C*

Kashiwara-Schapira [K-S2, Proposition 5.5.3] we obtain the proposition.
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2. General boundary values.

In this section, we shall define our boundary value morphism.
First, by using admissible coordinates, we set (at least locally)

Ty)(Jr = {(Z,‘L') e TyX;Ret > 0},
and consider the following commutative diagram:
S
TyL+ ——— TyL
Tmf Tmf \
_— 24
TyX™ —— Ty X —— Y.

We regard TyL as a closed conic subset of 7yX by Tyir. Note that both
TyL"™ — TyL and TyXt — TyX are open embeddings. Set 7} :=71xf:TyX" — Y.
Using admissible coordinates we define a continuous section o : ¥ — Ty X by z — (z;1).
Similarly we define ‘o: Y — Ty X by z — (z;1).

THEOREM 2.1.  For any F € ObD®(X) with vy(F) € Ob DEX(TYX), there exists the
following natural isomorphism:

f Yy (i F) =~ f o vy (F) ® ooy

Proor. Recall that by Kashiwara-Schapira [K-S2, Proposition 4.2.5], we have
natural morphisms:

(Tyl'L)71VY(F> ®COL/X _ Vy(iZIF) ®wL/X

| o
(Tyir)'vy(F) L vy (ip F).

Set G := Rt} f'vy(F)eObD®(Y). Since vy(F)eObD2.(TyX), by Kashiwara-
Schapira [K-S2, Proposition 2.7.8], it follows that f~'vy(F) ~ ¢} 'G. Hence, we see
that o vy(F) ~ o ' f~\vy(F) ~07'7}7'G ~ G. In particular, we have

U Tyip) Wy (F) =~ (Tyip) ' f Yy (F) ~ (Tyip) 'v77'G ~ 715316
~ e Ty (F) ~ ey e vy (F).
Moreover, we have the following chain of isomorphisms:
SN (Tyip) vy (F) = f{(Tyip) vy (F) = (Tyir) f'vy(F) = (Tyir) f~' vy (F)
= (Tyin) Ty 'G = (Tyip) T} G 0F .y
= f!T!YG ® w%}lﬂY = filf;'lG oLy ® w?y}lﬁY

~ (Tyl.L)_IT_;_lG® COL/X ~ f_l(TyiL)_IVY<F) ® COL/X.
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Hence, we obtain the following commutative diagram:

[ e W (F) @ oy =~ [N (Tyi) 'vw(F) @ oy —— [y(if'F) ® wp )y

S~ N(Tyi) vy (F) — Sy (ipF),

which implies that f is an epimorphism.

Next, we shall prove that f is a monomorphism. By taking admissible coordinates,
we may assume that X = C""! and L = C" x R, hence we identify orpyx With Zp. By
a distinguished triangle

: - - +1
(Tyir) vy (F) — (Tyir) 'vy(F) = (Tyir) 'Rz 03, (vy (F)) =,
for any pe TyL" and je Z, we have the exact sequences

lim H/(W;F) —— lim H/(W\L;F) —— (A7 'vy(i{F)), —— lim H/*'(W;F)

w w w
‘ O J,, O lﬁ O
lim HI(W; F) —— Hf, oy 0y (F)), —— A 0y (F)), —— Tim HIP (W5 F),

w w

where W ranges through the family of open subsets of X such that p ¢ Cy(X\W).
In fact, by the excision we can take the same family of W to calculate the stalk
of # /Wy (itF). Set TyX\TyL=Q"UQ", where Q% :={(z,7) e TyX;+Imz > 0}.
Hence we have

Aoy V7 (F)), = A (vy (F)), ® H-(vy (F)),

~ lim H/(VNQ5vy(F) @ lim H/ (VN Q7;vy(F))
V V

~ lim H/(U};F) @ lim H/(Uy;F),
V,U;; Vv,u,

where V' ranges through the fundamental system of conic open neighborhoods of p
in TyX, and each Uj ranges through the family of open subsets of X such that
Cy(X\UH)NQRE*NV =F. We set W* :={(z,7)e W;+Imz >0}. Then

lim H/(W\L; F) = im(H/(W";F) @ H/(W~; F)).
w w

Thus we can write p = (p,,p_), where each p, is the restriction of sheaves:

lim H/(W*;F) — lim H/(U};F).

w v, UF
Suppose that (uy,u_)e lim(H/(W*;F)® H/(W~; F)) satisfies
w
plus,u ) =0e lin HI(UJ;F)® lim HI(Uy; F)
v, U; V,U,

~ im(H/ (VN Q%5 vy(F) @ H (VN Q75 vy (F))).



1116 S. YAMAZAKI

Set zog:=1y(p) e Y and V, = {(z,7) € X;|z — 20| < &,0 < |7] < ¢,Ret > —¢|Im|} for an
¢>0. Then, we can find an ¢ > 0 such that uy =0e H/(V,; F) since #/vy(F) is C*-
conic. Hence it follows that

(up,u_) =0e im(H/(W*;F) @ H/ (W™ ; F)),
w

namely, p is injective. Thus by Five Lemma, we can show that f is a mono-
morphism. Therefore, we have

f_l’L')_;lU_IVY(F> ® wL/X jad f_l(Tyl.[)ilVY(F) ® COL/X ; f_le<i!LF).
The proof is complete. OJ

THEOREM 2.2.  For any F € ObD®(X) with vy(F) e ObD&(TyX), there exists the
following natural isomorphism:

St vy (i F)) = f iy (67 vy (F) @ o x-

Proor. By [Theorem 2.1 and Kashiwara-Schapira [K-S2, Proposition 4.3.5], we
obtain the following chain of isomorphisms:

fnflﬂTNM(VY(i!LF)) = Ury M+ (fflVY(i!LF)) = Uy m+ (fflT;/lUilVY(F)) R wr/x
~ i iy (07 vy (F) @ wryx @ wryars v @ wz@y;/y
~ fi iy (67 vy (F)) @ wpx.
This proves the theorem. ]

DEFINITION 2.3.  For any F € ObD®(X) with vy(F) € ObD@(TyX), by virtue of
Theorem 2.2 we define:

B f{lSZ;ﬂMN(RJ'L*ﬁZli!LF) — [ sy (i F))
= fy "ty (07 vy (F) ® op)x.

Next, we shall show that f is an epimorphism under the near-hyperbolicity
condition due to Laurent-Monteiro Fernandes [L-MF2, Definition 1.3.1]:

DEerFINITION 2.4. Let F be an object of Db(X ). Then we say F is near-hyperbolic
at xo € N (in dr-codirection) if there exist positive constants C and ¢ such that

SS(F)N{(z,7;z",7") e T"X; |z — xo| < &1, |7] < €,0 < ¢}
c{(z 2% ) e T°X; 7] < C(y7[(Iy[ + [s]) + [x7)}

holds by admissible coordinates (z,7) = (x+ vV —1y,t++v—1s) of X and associated
coordinates (z,7;z*,7") = (x + V—1y, t + V—1ls;x* + vV —=1y* t* + V—1s*) of T*X.

THEOREM 2.5. Let F be an object of D®(X). Assume that vy(F) € ObD2(TyX)
and F is near-hyperbolic at xoe€ N. Then, for any p* = (xo,t;V—1<{&y,dx)) €
T T yL*t, the morphism [ induces an isomorphism:

B Stattin, (RicsBr i F) e — i (07 'y (F)),, () @ Ly
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Proor. By [Theorem 2.2, we may show the isomorphism

SZ;MMN<RJL*pZIi!LF)p* - ﬂTNM(VY(i!LF))p*-

By virtue of the inverse Fourier-Sato transformation, it is enough to show that the
isomorphism

52 'vary (R Pr RIL(F)), = vrym (vy (RIL(F))),
holds at any point py = (X(), to; V —lyo) e T'rym+ TyL*. Here s; : TryuTyL — TMNE‘Y
is a natural mapping. Since

§ZIVMN(RjL*pilRFL(F))|TNM+ = VTNM(VY(RFL(F)))|TNM+ = VY(RFL(F))|TNM+7
we may assume that yy # 0. By taking suitable admissible coordinates, we may
assume that X = C""' 5 L = C" x R and so on with xp=0. We set as in Bony-
Schapira [B-S2]
B(0,a) :={(x,1) e R"™;|x| + || < a}, B'(0,a) :={xeR";|x| <a}.
Set K, (a,0) := Inty[B'(0,a) U{(0,a0)}]. Here y[:] means the convex hull and IntA

denotes the interior of A. For an open convex cone I' = R", we set I) := I""N B'(0,¢).
Then, for any k€ Z we have

0

Ay, (Rizpr RIL(F))ls, ) = lim H*(K(a,0) + V—=1I}/; RIL(F)),
a,0, 1}

A1 (vy(RIL(F))|,, = lim  H*(U.(a,6,1})); RIL(F)).
U(ao.r)

Here I'" = R" ranges through the family of open conic neighborhoods of yy, U(a,d,I})
ranges through the family of open neighborhoods of B(0,a) + v—1I in L, and we set

Ui (a,8,7)) := U(a,8,I7) N {(z,1) € L; 1 > 0}.
Then the proof of the theorem is reduced to the following proposition. ]

PropOSITION 2.6 [cf. [B-S2, Lemme 3.2]). Let I'' = R" be a conic neighborhood
of yo. Then there exists a positive constant 0 > 0 satisfying the following: If a and ¢ are
sufficiently small positive constants, then for any k € Z there exist &',6' > 0 and a conic
neighborhood I' = R" of yo such that

HY(K,(a,0") +V—1I; RI[L(F)) = H(U(a,8,T)); R[L(F)).
Proor. The proof is very similar to that of [B-S2, Lemme 3.2]. We use the

following lemma instead of [B-S2, Théoreme 1.1]):

LemmMma 2.7 (cf. [B-S1, Théoreme 2.1]). Let w < Q < L be convex sets such that o is
locally compact and Q2 is an open set. Let G be an object of Db(L). Set

A:={(z"1");(z,t;z",t") € SS(G) for some (z,t) € Q}.

Suppose that if a hyperplane with normal vector in A crosses Q, then this hyperplane
always crosses @. Then for any open neighborhood o' = Q of w, it follows that

RI(Q;G) = RI(';G).
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PrOOF OF LEMMA 2.7. Set
@ :={VcQ;V is open,’ = V,RI['(V;G) = RI(0'; G)}.

Then @ # . Let {V;},.; = ® be any totally ordered subset. Set V := Uie, Vi
Since L is a Lindelof space, we can find a subsequence {Vi'}jen = {Vitics such that
V= U ey Vi and V! =V, if j<k. Hence {H* L G)}]EN satisfies Mittag-Leftler
condition for any KeZ since H 'V, G) ~ Hk‘l(co’;G) for any jeN. Thus we
have H¥(V;G) = H*(w'; G) (see [K-SZ Proposition 2.7.1]). Hence by induction on
k, we see ¥V € ®@. Therefore by Zorn’s Lemma, there exists a maximal element V € ®.
Suppose that V' # Q. Take pe Q\V. Then instead of Zerner’s theorem, we can use
the theory of microsupports to prove the existence of W € @ such that p e W (see the
proof of [B-S1, Théoréeme 2.1] and [K-S2, Proposition 5.2.1, Lemma 5.2.2]). Further
by the method of proof, we may assume RI'(W;G) — RI(VNW;G). Thus, we have
isomorphisms RI(V;G) ~ RI'(®';G) ~ R['(V;G) ~ R[C(VN W;G). Hence, by the
distinguished triangle

RI(VUW;G) — RI[(V;G)® R[(W;G) — R[O(VNW;G) 2

RIC(VUW;G) ~ RI'w';G) holds; that is, V< VUW € @, which is a contradic-
tion. ]

We end the proof of |Proposition 2.6 (cf. also Tahara [T, Lemmata 2.1.1 and
2.1.2]). Recall that iy : L — X is the canonical embedding. By [K-S2, Corollary 6.4.4]
we have

SS(RIL(F)) < i¥(SS(F)).

Thus if (0,20;z5,2;5) € SS(RIL(F))N{(z,t;z*,t") e T*L; |z| < &,0 <t <¢g}, then by
[K-S2, Remark 6.2.8] and the near-hyperbolicity condition, we can find a sequence
{(zi75 2} 7 7 )}en (a2 ) e TX; || < C(1y*[(ly[ +Is]) + [x*[)}  such  that
(zj3 527, 17) — (0, 103 25, 1) and sl [s;| — 0. In particular since |s;| — 0, we see

J : J J

VRN
SS(RIL(F))N{(z,t;z",t") e T"L; |z] < &,0 <t < &}
{2 ) e T'Lifz < 1,0 < 1 < e, [°] < C(1y" | y] + XD}
Thus we have only to follow the argument in the proof of [B-S2, Lemme 3.2] to obtain

RI(M, . RI(F)) = RI(U,(a,6,T); RIL(F)).

Here M, . :=Inty[(B'(0,a) + vV—11I,,)U{(0,00) + v ~1n}] for an ne I}, and an in-
dependent constant o > 0. By the same argument as in the proof of [Cemma 2.7, we
have

I( U M, ;RI(F)) = RI(Uy(a,6,1)); RIL(F)).
’76 é/4
We can find ¢’,6’ >0 and a conic neighborhood I = R" of yy such that

K+(a,5l> =+ Vv —11—;/ (e U M’778'

nel’ o4
The proof is complete. []
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3. Regular-specializable systems.

In this section, we shall recall the basic results concerning the regular-specializable
“2-Module and its nearby-cycle. Although all the contents in this section are well-
known to specialists, we shall give a detailed review for the convenience of the reader.
Note that a generalization to the higher-codimensional case is obtained, but we restrict
ourselves to the one-codimensional case. We inherit the notation from §1. In par-
ticular, Y denotes a one-codimensional complex submanifold of X.

Let Zx be the Ring on X of holomorphic differential operators, and {.@)((m)}me Ny
the usual order filtration on Zy. Let us recall the definition of the I/ -filtration:

~ DeriNiTION 3.1, Let fy be the defining Ideal of Y in Oy with a convention that
4] = Oy for j<0. The V-filtration {F%(Zx)},., (along Y) is a filtration on Zy|,
defined by

FE(2x) = ({Pe Dx|y; PI) < 71753

jezZ

It is easy to see that by admissible coordinates, this filtration is written as

Fy(2x) = { 3 Pi(z,0:)1'0] € Zxly}.
j—i<k

Let 2|1, x) be the subsheaf of &1, x consisting of operators which are polynomials with
respect to the fiber variables. Then the associated graded Ring with {F%(Zy)},., is
canonically isomorphic to 7x.%|r,y], hence this graded Ring is non-commutative (for
details of this filtration, we refer to Bjork [Bj], Sabbah [Sab] and Schapira [Sc2]).

We denote by & the Euler vector field on 7yX. Then & is characterized by
3¢ = ko for any ¢ € f{f / fﬁ“ and k € N, and 3 can be represented by 70, by admissible
coordinates.

DEerFINITION 3.2. A coherent Zy|,-Module .# is said to be regular-specializable
(along Y) if there exist locally a coherent (y-sub-Module ¥ of .# and a non-zero
polynomial b(a) € C[o] such that the following conditions are satisfied:

(1) & generates .# over Yy; that is, 4 = Dx ¥;

2) b(9)Z < (Fy (@X)ﬂ@)((’”))g, where m is the degree degh of b(a).

In what follows, we shall omit the phrase “along Y since Y is fixed.

ReMARK 3.3. (1) Let .# be a coherent Zy|,-Module for which Y is non-
characteristic. Then .# is regular-specializable.

(2) By Kashiwara-Kawai [K-K2, Lemma 4.1.5], any regular-holonomic f~!%y-
Module is regular-specializable.

ProposITION 3.4. (1) A coherent Dx|y-Module 4 is regular-specializable if and
only if the following condition is satisfied: For any local section u of M, there exist a
non-zero polynomial b,(x) € Clo] and Q, € Fy'(Zy) mgﬁfegb") such that

(bu(‘g) + Qu)u = 0.
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(2) In an exact sequence of coherent Zy|,-Modules
00— M — M— M"—0,
M is regular-specializable if and only if both M’ and #" are regular-specializable.
For the proof, see Mebkhout or Sabbah [Sabl].

ProposITION 3.5. Let .# be a coherent Zx|y,-Module. If M is regular-
specializable, then RAomaq,(M,uy(Ox)) and RHomq,(M,vy(Ox)) are objects of
De. (T3 X) and D2 (TyX) respectively.

ProoF. Denote by Cr;x(-) the normal cone along 7yX. Since the Hamiltonian
isomorphism induces 1somorph1sms T"TyX ~T"TyX ~ Tr:xT*X, we identify these
spaces. Then by Kashiwara-Schapira [K-S2, Theorem 6.4.1], for any F € ObD"(X) we
have:

SS(vy(F)) = SS(uy (F)) = Cryx(SS(F)).

Let (z,7) be admissible coordinates of X and (z,7;z* %) the associated coordinates of
T*X. As in §1, we use identification 7yX = X and T*X = Tr:xT*X by means of
(z,7). Then under these coordinates we have (see [K-S2, (6.2.3)]):

T"TyX = T*Ty X = Tr:xTX
U U U

(z,7;2%,7%) «—— (z,t%;z%,—1) «—— (z,7;z%,7%)

S%X ={(z,7%z",—1) e T*"TyX;tt" = 0}.

Assume that .# is generated by {uj}jjzl over Yx. Then by virtue of [Proposition 3.4]
each Zyu; is regular- spe01ahzable Hence, for each j we can find a non-zero poly-
nomial b;(a) and Q; e @m’ NF, (Zx) such that (b;(9) + Q;)u; = 0, where m; denotes
the degree of bj(a). Set % : @X/QX( i(#) + Qj). Then 1t follows that each % is
regular-specializable and that there exists an epimorphism (—D % — M — 0. Hence
we have

C&

J
char(.#) < char El—) char(%)).

1

J

Since the principal symbol of b;(9) + Q; has the form of (tt*)" + 1q;(z,7;2%,77%), we
have Cr:y(char(%})) = {(z,7;z%,7");7t* = 0}. Thus we have

SS(RH oy (M, vy (Ox))) = SS(RHomay (M, 11y(Ox))) < Cr.x(char(.4))

~

< | Cryx(char(Z))) = Sf.x.
=1

This proves the proposition by virtue of [Proposition 1.2, ]

We denote by %lfl y = Uy(Ox)[1] the sheaf of real holomorphic microfunctions on
TyX. Then, by [Proposition 3.5 and the proof in Kashiwara-Schapira [K-S2, Propo-
sition 8.6.3], we obtain the following:
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COROLLARY 3.6. For any regular-specializable 9x|,-Module M, there exists the
following distinguished triangle:

Rtoma (M, Ox)|y — RAomay (M, 6 vy(Ox)) — RAomay, (M,'s7'CF ) 5.

Let ./ be a coherent Zy|,-Module. Recall that a V-filtration {F*(.#)},, is said
to be good if there exist (locally) generators {uj};il and k; € Z such that for any ke Z

m s
FiCay = Fy 7 ( @)y,
j=1

holds. The following theorem is proved by Kashiwara (cf. also Bjork [Bj]):

THEOREM 3.7. Set G:={aeC;—1<Rea<O0}. Then, for any regular-
specializable D x-Module M, there exist a unique good V-filtration {F%(.#)},., on M
and a non-zero polynomial by(x) € Clo] such that by'(0) = G and for any ke Z the
following holds:

by (84 k)F5 () = FS 1 (a).

DerFiNITION 3.8, Let .# be a regular-specializable Zy|,-Module. Under the
notation of Theorem 3.7, the nearby-cycle ¥y (.#) and the vanishing-cycle ®y (M) are
defined by:

Wy (M) = Fy (M) [Fy (M),
Dy (M) = Fy(M)[Fy (M).

REMARK 3.9. Laurent [L2] extended the definitions of nearby and vanishing cycles
to the derived category of bounded complexes with (regular-)specializable cohomologies
by using the theory of second microlocalization.

Let 1: Y — X be the natural embedding. The inverse image in the sense of Z-
Module is defined by

L | L |
D" = @Y ® 17%:(@)/_,)( ® M.

lil@/\’ 171,@)(

Here Zy_y =0y ® 1"'@y is the transfer bi-Module. Then we have (cf. Laurent

lil@X

[L2], Mebkhout or Sabbah [Sab]):

PROPOSITION 3.10. For any regular-specializable 9y |y-Module M, ¥Vy (M), Dy (M)
and each cohomology of Di*.# are coherent Zy-Modules. Moreover, there exists the
following distinguished triangle:

Oy () L py (M) — Dt L
Here, Var := ¢(9)t with ¢({) = (e2mV-10 1)/¢.

Let j: T3 X — P} X := Ty X/C* be the natural projection. Denote by (65‘; the

sheaf of temperate real holomorphic microfunctions on Ty X (see Andronikof for the
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definition). Since %®J has the unique continuation property, Laurent introduced

v : 3
a subsheaf %Y‘X of %Y‘X as follows: If p* e Ty X, then the stalk %Y|X| c cg}’f‘ﬂ 1s
consisting of germs which have a continuation to the universal coverlng of 3~ 19(p*) with
finite determinations. If p* e T5Y =Y, then set %Y‘ x|y Y|X] = By x|,

REMARK 3.11. In fact, Laurent defined several sheaves in order to describe the
growth condition of holomorphic microfunction solutions to a general specializable -

Module (see [L1] and [L2]).

Denote by Ay the sheaf of Nilsson class functions on X along Y and regard as a
sheaf on Y. Then the following theorem is proved by Laurent (cf. also Kashiwara-
Kawai [K-K3|):

THEOREM 3.12. (1) There exists the following exact sequence:

O—>@X‘Y—>Mx|yga (gY‘X—>O

(2) For any regular-specializable Zx|,-Module ., there exists a natural iso-
morphism

RAomag, (M, %yp() = RAoma, (M, %Y‘X)
Further there exists the following isomorphism of distinguished triangles:

RAomay (M, 0x)|y —— Rtlomay (M, Nyy) —2s Roma (M, '6" Gyy) ——

| | |
Rttosnay, (D M, Oy) —— Roma, (Py(M), Or) —~2 Rttosma, (®y (M), Oy) —s.
ReEMARK 3.13. (1) The isomorphism (Cauchy-Kovalevskaja type theorem)
RJ/&M@Y (Dl*ﬂ, @y) =~ ijomg)((%, (QX)|Y

holds for Fuchsian systems in the sense of Laurent-Monteiro Fernandes [L-MF1].
(2) Mandai extended the definition of boundary values to a general
Fuchsian differential equation in the complex domain.

By [Corollary 3.6 and [Theorem 3.12, we can obtain:

THEOREM 3.14. Let M/ be a regular-specializable Zx|y-Module. Then, a natural
morphism Ny — o Wy (Oy) induces the following isomorphism of distinguished tri-
angles:

RAomay (M, Ox)ly ——  Rftomay (M, Nyy) — —s RMomay (M, 'a Gy y) —s

| | L

RAHomay (M,0x)ly ——— RAoma, (M,a" vy (Ox)) ——— RAoma,(M,'c7 Cfy) ——.

In particular, there exists the following isomorphism:

RAoma,(Py(M),Oy) =~ RHoma, (M,c vy(O)).
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4. Several sheaves attached to the boundary.

In this section, we recall several sheaves attached to the boundary due to Oaku
[Oa3]. These sheaves will play essential roles for our boundary value problem. Note
that in Oaku these sheaves are defined on cosphere bundles. So we shall present
equivalent but slightly different definitions on cotangent bundles along the line of Oaku-
Yamazaki [O-Y]. We refer to Oaku or Oaku-Yamazaki for the proofs.
Although only the higher-codimensional case is treated in Oaku-Yamazaki [O-Y], the
same proofs also work as in the one-codimensional case.

We inherit the notation from §2, and we denote by Oy, %, and €, the sheaves of
holomorphic functions on X, of hyperfunctions on M and of microfunctions on T, X
respectively. Further, Let #0; be the sheaf of hyperfunctions with holomorphic pa-
rameters z on L; that is,

BO, = A (Oy) ® orp )y 10y ® orpx[1].

DerINITION 4.1. We set:
Cnm = SZ;ﬂMN(RjL*f’Zli!L(QX) ® orpyx[n+ 1],
Gy = gy vy (i,0x)) ® ooyyfn + 1],
£N|M = (éN,M‘TNM-

REMARK 4.2. The reader may confuse the sheaf ‘éy| v with the sheaf (gNI u in §3
because we used a notation similar to each other. However, these sheaves are quite
different.

By virtue of the following proposition, we can regard %y as a microlocalization
of vw(%u), and @y as a subsheaf of Gy :

ProposITION 4.3. (1) Gy and (éNI M are concentrated in degree zero; that is, €y
and Gy are regarded as sheaves on Ty \TyL.
(2) A canonical morphism s]’(” v Cnim — Cniyv i a monomorphism.

(3) Gnmlrym = vN(Bu) holds.  Further, there exists the following commutative

diagram with exact rows on TyM:

0 —— vw(B0L) |1y —— W(BMu) —— NGy — 0

\ | |

0 —— w(BO) |y —— By —— anpbyy —— 0.

Note that vy(%0,) is concentrated in degree zero.

5. Boundary values for regular-specializable system.

We are ready to define our boundary value morphism:

DEerFINITION 5.1. Let .# be a regular-specializable Zy|,-Module. Then by Prop-
osition 3.5, R#Hvmq,(M,Oy) satisfies the assumption of Theorem 2.2. Thus combin-
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ing [Definition 2.3 with [Proposition 4.3 and [Theorem 3.14 we define the morphism
S as:

B [y RAoma, (M, Cniy) — [y RHoma, (M, Gy y)
= Ty R A o, (Wy (M), Gy).
By the construction, we can obtain the following Holmgren type theorem:
THEOREM 5.2. (1) The morphism [ gives a monomorphism
B Sy Homa (M Cyg) = Ty Homa, (Py (M), Cy).

(2) The restriction of B to the zero-section TyM* of T Tom+ I YL coincides with
the boundary value morphism due to Monteiro Fernandes [MF1].

Proor. (1) follows from the fact that S;‘Mif{l(gNW — £ "%y is a mono-
morphism by [Proposition 4.3

(2) Comparing our construction with that of Laurent-Monteiro Fernandes [L-
MF2], we easily obtain the desired result. O

REMARK 5.3. By [Theorem 2.1, [Proposition 3.5 and [Theorem 3.14, for any regular-
specializable Zy|,-Module .# we have

FARH g (M, vy(BOL)) ~ [T 05 R o, (Wy (M), Oy).
Next we shall discuss the solvability.

DErFINITION 5.4. Let .# be a coherent Zy|y-Module. Then we say .# is near-
hyperbolic at xo € N (in dt-codirection) if R#vwmq, (M ,0) is near-hyperbolic in the
sense of Definition 2.4. We remark that SS(R#vsmq,(M,0x)) = char(M).

REMARK 5.5. As is shown by Laurent-Monteiro Fernandes [L-MF2, Lemma 1.3.2],
the near-hyperbolicity condition is weaker than the Fuchsian hyperbolicity condition due
to Tahara [T] (cf. Bony-Schapira [B-S2]).

The following theorem is a direct consequence of Theorem 2.5:

THEOREM 5.6. Let ./ be a regular-specializable x|, -Module. ~Assume that M is
near-hyperbolic at xo € N. Then, for any p* = (xo,to; V—1{&o,dx)) € Ty 3+ TyL™,

ﬁ : R%amgx (%, (6N|M)p* - R%amg,,('f’y(%), (gN)TYn(p*)

is an isomorphism. In particular,

ﬂ . R%&mggx (%, VN(QM»( ) — R%&mgy(yjy(%),@]v)xo

Xo, fo

is an isomorphism.

6. Examples.

ExampPLE 6.1. Let %%, be the sheaf of F-mild microfunctions on T ,,TyL, and
N|M Ty M

set ‘éfvlw ="y (Oxly) ® oryy (see Oaku [Oa2], [Oa3], and Oaku-Yamazaki [O-Y]).
Let .4 be a regular-specializable Zy|,-Module. Set .#y := HODr = Oy ®,-10, Y.
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Since .# is a Fuchsian system in the sense of Laurent-Monteiro Fernandes [L-MF1]|, by
the argument in Oaku-Yamazaki [O-Y] we have the following commutative diagram:

fnil‘%mfix(%v(g]aM) > f{lfl;;%mf’ix(%’(é]é\M) o fnilf;}z%mb@y(%ﬁ(glv)

T ! I

fn_l‘%m@x(%7(gN|M) > fn_lj%mfzx(%v(é]\/\f\l) — fn_lf}_’flr%[*m?ﬁy(qll’(%)v(gf\’)u
that is, the boundary value morphism
Ui S Homa (M C )~ f g Homa, (My, )

and B° are compatible. In particular, suppose that Y is non-characteristic for ..
Then, it is known that ¥y (.#) = Di*.# ~ ./y and by Oaku [Qa3, Propositions 2.1, 2.2]
(see also Oaku-Yamazaki [O-Y, Proposition 5.1]) we have:

i RHoma, (M, Criv) = TyaRHoma, (My, Cy).

In this case we see that f° is equivalent to the non-characteristic boundary value
morphism (see Oaku [Oa3]). In particular, the restriction of f° to the zero-section
TyM™ is equivalent to Komatsu-Kawai and Schapira [ScI]. In addition, if
+dt e TyM is hyperbolic for .#, then the nearly-hyperbolic condition is satisfied (cf.
Kashiwara-Schapira [K-SI]) and f is an isomorphism.

EXAMPLE 6.2. Assume that X = C""! by admissible coordinates.
(1) Let b(a) be a non-zero polynomial with degree m, and Q € 9)(('") NF (Zx).
Set

M= Dx | Dx(b(9) + Q).

Then .# is regular-specializable. Assume that

u

Hoc—ocj wi—aj¢ Z for 1 <i#j<p

j=1
(note that Z]”:  v; =m). Then a direct calculation shows that ¥y (.#)~ 2%, and g°
is equivalent to y in Oaku [Oa3, Theorem 2.4 and Remark]: Let p* = (xo, f;
V=1, dx)) be a point of T; . TyL", and f(x,f) a germ of Howm g, (M, Cny) at
p*. Then, since R#vmaq, (M, Ny)y) ~ RHoma, (M, o vy(Ux)) by virtue of [Theoreml
3.14, we can see that as a germ of Howg, (M, CNy) at p*, f(x,t) has a defining
function

F(z,7) = Z z/: Fy(z,7)t% (log ) k-l

J=1 k=1

Here each Fj(z,r) 1is holomorphic on a neighborhood of {(z,0)e X;
|xo —z| < &, Imz e I'} with a positive constant ¢ and an open convex cone /I such
that & e IntI™°, where I'° denotes the dual cone. Then, S°(f) is equivalent to
{spy(Fi(x ++v/—=1I0,0));1 <k <v;,1 < j<pu}. Moreover, if the principal symbol of
b(9) 4+ Q is written as t”P(z,7;z*,7*) for a hyperbolic polynomial P at dr-codirection,
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then the nearly-hyperbolic condition is satisfied. Note that this operator is a special
case of Fuchsian hyperbolic operators due to Tahara [T].

(2) Take an operator A(z,d.) e\ at the origin and set A°:=1 and AV) :=
(1/NA0 AU~ e Q(Yj) for j > 1. Let p* = (0,1;v/—1<{&,dx)) be a point of T TyL™
and set pg = (0;V/—1<{&, dx)) e TyY. Set

P = (9 — O(])(lg — 0(2) - TA(Z, 62)19 € 9X|Y’

where (o1,0;) € C?>. Consider .4 = Dx|9xP = Zyu, where u:=1 mod P. Then we
see that Wy (#) ~ Z3 and @y( M) ~ T3. Let f(x,t) be a germ of Homag, (M, Cnim)
at p*. We regard f(x,7) as a germ of éfomgx(%,(éN|M) at p*. Then:

(i) If (oq,02) = (—1,0), then

_ Py (@xu+Fy (@X)(g )u o )
1(@ )u+F0 (Zx)(%+ Du
Yy (M) = F (0 u t F) (@) (3 1 D = Dyltu]l + Dy [(3+ 1)ul,

and Var : ([u], [0.(3— 1u]) — ([tu],0). Hence .#y ~ Zy[($+ 1)u] ~ Py. In this case
f(x,7) has the following defining function:

00 /—H

Z 4 U_ — AU_(z)logr,

j=1

and p°(f(x,1)) is given by {spn(Ui) (%)} 1o at po. If f(x,7) is F-mild at pg, then

U-1(z) =0 and »"(f(x, 1)) = {f(x,+0)} = {spy(Up)(x)}.
(i) If (a1,00) = (0,1), then:

F(z,7) = Uy(z)

FY(Zx)u+ Fy(Zx)Su 2
@Y<ﬂ) F())/(@X) F (@X)lgu = @Y[afu] + @Y[été)u],
Wy (M) = Py (ZxJu+ Fy(Z)0u _ Dy [u] + Dy[0.5u],

Fy' (Zx)u+ F(Zx)%u
and Var[d,u] = Var[0?9u] =0. Hence .My ~ Dy[ul+ Dy[0.9u] ~Z2. In this case
f(x,?) has the following defining function:

2 ADU (2)
F(z,7) = Uo(z)+ZTll()T/+17
=/

and f(x,?) is always F-mild. Hence °(f(x,7)) at py coincides with

P (f(x0) = {01/ (%, +0)} g1 = {sPa (U (%)} i1

Indeed if 7#0, .# is isomorphic to Zy/%Py(0? — A(z;0.)d,) for which Y is non-
characteristic.
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(i) If (og,00) = (1,1), then

F @X u

Oy (M) = FQ@X;M = @Y[az |+ @Y[az( 1)u],
F;(@)()u B

Wy (M) = o Dy|0.u] + Dylo.(9 — ],

and Var : ([02u], [02(% — Du]) — 2nv/=1[0.(% — 1)u],0). Hence .4y ~ Dy[o.u] ~ Dy.
In this case f(x,¢) has the following defining function:

:Zw:A(j) z)t/ - iZA TJ+1+ZA Uy ( )‘[J+1 logt,

J
j=0 j=1 k=1 Jj=0

and °(f(x, 1)) is given by {spy( l)( )}izoq at po. If f(x,7) is F-mild at po, then

Ui(z) =0 and y"(f(x,1)) = {0,/ (x,+0)} = {spy(Uo)(x)}.
(iv) If (o,02) = (1,2), then:

_ Fy(2x) (Zx)(% = Du _ 2, 309 1y
Dy (M) = @yt (@) (8 = W—%[@T |+ 2y[0; (8 = Dul,
CFY(Zx)u+Fy(2x) (- Du 20
Wy (M) = FO:(%)U n F;(QX)(S = Dy|o-u) + Dy[02(8 — 1)ul,

and Var : ([02u], [0} (9 — 1)u]) — (0,24[0,u]). Hence

_ Dy[oau] + Zy[02(9— 1)y
,@YA[&[M] '

In this case f(x,¢) has the following defining function:

[
8
~
R

.
o
<
o
(\]\
+

F(z,t) =Y AYU(2)t/? 4+ Uy(z)r —

Il
=)
~.

||
S}
=

Il
_

J
% .

+ (Z AU (2 )r/> t?log,
7=0

and p°(f(x,1)) is given by {spy(U;)(x)}, _12 at po. f(x,¢) is F-mild under the
condition that AU;(z) =0, and in this case y%(f(x,7)) at po is given by

P (f3(x,0) = {0,/ (x,+0)} iy 5 = {spy (U1)(x), 25py (U2) ()}
with A40,f(x,4+0) = Aspy(U;)(x) = 0.
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