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Abstract. We consider holomorphic mappings of complex manifolds with ball model
into complex manifolds which are quotients of bounded domains and estimate the di-
mension of the moduli space of holomorphic mappings in terms of the essential boundary
dimension of target manifolds. For this purpose, we generalize a classical uniqueness
theorem of Fatou-Riesz for bounded holomorphic functions on the unit disk to one for
bounded holomorphic mappings on a bounded C? domain. This generalization enables
us to establish rigidity and finiteness theorems for holomorphic mappings. We also
discuss the rigidity for holomorphic mappings into quotients of some symmetric bounded
domains. In the final section, we construct examples related to our results.

1. Introduction.

We consider the rigidity of holomorphic mappings of a complex manifold M =
B"/I', a quotient manifold of the unit ball B” in C™, into a complex manifold
(possibly orbifold) N = N/G which is a quotient of a bounded domain N in C” by a
discrete subgroup G of Aut(N). In this paper, we say that the rigidity of holomorphic
mappings holds if two holomorphic mappings on a complex manifold are the same map
when they are homotopic to each other.

There are a lot of rigidity theorems for holomorphic mappings which are useful for
the study of complex analysis. Under certain conditions, the rigidity of holomorphic
mappings yields the finiteness of holomorphic mappings (cf. [9], [10], [19], etc.).
In [10], we have shown a rigidity theorem for holomorphic mappings of Riemann
surfaces of finite type to moduli spaces of Riemann surfaces and succeeded in proving
Parshin-Arakelov theorem which asserts finiteness of the number of locally non-trivial
holomorphic families of Riemann surfaces. Sunada estimates the dimension of the
space of non-constant holomorphic mappings of M to N in terms of the boundary di-
mension of N when M is a compact Kéihler manifold and N is a compact quotient of a
symmetric bounded domain N. Noguchi investigates holomorphic mappings de-
fined on a Zariski open subset of a compact Kédhler manifold to an arithmetic quotient
of a symmetric bounded domain. A comprehensive survey of them is given in [19].
However, in this paper, we assume that M is a complex hyperbolic manifold of di-
vergence type (see the definition in the next section) but we do not assume that M is
compact nor embedded into a compact manifold.
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To study the rigidity we generalize a classical uniqueness theorem of Fatou-Riesz
for bounded holomorphic functions (§3 [Theorem 3.1). Using this generalization, we
estimate the dimension of the moduli space of holomorphic mappings in terms of the
(essential) boundary dimension of the target manifold. This result enables us to show
rigidity and finiteness theorems for holomorphic mappings from M to N.

Generally speaking, the rigidity is too strong to hold for any case. For example,
consider a complex manifold M and put N = M x 4, where 4 is the unit disk on C.
Then, for any 4 € 4 a holomorphic mapping f; : M — N defined by f,(p) = (p,4) is
homotopic to fy, but f; # fo when A # 0.

This simple example suggests us that the complex analytic structure of N influences
the structure of the space of all non-constant holomorphic mappings of M to N which
is denoted by Hol(M,N). If the image f(M) of a mapping f € Hol(M,N) contains
a non-empty open set in N, then the mapping is called a dominant map. The set of
dominant mappings in Hol(M, N) is denoted by Holgom (M, N).

When M is compact, the space Hol(M, N) has a natural complex structure so that
point evaluation maps y,(-) (p € M) on Hol(M,N) defined by x,(f) = f(p) for fe
Hol(M, N) are holomorphic ([6], [13]). As for the structure of Hol(M,N), we shall
show the following (see §2 for terminologies):

THEOREM 1.1. Let M = B™/I" be an m-dimensional complex hyperbolic manifold
of divergence type and N = N /G an n-dimensional complex manifold ( possibly orbifold),
where N = C" is a bounded domain and G is a discrete subgroup of the set of biho-
lomorphic automorphisms of N. Let /(N) denote the essential boundary dimension of
N. Then, the dimension of holomorphic deformation of any fy in Hol(M,N) is not

greater than /(N). More precisely, for any holomorphic mapping f : A% x M — N with
J(0,x) = fo(x) (xe M),

me}&((rankdk f(,x)) </(N),

where A is the unit disk in C. In particular, if M is compact, then we have
dim Hol(M,N) < /(N).

The proof of gives us a sufficient condition for the rigidity of holo-
morphic mappings of M in terms of the action of G on N.

THEOREM 1.2. Let M and N be the same ones as in Theorem 1.1. Furthermore, we
assume that the following condition (A)
(A):  For any compact subset K of N and for any infinite sequence {gx} of distinct
elements of G, we have
lim diam(gx(K)) =0,
k—o0
where diam(E) is the Euclidean diameter of a set E in C".
Then, any two non-constant holomorphic mappings hy,hy of M to N which belong to the
same homotopy class are the same holomorphic mapping.

REMARK 1.1. From Lemma 2.7 in §2, we see that if N = N/G admits a non-
constant holomorphic map from a complex hyperbolic manifold M of divergence type,
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then G is an infinite group (Corollary 2.1). Thus, the assumption in the condition (A) is
not empty. In [Corollary 2.1, we also show that M admits no non-constant positive
pluriharmonic function.

The proof of the theorems yields the following two corollaries.

COROLLARY 1.1. Let M and N be the same ones as in Theorem 1.1. If a holo-
morphic mapping f € Holgom (M, N) is homotopic to some g € Hol(M,N), then f =g.

COROLLARY 1.2. Let M and N = N/G be the same ones as in Theorem 1.1.

Suppose that /(N)=0. If f,ge Hol(M,N) are homotopic to each other, then [ =g.

From Corollaries 1.1 and 1.2, we obtain a finiteness theorem for holomorphic
mappings of complex hyperbolic manifolds of divergence type.

THEOREM 1.3. Let M = B™/I" be a complex hyperbolic manifold of divergence type
and N =N/G an n-dimensional (n>1) complex manifold which is of geometrically
finite.  Suppose that T is of finitely generated and that N is complete with respect to the
Kobayashi distance. Then, Holyom(M,N) consists of at most finitely many elements.
Furthermore, if /(N) =0, then Hol(M,N) is also a finite set.

REMARK 1.2. S. Kobayashi and T. Ochiai show the finiteness of surjective
holomorphic mappings of a compact Kédhler manifold onto a compact complex space of
general type.

When m = 1, the complex hyperbolic manifold M in is a topologically
finite Riemann surface of divergent type. Therefore, M is a compact Riemann surface
with at most finitely many punctures. For m > 1, Bowditch ([4]) shows the following.

ProposITION 1.1. If a hyperbolic manifold M = B"™ /I" is of geometrically finite,
then every { € OB™ is a point of approximation of I'. Thus, I' is of divergence type.

Therefore, from we have the following theorem which is a higher
dimensional generalization of de Franchis’ theorem (cf. [8]).

THEOREM 1.4. Let M,N be geometrically finite complex hyperbolic manifolds.
Then, Hol(M, N) consists of at most finitely many elements.

We shall show Theorem 1.1 in §4 as well as Theorem 1.2 after giving a gener-
alization of Fatou-Riesz theorem in §3. The proof of will be given in §5.
In §6, we discuss a rigidity theorem for holomorphic mappings from complex hyperbolic
manifolds to some symmetric bounded domains. Examples concerning to these results
are constructed in §7.

The author thanks H. Masaoka for his valuable suggestion.

2. Definitions and preliminary results.

2.1. Complex hyperbolic geometry.
At first, we shall briefly describe complex hyperbolic spaces. For more detail, see

[5] or [7]
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Let ¥V = V' (m>1) denote the vector space C""! with the Hermitian form

m
D(z,w) = —z"w0 + szﬁ
J=1

forz=(z%...,z")and w= (w% ..., w™) in V. A linear isomorphism g of V satisfying

P(g(2),g(w)) = D(z,w) (z,we V)

is called a wunitary transformation. The set of unitary transformations is denoted by
Ull,m:C).

Let P(V') be the complex projective space obtained from V' and the projective map
P:V—{0} - P(V). For V_.={zeV|®(z,z) <0}, we define H"(C) = P(V_). Itis
just a higher dimensional complex analog of Klein’s model of the 2-dimensional real
hyperbolic space.

Since g(V-)=V_, and g¢g(cz) =cg(z) for ge U(l,m:C), U(l,m:C) acts on
H™(C). In fact, U(1,m: C) acts transitively on H"(C).

For z = (z%,z',...,z2") e V_, we have z° #£0. Thus, H"(C) is identified with the
unit ball

B" =q (= (... (e ¢ =

via
2 (= (2720 ..., 2"/20).

Hence, a unitary transformation is regarded as a biholomorphic self-mapping of B™.
Actually, the action is realized by an element of PU(m, 1), which is an isometry for the
Bergman metric on B™.

DEerFINITION 2.1. A complex manifold M is called a complex manifold with ball
model or a complex hyperbolic manifold if it is represented as B"/I’, where I is a
discrete torsion-free subgroup of PU(m,1).

A typical example of a complex hyperbolic manifold is a hyperbolic Riemann
surface represented by a Fuchsian group. For Fuchsian groups and Riemann surfaces,
there is a notion ‘“‘divergence type’” as follows.

DeriNITION 2.2. A Fuchsian group I acting on the unit disk 4 is said to be
divergence type if

D (=) =+w (ze4).
yel’
It is easily seen that the definition does not depend on the choice of z in 4.

DEerINITION 2.3. A hyperbolic Riemann surface R is called divergence type if it is
represented by a Fuchsian group of divergence type.
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Any compact Riemann surface of genus g > 1 is of divergence type and an open
Riemann surface with “small boundary” can be of divergence type. That is, the fol-

lowing holds (cf. [17], [26]).

LemMMA 2.1. Let R=A/I" be a hyperbolic Riemann surface. Then the following
conditions are equivalent.
(1) R is a Riemann surface of divergence type.
(2) R has no Green’s functions.
(3) Almost every point on 04 is a point of approximation, that is, for almost every
X on 04 there exists a sequence {y,},_, of I' such that {y,(z)},~, converges to x
conically for all z € A.

As for complex hyperbolic manifolds, we have a similar notion.

DErFINITION 2.4. Let I" be a subgroup of PU(m,1) acting on B™. It is called a
group of divergence type if

> (1=l = +eo

yel

for one (and all) ze B”. A hyperbolic manifold M = B"/I" is called of divergence
type if I" is of divergence type.

Recently, S. Kamiya shows a characterization of divergence subgroups of
PU(m,1) which is similar to that of [Lemma 2.1. To state the result, we need the
notion of “‘points of approximation™ for I

For o> 1 and (= ({',...,{™) € dB™, we define D,({) as the set of ze B™ sat-
isfying

<5 (U=klP).

1 — i Iy
j=1

DErFINITION 2.5. Let I' be a discrete subgroup of PU(m,1). A point { € dB™
is called a point of approximation if there exist a sequence {y,};—, of I' and o > 1
such that {y,},2, converges to { from the inside of D,({) for some and any z in
B".

The following is shown in [12].

PROPOSITION 2.1.  Let I' be a discrete subgroup of PU(m,1). Then I is a group of
divergence type if and only if the set of points of approximation has full Lebesgue measure
on 0B".

2.2. Bounded holomorphic functions on B™.
Here, we note Fatou-Riesz type theorems for bounded holomorphic functions on
B™.

DerFINITION 2.6. A function f on B™ is said to have a K-limit at { € 0B if the
limit
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() = lim f(z)

j—
exists for every « > 1 and for every sequence {z;} in D,({) which converges to (.

As for K-limits of holomorphic functions on B”, the following results are known
(cf. [21], Theorems 5.5.9 and 5.6.4).

PROPOSITION 2.2.  Let f be a bounded holomorphic function (or HP-function, more
generally) on B™. Then it has K-limits f*({) at almost all points { € 0B™.

PROPOSITION 2.3. Let [ be a bounded holomorphic function (or HP-function, more
generally) on B™. If there exists a measurable set E — 0B™ with positive Lebesgue
measure such that f* =0 on E, then f =0.

Let f: M — N be a holomorphic mapping of a complex hyperbolic manifold M =
B"/I' of divergence type to a complex manifold N = N/G, where N is a bounded
domain of C". Then a lift F of f is a bounded holomorphic mapping of B”. From
[Proposition 2.2, F* has a K-limit F*({) in NUON at almost all point  in 0B™. Here,
we show that the mapping F is almost proper.

LemMmA 2.2.  For almost all points { in 0B™, F*({)edN if f: M — N is a non-
constant holomorphic mapping.

PrOOF. Since M is a complex hyperbolic manifold of divergence type, almost all
points in dB" are points of approximation for I". Therefore, the mapping F has K-
limits at almost all points { € dB™ which are points of approximation for I'. Let
E < 0B™ denote the set of such points (.

For any ( € E, there exists a sequence {y,},—, of I" such that {y,(z)},~, converges
to { from the inside of D,({) for any z € B™ and for some o > 1. Since F : B" — N is
a lift of a holomorphic mapping f of M = B™/I" to N = N/G, there exists a homo-
morphism 6 of I' to G such that

(1) F(y(z)) = 0(y)(F(2))
holds for any y € I and for any z e B”. Thus, we have
) F*(©) = lim F(3,(2)) = lim 0()(F ()

for any { € E and for any z € B”. On the other hand, F is non-constant, F(z) # F(z')
for some z,z' € B”. Hence, we have

(3) 0 < dy(F(2),F(z") = dy(0(7)(F(2)), 0() (F(2)))
= dy(F(2(2), F(7(2")),

where dg(-,-) is the Kobayashi distance on N. Thus, if F*({) e N, then we have a
contradiction 0 < dy(F*({), F*({)) =0 by letting k — oo in (3). The proof of [Lemmal
2.2 is completed. (]

From the above argument, we have the following.
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COROLLARY 2.1. Let M = B"/I" be a complex hyperbolic manifold of divergence
type. If a complex manifold N = N /G admits a non-constant holomorphic mapping from
M, then the group G is infinite. Moreover, there are no non-constant positive pluri-
harmonic functions on M. In other words, every complex hyperbolic manifold of di-
vergence type belongs to Ogp.

Proor. If G is a finite group, then so is ("), where 6 is a homomorphism defined
by (1). Therefore, {0(y)(F(2))},er ={F(7(2))},cr is a finite subset of N. Hence,
F*({) is in N for all { € dB™. Tt contradicts [Lemma 2.2l

Let u be a positive pluriharmonic function on M. Then, we may take a lift U of
u, which is a pluriharmonic function on B”. It follows from a theorem of Forelli
(cf. [2I], Theorem 4.4.4) that there exists a pluriharmonic function ¥ on B™ such that
F(z) = U(z) +vV/—1V(z) is a holomorphic function on B™. Put G(z) = exp(—F(z)),
then G is a bounded holomorphic function on B™. [Proposition 2.3 guarantees that
G(z) has the K-limit G*({) at almost all { € 0B™ and so does U(z) = —log|G(z)|.

Now, assume that U(z) is not a constant function. Then, there exist zj,z, in B™
such that U(z)) # U(zy). Since U is a lift of u, we have

for every ye I'.  We may assume that { € B" is a point of approximation of I.
Hence, there exists a sequence {y,},—, such that

lim U(y(z)) = U (0) (j=1,2).

- k—o0

U(z)

Thus, we have a contradiction. ]

REMARK 2.1. Kamiya ([12]) shows that if M is a complex hyperbolic manifold of
divergence type, then it has no non-constant bounded AM-harmonic function. Since the
set of M-harmonic functions is a subclass of the set of pluriharmonic functions (cf. [21]),
our result is an extension of his one.

2.3. Essential boundary dimensions.

The boundary dimension of a bounded domain D in C” is the maximal of the
dimensions of analytic spaces in dD. Here, we introduce another notion, the essential
boundary dimension, to study boundary behavior of holomorphic mappings.

DerINITION 2.7. Let E be a subset of C". The set E is called a pluripolar set
if there exists a plurisuperharmonic function s in C”" such that s(p) = +oo for every
peE. The set E is a complete pluripolar set if there exists a plurisuperharmonic
function s in C" such that £ = {pe C"|s(p) = +0}.

REMARK 2.2. Usually, the definition of pluripolarity is local, that is, a subset E of
C" is pluripolar if for each z e E there exist a neighbourhood U of z and a pluri-
superharmonic function s in U such that ENU = {pe U|s(p) = +oo}. This definition
seems to be different from [Definition 2.7 using a global plurisuperharmonic function.
In fact, both definitions are the same from a theorem of B. Josefson which shows that
local pluripolarity means global one (cf. [14], Theorem 4.7.4).
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We define the essential boundary dimension by the following way (cf. [25]).

DEerINITION 2.8. Let D be a bounded domain in C". Consider a family {R‘,-}joi1
of countable complete pluripolar sets with R;NoD =& (j=1,2,...). We denote by
/(D;{R;};Z,) the maximal dimension of analytic spaces contained in 0D — U]il R;. We
define the essential boundary dimension of D, which is denoted by /(D), by

/(D) = inf (DR},

where the infimum is taken over all families {Rj}joil of countable complete pluripolar
sets as above.

It is not hard to see that /(B") =0 and /(4") =n—1. Let T, (g > 1) denote the
Teichmiiller space of compact Riemann surfaces of genus g. It is well known that 7}, is
regarded as a bounded domain in C*'~? by Bers’ embedding (cf. [T1]). In [22], we show
that the essential boundary dimension /(7,) of T, is zero (see Example 7.4). Similarly,
we may show that /(7T, x B") =0 and /(T,; x 4") =n— 1.

2.4. Geometrically finite manifolds.

Here, we define geometrically finite manifolds which appear in Theorem 1.3.

For every connected subset S of N = N/G, we say that a set Sin N is a lift of S if
it is a connected component of 7~ !(S), where 7 is the canonical projection of N onto N.

DEFINITION 2.9. Let N = N/G be a complex manifold (possibly orbifold) which is
a quotient space of a bounded domain N in C” by a discrete subgroup G of Aut(N).
An end V of N is called a parabolic end of N if there exist a lift ¥ of ¥ in N and at
most countably many pluripolar sets {R,}ji] in C" — N such that VNoN c Ujoil R;.

The manifold N is said to be of geometrically finite if it has only finitely many ends
and all of them are parabolic ends.

3. Fatou-Riesz theorem for holomorphic mappings.

Let D be a bounded domain in C™. We assume that D is a C?>-domain, that is,

there exists a real valued C? function A in a neighbourhood of D such that D =
{z|A(z) <0}, 0D ={z|A(z) =0} and

0/

6—‘)2>0, (ZE&D)

where v. is the outward unit normal vector at z.
For each o > 0 and for each { € 0D, we define an approach region .«Z,({) by

(4) () ={zeD||(z = Lv)| < (1+20)d(2), |z = LII* < wde(2)},

where (-,-) means the standard inner product in C™ and d¢(z) is the minimum of the
distances from z to dD and from z to the tangent plane at {. We shall say that a
mapping F has an admissible limit F*({) at { € 0D if the limit

F'(0) = lim F(z)
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exists for every sequence {z;} converging to { in Z,({) and for any « > 0. Note that
when D is the unit ball B” the admissible limit F*({) is nothing but the K-limit at
(e dB™. The following generalization of [Proposition 2.2 holds (cf. Stein [23]).

PROPOSITION 3.1.  Let f be a bounded holomorphic function in a bounded C* domain
D in C". Then f has admissible limits at almost all points on 0D.

In this section, we shall extend [Proposition 2.3 for holomorphic mappings defined
on a bounded C? domain D in C™. The proposition says that if f is non-constant
bounded holomorphic function on the unit ball B”, then E; = (f “)71(0) = 0B™ is of
measure zero. In other words, the preimage of a small set via f* is also small in dB™.
Therefore, to extend this result to one for bounded holomorphic mappings of D to C”,
we need to obtain a notion of small sets in C”. We use complete pluripolar sets.

THEOREM 3.1. Let ¢ be a non-constant bounded holomorphic mapping of a bounded
C? domain D in C" to C" and E a countable union of complete pluripolar sets in C".
Let E; < 0D denote the preimage of E via the admissible limit ¢* of ¢. Suppose that
¢(D)NEC is not empty. Then, E; is of measure zero.

Proor. Let g(-,z9) be Green’s function for D with the pole at zp. Then for suf-
ficiently small ¢ >0, D, = {ze€ D|g(z,z9) > ¢} defines an approximating region of D,
and g, = g — ¢ is Green’s function for D,. It is known that —dg/0v; and —dg./0v} are
the Poisson kernels for D and D,, respectively, where v{ is the outward unit normal
vector at { € dD,.

For each { € D and for small ¢ > 0, there exists kK = k(¢) < 0 such that {, = { + ky;
belongs to 0D, and a mapping { — (, is surjective from JD to 0D,.

Now, we assume that E itself is a complete pluripolar set. Let s be a pluri-
superharmonic function on C”" defining the complete pluripolar set £. We may assume
that there exists an open set U in C" such that U contains the closure of ¢(D) and s
i1s positive in U. Since ¢ is holomorphic, so ¢ is also plurisuperharmonic and #+oo.
Since ¢p(D)NE¢ # ¢, there exists a point ay € D such that so ¢(ay) < +o0.

From the superharmonicity, we have

(5 | 5o (— %{‘”)) do,(2) < 50 pla) <+,

where do, 1s the induced measure on 0D,.
Since 0g((;,a0)/0v; uniformly converges to 0g((,ap)/0v; as ¢ — 0, we have

(6) lim inf LD sop(C,) <_ M) da,(C,)

e—0 Gvg

~ 99(& )

> liminf 50 ¢((, (
LD 7(C) av

e—0

) dotc)

where do is the induced measure on dD. If E; has positive measure, then

J liminf 5o ¢({,) do({) = +o0,
oD

e—0
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since (, € o,({) for any ¢ > 0. Combining (5) and (6) with this equation, we have a
contradiction.

Now, we consider a general case, E = UZO:1 Eyr, where E; (k=1,2,...) are
complete pluripolar sets in C”". If E; is of positive measure, then so is (Ek)j; for some k
because E; = UZOZI(E;C);. From the above argument, we have a contradiction. []

REMARK 3.1. The assumption that ¢(D)N E¢ is not empty is necessary. For ex-
ample, if E is the zero set of a holomorphic function ¢ on C" with the dimension > m,
then E is complete pluripolar and there exists an embedding : of D into E such that
(D) = E. Obviously E* = 0D, but 1 is not constant. Thus, the conclusion of Theorem
3.1 does not hold.

4. Proofs of rigidity theorems and their corollaries.
In this section, we shall prove Theorems [[1, and Corollaries 1.1, 1.2.

4.1. Proof of Theorem 1.1.
Suppose that there exists a holomorphic mapping f(-,-): 4* x M — N for some
k € N such that

(7) m%ﬁ;(rankze;ﬂc f(4,x)) > Z(N).
X€e
and f(0,-): M — N is a non-constant holomorphic mapping.
Let F(-,-): 4 x B™ — N be a holomorphic mapping which is a lift of /. Hence,
it satisfies

F(2,7(2)) = 0()(F(4,2))

for all y e I', where 6 : I’ — G is a homomorphism induced by f. Note that § does not
depend on 4 because of the discreteness of G.

From [Proposition 2.2, for each A e A% there exists a measurable subset E; of dB™
with full Lebesgue measure such that F(4,-) has a K-limit F*(4,{) at every { in
E;. Take a countable dense subset {4}~ of A% and set

E=()E,.

Y

e

j=1

Then, the set E is also a measurable subset of dB™ of full Lebesgue measure and F(4;,-)
has a K-limit F*(4;,{) at every { in E for each j > 1.

Since F(-,z) (ze B™) is a bounded holomorphic mapping, a family Z# =
{F(-,z)|z e B™} is equicontinuous and it is a normal family. Hence we see that when
z— { in a D,({) for any (€ E, F(-,z) converges to a function F*(-,{) uniformly on
every compact subset of AX. This implies that F*(-,{) is a holomorphic mapping for
each { € E. Furthermore, from it is a holomorphic mapping of A to ON.

From (7) there exists a point zy € B” such that

(8) rank, _ .« F(4,20) =¢ > /(N).

For F=(F',...,F") and A= (1',...,2%), we set two matrices by
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J
a2 = (55 (o)
oA 1<i<k,1<j<n

SIS IS

OF7\
%0 = ((5/1i> (/17@)1 k1
<i<k,(1<j<n

SIS IS ]S

and

for (€ E. Then from (8), we may take a point Ay € 4% such that rank 4(Jg,zy) =

/> {(N). Therefore, there exists an (/ x /) submatrix a(lo,z) of A(4y,z) such that
(9) deta(i(),Z()) # 0.

Since F(/,z) converges to F*(A,() uniformly on every compact subset of A* for each
(e E as z(e Dy({)) — ¢, we see that

oF7 .« (OFY
o7 42) (az") (%:4)

uniformly on every compact subset of AX when z(e D,(()) converges to { (i=1,...,k;
j=1,...,n). In particular, the matrix a(4,z) converges to a*(4,{) of A*(1,{) con-
sisting of elements with the same indices as a(4,z). In fact, a*(4,{) is a K-limit of
a(A,z) at (.

From the definition of /(N), rank A*(1,{) </(N) for any (e E. Indeed, if
rank A*(2,{) > /(N), then dim F(4*,{) > /(N) and we have F*(1,E) = | J,_, R;, where
{R;}/2, is a family of countable complete pluripolar sets with /(N; {Ri})) = /(N).
Hence, it follows from that F*(A,-) is a constant. It is a contradiction.

Thus,

(10) deta®(1o,¢) = 0

for any { € E. Therefore, it follows from |[Proposition 2.3 that

a(lo,z) =0
for any z e B™. It contradicts (9). The proof of is completed.

4.2. Proofs of Theorem 1.2, Corollaries 1.1 and 1.2.

The proofs of [Theorem 1.2, Corollaries 1.1 and 1.2 are done simultaneously.

Let f1, /> be non-constant holomorphic mappings of M to N which are homotopic
to each other. Then f}, 2 induces the same monodromy. That is, there exists a ho-
momorphism 0 : I' — G such that

(11) Fi(y(2)) = 0y)(Fi(2)) (i =1,2),

for all ye I" and for all ze B™, where F; are lifts of f; (i=1,2). By the same ar-
gument as in the proof of [Theorem 1.1, we may find a measurable subset E of B™ with
full Lebesgue measure such that every (€ E is a point of approximation for I and
admits K-limits F*({) and F,({) for F; and F,, respectively.

Let {y;},—, be a sequence for { € E such that y,(z) converges to { from the inside
of D,({) for some o >1 as k — co. From [Lemma 2.2l and (11}, we have
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(12) 0(y) (F1(2)) = Fi(y(2)) — F{' () e 0N
and
(13) 0(y) (F2(2)) = Fa(y,(2)) — F5'({) € ON.

Thus, {0(y;)},—, is an infinite sequence of distinct elements of G.

Now we suppose that N satisfies the condition (A) in [Theorem 1.2 Applying the
condition (A) for gr =0(y,) and K = {Fi(z),F>(z)}, we verify that F;({) = F;({).
Hence, from [Proposition 2.3 we conclude that F; = F, and f; = f,. The proof of
Theorem 1.2 is completed.

Next, we show [Corollary 1.2, Take two holomorphic mappings Fi, F : B" — N
as above. We note that the mapping 0(y) : N — N (y e I') defined in is a bounded
holomorphic mapping. Thus, {6(y;)};~, forms a normal family on N and we may
assume that {0(y;)}{~, converges to a holomorphic mapping g : N — N U N uniformly
on every compact subset of N as k — co. Since G is discrete, the mapping gr is a
holomorphic mapping of N to the boundary dN for every { € E. We assert that g; is a
constant mapping for almost every (€ dB".

Indeed, if not, we may take a measurable set £’ = E with positive measure so that
gc is mot a constant for every (€ E’. Then g:(N) U/.Oil R; from the definition of
/(N) =0, where R; (j=1,2,...) are complete pluripolar sets in [Definition 2.8. Since
{R;};Z, is countable, we may assume that g:(N) < R;, for some jj and for every { € E'.
Therefore, we have that

Q) = g:(Fi2)) e Ry, (1=1,2)

for every { € E’ from and [13). It follows from that both F; and F,
are constant. Thus, we have a contradiction and we conclude that g; are constants for

almost all { e 0B™.

Using and again, we have

Fi(Q) = 9:(F1(2)) = g9:(Fa(2)) = F5 ()

because g is a constant. Hence, we verify that f; = f> and we complete the proof of
Corollary 1.3

Finally, we show Corollaries 1.1. Suppose that f; € Holyom(M,N) and f> e
Hol(M, N) are homotopic to each other. Then, there exist an open subset O of N with
O < Fi(B™). Noting that and hold for any ze B™, we see that g;(0) =
{F}(0)} and F5({) € g¢(N) for every { € E, where g; is a holomorphic mapping obtained
in the proof of [Corollary 1.2 Since O is an open subset of N, the mapping g is a
constant mapping and we have F;*({) = F,({). Hence, we obtain that f; = f, and the

proof of is completed.

5. Proof of finiteness theorem.

We prove the finiteness theorem (Theorem 1.3) by using the rigidity of holomorphic

mappings. Here, we only show that Holgom (M, N) is finite by using [Corollary 1.1 since
the same argument and |Corollary 1.2| give the proof of the theorem for the case

/(N) = 0.
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Let 7: B" — M =B"/I' and n’' : N — N = N/G denote the natural projections on
M and N, respectively. Take po in M as py = n(0). Since N is of geometrically finite,
there exists a compact subset K of N such that N — K are contained in the union of
finitely many parabolic ends, say Vi,..., V).

First, we shall show that there are only finitely many holomorphic mappings f €
Holgom (M, N) with f(py) € K. We take a compact subset K of N and lifts F of f so
that 7/(K) = K and F(0) e K. Let 0y denote a monodromy homomorphism defined by
F, that is, O is a group homomorphism of I" to G with

Foy=0p(y)oF

for all ye I'. Because of |(Corollary 1.1, it suffices to show that there are only finitely
many possible homomorphisms for the monodromies. Since I is finitely generated, we

may take {0;,02,...,0,} as a system of generators of I". We show that there are only
finitely many poss1ble elements in G for Op(0;) (i=1,2,...,7).

Set
(14) a= rlnzax /dBm(O 0:(0)),

where dgn(-,-) stands for the Kobayashi distance of B”. For the Kobayashi distance
dg(-,-) of N we have

dp(0,0:(0)) = dy(F(0), F(9:(0))) = dy(F(0),0r(0:)(F(0)))

from the decreasing property of holomorphic mappings with respect to the Kobayashi
distances. Therefore,

dy(F(0),0r(0:)(F(0))) < a.

Since F(0)e K = N, we verify that {0z(6;)(F(0))} is in a subset K, = {qu\
dy; (K q) < a} Since N is complete with respect to the Kobayashl distance, K, is
compact in N. Noting that G acts properly dlscontmuously on N, we verify that there
exists a finite subset G’ of G such that g(F(0)) € K, implies g € G'. Therefore, 0r(6;) is
in G' (i=1,2,...,/). This shows that there are only finitely many possible elements in
G for Op(0;) (i=1,2,...,7).

Since {01,02,...,0,} is a system of generators of I', we see that there are only
finitely many possible homomorphisms for {0r}. From [Corollary 1.1, we verify that
there are only finitely many holomorphic mappings f with f(py) € K.

Next, we suppose that f(pg) e V; — K (1 <j<J). We may assume that j = 1.
We take a lift ¥, = N of V; so that V1 NéN is contained in U | Rj, where {R; };’01 is

the set of complete pluripolar sets as in [Definition 2.9. Con51der1ng a larger K if
necessary, we may assume that

(15) dy(f(po),0V1) > a,

where a > 0 1s a constant defined by and dy(-,-) is the Kobayashi distance on N.
From , there exist closed curves L; (i=1,2,...,/) on M corresponding to J; such
that L; 3 pp and the length of L; with respect to the Kobayashi distance is not greater
than a. The length of f(L;) is also not greater than a from the decreasing property of
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the Kobayashi distance. Hence, it follows from (15) that f(L;) is entirely contained
in 1.

We take a lift F of f so that F(0) e Vi. Since the curve L; corresponds to J;, we
see that F(6;(0)) = 0r(5;)(F(0)) € V1. Hence, we have 07(5;)(V1) = Vi (i=1,2,...,7)
and we verify that 0z (I )(171) = V) because I is generated by J,,...,0,. In particular,
Or(y)(F(0)) € V| for every yel.

Now, we may take a measurable subset £ in dB™ with full measure as before such
that every { € E is a point of approximation for /" and F has a K-limit F*({) at (.
There exists a sequence {y;},—, in I" such that y,(0) converges to { in D, («> 1) and

F(7(0)) = Or (7)) (F(0)) — F7()

as k — oo. Since F*({) € 0N (Lemma 2.2) and 0 (y,)(F(0)) € V1, we see that F*({) e
ViNoN < )2, R; for every (€ E. Thus, it follows from that the map-
ping F must be a constant and we have a contradiction.

6. Classical domains.

In this section, we consider irreducible symmetric bounded domains and discuss a
sufficient condition to hold a rigidity theorem for holomorphic mappings of a complex
hyperbolic manifold M to a quotient manifold of an irreducible symmetric bounded
domain.

Let D be an irreducible symmetric bounded domain. According to a work of E.
Cartan, the domain D is biholomorphic to one of the following types if it is not
exceptional.

I R ={ZeM,,|l,—ZZ* > 0},

1. Ry={ZeM,|Z="Z1,—ZZ" >0},

: Ry ={ZeM,|Z=-'Z,1,— ZZ* > 0},

IV: Ry ={z=(21,...,2,) € C"||z'z]* + 1 = 22"z > 0, |z'z| < 1},
where M,, , is the space of m x n-matrices with complex coefficients, M, = M, ,, and
Zr=1Z.

Note that via the Cayley transform, Rj is biholomorphically equivalent to the
Siegel upper half space #, of degree n, where

Hy={ZeM,|Z="Z1mZ>0}.

DErFINITION 6.1. A set V' < C" is said to be holomorphically connected if for any
points z,z" € V there exist finitely many holomorphic mappings fi,..., fi from the unit
disk 4 to V' such that

N0) =2 fi(0)=z" and  f(A)N fin(4) # B

A subset V' of a set U in C" is called a holomorphic component of U if it is a maximal
set in the family of holomorphically connected subsets of U containing a common point
in U.

Now, we assume that M = B"/I" is a complex hyperbolic manifold of divergence
type and N = D/G is a quotient manifold of D = R;, Ry, or Ryy.
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Let f: M — N be a non-constant holomorphic mapping and F : B”" — D a lift of
f. Then, as we noted in [Lemma 2.2, the mapping F has K-limits F*({) at almost all
points { of dB™ and the images F*({) belong to dD. Under these circumstances, we
may show

THEOREM 6.1. Suppose that there exists a measurable subset E of 0B™ with positive
Lebesgue measure such that F*(E) < 0D and F*(E) intersects with at most countably
many holomorphic components of 0D. Then, f is rigid, that is, if a non-constant
holomorphic mapping g : M — N is homotopic to f, then g = f.

ProoF. We give a proof only for the case D = R; because the following argument
works also for D = Ry and D = Ryj;.

Take any Zy € 0D and fix it. From the definition, the matrix 1, — ZoZ; is semi-
positive definite but it is not positive definite. Therefore, there exists an xo € C”" — {0}
such that

||)C()||2 — xOZOth)To =0
while
x]|* = xZoZ;'% > 0

for any xe C™ — {0}. We may assume that ||xo|| = 1. Thus, we have

(16) 1-— X()Z()Zg I)T() =0
and
(17) 1 —x0ZZ*'x5 >0

for every Z € D.
We define a holomorphic mapping of M, , to C" by

(18) ®(Z) = xZ.

From [16), ®(Zy) € dB™ and for any Z e D we have &(Z) e B" from [17).
We assume that there exists a holomorphic mapping ¢ : 4 — 0D such that ¢(0) = Z
and put

Y(A) =Dop(l) (Led).

Then, y(4) = B"UJB™ and y/(0) € dB™. 1t follows from the maximum principle that
Y 1s a constant mapping. In other words,

D(Z) = D(Z)
for any Z € p(4). Repeating this argument, we have

LemMA 6.1. Let V be a holomorphic component of 0D containing Zy. Then
D(Z) = D(Zy) for any Ze V.

Let & be a holomorphic mapping of M to N homotopic to f. Then, both f and 4
induce the same monodromy 6. Hence, we have
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Foy=0(y)oF
Hoy=0(y)oH

for some lift H of A.

Since I" is of divergence type and F, H is bounded holomorphic functions on B”,
we may assume that every point of £ < dB™ is a point of approximation for I” and
F,H have K-limits F*({), H*({) at every { € E. Therefore, for each { € E there exists
{yiti—; = I" such that

(19) lim 0()(F(2) = lim F(3,(2)) = F*(0),
(20) lim 00 (H(2) = lim H(3,()) = H*(0)

hold for every z € B".

On the other hand, since D is a bounded domain in C™, {0(y;)},—, is a normal
family on D and it converges to a holomorphic mapping /; : D — DU 0D uniformly on
every compact subset of D. Hence, from and we have

(21) he(F(z)) = F*(0),
(22) he(H(z)) = H" ().

Here, we assume that there exists a subset E’ of E with positive Lebesgue measure
such that A is not a constant function if { belongs to E’.

Noting that F*({), H*({) € 0D (Lemma 2.2), we verify that F*({) and H*({) belong
to the same holomorphic component on dD. From the assumption, only countably
many holomorphic components of dD intersects with F*(E). Hence, there exist a
holomorphic component ¥ of dD and a subset E” of E’ with positive Lebesgue measure
such that F*({) and H*({) belong to V for every (€ E".

We consider a holomorphic mapping @ of M,, , to C" for V as (18). Then, from
Lemma 6.1, there exists a constant Cy in C" with ||Cy|| =1 such that

GoF () =doH ()= Cy

holds for any (€ E”. Two values @ o F*({) and @ o H*({) are still K-limits at { € E” of
®o F and @ o H, respectively. Therefore, from [Proposition 2.3, we conclude that both
@ o F and @ o H are constant functions on B” and ||®@ o F(z)|| = ||[@ o H(z)|| =1 for all
ze B™. This is a contradiction because F(0), H(0) € D and ||@(F(0))|, [|@(H(0))]] <1
from (17).

Therefore, h; must be a constant function for almost all { in E, then we have
F*({) = H*({) for almost all (e E. It follows from |Proposition 2.3 that F = H and
f=h [

7. Examples.
In this section, we shall exhibit some examples related to our arguments.

ExXAMPLE 7.1. The complex unit ball.
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It is easy to see that /(B") = 0. Thus, all of our results are valid for holomorphic
mappings of M to B"/I" if M is of divergence type. In particular, a generalization of

de Franchis’ theorem (Theorem 1.4) holds.

We discuss a complex manifold N = N/G which admits a non-constant holomorphic
mapping from a complex hyperbolic manifold M of divergence type. From
the discrete group G consists of infinitely many elements. Thus, the group of biholo-
morphic automorphisms Aut(N) of N must be non-compact. From this point of view,
the complex unit ball B" is somewhat general because any strongly pseudo-convex
bounded domain bounded by C? boundary with non-compact automorphisms is au-
tomatically biholomorphic to a complex unit ball (cf. a theorem of Wong-Rosay
20)).

There are another natural domains which have non-compact automorphism groups.

EXAMPLE 7.2. The complex ellipsoid.
For m= (my,...,m,_) e N ! with m; <my < --- <m,_, which is not (1,...,1),
we consider a complex ellipsoid E, in C",

En={z=("2%....2") e C"||2'P + |22 + - - + |z"""" < 1}.

It is known that E, is not biholomorphic to the unit ball B" and Aut(E,) is non-
compact. Obviously, /(E,) = 0, thus the rigidity holds for the space of non-constant
holomorphic mappings of a complex hyperbolic manifold of divergence type to a quo-
tient manifold of E,,.

Bedford-Pinchuk [T] shows that in C? the converse is true if the domain is bounded
by real analytic boundary, that is, they show that if Aut(D) is non-compact for a
bounded domain D in C? with real analytic boundary, then the domain D is biholo-
morphic to either the unit ball or a complex ellipsoid.

As we noted in §1, if N has the product structure, then the rigidity of holomorphic
mappings of M to N = N/G is hard to hold. However, using [Theorem 1.2, we may
construct a discrete group G so that the rigidity holds for Hol(M,N) even if N is a
product space.

ExampLE 7.3. Product space with good action.

Let M = B™/TI" be a complex hyperbolic manifold of divergence type and N =
B"™ x B™ x ---x B™. Suppose that there exist homomorphisms o; (j=1,2,...,1)
from an infinite group I" to Aut(B") such that «;(I”) is a discrete subgroup of Aut(B")

and kero; is a finite subgroup of I. We set a homomorphism o : I — Aut(N) by

a(y) =7 = (u(y), (), .., ().

Since kero; (j=1,2,...,¢) are finite subgroups, we verify that if {$,},Z, is an infinite
sequence of distinct elements of «(I”), then so is each {o;(y,)},—, (1 <j<7¢). It is
easily seen that each «;(I") has the property (A) in [Theorem 1.2. Hence, «(I") has also
the property (A) and the statement of [Theorem 1.2 (the rigidity of Hol(M, N)) holds for
N = N/o(I).

ExXAMPLE 7.4. Teichmiiller spaces.
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Let T, be the Bers embedding of the Teichmiiller space of compact Riemann
surfaces of genus g > 1. It is known that 7, is a bounded domain in C*> and the
group of biholomorphic automorphisms of 7, is the Teichmiiller modular group Mod,,
the mapping class group. As for the fundamental facts of 7, and Mod,, see [2] and
11].

The boundary 07, contains the set of so-called regular b-groups which are Kleinian
groups representing pinched surfaces (stable curves). We may consider a non-trivial
complex analytic deformation space of a regular b-group on the boundary of Teich-
miiller space unless the group is a terminal regular b-group. More precisely, a boundary
point called a cusp may have its non-trivial deformation space on the boundary of the
Teichmiiller space. Since a set of countably many algebraic equations defines the set of
cusps, each cusp belongs to a complete pluripolar set in C*9~3.  On the other hand, it is
known (cf. [2]) that any boundary point which is not a cusp is a totally degenerate
group. Also, we know (cf. [22]) that any totally degenerate group has no non-trivial
complex analytic deformation. Thus, we verify that /(7,) =0. We also use the same
argument as in §5 (cf. [3]) and we may show the following (cf. [10], [25]).

PropOSITION 7.1. Let M = B"/I" be a complex hyperbolic manifold of divergence
type. If two mappings f,g € Hol(M,T,/Mod,) are homotopic to each other, then f = g.
Moreover, the space Hol(M, T,/Mod,) consists of at most finitely many elements if I is
of finitely generated.

Let M, denote the moduli space of compact Riemann surfaces of genus g > 0.
For a canonical homology basis y(R) of Re M,, we have a period matrix Z(y(R)) in
Ay, where #; is the Siegel upper half space of degree g, that is, it is the space of g x g
symmetric matrices whose imaginary parts are positive definite.

From a theorem of Torelli, a period matrix in J#; determines a unique point in
M,. Changing homology basis arises the action of PSp(g,Z) < PSp(g,R) on #; (see
the definition below for PSp(g,R)). Thus, we have a natural identification

M, = P;/PSp(g,Z) = Tg/MOdga

where P, — #, is the space of period matrices of all Re M, and for all y(R).
Therefore, if one sees [Proposition 7.1, it is natural to expect that the rigidity holds for
Hol(M, #,/G) and for a discrete subgroup G of PSp(2,R). Unfortunately, we can
show by the following example that the rigidity does not hold for holomorphic mappings
of a complex hyperbolic manifold to a manifold which is a quotient space of .

ExampLE 7.5. Non-rigid holomorphic mappings to Siegel upper half spaces.

Let M be a hyperbolic Riemann surface. The Riemann surface M is represented
by M = H/I', where I is a discrete group of PSL(2,R). We consider the Siegel upper
half space #> of degree 2. It is well known that the space #5 is biholomorphic to a
bounded domain D, in C?, where D, is the space of 2 x 2 symmetric matrices with

L—ZZ*>0.

The biholomorphic automorphism group of #, is the projective symplectic group
PSp(2, R) defined by Sp(2,R)/{+1}, where Sp(g,R) (g > 0) is the space of real 2g x 2g
matrices m satisfying
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(23) 'mjm = j

j :< ’ ’(f;)
—ly
The space of all matrices m in PSp(g, R) with integral entries is denoted by PSp(g, Z).
For m € PSp(g, R) with g x g blocks,

m_AB
- \C D)’

the equation holds if and only if ‘AC,’BD are symmetric and

for

‘AD — 'CD =1,
For m e PSp(g,R), the action of m for Z € #, is defined by
Z—m(Z)=(AZ + B)(CZ+ D).
Taking 7€ H, we define a holomorphic mapping F, of H to s, by

F.(z) = (g 2) (ze H).

For each y(z) = (az+ b)(cz+d) ' e I', we set

where

an=(y o) s0=(gy )
cor=(y o) 20=(4 o)

Then, 0 is an isomorphism of I' into PSp(2,R), and the image 6(I") is a discrete
subgroup of PSp(2,R). We also see that

(24) F(y(2)) = 0(7) (Fx(2))-

Therefore, the mapping F, is regarded as a lift of a holomorphic mapping f; of
M =H/I' to N=,/0(I).

Since € does not depend on 7€ H, f,; is a holomorphic mapping of M to N for
another 7/(# 1) € H. Obviously, f;/ is homotopic to f; and the rigidity does not hold.

Finally, we exhibit an example of a holomorphic mapping from a hyperbolic
Riemann surface to a quotient space of the Siegel upper half space which satisfied the
condition of Mheorem 6.1. Hence the mapping is rigid.
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ExamPLE 7.6. Let M = H/I' be a Riemann surface as above. We consider a
holomorphic mapping F of H to #; by

F(z) = <(Z) (Z)) (ze H).

For each y(z) = (az +b)(cz+d) ' e I', we set

s (A(») B()
M‘(ém Dm)’

where

Then, 0 is an isomorphism of I into PSp(2,R), 6(I') is discrete and

0(y)(F(2) = F(y(z))

holds for any ze H. Hence F is regarded as a lift of a holomorphic mapping f of
M to N = #>/0(I") as in Example 7.5. However, it is easily seen that any point in
F*(0H) is not contained in any holomorphic component in d.#5. Hence it follows from

that f: M — N is rigid.
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