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Abstract. We investigate the nonstationary Navier-Stokes equations for an
exterior domain Ω ⊂ R3 in a solution class Ls(0, T ; Lq(Ω)) of very low regularity

in space and time, satisfying Serrin’s condition 2
s

+ 3
q

= 1 but not necessarily any

differentiability property. The weakest possible boundary conditions, beyond the
usual trace theorems, are given by u|∂Ω

= g ∈ Ls(0, T ; W−1/q,q(∂Ω)), and will be

made precise in this paper. Moreover, we suppose the weakest possible divergence
condition k = div u ∈ Ls(0, T ; Lr(Ω)), where 1

3
+ 1

q
= 1

r
.

1. Introduction and main theorems.

Throughout this paper Ω ⊂ R3 is an exterior domain with nonempty compact
boundary ∂Ω of class C2,1, and [0, T ), 0 < T ≤ ∞, denotes the time interval. In
[0, T )× Ω we consider the nonstationary Navier-Stokes equations

ut − ν∆u + u · ∇u +∇p = f in (0, T )× Ω

div u = k in (0, T )× Ω

u = g on (0, T )× ∂Ω

u = u0 at t = 0

(1.1)

with constant viscosity ν > 0, nonhomogeneous external force f = div F =( ∑3
i=1 ∂iFij

)3

j=1
, divergence k, boundary data g, and initial value u0 satisfying

F = (Fij)3i,j=1 ∈ Ls(0, T ;Lr(Ω))

k ∈ Ls(0, T ;Lr(Ω))

g ∈ Ls(0, T ;W−1/q,q(∂Ω))

u0 ∈ J q,s
ν (Ω)

(1.2)

where
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2
s

+
3
q

= 1, 2 < s < ∞, 3 < q < ∞ and
1
3

+
1
q

=
1
r

; (1.3)

see Subsection 2.5 for the definition of the space J q,s
ν (Ω) of initial values. Following

Amann [3], [4] in principle, we define a very weak solution of (1.1):

Definition 1.1. Suppose that the data f = div F, k, g and u0 satisfy (1.2), (1.3).
Then u ∈ Ls(0, T ;Lq(Ω)) is called a very weak solution of the Navier-Stokes system (1.1)
in the exterior domain Ω ⊂ R3 if for all w ∈ C1

0

(
[0, T ); C2

0,σ(Ω)
)

∫ T

0

(− 〈u,wt〉Ω − ν〈u, ∆w〉Ω + ν〈g, N · ∇w〉∂Ω − 〈u⊗ u,∇w〉Ω − 〈ku, w〉Ω
)
dt

= 〈u0, w(0)〉Ω −
∫ T

0

〈F,∇w〉Ω dt (1.4)

and the conditions

div u(t) = k(t) in Ω, N · u(t)|∂Ω
= N · g(t) for a.a. t ∈ (0, T ) (1.5)

are satisfied.

Here, C2
0,σ(Ω) =

{
v ∈ C2(Ω) : div v = 0, supp v compact in Ω, v|∂Ω

= 0
}

and

w ∈ C1
0

(
[0, T ); C2

0,σ(Ω)
)

implies that suppw is compact in [0, T ) × Ω. The term 〈·, ·〉Ω
denotes the usual Lq−Lq′–pairing in Ω or the application of the functional u0 ∈ J q,s

ν (Ω)
at w(0) = w|t=0

∈ C2
0,σ(Ω), cf. Subsection 2.5. At x = (x1, x2, x3) ∈ ∂Ω the outer normal

is denoted by N = N(x) ∈ R3, and 〈g(t), N · ∇w(t)〉∂Ω is the value of the distribution
g(t) ∈ W−1/q,q(Ω) at the normal derivative N · ∇w(t) of w(t). Note that we used the
elementary relation u · ∇u = div (u⊗ u)− ku where u⊗ u = (uiuj)3i,j=1.

An elementary calculation shows that for a solenoidal vector field w

N · ∇w(t) = curlw(t)×N on ∂Ω. (1.6)

Therefore, (1.4) contains a condition only on the tangential component N × g of g on
∂Ω, and we have to suppose the additional condition in (1.5) for the normal component
N · g = N · u|∂Ω

. Note that the data (1.2) need not satisfy any compatibility condition
as for bounded domains, see [10].

Then our main theorem reads as follows:

Theorem 1.2. Let Ω ⊆ R3 be an exterior domain with boundary ∂Ω ∈ C2,1.
Suppose that the data f = div F, k, g and u0 satisfy (1.2), (1.3). Then there exists a
T ′ = T ′(f, k, g, u0, ν) ∈ (0, T ] and a unique very weak solution u ∈ Ls(0, T ′;Lq(Ω))
of the nonhomogeneous Navier-Stokes system (1.1). The interval of existence [0, T ′) is
determined by the condition (5.12) below and includes the case T ′ = T = ∞.

There are not many references on the system (1.1) for the very general nonhomo-
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geneous case div u = k 6= 0 and u|∂Ω
= g 6= 0, but there are several results for k = 0,

g 6= 0, see [3], [4], [8], [10], [14], [16], [19] and [20]. Amann’s approach in Besov spaces
[3], [4] seems to be the first one working in solution classes with u|∂Ω

6= 0 beyond the
usual trace theorems. Our purpose is to extend the solution class to the weakest possible
class by keeping uniqueness, and to the case div u 6= 0. Furthermore, we develop the cor-
responding theory also for the linear stationary and instationary Stokes equations with
inhomogeneous data. For further references see [14].

We will see in Remark 5.2 that a very weak solution satisfies the first equation of (1.1)
in the sense of distributions, together with some distribution p. Moreover, the boundary
condition u|∂Ω

= g is well defined in the sense of distributions on ∂Ω, but not in the sense
of usual trace theorems. Actually, the tangential condition N×u|∂Ω

= N×g is implicitly
defined as a distribution by the relation (1.4) via the boundary term ν〈g, N · ∇w〉∂Ω, see
Remark 4.2 (2). Moreover, the trace N · u|∂Ω

= N · g of the normal component is well
defined in the usual weak sense, see (2.2). Finally, we see that the initial condition
u(0, ·) = u0 in (1.1) has a precise meaning “modulo gradients”, see Subsection 2.5, since
w(0) ∈ C2

0,σ(Ω) in (1.4) is solenoidal.
It is remarkable that a very weak solution u of (1.1) need not satisfy any energy

inequality like weak solutions in the sense of Leray and Hopf; in particular, u need not
have finite energy 1

2‖u‖22,∞ + ‖∇u‖22,2 < ∞. This justifies the notion of a very weak
solution. On the other hand, a very weak solution possesses the uniqueness property on
its interval of existence [0, T ′) because of the Serrin condition, cf. (1.3). Note that the
uniqueness of weak solutions in the sense of Leray and Hopf is open.

The proof of Theorem 1.2 is based on the unique decomposition u = û + E where
E ∈ Ls(0, T ;Lq(Ω)) is the very weak solution of the linearized nonhomogeneous system

Et − ν∆E +∇h = f, div E = k in (0, T )× Ω

E|∂Ω
= g, E(0, ·) = u0

and where û ∈ Ls(0, T ;Lq(Ω)) is the very weak solution of the “homogeneous” nonlinear
system

ût − ν∆û + (û + E) · ∇(û + E) +∇p̂ = 0, div û = 0 in (0, T )× Ω,

satisfying û|∂Ω
= 0, u(0, ·) = 0, cf. (5.1), (5.3) below.

The general nonstationary Stokes system we consider here has the form

ut − ν∆u +∇p = f, div u = k in (0, T )× Ω,

u|∂Ω
= g, u = u0 at t = 0,

(1.7)

where f = div F, k, g and u0 satisfy (1.2) and where 1 < s < ∞, 3 < q < ∞ and
1
3 + 1

q = 1
r yielding 3

2 < r < 3. Note that Serrin’s condition 2
s + 3

q = 1 is not needed
for this linear problem. See Subsections 2.3 and 2.5 concerning the Stokes operator Aq

and the generalized meaning of A−1
q Pqu0 of the distribution u0. In this linear case the
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definition of a very weak solution reads as follows:

Definition 1.3. Suppose that the data f = div F, k, g and u0 satisfy (1.2) with
1 < s < ∞, 3 < q < ∞ and 1

3 + 1
q = 1

r . Then u ∈ Ls(0, T ;Lq(Ω)) is called a very weak
solution of the nonstationary Stokes system (1.7) if for all w ∈ C1

0 ([0, T );C2
0,σ(Ω))

∫ T

0

(− 〈u,wt〉Ω − ν〈u, ∆w〉Ω + ν〈g, N · ∇w〉∂Ω

)
dt

= 〈u0, w(0)〉Ω −
∫ T

0

〈F,∇w〉Ω dt (1.8)

and if

div u(t) = k(t) in Ω, N · u(t)|∂Ω
= N · g(t) for a.a. t ∈ (0, T ) ,

cf. (1.5), are satisfied.

Theorem 1.4. Let Ω ⊂ R3 be an exterior domain of class C2,1, let f = div F, k, g

and u0 satisfy (1.2) with 1 < s < ∞, 3 < q < ∞ and 1
3 + 1

q = 1
r . Then there exists a

unique very weak solution u ∈ Ls(0, T ;Lq(Ω)) of (1.7) satisfying

A−1
q Pqut ∈ Ls

(
0, T ;Lq

σ(Ω)
)
, A−1

q Pqu ∈ C
(
[0, T );Lq

σ(Ω)
)
,

A−1
q Pqu|t=0

= A−1
q Pqu0, (1.9)

and the a priori estimate

‖A−1
q Pqut‖q,s,Ω,T + ‖νu‖q,s,Ω,T

≤ c
(‖u0‖J q,s

ν (Ω) + ‖F‖r,s,Ω,T + ‖νk‖r,s,Ω,T + ‖νg‖−1/q;q,s,∂Ω,T

)
(1.10)

where c = c(q, s, Ω) > 0. Moreover, the term ‖u0‖J q,s
ν (Ω) may be replaced by the smaller

term
( ∫ T

0
‖νAqe

−νtAqA−1
q Pqu0‖s

q,Ω dt
)1/s. The solution u possesses an explicit represen-

tation formulated in (4.5) below for ν = 1.

Finally we consider – indeed as a starting point of the proofs – the nonhomogeneous
stationary Stokes system

−ν∆u +∇p = f, div u = k in Ω, u|∂Ω
= g (1.11)

with data f = div F, k and g satisfying

F ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W−1/q,q(∂Ω), 3 < q < ∞,
1
3

+
1
q

=
1
r

(1.12)

yielding 3
2 < r < 3.
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Definition 1.5. Given data f = div F, k, g as in (1.12) a vector field u ∈ Lq(Ω)
is called a very weak solution of the stationary Stokes system (1.11) if the relation

−ν〈u, ∆w〉Ω + ν〈g, N · ∇w〉∂Ω = −〈F,∇w〉Ω, w ∈ C2
0,σ(Ω), (1.13)

and the conditions

div u = k in Ω, N · u|∂Ω
= N · g (1.14)

are satisfied.

Theorem 1.6. Let Ω ⊂ R3 be an exterior domain with boundary of class C2,1, and
let the data f = div F, k, g satisfy (1.12). Then there exists a unique very weak solution
u ∈ Lq(Ω) of the stationary Stokes system (1.11) in the sense of (1.13)–(1.14) satisfying
the a priori estimate

‖νu‖q,Ω ≤ c
(‖F‖r,Ω + ‖νk‖r,Ω + ‖νg‖−1/q;q,∂Ω

)

where c = c(Ω, q) > 0. Moreover, u possesses the representation (3.14) below.

This paper is organized as follows. In Section 2 we introduce several function spaces
and operators and recall important properties of them. The proof of the main Theorem
1.2 is based on Theorems 1.4, 1.6 and on a fixed point argument. Therefore, Section
3 deals with the proof of Theorem 1.6, Section 4 with the proof of Theorem 1.4, and
the final Section 5 is devoted to the nonlinear case in Theorem 1.2. Note that the reals
c, c1, c2 > 0 are generic constants depending on the exponents q, r, s etc., and on the
exterior domain Ω, but not on the functions involved in subsequent estimates.

2. Notations and preliminaries.

2.1. Classical function spaces.
Given 1 < q < ∞ and q′ = q

q−1 we need the usual Lebesgue and Sobolev spaces,
Lq(Ω), Wα,q(Ω), where α ≥ 0, and Wα,q

0 (Ω) ⊂ Wα,q(Ω) with norms ‖·‖Lq(Ω) = ‖·‖q,Ω

and ‖·‖W α,q(Ω) = ‖·‖α;q,Ω, resp. The space W−α,q(Ω) := Wα,q′
0 (Ω)′ denotes the dual

space of Wα,q′
0 (Ω) with the natural pairing 〈·, ·〉Ω and the norm ‖·‖W−α,q(Ω) = ‖·‖−α;q,Ω.

If α = 0, then 〈f, h〉Ω =
∫
Ω

f · h dx for f ∈ Lq(Ω), h ∈ Lq′(Ω); here f · h denotes the
scalar product of vector or matrix fields. Note that the same symbol Lq(Ω) etc. will be
used for spaces of scalar-, vector- or matrix-valued fields.

For the boundary ∂Ω of the domain Ω ⊂ R3 let Lq(∂Ω), Wα,q(∂Ω), W−α,q(∂Ω) =
Wα,q′(∂Ω)′, where 0 < α < 2, α 6= 1, denote the corresponding function spaces, using
the norms ‖·‖Lq(∂Ω) = ‖·‖q,∂Ω, ‖·‖W α,q(∂Ω) = ‖·‖α;q,∂Ω and ‖·‖W−α,q(∂Ω) = ‖·‖−α;q,∂Ω,
resp., and the natural duality pairing 〈·, ·〉∂Ω. The space Wα,q(∂Ω) is a special case of a
Besov space, namely, Wα,q(∂Ω) = Bα

q,r(∂Ω) with r = q, cf. [28, 4.2.1 and 4.7.2] as well
as [1, 7.39 and 7.45] (using another notation). Note that the restriction α ≤ 2 in this
case is needed since ∂Ω ∈ C2,1. In particular, the pairing between Lq(∂Ω) and its dual
Lq′(∂Ω) is given by
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〈f, g〉∂Ω =
∫

∂Ω

f · g dS

where
∫

∂Ω
. . . dS denotes the surface integral on ∂Ω. For more details cf. [1], [11] and

[28].
Let Cm(Ω), Cm

0 (Ω) and Cm(Ω),m ∈ N ∪{+∞}, denote the usual spaces of smooth
functions. An important function space is

Cm
0 (Ω) :=

{
v ∈ Cm(Ω) : supp v compact in Ω, v = 0 on ∂Ω

}
.

For the space C∞0 (Ω)′ of distributions, the dual space of C∞0 (Ω), the duality pairing on
Ω is denoted by 〈·, ·〉Ω. Finally, we use the boundary distributions C1(∂Ω)′ with test
functions from C1(∂Ω) and with the pairing 〈·, ·〉∂Ω.

The subspaces of solenoidal vector fields are denoted by appending the subscript ‘σ’
leading to the spaces C∞0,σ(Ω) = {v ∈ C∞0 (Ω) : div v = 0} and Cm

0,σ(Ω) = {v ∈ Cm
0 (Ω) :

div v = 0} as well as to the dual space Cm
0,σ(Ω)′ of Cm

0,σ(Ω) with pairing 〈·, ·〉Ω. By a
theorem of de Rham, [27, I, Proposition 1.1], a distribution d ∈ C∞0 (Ω)′ vanishing at all
v ∈ C∞0,σ(Ω) may be written in the form d = ∇h with a scalar distribution h. Let Lq

σ(Ω)
denote the closure of C∞0,σ(Ω) in the norm ‖·‖q,Ω. It is well known that Lq

σ(Ω)′ = Lq
σ
′(Ω)

using the standard pairing 〈·, ·〉Ω.

2.2. Traces and extensions.
Let α = 1, 2. Given an exterior domain Ω ⊂ R3 with boundary of class C2,1, let

B ⊂ R3 be an open ball with ∂Ω ⊂ B and let Ω0 := Ω∩B. Then the trace map f 7→ f |∂Ω

is a well defined linear bounded operator from Wα,q(Ω) onto Wα−1/q,q(∂Ω), and there
exists a linear bounded extension operator E : Wα−1/q,q(∂Ω) → Wα,q(Ω), h 7→ Eh,
such that Eh|∂Ω

= h. The extension operator can be constructed in such a way that

suppEh ⊂ Ω0 for all h ∈ Wα−1/q,q(∂Ω).
Let 1 < r < 3 and let q > r be defined by 1

3 + 1
q = 1

r . Given f ∈ Lq(Ω) with div f ∈
Lr(Ω) we use Green’s identity in Ω0 and the trace space W 1−1/q′,q′(∂Ω) = W 1/q,q′(∂Ω)
to get that

〈div f,Eh〉Ω0 = 〈N · f, h〉∂Ω − 〈f,∇Eh〉Ω0 , h ∈ W 1/q,q′(∂Ω). (2.1)

Since q > 3
2 and consequently 1 < q′ < 3, the embedding and extension estimate

‖Eh‖r′,Ω0 ≤ c
(‖Eh‖q′,Ω0 + ‖∇Eh‖q′,Ω0

) ≤ c‖h‖1/q;q′,∂Ω

holds with 1
3 + 1

r′ = 1
q′ and c = c(Ω, q) > 0. Consequently,

|〈N · f, h〉∂Ω| ≤ c
(‖f‖q,Ω0 + ‖div f‖r,Ω0

)‖h‖1/q;q′,∂Ω

≤ c
(‖f‖q,Ω + ‖div f‖r,Ω

)‖h‖1/q;q′,∂Ω (2.2)
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for all h ∈ W 1/q,q′(∂Ω). Hence the trace N ·f |∂Ω
∈ W−1/q,q(∂Ω) of the normal component

of f on ∂Ω is well defined and satisfies the estimate

‖N · f‖−1/q;q,∂Ω ≤ c
(‖f‖q,Ω0 + ‖div f‖r,Ω0

) ≤ c
(‖f‖q,Ω + ‖div f‖r,Ω

)
(2.3)

with the same c > 0 as in (2.2).
Analogously, by the identity

〈curl f,Eh〉Ω0 = 〈N × f, h〉∂Ω + 〈f, curlEh〉Ω0 , (2.4)

we obtain the following trace property: Given f ∈ Lq(Ω) with curl f ∈ Lr(Ω) where
1 < r < 3, 1

3 + 1
q = 1

r , the trace N × f |∂Ω
∈ W−1/q,q(∂Ω) of the tangential component of

f on ∂Ω is well defined, and it holds the estimate

‖N × f‖−1/q;q,∂Ω ≤ c
(‖f‖q,Ω0 + ‖curl f‖r,Ω0

) ≤ c
(‖f‖q,Ω + ‖curl f‖r,Ω

)
. (2.5)

Consider the divergence problem

div b = f in Ω0, b = 0 on ∂Ω0 (2.6)

for given right-hand side f . If 1 < q < ∞ and f ∈ Lq(Ω0) satisfying
∫
Ω0

f(x)dx = 0,
then there exists some b = bf ∈ W 1,q

0 (Ω0) solving (2.6) such that

‖bf‖1;q,Ω0 ≤ c(Ω0, q) ‖f‖q,Ω0 . (2.7)

Moreover, if additionally f ∈ W 1,q
0 (Ω0), then bf ∈ W 2,q

0 (Ω) and

‖bf‖2;q,Ω0 ≤ c(Ω0, q) ‖∇f‖q,Ω0 , (2.8)

cf. [11, III, Theorem 3.2].
Let 1 < r < 3 and f ∈ Lr(Ω). Then by [11, III, Theorem 3.4 and II, Remark 5.2],

there exists b ∈ Lq(Ω), 1
3 + 1

q = 1
r , with ∇b ∈ Lr(Ω), b|∂Ω

= 0 satisfying div b = f and
the estimate

‖b‖q,Ω ≤ c‖∇b‖r,Ω ≤ c′‖f‖r,Ω (2.9)

with constants c, c′ > 0 depending only on Ω and on r. Note that in each case b = bf

can be chosen to depend linearly on f .
Using properties of the weak Neumann problem [23] we find for each h ∈

W−1/q,q(∂Ω) a vector field Eh ∈ Lq(Ω) depending linearly on h such that div Eh ∈ Lr(Ω),
N · Eh|∂Ω

= h, suppEh ⊂ Ω0, satisfying the estimate

‖Eh‖q,Ω + ‖div Eh‖r,Ω ≤ c‖h‖−1/q;q,∂Ω . (2.10)
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By an extension theorem for the bounded domain Ω0, cf. [22, Theorem 5.8] or [28,
Subsection 5.4.4] we obtain the following result: For every h ∈ W 1−1/q,q(∂Ω) there exists
an extension wh ∈ W 2,q(Ω)∩W 1,q

0 (Ω) depending linearly on h such that N ·∇wh|∂Ω
= h,

suppwh ⊂ Ω0 and

‖wh‖2,q,Ω = ‖wh‖2,q,Ω0 ≤ c‖h‖1−1/q;q,∂Ω. (2.11)

If additionally N · h = 0 on ∂Ω, then a calculation shows that

div wh|∂Ω0
= 0, N · ∇wh|∂Ω

= curlwh|∂Ω
×N = h.

Moreover, since
∫
Ω0

div wh dx = 0, div wh ∈ W 1,q
0 (Ω0), we may use (2.6)–(2.8) to find

ŵh = wh − bf ∈ W 2,q(Ω) ∩ W 1,q
0 (Ω), f = div wh, depending linearly on h such that

supp ŵh ⊂ Ω0,

div ŵh = 0 in Ω, N · ∇ŵh = curl ŵh|∂Ω
×N = h,

‖ŵh‖2;q,Ω0 = ‖ŵh‖2;q,Ω ≤ c‖h‖1−1/q;q,∂Ω

(2.12)

with c = c(Ω,Ω0, q) > 0 in (2.10)–(2.12). Note that the extensions Eh, wh, ŵh are first
of all constructed for Ω0 by setting N · Eh|∂B

= 0, and wh|∂Ω0
= 0, N · ∇wh|∂B

= 0.

Then div Eh ∈ Lr(Ω) and wh, ŵh ∈ W 1,q
0 (Ω) ∩W 2,q(Ω).

2.3. Helmholtz projection and Stokes operator.
Given a vector field f ∈ Lq(Ω), 1 < q < ∞, on the exterior domain Ω ⊂ R3, the

weak Neumann problem

∆p = div f, N · (∇p− f)|∂Ω
= 0

has a unique solution ∇p ∈ Lq(Ω) satisfying the estimate ‖∇p‖q,Ω ≤ c‖f‖q,Ω with
c = c(Ω, q) > 0. Then the Helmholtz projection Pq defined byPqf = f−∇p is a bounded
linear operator from Lq(Ω) onto the solenoidal subspace Lq

σ(Ω) satisfying P 2
q = Pq and

P ′q = Pq′ , i.e., 〈Pqf, g〉Ω = 〈f, Pq′g〉Ω for all f ∈ Lq(Ω), g ∈ Lq′(Ω). Note that Pqf = P%f

if f ∈ Lq(Ω) ∩ L%(Ω) and 1 < q, % > ∞, see [23].
The Stokes operator Aq = D(Aq) → Lq

σ(Ω) with dense domain

D(Aq) = Lq
σ(Ω) ∩W 1,q

0 (Ω) ∩W 2,q(Ω) ⊂ Lq
σ(Ω)

is defined by Aqu = −Pq∆u, u ∈ D(Aq); its range {Aqu : u ∈ D(Aq)} will be denoted
by R(Aq). Note that for two exponents 1 < q, r < ∞ and for u ∈ D(Aq)∩D(Ar) we get
Aqu = Aru. As usual, D(Aq) will be equipped with the graph norm ‖u‖q,Ω+‖Aqu‖q,Ω for
u ∈ D(Aq). Concerning more details on the Stokes operator see [6], [8]–[19], [25]–[27].

For α ∈ [−1, 1] the fractional power Aα
q : D(Aα

q ) → Lq
σ(Ω) with dense domain

D(Aα
q ) ⊂ Lq

σ(Ω) is a well defined, injective operator such that
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(
Aα

q

)−1 = A−α
q , R

(
Aα

q

)
= D

(
A−α

q

)
,

(
Aα

q

)′ = Aα
q′ .

We mention several important embedding estimates for the sequel:

∥∥A
1/2
q u

∥∥
q,Ω

≤ c‖∇u‖q,Ω, 1 < q < ∞, u ∈ D
(
A

1/2
q

)
,

‖Aqu‖q,Ω ≤ c‖∇2u‖q,Ω, 1 < q < ∞, u ∈ D(Aq),
(2.13)

and, by [6, Theorem 4.4] and [18, Theorem 3.1], respectively,

‖∇u‖q,Ω ≤ c
∥∥A

1/2
q u

∥∥
q,Ω

, 1 < q < 3, u ∈ D
(
A

1/2
q

)
,

‖∇2u‖q,Ω ≤ c‖Aqu‖q,Ω, 1 < q < 3
2 , u ∈ D(Aq);

(2.14)

in each case c = c(Ω, q) > 0. In particular, D(A1/2
q ) = W 1,q

0 (Ω)∩Lq
σ(Ω) when 1 < q < 3.

Concerning further fractional powers of Aq let 1 < q ≤ γ < ∞, 0 ≤ α ≤ 1 and u ∈ D(Aα
q ).

Then, by [6, Corollary 4.6] and [17, Corollary 6.7], respectively,

‖u‖γ,Ω ≤ c
∥∥Aα

q u
∥∥

q,Ω
, 0 ≤ α ≤ 1

2
, 1 < q < 3 , 2α +

3
γ

=
3
q

,

‖u‖γ,Ω ≤ c
∥∥Aα

q u
∥∥

q,Ω
, 0 ≤ α ≤ 1 , 1 < q <

3
2

, 2α +
3
γ

=
3
q

,

(2.15)

where c = c(Ω, α, q, γ) > 0.
It is well known that−Aq generates a uniformly bounded analytic semigroup {e−tAq :

t ≥ 0} on Lq
σ(Ω) satisfying the decay estimate

∥∥Aα
q e−tAqu

∥∥
q,Ω

≤ ct−α‖u‖q,Ω, t > 0, (2.16)

where α ≥ 0, 1 < q < ∞ and c = c(Ω, q, α) > 0; see [7], [6, (3.3)] or [18, (3.16)].
Let 0 < α ≤ 1, 1 < q < ∞ and consider suitable distributions d = (d1, d2, d3) ∈

C∞0 (Ω)′ for which the term A−α
q Pqd ∈ Lq

σ(Ω) will be well defined by applying the oper-
ations A−α

q and Pq in the corresponding orders to the “test function side”. To be more
precise, suppose that 〈d, v〉 is well defined for all v ∈ D(Aα

q′) and satisfies the estimate

|〈d, v〉Ω| ≤ c
∥∥Aα

q′v
∥∥

q′,Ω. (2.17)

Hence there exists d∗ ∈ Lq
σ(Ω) such that

〈d, v〉Ω =
〈
d∗, Aα

q′v
〉
Ω

for all v ∈ D
(
Aα

q′
)
; (2.18)

note that d∗ is unique, since R(Aα
q′) is dense in Lq′

σ (Ω). For simplicity we write d∗ =
A−α

q Pqd, since then formally
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〈
d∗, Aα

q′v
〉
Ω

=
〈
A−α

q Pqd,Aα
q′v

〉
Ω

= 〈Pqd, v〉Ω = 〈d, Pq′v〉Ω = 〈d, v〉Ω (2.19)

giving A−α
q Pqd a generalized meaning. If d ∈ C∞0 (Ω)′ satisfies (2.17), we say that

A−α
q Pqd ∈ Lq

σ(Ω), well defined by d∗ in (2.18). For similar operations see [26, III,
Lemma 2.6.1].

Lemma 2.1. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1, let 3
2 < r < 3,

1
3 + 1

q = 1
r , and let F = (Fij)3i,j=1 ∈ Lr(Ω). Then A−1

q Pq div F ∈ Lq
σ(Ω) and

∥∥A−1
q Pq div F

∥∥
q,Ω

≤ c‖F‖r,Ω, (2.20)

where c = c(Ω, r) > 0. Hence, A−1
q Pq div : Lr(Ω) → Lq

σ(Ω) is a bounded linear operator.

Proof. Considering (2.17), (2.18) with d = div F , d∗ = A−1
q Pq div F and α = 1

we have to estimate the term 〈div F, v〉Ω =: 〈A−1
q Pq div F , Aq′v〉Ω using ‖Aq′v‖q′,Ω only.

Since 1
3 + 1

r′ = 1
q′ where 1 < q′ < 3

2 , we know that D(Aq′) ⊂ D(A1/2
r′ ), cf. (2.14), and

A
1/2
r′ v = A

1/2
q′ v ∈ D(A1/2

q′ ) for all v ∈ D(Aq′). Hence (2.14)1 (with r′ instead of q) implies
for v ∈ D(Aq′)

|〈div F, v〉Ω| = | − 〈F,∇v〉Ω| ≤ c‖F‖r,Ω

∥∥A
1/2
r′ v

∥∥
r′,Ω .

Moreover, by (2.15)1
(
with α = 1

2 , 1 + 3
r′ = 3

q′ and u = A
1/2
r′ v ∈ D(A1/2

q′ )
)

∥∥A
1/2
r′ v

∥∥
r′,Ω ≤ c

∥∥A
1/2
q′ A

1/2
q′ v

∥∥
q′,Ω = c‖Aq′v‖q′,Ω .

Now, (2.20) is proved. ¤

2.4. The spaces Ls(0, T ;X).
Given a Banach space (X, ‖·‖X) and 1 < s < ∞, let Ls(0, T ;X) denote the

usual Bochner space with norm ‖·‖Ls(0,T ;X) =
( ∫ T

0
‖·‖s

X dt
)1/s. If X = Wα,q(Ω) or

X = Wα,q(∂Ω), 1 < q < ∞, α ∈ [−1, 1], we set ‖·‖Ls(0,T ;W α,q(Ω)) = ‖·‖α;q,s,Ω,T and
‖·‖Ls(0,T ;W α,q(∂Ω)) = ‖·‖α;q,s,∂Ω,T , resp. If α = 0, i.e. X = Lq(Ω) or Lq(∂Ω), we simply
write ‖·‖q,s,Ω,T or ‖·‖q,s,∂Ω,T , resp. As duality pairing we define

〈f, g〉Ω,T =
∫ T

0

〈f, g〉Ω dt, f ∈ Ls(0, T ;Lq(Ω)), g ∈ Ls′(0, T ;Lq′(Ω)),

and analogously 〈f, g〉∂Ω,T for all f ∈ Ls(0, T ;Lq(∂Ω)), g ∈ Ls′(0, T ;Lq′(∂Ω)).
We will also need the classical spaces Cm([0, T );X), m = 0, 1, 2, . . ., of X-valued

functions v(t) such that ( d
dt )

jv(t), 0 ≤ j ≤ m, is continuous on [0, T ) in X. The space
C1

0 ([0, T );X) is the subspace of C1([0, T );X) of function v with compact support in
[0, T ), and C1

0 ((0, T );X) is that subspace where supp v is compact in (0, T ).
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Lemma 2.2. Let Ω ⊂ R3 be an exterior domain with boundary ∂Ω ∈ C2,1, let f ∈
Ls(0, T ;Lq

σ(Ω)), 1 < s, q < ∞, and let v0 ∈ Lq
σ(Ω) such that

∫∞
0
‖νAqe

−νtAqv0‖s
q,Ω dt <

∞. Then the Stokes evolution system

vt + νAqv = f in (0, T ), v(0) = v0,

has a unique solution v ∈ Ls(0, T ;D(Aq)) such that vt ∈ Ls(0, T ;Lq
σ(Ω)) and v ∈

C0([0, T ); Lq
σ(Ω)). Moreover, v admits the maximal regularity estimate

‖vt‖q,s,Ω,T + ‖νAqv‖q,s,Ω,T ≤ c

(( ∫ T

0

∥∥νAqe
−νtAqv0

∥∥s

q,Ω
dt

)1/s

+ ‖f‖q,s,Ω,T

)
(2.21)

with c = c(Ω, q, s) > 0 not depending on T, ν, and

v(t) = e−νtAqv0 +
∫ t

0

e−ν(t−τ)Aqf(τ) dτ, 0 ≤ t ≤ T. (2.22)

Proof. See [18, (3.15)] or [25]. The case v0 6= 0 is easily reduced to the case
v0 = 0 by considering v̂(t) = v(t)− e−νtAqv0. ¤

2.5. The space of initial values.
Let 1 < q, s < ∞. Then the space of initial values, J q,s

ν (Ω), is defined as a space
of distributions on Ω as follows:

J q,s
ν (Ω) :=

{
u0 ∈ C∞0 (Ω)′ : A−1

q Pqu0 ∈ Lq
σ(Ω),

∫ ∞

0

∥∥νAqe
−νtAqA−1

q Pqu0

∥∥s

q,Ω
dt < ∞

}

equipped with the seminorm

‖u0‖J q,s
ν (Ω) := ν1−1/s

∥∥A−1
q Pqu0

∥∥
q,Ω

+
( ∫ ∞

0

∥∥νAqe
−νtAqA−1

q Pqu0

∥∥s

q,Ω
dt

)1/s

;

here, A−1
q Pqu0 is defined as in (2.17)–(2.19). Obviously ‖·‖J q,s

ν (Ω) becomes a norm
if we identify u0, û0 ∈ J q,s

ν (Ω) when ‖A−1
q Pq(u0 − û0)‖q,Ω = 0, i.e., when u0 − û0

is a gradient field, see (2.18) with d∗ = 0. Note that J q,s
ν (Ω) can be considered

as a real interpolation space, cf. [18, (2.5)]. To be more precise, u0 ∈ J q,s
ν (Ω) iff

A−1
q Pqu0 lies in the real interpolation space (D(Aq), Lq

σ)1/s,s, cf. [28], with equiva-
lence ‖u0‖J q,s

ν
∼ ‖A−1

q Pqu0‖(D(Aq),Lq
σ)1/s,s

. For another interpretation we need the

Besov type space B
2−2/s
q,s = B

2−2/s
q,s (Ω) introduced in [4, (0.6)]. In particular, it holds

B
2−2/s
q,s = {u ∈ B

2−2/s
q,s ; u|∂Ω

= 0, div u = 0} if 1
q < 2 − 2

s , and B
2−2/s
q,s = {u ∈ B

2−2/s
q,s ;

div u = 0} if 1
q > 2 − 2

s , cf. [28]. Then from [4, Proposition 3.4], we conclude

that (D(Aq), Lq
σ)1/s,s = (Lq

σ,D(Aq))1−1/s,s = B
2−2/s
q,s . This yields a representation of

J q,s
ν (Ω) with a classical function space in the form
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u0 ∈ J q,s
ν (Ω) ⇐⇒ A−1

q Pqu0 ∈ B2−2/s
q,s .

Consider a function u ∈ Ls(0, T ;Lq(Ω)) such that A−1
q Pqu ∈ Ls(0, T ;Lq(Ω)) is well

defined and (A−1
q Pqu)t = A−1

q Pqut ∈ Ls(0, T ;Lq(Ω)) holds for its time derivative in the
sense of distributions. Then – redefining u on a null set of [0, T ) if necessary – we obtain
that

A−1
q Pqu ∈ C

(
[0, T ); Lq

σ(Ω)
)
, A−1

q Pqu(t) ∈ Lq
σ(Ω) for all t ∈ [0, T ); (2.23)

in particular, the initial condition A−1
q Pqu|t=0

= A−1
q Pqu0 in (1.7) is well defined.

3. The stationary Stokes system, proof of Theorem 1.6.

Given data f = div F , k and g, see (1.12), consider a very weak solution u ∈ Lq(Ω)
of the stationary Stokes system (1.11), i.e., of (1.13), (1.14). First we assume ν = 1; the
case ν 6= 1 will be an easy consequence when considering −∆u + ∇( p

ν ) = 1
ν f . We will

prove the unique representation formula

u = F̂ + Ĝ +∇H (3.1)

where F̂ , Ĝ and ∇H ∈ Lq(Ω) solve suitable auxiliary problems and satisfy the estimates

‖F̂‖q,Ω ≤ c ‖F‖r,Ω , (3.2)

‖∇H‖q,Ω ≤ c
(‖k‖r,Ω + ‖g ·N‖−1/q;q,∂Ω

)
, (3.3)

‖Ĝ‖q,Ω ≤ c
(‖k‖r,Ω + ‖g‖−1/q;q,∂Ω

)
. (3.4)

The first term F̂ := A−1
q Pq div F is well defined by Lemma 2.1 and satisfies (3.2), cf.

(2.20). Obviously, cf. Definition 1.5 and (2.18), (2.20), u1 = F̂ is the unique very weak
solution of the system

− 〈u1,∆w〉Ω = −〈F,∇w〉Ω for all w ∈ C2
0,σ(Ω),

div u1 = 0 in Ω, N · u1|∂Ω
= 0.

(3.5)

Next we solve the system

− 〈u2,∆w〉Ω + 〈g, N · ∇w〉∂Ω = 0 for all w ∈ C2
0,σ(Ω),

div u2 = 0 in Ω, N · u2|∂Ω
= 0

(3.6)

matching only the tangential part of g on ∂Ω. To find u2 we estimate 〈g, N · ∇w〉∂Ω as
follows: Since 1 < q′ < 3

2 , q′ < r′ < 3, 1 + 3
r′ = 3

q′ , Poincaré’s inequality on the bounded
subdomain Ω0 = Ω ∩B and the properties (2.13), (2.14)1, (2.15)1 yield the estimates
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‖w‖q′,Ω0 ≤ c‖∇w‖q′,Ω0 ≤ c‖∇w‖r′,Ω ≤ c‖∇2w‖q′,Ω ≤ c‖Aq′w‖q′,Ω.

Moreover, it holds the inequality

|〈g, N · ∇w〉∂Ω| ≤ c‖g‖−1/q;q,∂Ω‖∇w‖1/q;q′,∂Ω

≤ c‖g‖−1/q;q,∂Ω‖w‖2;q′,Ω0

≤ c‖g‖−1/q;q,∂Ω‖Aq′w‖q′,Ω ,

which immediately extends to all w ∈ D(Aq′). Hence for all v ∈ R(Aq′), v = Aq′w, we
get

∣∣〈g, N · ∇A−1
q′ v

〉
∂Ω

∣∣ ≤ c‖g‖−1/q;q,∂Ω‖v‖q′,Ω

which extends to all v ∈ Lq′
σ (Ω) since R(Aq′) is dense in Lq′

σ (Ω). Since Lq′
σ (Ω)′ = Lq

σ(Ω),
there exists a unique G ∈ Lq

σ(Ω) such that

〈G, v〉Ω +
〈
g, N · ∇A−1

q′ v
〉

∂Ω
= 0 for all v ∈ R(Aq′), (3.7)

and ‖G‖q,Ω ≤ c‖g‖−1/q;q,∂Ω. Using the identity g = (g · N)N + N × (g × N) and (1.6)
we see that g in (3.7) may be replaced by g −N(g ·N), and we get that even

‖G‖q,Ω ≤ c‖g −N(g ·N)‖−1/q;q,∂Ω ≤ c‖N × g‖−1/q;q,∂Ω. (3.8)

Due to (3.7) we conclude with v = Aq′w = −Pq′∆w that u2 = G is the unique solution
of (3.6) in Lq

σ(Ω).
However, G will be modified in the third step in which we look for a very weak

solution u3 ∈ Lq(Ω) of the system

−〈u3,∆w〉Ω = 0 ∀w ∈ C2
0,σ(Ω), div u3 = k, N · u3|∂Ω

= N · g. (3.9)

To find the unique solution u3 of (3.9) we first consider the weak solution ∇H of
the Neumann problem

∆H = k, N · ∇H|∂Ω
= N · g. (3.10)

To construct ∇H we use the extension Eh ∈ Lq(Ω) of h = N · g with div Eh ∈ Lr(Ω),
N · Eh|∂Ω

= h and with compact support in Ω0, see (2.10). Moreover, cf. (2.9), there

exists b ∈ Lq(Ω) satisfying div b = div Eh − k, b|∂Ω
= 0 and ∇b ∈ Lr(Ω). Hence (3.10)

may be written in the form

∆H = div (Eh − b), N · (∇H − (Eh − b))|∂Ω
= 0
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which, cf. [23], has a unique solution ∇H ∈ Lq(Ω) satisfying

‖∇H‖q,Ω ≤ c‖Eh − b‖q,Ω

≤ c
(‖Eh‖q,Ω + ‖div Eh − k‖r,Ω

)

≤ c
(‖N · g‖−1/q;q,∂Ω + ‖k‖r,Ω

)

by (2.9), (2.10). This estimate proves (3.3).
To solve (3.9) for u3 we use the relation

〈∇H, ∆w〉Ω = 〈∇H, N · ∇w〉∂Ω for all w ∈ C2
0,σ(Ω) (3.11)

which will be proved below. Further, we observe, see (2.3), (2.5), that ‖∇H‖−1/q;q,∂Ω <

∞ is well defined, and that ∇H|∂Ω
satisfies the same estimates as g in (3.7), (3.8).

Therefore, we get, instead of G in (3.7), a unique vector field G′ ∈ Lq
σ(Ω) satisfying

−〈G′,∆w〉Ω + 〈∇H, N · ∇w〉∂Ω = 0 for all w ∈ C2
0,σ(Ω) (3.12)

and, using (3.8), (2.5),

‖G′‖q,Ω ≤ c‖N ×∇H‖−1/q;q,∂Ω ≤ c‖∇H‖q,Ω. (3.13)

Now, looking at (3.10)–(3.12), we conclude that u3 := ∇H −G′ is the unique solution of
(3.9).

Summarizing the previous steps, we see that u = u1 +u2 +u3 satisfies (1.13), (1.14),
u is a very weak solution of system (1.11), and it holds the representation (3.1) with
Ĝ = G −G′ satisfying (3.4). Moreover, u depends only on the data F, k, g and satisfies
the estimate

‖u‖q,Ω ≤ c
(‖F‖r,Ω + ‖k‖r,Ω + ‖g‖−1/q;q,∂Ω

)

due to (3.2)–(3.4). It is unique, since (3.5) with right-hand side F = 0 admits only the
trivial solution.

Finally, we prove (3.11). For this purpose, we approximate H by smooth functions
(Hj) such that ‖∇H − ∇Hj‖q,Ω → 0 and ‖∇H − ∇Hj‖−1/q;q,∂Ω → 0 as j → ∞. To
find Hj , j ∈ N , we approximate k and g in (3.10) by smooth functions kj , gj , let ∇Hj

be the corresponding solutions, and use the estimate (3.3) with ∇H, k, g replaced by
∇H −∇Hj , k − kj , g − gj . Then an integration by parts yields for every w ∈ C2

0,σ(Ω)

〈∇Hj ,∆w〉Ω = 〈∇Hj , N · ∇w〉∂Ω − 〈∇(∇Hj),∇w〉Ω
= 〈∇Hj , N · ∇w〉∂Ω + 〈∆(∇Hj), w〉Ω
= 〈∇Hj , N · ∇w〉∂Ω,
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since div w = 0 and w|∂Ω
= 0. As j →∞ we get (3.11).

The general case ν 6= 1 is reduced to ν = 1 by considering −∆u + ∇(
p
ν

)
= f

ν and
replacing F , A−1

q Pqdiv F by F
ν , (νAq)−1Pqdiv F . This proves Theorem 1.6. ¤

Remark 3.1.

(1) The proof of Theorem 1.6 shows that the very weak solution u ∈ Lq(Ω) of (1.11)
possesses the representation

u = (νAq)−1Pq div F + Ĝ +∇H (3.14)

where ∇H is defined by (3.10) and Ĝ = G−G′ satisfies

〈Ĝ, v〉Ω =
〈
g −∇H|∂Ω

, N ·A−1
q′ v

〉
∂Ω

for all v ∈ R(Aq′).

(2) Let u ∈ Lq(Ω) be a very weak solution of (1.11). For h ∈ W 1/q,q′(∂Ω) with
N · h = 0 let ŵh ∈ D(Aq′) with N · ∇ŵh|∂Ω

= h be the extension of h considered in

(2.12). Using ŵh as test function in (1.13) we get that

ν〈g, h〉∂Ω = ν〈u, ∆ŵh〉Ω − 〈F,∇ŵh〉Ω,

where 〈g, h〉Ω equals 〈N × g, N × h〉∂Ω, since g = (g ·N)N + N × (g×N). Hence, in the
sense of a boundary distribution, the tangential component N × u|∂Ω

is well defined by

ν〈N × u,N × h〉∂Ω = ν〈u, ∆ŵh〉Ω − 〈F,∇ŵh〉Ω. (3.15)

On the other hand, using the extension Eh ∈ W 1,q′(Ω) with compact support of an
arbitrary function h ∈ W 1,q,q′(∂Ω), (2.1) yields the identity

〈
N · u|∂Ω

, h
〉

∂Ω
= 〈k, Eh〉Ω + 〈u,∇Eh〉Ω. (3.16)

Therefore, (3.15), (3.16) yield an explicit expression of the trace u|∂Ω
∈ W−1/q,q(∂Ω).

Thus we define, by the right hand sides of (3.15), (3.16), a well defined trace u|∂Ω
∈

W−1/q,q(∂Ω) – beyond the usual trace theorems – for each u ∈ Lq(Ω) satisfying the
relations (1.13), (1.14).

(3) Using test functions w ∈ C∞0,σ(Ω) in (1.13), de Rham’s argument yields a distri-
bution p such that

−ν∆u +∇p = f

in the sense of distributions.
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4. Nonstationary Stokes systems, proof of Theorem 1.4.

Given data f = div F, k, g and u0 as in (1.2) with 1 < s < ∞, 3 < q < ∞, 1
3 + 1

q = 1
r ,

let u ∈ Ls(0, T ;Lq(Ω)) be a very weak solution of the instationary Stokes system (1.7),
see Definition 1.3. First we assume that ν = 1, the general case ν 6= 1 will be reduced to
ν = 1 by a scaling transformation concerning t.

Let E(t) = Ek(t),g(t) be the very weak solution of the stationary Stokes system

−∆E(t) +∇p(t) = 0, div E(t) = k(t), E(t)|∂Ω
= g(t) (4.1)

for a.a. t ∈ (0, T ). By Theorem 1.6, E ∈ Ls(0, T ;Lq(Ω)) and

‖E‖q,s,Ω,T ≤ c
(‖k‖r,s,Ω,T + ‖g‖−1/q;q,s,∂Ω,T

)
. (4.2)

Moreover, let ∇H ∈ Ls(0, T ;Lq(Ω)) be defined by ∇H(t) = u(t) − Pqu(t) for a.a. t ∈
(0, T ), i.e., ∇H(t) is the weak solution of the Neumann problem

∆H(t) = k(t), N · ∇H(t)|∂Ω
= N · g(t). (4.3)

Note that, cf. (3.3), (3.10),

‖∇H‖q,s,Ω,T ≤ c
(‖k‖r,s,Ω,T + ‖g‖−1/q;q,s,∂Ω,T

)
. (4.4)

Lemma 4.1. Consider f = div F, k, g, u0 as in (1.2) with 1 < s < ∞, 3 < q < ∞
and 1

3 + 1
q = 1

r , E as in (4.1), (4.2), and a very weak solution u ∈ Ls(0, T ;Lq(Ω)) of
(1.7) with ν = 1. Then the well defined representation formula

u(t) = ∇H(t) + Aqe
−tAqA−1

q Pqu0 +
∫ t

0

Aqe
−(t−τ)Aq

(
A−1

q Pq div F + PqE
)
dτ (4.5)

holds for a.a. t ∈ (0, T ).

Proof. Consider the test function w ∈ C1
0 ([0, T );C2

0,σ(Ω)) and let v = Ãq′w

where Ãq = Aq′ + I. It is well-known, see [17], [18], [25], that Ã−1
q′ and Aq′Ã

−1
q′ are

bounded operators on Lq
σ(Ω). By the weak formulation (1.13) of (4.1) we get that 〈E(t),

∆w(t)〉Ω = 〈g(t), N · ∇w(t)〉∂Ω for a.a. t ∈ (0, T ) yielding

〈g, N · ∇w〉∂Ω,T = 〈E, ∆w〉Ω,T .

Then the weak formulation (1.8), using w ∈ C1
0 ([0, T );C2

0,σ(Ω)), v = Ãq′w, implies the
identity

−〈
Ã−1

q Pqu, vt

〉
Ω,T

− 〈
u− E, ∆Ã−1

q′ v
〉
Ω,T

=
〈
u0, Ã

−1
q′ v(0)

〉
Ω
− 〈

F,∇Ã−1
q′ v

〉
Ω,T

. (4.6)
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Since u(t)− E(t) ∈ Lq
σ(Ω) for a.a. t ∈ (0, T ), the second term on the left hand side will

be rewritten as

〈
u− E, (−Aq′)Ã−1

q′ v
〉
Ω,T

= −〈
AqÃ

−1
q Pq(u− E), v

〉
Ω,T

.

Moreover, the terms on the right-hand side equal

〈
AqÃ

−1
q

(
A−1

q Pqu0

)
, v(0)

〉
Ω

and
〈
AqÃ

−1
q

(
A−1

q Pq div F
)
, v

〉
Ω,T

, respectively,

where A−1
q Pq div F ∈ Ls(0, T ;Lq

σ(Ω)), cf. Lemma 2.1, and A−1
q Pqu0 ∈ Lq

σ(Ω), see Sub-
section 2.5, are well defined. Hence we get from (4.6) the relation

− 〈
Ã−1

q Pqu, vt

〉
Ω,T

+
〈
Aq

(
Ã−1

q Pqu
)
, v

〉
Ω,T

=
〈
AqÃ

−1
q

(
A−1

q Pqu0

)
, v(0)

〉
Ω

+
〈
AqÃ

−1
q PqE, v

〉
Ω,T

+
〈
AqÃ

−1
q A−1

q Pq div F, v
〉
Ω,T

.

(4.7)

Then a standard argument, see [27, III 1.1], or [26, IV 1.3], shows that U(t) = Ã−1
q Pqu(t)

is a strong solution of the instationary Stokes system

Ut + AqU = AqÃ
−1
q

(
A−1

q Pq div F + PqE
)

U(0) = AqÃ
−1
q

(
A−1

q Pqu0

)
.

Since the right-hand side is contained in Ls(0, T ;Lq
σ(Ω)) and in Lq

σ(Ω), respectively,
Lemma 2.2 yields Ut, AqU ∈ Ls(0, T ;Lq

σ(Ω)) and the representation

U(t) = AqÃ
−1
q e−tAq

(
A−1

q Pqu0

)
+

∫ t

0

e−(t−τ)AqAqÃ
−1
q

(
A−1

q Pq div F + PqE
)
dτ .

We may apply Ãq to both sides of this identity to obtain that

Pqu(t) = Aqe
−tAqA−1

q Pqu0 +
∫ t

0

Aqe
−(t−τ)Aq

(
A−1

q Pq div F + PqE
)
dτ (4.8)

for a.a. t ∈ (0, T ). Since u(t) = ∇H(t) + Pqu(t), (4.5) is proved. ¤

Given data f = div F, k, g and u0, let u be defined by (4.5). Proceeding as in the
proof of Lemma 4.1 we get that u is a very weak solution of (1.7).

The right-hand side of (4.8) is contained in R(Aq) for a.a. t ∈ (0, T ). Therefore
A−1

q Pqu(t) is well-defined and it holds

A−1
q Pqu(t) = e−tAqA−1

q Pqu0 +
∫ t

0

e−(t−τ)Aq
(
A−1

q Pq div F + PqE
)
dτ . (4.9)
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This identity has the form (2.22) with v0 = A−1
q Pqu0 ∈ Lq

σ(Ω) and with f replaced
A−1

q Pq div F +PqE ∈ Ls(0, T ;Lq
σ(Ω)). By the maximal regularity estimate (2.21) we get

using (2.20) and (4.2) that

∥∥A−1
q Pqut

∥∥
q,s,Ω,T

+ ‖Pqu‖q,s,Ω,T

≤ c

(( ∫ T

0

∥∥Aqe
−tAqA−1

q Pqu0

∥∥s

q
dt

)1/s

+
∥∥A−1

q Pq div F
∥∥

q,s,Ω,T
+ ‖E‖q,s,Ω,T

)

≤ c
(‖u0‖J q,s

ν (Ω) + ‖F‖r,s,Ω,T + ‖k‖r,s,Ω,T + ‖g‖−1/q;q,s,∂Ω,T

)
.

Thus (1.10) is proved when ν = 1. A scaling argument replacing (1.7) by the system

ũτ −∆ũ +∇p̃ = f̃ , div ũ = k̃, ũ|∂Ω
= g̃, ũ(0) = ũ0 ,

with ũ(τ) = u(t), k̃(τ) = k(t), g̃(τ) = g(t), p̃(τ) = 1
ν p(t), f̃(τ) = 1

ν f(t) and τ = νt

will yield (1.10) when ν 6= 1. Moreover, A−1
q Pqu ∈ C([0, T );Lq

σ(Ω)) and A−1
q Pqu(0) =

A−1
q Pqu0, cf. (4.9). This completes the proof of Theorem 1.4. ¤

Remark 4.2.

(1) Let u ∈ Ls(0, T ;Lq
σ(Ω)) be a very weak solution as in Theorem 1.4. Then,

using test functions w ∈ C∞0 ((0, T );C∞0,σ(Ω)) in Definition 1.3, we get the existence of a
distribution p such that

ut − ν∆u +∇p = f in (0, T )× Ω

in the sense of distributions, cf. [26], [27].
(2) Let u ∈ Ls(0, T ;Lq(Ω)) be a very weak solution as in Theorem 1.4. Given

h ∈ C1
0 ((0, T ); W 1/q,q′(∂Ω)) with N · h = 0 we find an extension ŵh(t) := ŵh(t) ∈

C1
0 ((0, T ); D(Aq′)) with N ·∇ŵh(t)|∂Ω

= h, cf. (2.12). Then h 7→ ŵh is a linear mapping

with (ŵh)t = ŵht . Using ŵh as test function in (1.8) a calculation as in Remark 3.1(2)
yields the formula

ν〈N × g, N × h〉∂Ω,T = 〈u, ŵht〉Ω,T + ν〈u, ∆ŵh〉Ω,T − 〈F,∇ŵh〉Ω,T . (4.10)

Since 〈N × g, N × h〉∂Ω,T = 〈N × u|∂Ω
, N × h〉∂Ω,T for smooth u, the right hand side of

(4.10) yields a definition of the boundary distribution N × u(t)|∂Ω
, the tangential part

of u|∂Ω
. Analogously to Remark 3.1(2) also the normal component N · u(t)|∂Ω

is well
defined, cf. (3.16) and (1.5). Therefore, the general trace property u|∂Ω

= g in (1.7) is
well defined beyond the usual trace theorem.

(3) As already mentioned, the property A−1
q Pqut ∈ Ls(0, T ;Lq

σ(Ω)) yields A−1
q Pqu ∈

C0([0, T );Lq
σ(Ω)) and implies that the initial value u0 of u is well defined in the sense

A−1
q Pqu|t=0

= A−1
q Pqu0. According to the definition of J q,s

ν (Ω) the initial condition
implies that u(0) coincides with u0 only up to a gradient. This is obvious from the
variational formulation (1.8) since w(0) ∈ C2

0,σ(Ω) is solenoidal.
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5. The Navier-Stokes system, proof of Theorem 1.2.

Given data f = div F, k, g and u0 as in (1.2), (1.3) let u ∈ Ls(0, T ;Lq(Ω)) be a very
weak solution of the nonstationary Navier-Stokes system (1.1). Further let E = Ef,k,g,u0

be the very weak solution of the instationary nonhomogeneous Stokes system

Et − ν∆E +∇h = f, div E = k in (0, T )× Ω

E|∂Ω
= g, E|t=0

= u0

(5.1)

such that A−1
q PqEt ∈ Ls(0, T ;Lq(Ω)) and

‖νE‖q,s,Ω,T ≤ c

(( ∫ T

0

∥∥νAqe
−νtAqA−1

q Pqu0

∥∥s

q
dt

)1/s

+ ‖F‖r,s,Ω,T + ‖νk‖r,s,Ω,T + ‖νg‖−1/q;q,s,∂Ω,T

)
, (5.2)

see Theorem 1.4. Then the variational formulations (1.4) for u and (1.8) for E imply
that û = u− E satisfies div û = 0, N · û|∂Ω

= 0 and

−〈û, wt〉Ω,T − ν〈û, ∆w〉Ω,T = 〈u⊗ u,∇w〉Ω,T + 〈ku, w〉Ω,T (5.3)

for all w ∈ C1([0, T );C2
0,σ(Ω)). This nonlinear problem will be rewritten as a nonlinear

integral equation in û which is the starting point to find a solution û by Banach’s fixed
point theorem. For this purpose, we will analyze the term A−α

q Pq(u · ∇u) where α =
3
2q + 1

2 < 1.

Lemma 5.1.

(1) Let u ∈ Lq(Ω) such that k = div u ∈ Lr(Ω) where 1
3 + 1

q = 1
r and 3 < q < ∞.

Then for α = 3
2q + 1

2 < 1

∥∥A−αPqu · ∇u
∥∥

q,Ω
≤ c

(‖u‖2q,Ω + ‖k‖r,Ω ‖u‖q,Ω

)
(5.4)

with c = c(Ω, q) > 0.
(2) Let u ∈ Ls(0, T, Lq(Ω)) such that k = div u ∈ Ls(0, T ;Lr(Ω)) where r, s, q satisfy

(1.3). Then for α = 3
2q + 1

2 < 1

∥∥A−αPqu · ∇u
∥∥

q,s/2,Ω,T
≤ c

(‖u‖2q,s,Ω,T + ‖k‖r,s,Ω,T ‖u‖q,s,Ω,T

)
(5.5)

with c = c(Ω, q) > 0.

Proof.

(1) For an arbitrary test function v ∈ D(Aα
q′) we have to estimate the term 〈u ·

∇u, v〉 = −〈u⊗u,∇v〉−〈ku, v〉 by ‖Aα
q′v‖q′,Ω. By Hölder’s inequality, (2.14)1 and (2.15)1
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(with α′ = 3
2q instead of α, 2α′ + 3

(q/2)′ = 3
q′ , applied to A

1/2
(q/2)′v) we get that

|〈u⊗ u,∇v〉Ω| ≤ ‖u⊗ u‖q/2,Ω ‖∇v‖(q/2)′,Ω

≤ c‖u‖2q,Ω ‖A1/2
(q/2)′v‖(q/2)′,Ω

≤ c‖u‖2q,Ω ‖Aα
q′v‖q′,Ω.

Moreover, by (2.15)2 (with 2α + 3
γ′ = 3

q′ where γ =
(

1
r + 1

q

)−1),

|〈ku, v〉Ω| ≤ ‖k‖r,Ω ‖u‖q,Ω ‖v‖γ′,Ω

≤ c‖k‖r,Ω ‖u‖q,Ω ‖Aα
q′v‖q′,Ω.

Combining the previous inequalities we get (5.4).
(2) Using (5.4) for a.a. t ∈ (0, T ) and integrating its s

2 -power on (0, T ) we prove
(5.5). This proves Lemma 5.1. ¤

To prove Theorem 1.2 we consider w ∈ C1([0, T );C2
0,σ(Ω)) in (5.3) and let v = Ãq′w

where Ãq = Aq+I. Then the calculation which led from (4.6) to (4.9) (with u0 = 0, E = 0
and A−1

q Pq div F ∈ Ls(0, T ;Lq
σ(Ω)) replaced by −A−α

q Pq(u · ∇u)) yields the identity

−〈
Ã−1

q Pqû, vt

〉
Ω,T

+ ν
〈
AqÃ

−1
q Pqû, v

〉
Ω,T

= −〈
Aα

q Ã−1
q A−α

q Pq(u · ∇u), v
〉
Ω,T

and the representation formula

Ã−1
q Pqû(t) = −

∫ t

0

e−ν(t−τ)Aq Aα
q Ã−1

q A−α
q Pq(u · ∇u) dτ .

Since û(t) ∈ Lq
σ(Ω) and A−α

q Pq(u · ∇u) ∈ Ls/2(0, T ;Lq
σ(Ω)) we may apply Ãq to get that

û(t) = −Aα
q

∫ t

0

e−ν(t−τ)Aq A−α
q Pq(u · ∇u) dτ, 0 ≤ t < T. (5.6)

Moreover, we conclude from Lemma 2.2 that

û(t) ∈ R
(
Aα

q

)
, A−α

q û(t) ∈ Lq
σ(Ω) for all t ∈ [0, T ),

A−α
q ût ∈ Ls/2

(
0, T ;Lq

σ(Ω)
)
, A−α

q û ∈ C
(
[0, T );Lq

σ(Ω)
)
,

A1−α
q û ∈ Ls/2

(
0, T ;Lq

σ(Ω)
)
.

(5.7)

Finally, the initial value A−α
q û(0) = 0 is well-defined.

To construct a very weak solution u = û + E on some interval [0, T ′), 0 < T ′ ≤ T ,
we write (5.6) as the fixed point equation
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û = F (û)

where

F (û) = −
∫ t

0

Aα
q e−ν(t−τ)Aq A−α

q Pq

(
(û + E) · ∇(û + E)

)
dτ . (5.8)

For the application of Banach’s fixed point theorem we have to estimate F (û) in
Ls(0, T ;Lq(Ω)).

By (2.16)

‖F (û)(t)‖q,Ω ≤ cν−α

∫ t

0

(t− τ)−α
∥∥A−α

q Pq

(
(û + E) · ∇(û + E)

)∥∥
q,Ω

dτ.

Then the Hardy-Littlewood inequality ([26], [28], with (1 − α) + 1
s = 1

s/2 , i.e., α = 1
s′ )

and Lemma 5.1 imply that

‖F (û)‖q,s,Ω,T ≤ cν−α
∥∥A−α

q Pq

(
(û + E) · ∇(û + E)

)∥∥
q,s/2,Ω,T

≤ c1ν
−α

[(‖û‖q,s,Ω,T + ‖E‖q,s,Ω,T

)2 + ‖k‖r,s,Ω,T

(‖û‖q,s,Ω,T + ‖E‖q,s,Ω,T

)]
. (5.9)

To control the interval of existence [0, T ′) let

A = c1ν
−α, B = B(T ′) = ‖E‖q,s,Ω,T ′ , C = C(T ′) = c1ν

−α‖k‖r,s,Ω,T ′

for T ′ ∈ (0, T ] to be chosen below. Hence, replacing T by T ′ in (5.9), we get that

‖F (û)‖q,s,Ω,T ′ + B ≤ A
(‖û‖q,s,Ω,T ′ + B

)2 + C
(‖û‖q,s,Ω,T ′ + B

)
+ B. (5.10)

Consider the closed ball B = {û ∈ Ls(0, T ′;Lq
σ(Ω)) : ‖û‖q,s,Ω,T ′ + B ≤ y1} in

Ls(0, T ′;Lq
σ(Ω)) where y1 > B is the smallest positive root of the quadratic equation

y = Ay2 + Cy + B. Assuming

4AB + 2C < 1 (5.11)

we get y1 = 2B
(
1 − C +

√
1 + C2 − (4AB + 2C)

)−1. The smallness condition (5.11) is
satisfied if

‖E‖q,s,Ω,T ′ + ‖k‖r,s,Ω,T ′ <
1

4c1
να,

or, due to (5.2), if

( ∫ T ′

0

∥∥νAqe
−νtAq

(
A−1

q Pqu0

)∥∥s

q
dτ

)1/s

+ ‖F‖r,s,Ω,T ′ + ‖νk‖r,s,Ω,T ′ + ‖νg‖−1/q;q,s,∂Ω,T ′ < cν1+α (5.12)
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where c = c(Ω, q) > 0 is independent of the data and of T ′, ν. Obviously (5.12) is
satisfied for a sufficiently small T ′ = T ′(f, k, g, u0, ν) ∈ (0, T ]. In particular, the interval
of existence (0, T ′) may be infinite.

The conditions (5.10), (5.11) or (5.12) imply that F maps the closed ball B into
itself. For û, v̂ ∈ B we similarly obtain that

‖F (û)−F (v̂)‖q,s,Ω,T ′ ≤ A
(‖û‖q,s,Ω,T ′ + ‖v̂‖q,s,Ω,T ′ + 2B

) ‖û− v̂‖q,s,Ω,T ′

≤ 2Ay1‖û− v̂‖q,s,Ω,T ′ .

Since by (5.11) y1 is shown to be less than 2B, (5.11) proves that F is a strict contraction
in B. Then Banach’s Fixed Point Theorem yields the existence of a fixed point û of F
unique in B. Finally we obtain that u = û + E is a very weak solution of (1.1).

It remains to prove the uniqueness within the class of all very weak solutions of
(1.1) on (0, T ′). In addition to u let v ∈ Ls(0, T ;Lq(Ω)) be a very weak solution of (1.1).
Then v̂ = v − E has the representation (5.6) with u, û replaced by v, v̂. Therefore, for
U = û− v̂,

U(t) = −
∫ t

0

Aα
q e−ν(t−τ)AqA−α

q Pq

(
U · ∇(û + E) + (v̂ + E) · ∇U

)
dτ, 0 ≤ t < T ′.

The same estimate as for F (û) in (5.9) leads to the inequality

‖U‖q,s,Ω,T ′′ ≤ c
(‖u‖q,s,Ω,T ′′ + ‖v‖q,s,Ω,T ′′ + ‖k‖r,s,Ω,T ′′

) ‖U‖q,s,Ω,T ′′ (5.13)

where c = c(Ω, ν, q) > 0 is independent of T ′′ ∈ (0, T ′]. Hence we may choose T ′′ ∈ (0, T ′]
such that the term in front of ‖U‖q,s,Ω,T ′′ on the right-hand side of (5.13) is less than 1.
This choice of T ′′ yields U = 0 and consequently u = v on [0, T ′′). If T ′′ < T ′, we may
repeat this procedure finitely many times to get u = v on [0, T ′) if T ′ < ∞. For T ′ = ∞
we get u = v on [0, T ′) for every T ′ < ∞, i.e., u = v on [0,∞). This completes the proof
of Theorem 1.2. ¤

Remark 5.2.

(1) Let u ∈ Ls(0, T ;Lq(Ω)) be a very weak solution of the Navier-Stokes system
(1.1). Then as in the linear case, cf. Remark 4.2(1), there exists a distribution p on
(0, T )× Ω such that

ut − ν∆u + u · ∇u +∇p = f, div u = k

in the sense of distributions.
(2) For each very weak solution u of (1.1) there exists an explicit trace formula

for u|∂Ω
analogously to Remark 4.2(2). Thus u|∂Ω

= g is well-defined in the sense of
distributions on ∂Ω.

(3) Each very weak solution u ∈ Ls(0, T ;Lq(Ω)) of (1.1) has the unique decompo-
sition
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u = û + E with û, E ∈ Ls
(
0, T ;Lq(Ω)

)
,

where E = Ef,k,g,u0 is defined by (5.1) and the “perturbation” û is a very weak solution
of the “homogeneous” system

ût − ν∆û + (û + E) · ∇(û + E) +∇ĥ = 0, div û = 0 in (0, T )× Ω,

û|t=0
= 0, û|∂Ω

= 0,

leading to the variational formulation

−〈û, wt〉Ω,T − ν〈û, ∆w〉Ω,T = 〈(û + E)⊗ (û + E),∇w〉Ω,T + 〈k(û + E), w〉Ω,T

for all w ∈ C1
0 ([0, T );C2

0,σ(Ω)). The unique solution û has the regularity properties (5.7).
Finally, since A−1

q PqEt ∈ Ls(0, T ;Lq
σ(Ω)),

A−1
q PqE|t=0

= A−1
q Pqu0 and A−α

q Pqû|t=0
= 0

yielding a precise formulation for u(0) = u0 in (1.1).
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