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Decay properties of the Stokes semigroup in exterior domains
with Neumann boundary condition

By Yoshihiro SHIBATA* and Senjo SHimIzUT

(Received Dec. 27, 2005)

Abstract. In this paper, we obtain local energy decay estimates and Lp-Lg
estimates of the solutions to the Stokes equations with Neumann boundary condition
which is obtained as a linearized equation of the free boundary problem for the Navier-
Stokes equations. Comparing with the non-slip boundary condition case, we have a
better decay estimate for the gradient of the semigroup because of the null force at
the boundary.

1. Introduction.

Let Q be an exterior domain in R™ (n = 3) with boundary I' which is a C*! compact
hypersurface. v is the unit outward normal to I". This paper is concerned with the decay
properties of solutions to the Stokes equation with Neumann boundary condition:

Ou —DivS(u,m)=0 in £, ¢>0
divu=0 in Q, >0

(1.1)
S(u,mv=0 on I, ¢t>0
u|t:0 = Up in Q
where u = *(uq,...,u,) and 7 are unknown velocity vector and pressure, respectively.

ug is an initial velocity vector. S(u,7) is the stress tensor given by

S(u,m) = D(u) — =l
D(u) = (Dji(u))} =1, Djr(u) = Ou;/0xy + duy/0z;

(1.1) is a linearized problem of the free boundary problem (cf. [22]):

v+ (v-Vv—Av+Vg= f(z,t) inQt), t>0
V-v=0 inQ(), t>0
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S(v,q)v(t) + qo(x, t)v(t) =0 on 90(t), t>0
V|t=0 = vo in (0) (1.2)

where vg is an initial velocity vector, f(x,t) is a prescribed external mass force and
qo(x,t) is a pressure. £2(t) is occupied by the fluid which is given only on the initial time
t = 0, while Q(¢) for t > 0 is to be determined. v(t) is the unit outer normal to 9Q(t),
and v(x,t) and ¢(x,t) are unknown velocity and pressure, respectively. In this model we
do not take the surface tension into account.

In order to solve (1.2) global in time at least with small initial data, it is important
to investigate the decay properties of solutions to (1.1), which is one of the motivations of
this paper. Another motivation is due to Kozono [13]. In fact, according to Kozono [13],
when we consider the nonstationary Stokes equation with nonslip boundary condition in
an exterior domain 2 C R"™ (n 2 3), to obtain the optimal decay rate (n/2)(1 — (1/r))
of the L, norm of solutions (1 < r £ 00) it is necessary and sufficient that the net force
exerted by the fluid on the boundary is zero (the related results are cited therein). In
(1.1) the force on the boundary itself vanishes, and therefore we can expect to get better
decay properties of solutions compared with the nonslip boundary condition case. And
such better decay rate really appears in the estimate of the gradient of solutions to (1.1).
Namely, for any solution u to (1.1) there holds the gradient estimate:

IVut, o, = Cpt™?lullz, @), t — oo (1.3)
for any p with 1 < p < oo, while this estimate holds only for p with 1 < p < n in the
nonslip boundary condition case. Moreover, there holds the L., estimate of the gradient
of u as follows:

IVt Mrw@) < Cot™™ 2 lug| 1, (@), t — o0 (1.4)

for any p with 1 < p < oo, which can not be obtained in the nonslip boundary condition
case.

Now, we shall state our results precisely. To do this we shall formulate (1.1) in
the analytic semigroup theoretical framework, following Grubb and Solonnikov [11] and
Grubb [9], [10]. For 1 < p < oo there holds the second Helmholtz decomposition:

L,()" = J,(2) & Gp(Q), & : direct sum

corresponding to (1.1) with the following notation:

Xp Q) = {77 € Xp(Q) | 7lr = 0}
X,(Q) = {r € WHQ) | I7llx, ) < oo}
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Wa(Q) = {7 € Lp1oc(Q) | VT € Lp(2)"}
IVTlL, @ +ll7/dlL, @ n=p<oo
17l x, @) = v d 1
IVTlz, @) + I7/dllL, @) + ”W”L%(Q) <p<n
{1 + || p#n
(1+|z)log(2 +[z]) p=mn
Let P, be the solenoidal projection: L,(Q)" — J,(Q2) along G,(©2). To introduce the

Stokes operator associated with (1.1), we consider the resolvent problem corresponding
to (1.1):

Av —Div S(v,0) = P,f, divv=0 inQ, S(v,0)v|r=0 (1.5)
If we take the divergence of (1.5) and multiply the boundary condition by v, we have
AO=0 inQ, Or=v-(Dv)—divo|r (1.6)

because v-v =1 on I'. We know that given v € W} (Q)" there exists a unique 6 € X,(12)
which solves (1.6) and enjoys the estimate: [|0]/x, ) = Cp|lv]lwz(o). From this point of
view, let us define the map K : W2(Q)" — X,(Q) by 6§ = K(v). By using this symbol,
we know that (1.5) is equivalent to the reduced Stokes equation:

A —DivS(v, K(v)) =P,f inQ, Sk, K)vjr=0 (1.7)

(cf. Grubb and Solonnikov [11]). Therefore we define the Stokes operator A, corre-
sponding to (1.1) by the following formulas:

Apu=—-Au+VEK(u) forue Z(Ap)
P(Ap) = {u e J,(Q)NWZ()" | S(u, K(u))v|r =0}

From Grubb and Solonnikov [11] and Shibata and Shimizu [21], we know that A, gen-
erates an analytic semigroup {T'(t)},>¢ on J,(€2) for 1 < p < oo, the details of which will
be explained in Section 2, below.

The first result is concerning the local energy decay estimate. Let Ry be a fixed
number such that R" \ @ C Bg,, where By, = {z € R" | || < L} for given L > 0. Set
Qr =0QNBgr and

Ly r()" = {f € Ly(Q)" | f(z) =0 for = & Br}

THEOREM 1.1. Letl < p < oo and R 2 Ry. Then for every f € L, r())" and
t 2 1 there holds the estimate:

IT)Ppfllwz@n) < Cp,r t2 | fllz, 0 (1.8)
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The second results are concerned with the L,-L, decay estimate. We define the
solenoidal space J;(€2) by the completion of the space C§%, (R") = {u € C*(R")" |
divu = 0 in R™ and u vanishes outside of some large ball} in L;(2)!. Then, combining
Theorem 1.1 and the L,-L, estimate for the whole space problem by cut-off technique,
we can show the following theorem along the standard argument (cf. [12], [14]).

THEOREM 1.2.  For every f € J,(Q2) and t > 0 there hold the estimates:

1 1

T F Ly < Coat 2670 flL,@ for 1Sp<g<oo (p#oo, q£1) (1.9)

INT(O)flny) S Cpat 2G| fll, ) for 1Sp<qSn(g#1) (1.10)

Moreover, thanks to the null force at the boundary, we obtain the following theorem.

THEOREM 1.3. Letn<g<ooandl Sp<qg= oo (p#o0). Forevery f € J,(2)
and t > 0 we have

INT) f Ly S Crgt 267373 £, @) (1.11)

Theorem 1.3 shows a significant difference of asymptotic behavior of solutions be-
tween the Neumann boundary condition and nonslip boundary condition. In fact, as
already mentioned in (1.3) and (1.4), if we consider the nonslip boundary condition
u|r = 0 instead of the Neumann boundary condition, then we only have (1.9) and (1.10)
(cf. [3], [4], [5], [12], [15] and [19]). Moreover, the condition 1 S p < g <n (¢ # 1) is
unavoidable to get (1.10), which was proved by Maremonti and Solonnikov [15].

To end this section, we explain the notation which we shall use throughout the
paper. Given vector or matrix M, M denotes the transposed M. Given Banach space
X with norm || - ||, we set

n
X" ={v="(vr,...,v) [v; € X}, ulx = llvjllx
j=1

The dot - denotes the inner-product of R™. F = (F;;) means the n x n matrix whose
i-th column and j-th row component is F;;. For the differentiation of the n x n matrix of
functions F' = (Fj;), the n-vector of functions u = *(uq, ..., u,) and the scalar function
m, we use the following symbols: 9,7 = dr/0z;,

VW:t(alTr,...,anTr), divu:zajuj, Dith<28jF1j,...,Zaanj>
j=1 Jj=1

j=1

Vu = (0u;), D(u)=(0u; +90;uw;), I=1(6j), S(u,m)=D(u)—nI

where ;5 is the Kronecker’s delta symbol, namely 6;; =1 (¢ = j) and = 0 (¢ # j). The

!n fact, for 1 < p < oo we see that C’gf’d(R") is dense in Jp(€2), which will be proved in the appendix,
below.
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inner product (-, -)q is defined by

(u,v)q = /Qu(x) ~v(x) dx

For Banach spaces X and Y, Z(X,Y) denotes the set of all bounded linear operators
from X into Y. We write .Z(X) = .Z(X, X). By C we denote a generic constant and
Ca.p,... denotes the constant depending on the quantities a, b, .... The constants C' and
Cap,... may change from line to line.

2.  An analytic semigroup associated with reduced Stokes equation.

In this section, we shall give an analytic semigroup theoretical formulation of (1.1)
and we shall show the generation of an analytic semigroup associated with reduced Stokes
equation corresponding to (1.1). Our argument here is based on the theory concerning
the corresponding resolvent problem:

A —DivS(u,m)=f, divu=0 inQ, Su,m)v|jr=0 (2.1)

We use the following theorem which was proved by Grubb and Solonnikov [11] and
Shibata and Shimizu [21].

THEOREM 2.1. Letl <p<oo,0<e<m andd > 0. Set
Se={Ae C\{0} | arg A < 7 — ¢}

For every f € L,()" and A € C \ (—00,0], (2.1) admits a unique solution (u,m) €
W2()™ x X,(), which enjoys the estimates:

1
IAlllull L, @) + A2 Vullz, @) + ullwz@) + I7llx,@) = Cpeslfllz, @

provided that A € 3, with || 2 6.
Letting A — oo in (2.1) and using Theorem 2.1 we have the following lemma.

LEMMA 2.2. Let1l <p < oo. Then, for any f € L,(2)", there exist g € J,(Q) and
T € X,(Q) such that

f=g+Vm inQ (2.2)

lallz, ) + I7llx,@ = Cllfllz, @ (2.3)

PROOF. By Theorem 2.1 we see that for any integer m = 1, there exists a sequence
{(wm, ) Yooy © W2(Q)™ x X,(Q) such that (w,, ) satisfies the equation:

MUy, — Div S(Upm, Tm) = f, divum =0 inQ, S(tum,mm)v|lr =0 (2.4)
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and the estimate:

mfumllz, @) + llumllwz@) + lmmllx, @ = Clflz, @ (25)
where C' is independent of m. Set

WEYPT) = {ue WD) | Jve Wi(Q),v=uonT} (=12

||u||W£71/p(F) = inf {||UHW5(Q) |ve Wﬁ(Q),v =1 on F}
By the definition of the trace to the boundary we have
Hum”Wg*l/P(F) + ||7Tm||W;71/p(F) § CHf”Lp(Q)

for any integer m = 1. In view of the compactness theorem due to Rellich we see that
there exist a subsequence {(tm,,mm,;)} of {(tm,Tm)}, g € Lp(Q)™, u € W2(Q2)" and
7 € X,(€) such that

MU, — g weakly in L, ()"

OFUpm,; — Opu  weakly in L,(Q)", |af =2

x

0gTm,; — Opm  weakly in L,(9), la] £ 1

x

U, — U strongly in WI}(F)"

J

T, — T strongly in L,(T") (2.6)

J

as mj — oo. By (2.5) we have |[un| 1, @) = Cm71||f||Lp(Q), which implies that v = 0.
Therefore, letting m; — oo in (2.4) and using (2.6), we see that g and 7 are required
functions, which completes the proof of the lemma. O

By using the uniqueness of solutions to the Laplace equation with zero Dirichlet
condition we see the uniqueness of the decomposition in (2.2), and therefore we have

L,(Q)" = J,() & G,(9) (2.7)

We call this the second Helmholtz decomposition corresponding to the Neumann bound-
ary condition case.

We can show the following theorem by standard argument (cf. Fujiwara and Mori-
moto [8]).

THEOREM 2.3. Let1l<p<oo and 1/p+1/p' =1. Then, J,(Q)* = J, ().
Now, we shall eliminate 7 in (2.1). To do this, we need the following lemma.

LEMMA 2.4. Let1 <p < oo. Then, for any h € Wz}fl/p(l") there exists a unique
m € Xp(Q) which solves the Laplace equation:
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Ar=0 inQ, wlr=h
and satisfies the estimate:
H7r||Xp(Q) é CHhHWI}*l/P(F)

Let (u,7) € W2(Q)" x X,(Q) solve (2.1). Set P, be a continuous projection from
L,()™ into J,(2) along G,(R2). We take the second Helmholtz decomposition: f =
P,f + V6 with 6 € X,(Q2). Inserting this formula into (2.1), we have

A —DivS(u,m—0) =P,f, divu=0 inQ, S(u,r—0vpr=0 (2.8)
Set m — 6 = p. Taking the divergence of (2.8), we have
Ap=0 in Q (2.9)

because divu = 0 and divg = 0 in Q. Since |¢|?> = 1, multiplying the boundary condition
by v, we have v-(D(u)v)—p|r = 0. Since divu = 0 on I', we have the boundary condition:

plr =v - (D(u)v) — divu|p (2.10)

In view of Lemma 2.4, let p € X,(2) be a solution to the Laplace equation (2.9) with side
condition (2.10). Let K be a bounded linear operator from W72 (Q)" into X, () defined
by K(u) = p. Set # = 0 + K(u), then we finally arrive at the equation:

A —Div S(u, K(u)) =P,f inQ, Su,K(u)vjpr=0 (2.11)

On the other hand, if u € W2(Q)" satisfies (2.11), then divu = 0. In fact, divu enjoys
the equation: (A — A)(divu) = 0 in Q. By (2.11), we have 0 = v - (D(u)v) — K(u)|r,
which combined with (2.10) implies that divu|p = 0. Therefore, by Lemma 2.4 we have
divu = 0.

From these observations, we see that the problem (2.1) is equivalent to the problem
(2.11). Therefore, let us define the reduced Stokes operator A, by

Apu = —Div S(u, K(u)), ue€ 2(Ap) (2.12)
D(Ap) = {u € W;(Q)" NJp(Q) | S(u, K(w))v|r = 0} (2.13)

By Theorem 2.1 we have the following theorem.

THEOREM 2.5. Let 1 < p < oco. Then, C \ (—o00,0] is contained in the resolvent
set of Ap. Moreover, for any € € (0,7) and § > 0 there exists a constant C' = Cp ¢ 5 such
that
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O+ Al ) + PEIVOA AT o + 1O+ 40) 7 Ly
S Cpesllfllz, o) (2.14)

for any f € Jp(Q) provided that A € X, with |A| 2 6.

To show the generation of analytic semigroup associated with A, we have to show
the following lemma.

LEMMA 2.6. Let1l < p < co. Then, A, is a densely defined closed operator on
Jp(2).

PrOOF. First we shall show that Z(A,) is dense in J,(Q2). Let f € J,(2), and
then by Theorem 2.1 there exists a sequence {(um,Tm)}e—; C W2 (Q2)" x X,(Q) such
that

MUy, — DIVS (U, ) = f, divu, =0 in Q (2.15)
S (U, T )V|r =0 (2.16)
mlumllz, @) + llumllwz@) + lmmllx, @) = Clflz, @ (2.17)

Since m,, = K(uy,), (2.15) and (2.16) imply that u,, € 2(A4,). Employing the same
argument as in the proof of Lemma 2.2, passing to the subsequence if necessary, we see
that

MUy, — g weakly in L,(2)"
05U, — 0 weakly in L,()", |a| £2

09y, — 0o weakly in L,(Q), |a|/ =1
Letting m — oo in (2.15) we have
g+Vr=f divg=0 inQ, 7|r=0

with some g € L,(2)" and 7 € X,(2). Since f € J,(Q2), we have f = g and 7 = 0.
In particular, setting v, = mu,,, we see that v,, converges to g weakly in L,(£2)" and
Um € P(A,). By Mazur’s theorem, we can choose a convex combination of sequence
{vm}, which is in 2(A,) and converges to g strongly in L,(2)"™. This shows that 2(A4,)
is dense in J,(€2). Now we shall show that A, is closed operator. Let {u;}32; C Z(A,)
be a sequence such that

u; —u in Ly(Q)", Apu; — v in L(Q)" (2.18)

for some u, v € L,(2)". Since Z(A,) = Jp(R), u € Jp(Q). If we set f; = u; + Apuy,
then f; - u+wvin L,(2)™ as j — co. By Theorem 2.1 with A =1, we have
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luj = urllwzo) = CIf5 = fello, @

as j, k — oo, and therefore there exists a w € Z(A,) such that u; — w in W2(Q)" as
j — 00, which combined with (2.18) implies that u = w € 2(A,) and Ayu = v, which
completes the proof of the lemma. O

Combining Theorem 2.5 with Lemma 2.6, we have the following theorem.

THEOREM 2.7. Let 1 < p < oo. Then A, generates an analytic semigroup
{T()} 20 on Jp(2).

REMARK 2.8.  We can show by the standard argument that A; = A, provided
that 1 <p < oo and 1/p+ 1/p’ =1 (cf. Fujiwara and Morimoto [8], Miyakawa [16]).

3. Analysis of the whole space problem.

In this section, we consider the resolvent problem for the Stokes equation in the
whole space:

A —Au+Vr=f divu=0 in R" (3.1

For f € L,(R")", 1 <p <ooand A € C'\ (—00,0], let us define the solution operators
to (3.1) by

—i€ - £(€)
€2

PO f(€)

Ro(\)f(x) = Z¢ {)\‘HEP

[ = Jo 62

where (P(£))jx = 81 — &;€k/|€%. Given R > 0, we set

Ly r(R")" ={f € Ly(R")"| f(z) =0 for = ¢ Br}
Zp.r(R") = £ (Lpr(R")", W} (BR)")

The following theorem is the main result in this section.

THEOREM 3.1. Let1 < p < oo and 0 < € < w/2. Then there exist G;(\) €
Anal(Uy )2, Zp,r(R")), j = 1,2, such that Ro()\) has the following expansion:

Ro(A) = A¥ 1 (log \)"™ G1(A) + G2 (M) (3-3)

for any A € C \ (—o0,0] with |A| < 1/2, where o(n) =1 (n = 4, even) and o(n) =0
(n 2 3, odd). Moreover G;(\) satisfies the relation:

V- (G;(\f)=0 inR" (3.4)

forany f € L, gr(R™)™ and A € C'\ (—00,0] with |A\| £1/2. HereU, ={A € C | |\| <}
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and Anal(U,, X) denotes the set of all X-valued analytic function on U,..

REMARK 3.2. Iwashita [12] gave an expansion formula corresponding to (3.3) by
using the result due to Murata [17], and therefore he had to use some weighted spaces,
which required more complicated and unessential arguments to obtain several estimates
in W7(Qr)". To prove Theorem 1.1 without using such weighted spaces unlike [12],
we shall show Theorem 3.1 by our own method, below. Varnhorn [23] also gave an
expansion formula like (3.3) by using the Stokes potential and the expansion formula for
the Bessel functions, but we use the Fourier transform to represent the solution formula
of the Stokes resolvent problem, and therefore our proof below is also essentially different
from Varnhorn’s one.

PROOF. Let (r) € C3°(R) such that ¢(r) = 1 (|r| < 1) and %(r) = 0 (Jr| = 2),
and set go(€) = ¥([€]) and ¢ (€) = 1 — (l¢]). Given A € C'\ (—o0,0] with A < 1/2,

we set

First we shall show the analyticity of R§°(\)f. Since (A +[£|?)~! is an analytic function
of A when |¢| 2 1 and |A| £ 3/4, we have

1 1
- = - - 7Am
A+|E2 2w /tl—i (t — t+ 1€]2) Z 2mi /t,_ (t + |€]?)tmt!

and therefore R3°(\)f is formally given by

oy p o 5 L 1 [¢=OPEOFO], ) dt
Since [t 4 |€|%] = (1/8)(1 + |£]?) when |t| = 3/4 and |¢] > 1, we have

|0 [€0oa (O)P(E)(t + €)M | £ Cle| ™

for any 8 € N{J, |a| £ 2 and |¢t| = 3/4, where Ny = N U {0}. By the Fourier multiplier
theorem,

= 1 _ ¢m<s>P<f>f<£>} t .,
F1 A
mz_:‘?“ /t| sja © [ R R | e

> 1 dtl o "
<>l [ A S Gl Z (M) o
m=0

The right hand side of (3.6) converges uniformly when |A| < 3/4. Thus
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RF(X) € Anal(Uy 2, £ (Lp(R™)", W2(R™)™)) C Anal(Uy 2, %y r(R™))

Moreover, we obviously have V - R () f = 0.
Next we consider R§(A)f. Let f = (fl, ooy fn) € L, p(R™)™. Changing the vari-
(z —

ables £ = rw, w € S"! and using €'*~V)7@ = 37 li(z — y) - rw]' /1!, we have
b (§)P(E)
(), = (7" [ | w)
n z(m y) rw,¢ )( ijk) 1
= r" " fr(y) dr dw dy
S o o) T A 0
i(r—y) w
=2 )n =y o) ;,/) ) (05 — wjwie) fi(y) dw dy
k=1 1=0 " wl=1 :
ee} n—1+1
X / 7¢(T)T dr
0 A2
where (---); denotes the j th component of ---. We prepare the following lemma.

LEMMA 3.3. Let m € Ng, A€ C\ (—00,0] and |A\| £ 1/2. Then we have

o ah(r)r2m dr — (=1)mm A™

— 2 4 hom(A .
o e =Ty e 3.7)
w 2m+1 (71)m+1 m

/ /\+r2 = 5 A log A + hopmt1(N) (3.8)

where V' takes the branch Rev/A > 0, and hom(A) and hopm41(N\) are analytic functions
of X when |A| £ 1/2 which satisfy the estimates: |hap(N)] < C22™ and |hapmi1(N)] <
C 227+ respectively, where C is a constant independent of m.

PROOF. Let us write

1/) 1/)

| HTQ d = L(\) + ITe(\)

Since A+ 72| =2 72 — |\ 2 1/2 when 7 =2 1 and X < 1/2, I;()\) is an analytic function
when |A] £ 1/2 and

2
|Ik()\)|§2/ rRdr <4-2F forall k>0
1

Now, we shall analyze IT()\). First, we consider the case that k is even. Set k = 2m.
Then
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1
r2 4\ — A)™
IT5, (A d
2 /0 S "

i( ) m_l/ol(r2+/\)l_1dr+(—/\)m/ol)\fl:rz

=1

By the residue theorem,

/1‘”_1/006“”/00‘“"_”1/00 dr
0o AT 2 ) r24 12N 24 D)

If we set

m . 1 B . ©
IIQm,Q()\) = Z <T?) (_A) Z/O (72 + /\)l ! dr — (_A) /; r2 4\
=1

then Ilsp, 2(A) is an analytic function in |A| < 1, and |I1ap, 2(A)| £ 2-2™ when |A| £ 1/2.
Therefore setting hom, (A) = Iam (X)) + IIam 2(A), we obtain (3.7).

Next, we consider the case that k is odd. Set k¥ = 2m + 1. Changing the variable
r? = s, we obtain

/’l/) 2m+1 _1/1(s+)\_)\)md8

A+7r? 2 Jo s+ A
_lm m _y\m—l ! -1 1_ m/l ds
_QZ<Z>()\) /0(s+)\) ds—|—2( A) N

=330 (1) AN =X+ 0 og(1+0) —Tog )

If we set
II li )™ 11{(1+A Al}+ (—A)™log(1 + \)
2m-+1,2( 2 2 i
then Ilo,,41.2(A) is an analytic function in [A] < 1, and [Ilopm41,2(A)] £ C'2™ when

|A| £ 1/2. Therefore setting hom+1(A) = Iom+1(X) + Ilomy1.2(A), we obtain (3.8). O

Now we continue the proof of Theorem 3.1. In order to consider the analyticity of
RS(N) f, we set

(51 = e Z o [0 G - ) ety 39)

First we consider the case that n is odd. By using the fact that
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/ (i — 1) - )™ dw = 0 (3.10)
lw|=1

for any m € Ny, we have So,,11f =0 for m € Ny. Since n — 1 + 2[ is even, by (3.7) we
have

n—1

n—1+421 0 s
N = Z Szzf O 1/J()3+ - dr — Z ~(922ll)f'{ ( 1)2 it hn—1+21(>\)}
1=0 )

for A € C'\ (—00,0] with |A| £ 1/2. If we set

G?(A)fzziﬁ%w)\ﬂ ANf = Zs2lf P —1420(A)

then
RYA)f = A2'GYN f + Ga(N) f

for A € C'\ (—o0,0] with |\| £ 1/2. For every f € L, r(R")", we obtain

10251/ @)l () S CU+ D) /B o —yl'1f ()| dy £ CuRY (1 +1)°2R)'[|f 11, ()

R
when |z| £ R and |a| £ 2. By this inequality and Lemma 3.3 we have

oo

s - (20 +1)2(4R)?*
ﬂfrlumOw <C,Rv2 HumeﬂE:gggllglf

W3 (B) 20)!

which implies that G3(\) € Anal(Uy 2, %, r(R™)). Moreover we obtain V - S;f = 0,
since Z;kzl iw;(0j5 — twjwk) fw(y) = 0 when [ 2 1 and since Syf is independent of
x when [ = 0. Thus we have V - GY(\)f = 0. In the same manner, we see that
GY(\) € Anal(Uy 2, %y, r(R™)) and that V- GY(A) f = 0.

Next we consider the case that n(= 4) is even. Since n — 1 + 2[ is odd, by (3.8),
(3.9) and (3.10) we have

=142 > —1)zt
Nf = Zszzf 0 1/’()3—“42 drz*(ggll;;{(lg)\21+llog>\+hn—1+2l()\)}

If we set

g =3 2 E D agoy = Zsﬂf o)
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then
RGOS = A og AGION) f + Go(N) f
for A € C'\ (—o0, 0] with |A| < 1/2. Employing the same argument as in the case that n
is odd, we have G?()\) € Anal(Uy 2, Zp r(R™)) and V~G9()\)f =0, 7 = 1,2. Therefore if

we set G1(A) = GI(N\), Go(\) = G3(A) + R (N), then G;(N), j = 1,2, satisfy the desired
properties, which completes the proof of the theorem. O

In the next theorem, we show some properties of the operator Ro(\) when A = 0.

THEOREM 3.4. Letl<p<oo and0<e<m/2.
(1) For every f € L,(R™)™ and A € X, there holds the estimate:

IMIRo N Il ey + IMZ VRN L, ey + IV RoMN ], oy
< Cpellfllz,rm (3.11)
(2) If we define
Ro(0)f = 7 [(P©)/IE7)F(9)) (=)

then for any f € L, r(R"™)™ there holds the estimate:

sup  |Ro(0)f(z)||z[" "%+ sup [VRo(0)f(x)[|z[""" + | Ro(0) fllwi ()
o2 R+1 o2 R+1

+ V2ROV f |, (e + o @Il + ML Ly By + IV 2y
z|Z2 R+
< Cpr I fllL,(rm) (3.12)

(3) For every X € C\ (—00,0] with |\| = 1/2 and f € L, r(R")", there holds the
estimate

[Ro(A)f = Ro(0)fllwzsr) = CoalIADIfllL,r7) (3.13)
with a positive constant C' = Cp . r, where
Pa(A]) = max (]Al, [A]% 7 [log A|7() (3.14)
Proor. (1) Since
A+ [€17] 2 sin(e/2) (1A + [€]%) (3.15)

for every A € ¥, and £ € R™, we obtain (3.11) by using the Fourier multiplier theorem.
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(2) By using the formula:

Ro(0)f = — (W’w J xl2_")*f

~ 2w, lx]»  n—2

where w, denotes the surface area of unit sphere in R™ (cf. [7], [23]), and by [21,
Theorem 3.5], we obtain (3.12).

(3) Since Ry(A)f — Rp(0)f in WPZ(BR)" as A — 0 for f € L, g(R™)", we see that

Ro(0) = G (0) (3.16)

in Theorem 3.1. Therefore we have (3.13) by Theorem 3.1. O

4. Preliminaries.

Let D be a bounded domain in R™ (n = 2) and the boundary D be a C*! hyper-
surface. In this section we consider the unique solvability of the problem:
—DivS(u,m)=f, divu=0 in D, S(u,m)vlap = g (4.1)

where v is the unit outward normal to dD. In order to consider the uniqueness of (4.1),
we introduce the rigid space Z:

X = {Ax +b| A is an anti-symmetric matrix and b € R"}

Let {p}M, (M = n(n —1)/2 + n) be an orthogonal basis in Z such as (pj, px)p = -
We know that

D(u) =0 = u€ 4 (4.2)
(cf. Duvaut and Lions [6]) and that if u € #, then divu = 0. Set
Ly(D)" = {u€ Ly(D)" | (u,p1)p =0, 1=1,...,M}

For the existence of the solution to (4.1), f and g should satisfy the compatibility con-
dition:

(fapl)D+<gvpl)8D:0 for l:177M (43>
In fact, if (u, ) is a solution to (4.1), then for any p; € Z we have

(f,p)p = (=DivS(u,7),p1)p
= —(g,p)op + (1/2)(D(u), D(p1))p — (7, divpr)p = —(g,p1)oD

because D(p;) = 0 and divp; = 0.



16 Y. SHIBATA and S. SHIMIZU

The theorem which follows is the main result in this section.

THEOREM 4.1. Let 1 < p < oo. For every f € L,(D)" and g € Wpl_l/p(aD)"
which satisfy (4.3), (4.1) admits a unique solution (u,) € (W2(D)" NL,(D)") x W}(D)

having the estimate:

lullwzo) + lIllwy o) = Co.o (1£llL, ) + 19lly2-22 (5 ) (4.4)

To show the uniqueness of the solution to (4.1), we prepare the following lemma.

LEMMA 4.2, Let1 <p < oc. (u,7) € WZ(D)" x Wy (D) satisfies the homogeneous
equation:

—DivS(u,7) =0, divu=0 in D, S(u, m)v|op =0 (4.5)

if and only if u € Z and m = 0.

PROOF. Let (u,m) € WZ(D)" x W(D) satisfy (4.5). Then (u,) satisfies
u—DivS(u,7) =u, divu=0 in D S(u, m)v|op =0

By the boot-strap argument we know that (u,7) € WZ(D)" x W}(D) for any ¢ €
[p,00). The boundedness of D implies that (u, ) € W2 (D)™ x W, (D) for any ¢ € (1,p).
Therefore (u,7) € WZ(D)" x W4 (D). By integration by parts, we have D(u) = 0, and
by (4.2) u € #. Moreover since Vr = 0 in D and 7|sp = 0, 7 = 0. The necessity is
obvious, which completes the proof of the lemma. O

To show the existence of the solution to (4.1), we consider the auxiliary problem:
u—DivS(u,m)=f, divu=0 in D, S(u, m)v|lep =g (4.6)

Concerning (4.6), we know the following lemma which was proved in [21, Theorem 1.1].

LEMMA 4.3. Let1 <p < oco. For every f € L,(D)" and g € W;_l/p(aD)”, (4.6)
admits a unique solution (u,m) € W2(D)" x W) (D).

PROOF OF THEOREM 4.1. If (u,7) € (W2(D)"NL,(D)") x W2(D) satisfies (4.5),
then by Lemma 4.2, w € #Z and m = 0. Since u € L,(D)", u = 0, which completes the
proof of the uniqueness.

Now we shall show the existence. If (u,7) € W2(D)" x W} (D) solves (4.6) and if f
and g satisfy (4.3), then v € L,(D)". In fact, for p; € #Z we have

(U,pl)D = (DIV S(U, ﬂ-)apl)D + (fvpl)D
= (S(u, m)v,p1)op — (1/2)(D(u), D(p1))p + (7, divpi)p + (f,p1)p
=(9,p)op + (fsp)p =0 (4.7)
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where we have used the facts: D(p;) = 0 and divp; = 0. Therefore, by using the solution
of (4.6) we can reduce (4.1) to the case where g = 0. From this observation it is sufficient
to consider the equation:

—DivS(u,7)=f, divu=0 in D, S(u, m)v|op =0 (4.8)

for f € LP(D)”. By (4.7) and Lemma 4.3 we see that for every f € I-/p(D)”7 there exists
a unique solution (v,0) € (W2(D)™ N Ly(D)™) x W, (D) to the problem:

v—DivS(v,0)=f, dive=0 in D, S(v,0)vlgp =0 (4.9)

which enjoys ||U||W3(D) + HGHW;(D) < Cp. ol fllz,(p)- Now, let us define the maps K, K;
and Ko by the formulas

Kif=v, Kyf=0, Kf=(Kf Kf)

We know that Ky : L,(D)" — W2(D)" N Ly(D)" and K; : L,(D)" — W}(D) are
bounded linear operators, respectively. Since

—Div S(th, th) = th — Div S(K1h7K2h) - th
=h—Kh=(I—-K)h in D (4.10)

if we show the existence of the inverse operator (I — K;)~' : L,(D)"* — L,(D)", then
(u,m) = K(I — K;)~'f is a solution to (4.8). Since K; € Z(L,(D)") is a compact
operator, in order to show the existence of (I — K;)~!, it is sufficient to show that
I — K, is injective in view of the Fredholm alternative theorem. Let h € L,(D)" such
that (I — K1)h = 0. If we set (v,0) = Kh, then by (4.10) v € WZ(D)" N L,(D)" and
0 e WZ}(D) enjoy the homogeneous equation (4.5), which implies that v = 0 and 6 = 0,
namely h = v — Div S(v,0) = 0. Therefore, we have the injectivity of I — K4, which
completes the proof of the theorem. O

Finally we shall state some technical lemmas which will be used to keep the diver-
gence free condition in what follows. First we shall state so-called the Bogovskii-Pileckas
lemma. To do this we introduce the following function spaces:

ST Ve (D)

WD) = GEmD) 7, WD) = L,(D)
o) = { ey [ rac=of

LEMMA 4.4 (cf. [1], [2] and [18]). Let 1 < p < 0o and m € No. There exists a
linear operator B : W) (D) — W1 (R")" such that

V-B[f]=fo in R",  suppB[f]CD
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1Bl gy S Conpll w0

where fo=f (x € D) and fo =0 (x &€ D).
The next lemma was proved in [21, Lemma 8.3].

LEMMA 4.5. Letk € Ny, r; € R, j =1,2,3,4, such that 0 < r; <13 <14 <
ro and x € C®(R") such that suppVx C Dy, p,. If u € WF(D,, r,) satisfies the
condition: divu = 0 in D, ,,, then there exists v € WZ’,“(R")” which possesses the
properties: suppv C Dy, ry, dive =0 in R", (VX)-v = (V) u in R" and [[v[lwr(rn) <

C||“||W,§(DT1,T2)~
Combining Lemmas 4.4 and 4.5, we obtain the following lemma.

LEMMA 4.6. Letk 21,0 <71y <ry and x be the same function in Lemma 4.5. If
u € WE(Dy, »,) satisfies the condition: divu =0 in Dy, ,,, then (Vx)-u € WE,(Dy, ;)
and therefore
B[(Vx)-u] € WZ’fH(R"), supp B[(VX) - u] C Dy, 1,
V- -B[(Vx)-ul=(Vx)-u in R"
IBI(VX) - ulllyr+1 gy = Cpkra o (VXD - wllwe o, )
Proor. By Lemma 4.5 and the divergence theorem

/D (Vx)-udx:/n(VX)-vdx:/ndiv(xv)dwzo

1,72

which implies that (Vx) - u € W;G(DT17T2). Therefore by Lemma 4.4, we obtain the
lemma. U

5. An expansion formula of the resolvent around the origin in 2.

In this section, we investigate the behavior of solutions to the resolvent problem
(2.1) at A =0. Set

Z.1(Q) = £ (Lp.r(Q)", W, (Qr)")

The theorem which follows is the main result in this section.

THEOREM 5.1. Letl <p < o0,0<e<7/2and R> Ro+3. Then there exist \g =
)\p,R >0, Hy € vaR(Q), Hl()\) S B(U)\O,.iﬂp,pb(ﬂ)) and Hg()\) S Anal(U,\O,pr(Q))
such that

A+ A P f = A2 log \)7™ Hof + A2 7 H (M) f + Ha(\) f (5.1)



The Stokes semigroup with Neumann boundary condition 19

in Qg forany f € L, r(Q)" and A € E. with |\| £ Ao. Moreover Hy and H;(\) (j =1,2)
satisfy the relation:

Vo (Hof) =0, V-(H;(Nf)=0 inQ, j=1,2 (5.2)
for any f € L, r(Q)" and A € B¢ with |\ £ Xo. Here B(Ux,, %, r(2)) denotes the set
of all £, r()-valued bounded analytic functions on Uy, = Uy, \ (—o0,0].

PrOOF. For f € L, p(0)", we set fo(z) = f(z) (z € Q) and fo(zx) =0 (x € Q),
and set vf = flag,,. Let (Ro(X)fo,11fy) be given by (3.2). Let (u,7) be a solution to
the problem:

—DivS(u,m) =~vf+ M) f, divu=0 in Qg4
S(u7 W)V‘F = 0; S(uaﬂ-)VO|SR+1 = S(RO()‘)f07Hf0)VO|SR+1 (53)

where v is the unit outward normal to Sp11 = {z € R" | || = R+ 1} and M(\)f is
defined by the formula:

M M
M) f == (S(Ro(N) fo, T1fo)vo, pk)smss Pk — D (Vs Pr)rs s i (5.4)
k=1 k=1
From the definition of M(\), we have
(v f+ M) fop) o + (S(Ro(N) fo, ILfo)vo, pi)spe, =0 (5.5)

In view of (5.5), by Theorem 4.1 we know that (5.3) admits a unique solution
(u,m) € (WHQRr41)" N Ly(Qr11)") x W (Qps1)

We define the operator (A’'(\), B(\)) by the formula: v = A’(A)f and 7 = B(\)f. If
(u, ) solve (5.3), then (u + Zkle agpy, ™) also solve (5.3). Therefore for the later use,
we define the solution operator A(X) by

M

AN = AN+ (Ro(N) fo— AN f,p)

k=1

D (5.6)

Qr41

In particular, (A(N\)f, B(A)f) solves (5.3) and satisfies the condition:
(A()\)f—Ro(/\)fo,pl)QR+l =0, I=1,....M (5.7)
Now we discuss the expansion of (A(X), B(A)) at A = 0. First we shall give expansion

formulas of S(Ro(A) fo,ILfo) and M(X)f. Let G;(A) (j = 1,2) be the operators defined
in Theorem 3.1. We see that



20 Y. SHIBATA and S. SHIMIZU

211

GiN) =Y GimA™ (N S1/2), Gjm = 1,/”_ Gy (0 <r <1/2)

m=0
1Gimllz, nrry S Liv™™ (0< 7 <1/2), V-Gjmf=0 in R" for f € L, p(R")"
(5.8)

By Theorem 3.1 and (5.7)

S(Ro(A) fo, I fo)

= S(Ro(0) fo, Ifo) + A% 7' (log A)"™ > " D(Grmfo)A™ + Y D(Gam fo) A"
m=0

m=1

where we have used the fact that G2(0) = Gag = Ro(0) (cf. (3.16)). By the divergence
theorem

(’Yf,pl)QR+1 +(S(RO(O)anHfO)V07pl)SR+1 :07 l= 17"'7M (59)

and therefore by (5.4) formally we have

[e%e] M
M\ f=— X% (log 1) [Z(D(Glmfowo,pk)smpk} A
m=0 k=1

o0

Z {Z szfO)VO7pk)SR+1pk] AT

=1

Since (DiVD(Gj"lfO)apl)BRJrl = (D(Gjme)VOapl)SR+1v if we set
M
Mjmf == (Div D(Gjm fo), Pk) B P (5.10)
k=1
then formally we have
M) =X (log A7 Y " My fA™ + > Moy fA™

m=0 m=1

Since [|Mjm fllz,@p1) = Cr~ ™| fllL, (@) for f € Ly r(R")" and 0 < r < 1/2 as follows
from (5.8), if we set

Nf =Y (M )N™, Ma(A)f =Y (Mo f)N™
m=1

m=0

then we have
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M;(X) € Anal(Uy 2, Z(Lyp,r(Q)", Lpy(Qp1)")), j=1,2
M) = A2 1og \)7M My (N) + My (N) (5.11)
Now, we decompose (5.3) into the following problems:

— Div S(ug0,m20) = vf, divugg =0 in Qpiq

S(ug0, m20)v|r =0,  S(u20,720)0|55.1 = S(Ro(0)fo, ILfo)vo|sp,, (5.12)

—Div S(Wjm s Tjm) = Mjm f, divuj, =0 in Qpriq

S(’U,jm, 7ij)l/|F = O, S(u]‘m, ij)VO|SR+1 = D(Gjme)VO|SR+1 (513)

for m = 0,1,2,... when j = 1 and for m = 1,2,... when j = 2. By (5.9), the right
members of (5.12) satisfy the compatibility condition (4.3). Noting that

(Mjmfapé)QR_H + (D(Gjme)V07pl)SR+1 = Oa l= ]-7 sy M
as follows from (5.10) and the divergence theorem, we see that the right members of (5.13)
also satisfy the compatibility condition (4.3). By Theorem 4.1 we know the existence of

the solution (wjpm, Tjm) € (Wg(QRH)” N LP(QRH)”) X Wpl(QRH)- Therefore we define
the solution operator (A’ , Bjm) of (5.12) and (5.13) by wjm = A%, f and 7j, = Bjn f

gm>? jm

form=20,1,2,... and j = 1,2. Obviously
Al € L(Lpr(Q)", W2 (Qrs1)" N Lp(Qr41)"),  Bjm € ZL(Lp.r(Q)™, W, (Qr11))
By (5.8), (5.10), Theorems 3.4 and 4.1 we have
HA,20fHWP2(QR+1) + [|B2ofllwi(2ri1)
< C(Iflz,@ner) + ISRo(O) fo, Wo)olgr-175s,. . ) S ClF
HA;'meW3(93H) +1Bjm fllwi(@ri)
< (1Ml @nrn) + DG ool -ingsyy) S CLir ™ Il (5:14)

for f € L, ()™ and 0 < r < 1/2, where C' is independent of m. Therefore if we set

AN =D AG A By = BimfA™
m=0

m=0

then we have
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A;(A) S Anal(Ul/z,.i”(Lp,R(Q)", W;(QR—Fl)n n LP(QR_;'_l)n)), ] = 1, 2
VAN f=0 inQpyy for feL,r(Q)", j=1,2
B;(\) € Anal(Uy 2, L (Lp ()", Wy (Qr+1)), j=1,2 (5.15)

and we see that A’(\) and B()) have the following expansion:
A'(N) = AF 7 Hlog )M AL (N 4+ A5(N), B(A) = A2 Ylog \)7™ B (\) 4 Ba(\) (5.16)

In view of (5.6), (5.8), (5.15) and Theorem 3.1, setting

e, J=1,2

M
AN = ANf + (G (N fo — AN fopr)
k=1

QRr+1

we have

A(N) = A2 (log \)7™M Ay (A) + A (V)
Aj(N) € Anal(Uy o, L (Ly ()™, W2(Qr41)" N Ly(Qr41)")) §=1,2
V-A;(Nf=0 inQpyy for feLyp(Q", j=1,2 (5.17)
Now we shall construct the parametrix of the problem (2.1). Let ¢ € C§°(R™) such
that ¢(z) =1 (Jz| £ R—3/2) and ¢(x) =0 (Ja| =2 R — 5/4). We define
SN f = (1= d)Ro(N) fo + AN f + B[(V9) - (Ro(A) fo — AN f)]
YA f =1 =)ILfo+ B f (5.18)

Since supp V¢ C Dr_3/2 r—5/4, div Ro(\) fo = 0 in R" and div A(\)f = 0 in Qry1, by
Lemma 4.6 we have (V@) - (Ro(A) fo — AN)f) € Wz?,a(DR—ZR—l) and therefore

B[(V¢) - (Ro(N) fo — AN f)] € W, (R")

supp B[(V®) - (Ro(A) fo — A(N) f)] C Dr—2,r—1

V- B[(Vg) - (Ro(A)fo — AN )] = (V@) - (Ro(A) fo — A(A)f) in R"

IBI) - (Ro(W)fo = AN Nl ey < Conrl(F0) - (BoN)fo = Ay
(5.19)

By Theorem 3.1, (5.17), (5.18) and (5.19), ®(\) has the following expansion:

D(N) = A2 1log 7MW (N) + Ba(N), @1(N), Po(N) € Anal(Uy)a,-% r(Q))
V-®;(Nf=0 inQgr for feL,r(Q)", j=12 (5.20)
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By (3.1), (5.3) and (5.19), (®(\)f, U(\)f) satisfies

AD(N) f — Div S(@N) £, ¥\ f) = f+ Q) f, dive(\)f=0 inQ
S(@N)f, ¥ frlr =0 (5.21)

where

QNS =2(Ve)V(Ro(N) fo — AN ) + (Ad)(Ro(N) fo — AN f) + ApAN)f + oM (A) f
+(A=A)B[(V¢) - (Ro(A) fo = AN )] = (VO)ILfo + (Vo) BA) f (5.22)

If we show the existence of (I +Q(\)~" € Z(L, r(Q)") for A € Uy, with some A, then
by Theorem 3.4, (5.18), (5.19) and (5.21) we see that

(@I + QM) AT + Q) THf) € W ()" x X,(Q) (5.23)
and it satisfies (2.1). Thus the uniqueness assertion in Theorem 2.5 implies that
A+ A4)  Bf =2 +QW\) 7S (5.24)

for any f € L, z(Q)" and A € Uy,. By Theorem 3.1, (5.11), (5.17) and (5.19) we can

write
Q) — Q(0) = A2 (log A)"™ Q1 (A) + AQ2(N) (5.25)
with some Q1()), Q2(N) € Anal(Uy )2, £ (Ly r(2)", W,}(QR)")). In particular, we have
QNS = Q) fllwz () = Con(IADIfIIL, @) (5.26)
for any f € L, r(2)" and X € Ul/g, where p,(|A|) is given by (3.14). Therefore if we

show the existence of (I +Q(0))~! € £ (L, r(2)™), then there exists a A9 > 0 such that
for A € UAO

[(Q0) — Q) (T + Q(0)) )

M

Il
=]

(I+QM)™ = +Q)™

J

which combined with (5.20), (5.24), (5.25) and (5.26) implies (5.1) and (5.2). From
these observations, to complete the proof of Theorem 5.1 it suffices to show the following
lemma.

LEMMA 5.2. (I +Q(0))~t € L(L,r(Q)").

PrOOF.  Since Q(0) € Z (L, r(2)™) is a compact operator, in view of the Fredholm
alternative theorem to show the lemma it suffices to show that I + Q(0) is injective. Let
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f € L, r(Q)™ satisfy (I +Q(0))f = 01in Q. If we set u = ®(0)f and 7 = ¥(0)f, by
(5.21) we see that

—DivS(u,7) =0 divu=0 in , S(u,m)v|r=0 (5.27)
By Theorems 3.4 and 4.1 and Lemma 4.6, we have

u=(1-¢)Ro(0)fo + ¢A(0)f + BI(V) - [Ro(0)fo — A(0) f]] € W 10e()

7(2)] < Cp.r x|~ V| fllz, for |z| = R+1 (5.28)

By the boot-strap argument, we see that u € Wiloc(ﬂ)" and T € W}, (Q). Let p(z) €

Jloc
C§°(R") such that p(x) =1 (Jz| £ 1) and p(x) = 0 (Jz| = 2), and set pr(z) = p(z/L).
By the divergence theorem

0 = (~Div S(u, ), pruo = (D(u), V(pru))a - (v, div (p1))a
— (1/2)(D(u), D(w)pr ) + (D(u), (Vpr)u)o — (, (Vpr) -we  (5.20)

By (5.28), for L > R + 2 we have
|(D(u), (Vpr)u)a

<SGl [ el el D dal 1
LE|z|s2L

) (7T7 (VPL) . U)Q‘

S CprL "D f7 ) as L— oo
because n = 3. So we obtain ||D(u)||2L2(Q) =0 by L — oo in (5.29). Thus D(u) = 0,
namely u € #Z. Since u is represented by the formula: v = Ax + b with some anti-

symmetric matrix A and b € R™, by (5.28) u = 0. Since V7 = 0, by (5.28) 7 = 0. Thus
we have

0)f=0 TO)f=0 in Q (5.30)
By the definition of ¢(z), we have
AO)f =B(0)f =0 |z|SR—2, Ro(0)f=Ify=0 |z|>R—1 (5.31)
If we set

{A(O)f X € QR+1 {B(O)f x € QR+1
w= 0
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then from (5.3) and (5.31) it follows that (w,0) € W2(Br41)" x W, (Bry1) and

—DivS(w,0) = fo, divw =0 in Bgi1
S(w,e)V0‘5R+l = S(RQ(O)fQ,Hfo)V0|SR+1 (532)
On the other hand, by (5.31) (Ro(0)fo,IIfy) also satisfies (5.32). Therefore (w —

Ry (0) fo,0 — I fy) satisfies (4.5) with D = Bgr41. By Theorem 4.1 and (5.7) with A =0
we have

A0)f — Ro(0)fo =0, B(0)f—Ify=0 in Qg (5.33)
By (5.28), (5.30), (5.33) and supp ¢ C Bg_1,

0= Ro(0)fo + ¢(A(0)f — Ro(0)fo) = Ro(0)fo in Qg1
0=1IIfo +¢(B(0)f —Ifo) =1lfy in Qry

Thus we obtain
fo = —Div S(Ro(O)fo,Hfo) =0 in BRJrl
namely f = 0, which completes the proof of the lemma. O

6. Proofs of main theorems.

Applying Theorems 2.5 and 5.1 to the representation formula of the analytic semi-
group {T'(t)};>¢ in terms of (A\+A4,) "' P,, we can prove Theorem 1.1 in the same manner
as in Iwashita [12] and Kubo and Shibata [14], and therefore we may omit the detailed
proof of Theorem 1.1. And also, replacing Lemma 2.5 in [14] by Lemma 4.6 and com-
bining the L,-L, estimates of the Stokes semigroup in R" and the local energy decay
in Theorem 1.1 by cut-off technique, we can prove Theorem 1.2 in the same manner as
in Iwashita [12] and Kubo and Shibata [14]. Therefore, we may also omit the detailed
proof of Theorem 1.2.

Now, we shall prove Theorem 1.3. Once we obtain the next lemma, we immediately
prove Theorem 1.3.

LEMMA 6.1. Letn <p<q < oo (p# o0). Forevery f € J,(2) and t > 0 we have

INT®) £l Ly < Cogt 267073 £]l 0 (6.1)

In fact, if 1 < p £ n < g £ 0o, we choose r in such a way that n < r £ ¢ £ oo
and 7 # oco. Then, for f € J,(2) by Lemma 6.1, (1.9) and the semigroup property:
VT () f =VT(t/2)[T(t/2)f], we have
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INT () f by S Crg(t/2)" 2072 | T(t/2) f]

Lr(9)

1 1
r

< CryCpr(t/2) 2 G=3) =2 (1/2)" 2 G2 £, 0

_n(l_1)_1
= Cpqt 2(5-7) Az,

which shows Theorem 1.3 in the case that 1 < p < n < ¢ £ co. Therefore, we shall prove
Lemma 6.1, below.
The lemma which follows is a key to prove Lemma 6.1.

LEMMA 6.2. Let0<e<w/2 andn <p =< q = oo (p# o0). Then, there exist

positive constants Ao and Cy, 4 . such that

IVO+ 47 F L ) S Cpge MG 11, 0 (6.2)

for every A € T, with |A| < Ao and f € Jp(Q).

In order to prove Lemma 6.2, we prepare an auxiliary lemma for the solution operator
Ro(M).

LEMMA 6.3. LetO<e<m/2andn<p<q< oo (p#o0).
(1) For any fo € Ly,(R™)™ and X € X, with |\| < 1 there holds the estimate:

n

n(l1__1\_1
IV Ro(N) foll o, (rm) < Chpgre INEG 075 o]l 1, () (6.3)

(2) For any fo € Ly(R™)"NLi(R™)™ and A € L. with |A| £ 1 there holds the estimate:

IVRo(N) follz,(rry  Coge(IfollL,rry + 1 follL, (rm)) (6.4)

PrOOF. In the course of the proof below, we always assume that A € 3. and
|A| £ 1. First we shall show the assertion (1) when g = co. Let 1o(€) € C§°(R"™) such
that ¢o(§) = 1 (|| = 2) and ¢o(&) = 0 (€] 2 3), and set Yoo (§) =1 — o(¢) and

RE'(Nfo =7 [un(©OPE@Fo(©)/ A+ )] (), N =0,00.
To estimate R°(A) fo, we observe that
08 [$oo (O)A + 1€%) ]| < CalL+[¢]*) " fg]

for any o € N and € € R™, because |A+|£[?| = (1/2)(J€]*+1) when [£] = 2 and |A| £ 1.
By the Fourier multiplier theorem we have

188 ) ol gy € Collfoll (6.5)
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Since n < p £ ¢ £ co and p # oo, by the Sobolev imbedding theorem, we know that
W, (D) C Lg(D),  lullz,(py £ Cpgllullwz(n) (6.6)
for D =R", Q and Qgy1. By (6.6) and (6.5) we have
IVEE N Aol < CollVES Dol < Coll ol (67)
Next we consider RJ(\)fo. By (3.15) we have
|08 [Lo(&) A+ €)1 £ Cae(IAl + [€17) e 71
for |£] < 3 and o € N{'. Therefore
08 [¥0(©& PO+ [E7) ]| < Caele 71 or < Ca 72T (65)
for o € N§. If we set
K (w) = Z [9o(€)ig PO+ [E7) 7] (@)

then 9; RY(\) fo = K{ * fo(x). To estimate Kﬁ\(x), we use the following theorem (cf. [20,
Theorem 2.3]):

THEOREM 6.4. Let B be a Banach space and | - |, its corresponding norm. Let a
be a number > —n and set « = N + 0 —n where N 2 0 is an integer and 0 < o < 1. Let
f(&) be a function in C(R™\ {0}; B) such that

9 f(§) € Li(R";B) for|y| =N
00F(©)] 5 S Chlg1*™ M Ve #£0, vy

Let
o) = [ e pe e
Then, we have

|g(.’E)|B g C’n,a( max C’Y) |{E|7(n+o‘), Yz 7é 0

[Y|SN+2

where C,, o is a constant depending only on n and o.

By Theorem 6.4 and (6.8) we have
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|K§\(x)| <Oz~ forall z #0 (6.9)

|Kf\(x)| < CE‘)\|_%|{,E|_” for all z # 0 (6.10)

By (6.9) and (6.10) we have

/ ‘Ki(m)|p/dx é Cp,é(/ ) |x|7p’(n71)d1,+ |)\|7%\/ 1 |xp/nd1~)
e o SIAI2 |2 Z[A|72

< O, (IA[TH D) M|—%/|)\|—%(—p/n+n)) < e [N G2
Therefore by the Young inequality we have
; n 1
HajRg()\)foHLx(Rn) = HKiHLp,(Rn)Hfo||Lp(Rn) S Cpe N2 2 foll L, (r) (6.11)
Since n/(2p) —1/2 < 0 and |A| < 1, combining (6.5) with (6.11), we obtain

IV Ro(N) foll oo (rry S Cpye [N 2| follz, () (6.12)

which shows (6.3) when ¢ = co and n < p < co. When ¢ = p < o0, by (3.11) we obtain

IV Ro(N) foll, (rmy < Cpoe N2 foll 1, () (6.13)

for every fo € L,(R™)" and A € X, which shows (6.3) when ¢ = p < co. When
n < p < q < oo, using the interpolation inequality:

bl 1—B
IV R foll (e < Coal VRo N follE ey IV RN folly g

and (6.12) and (6.13), we obtain (6.3), which completes the proof of (6.3).
In order to prove the assertion (2), it suffices to prove that

IVRo(N) foll, ) = Cpe(lfollz, ey + I follzyrn)) (6.14)
for any fo € L,(R")" N L1 (R™)" and A € £, with |[A| £ 1. In fact, since

IVRo(N) follL,(rm) = Cp,q(HVZRO(A)f”LP(R") + [VRoN) fll 1, (r"))

as follows from (6.6), by (6.14) and (3.11) we have (6.4).
By (6.9) and the fact: (n —1)p > (n — 1)n > n, we have

/ ‘Ki(ac)|pd:r < C. lz|~ (=Yg < C,
lz|21

lz|21
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Since
K@l sc [ leta-c.
lel=3
as follows from (6.8) with oo = 0, we have
/ \K{(2)|Pdz < Cpe
|2 <1

Therefore HKﬁ;HLp(Rn) = Cp,e < 00. By the Young inequality we obtain

HajRg(A)fOHLP(R") s ||K§;||Lp(Rn)||f0“L1(R" = Cpellfollz, (rm (6.15)

Combining (6.5) with (6.15), we obtain (6.14), which completes the proof of the lemma.
U

PROOF OF LEMMA 6.2. Let Ro(\) and II be the operators defined in (3.2). Since
(Ro(A) fo, IIfo + ¢) solves (3.1) for any constant ¢, we may assume that

/ Hfod.l‘ =0
Qr+1

and therefore by Poincaré’s inequality and (3.12) we have
Ifollwrni) = ClIVILfoll 2, r) = Cllfllz, @ (6.16)
Let (u,m) be a solution of (2.1) for A € X, with |[A] £ 1 and set
u = Ro(\) fola +v, m=Tlfola+0 (6.17)
Then, (v, ) enjoys the equation:

Av —DivS(v,0) =0, dive=0 in
S(v,0)v|r = =S(Ro(A) fo, ILfo)v|r (6.18)

To represent (v,0), we shall introduce (w,7) which is a solution to the equation:

—DivS(w,7) =g(A), divw =0 in Qg1
S(w, T)v|r = =S(Ro(N) fo, ILfo)v|r, S(w,T)volsgp,, =0 (6.19)

where we have set
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M
(ARo(A) fo, pr) & Pr
k=1
with & = R™ \ Q. Since
(g()\)7pl)QR+1 - (S(RO(A)anHfO)V7pl)F - 07 l= 17 e 7M
by Theorem 4.1 we know the unique existence of (w,7). Let ¢ € C§°(R™) such that
¢(x) =1 (Jz| £ R—2) and ¢(z) =0 (Jz] =2 R—1). By Lemma 4.6, we can define
B[(V¢) - w]. Thus we set
v=¢w—B[Ve) - w]+U, O0=¢r+7 (6.20)
where (U, ¥) is a solution to
AU — DivS(U,¥) = G(\), divU =0 inQ, SU, ¥)vfp =0 (6.21)
with
G(A) = =pAw + (A= A)B[(V9) - w] + 2(Ve)(Vw) + (Ad)w — (V)T — ¢g(A)

Since n/(2p) —1/2 < 0 and |A| £ 1, by (3.11) we have

llg(N) ||LP(QR+1) < Cp,R\|)\Ro()\)f0||Lp(BR+1)

n 1
S Cperllfllz @) = Cpe.rlA 72| fllL, @) (6.22)

By (3.11), (3.12), (6.3) with ¢ = oo and (6.16), we have

1S(Ro(A) fo ILfo)llwi(op 1) = CP(HVRO(/\)fO“WI}(QRJrﬂ + IV follz, ©@ri)
< C(IV2Ro(N) follz,rmy + IVRoN) foll b (rey + IVILf0l 2y (040

n _ 1
S Cpe.r A2 fl2,0) (6.23)

By (4.4), (6.22) and (6.23), we have

lwilwz@p) + ITlwi@n) S Cop.r(lgN)lL, (@ns1) + ||S(R0(/\)fo,Hfo)”w;(QRH))

n 1
S Cper A2 || fllL, @ (6.24)

By (6.22), (6.24) and Lemma 4.6, we have

1G9 S Cpe INF 2 f 12,0 (6.25)
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From the proof of Theorem 5.1 we know that there exists a constant Ay > 0 such that
for A € Uy, we can write

U=(1-¢)RN[(I + Q)G+ dANI +Q(N)T'G(N)
+B[(Ve) - (Ro(N) [(I + Q) T'G(V)], — AN +Q(N)T'G(N)]
U =(1- [T +QMN) TGN, + BN + Q)G (6.26)

where (A(\), B()\)) is the solution operator of (5.3) which satisfies (5.7). By (5.15),
(5.17), Lemma 5.2, (6.25) and (6.6), we have

AT + QO EWls ) S Coall AT+ QUN TGNz,
= Cpg|(T+ Q()‘))_lG()‘)HLP(n)
< Cpal Gy 2) € Cpage INF 2| flln, @) (6.27)

for every A € X, with |A\| £ Ag. By Theorem 3.1, Lemma 5.2, (6.4), (6.25), the fact that
supp (I + Q(A\))"1G(\) C Bg and (6.6), we have

IV [RoWIT + Q)T ENo] ||, (my + [Ro WA + QN T EWolyys 1

< Cpge (17 + QO TGNz, 0) + I+ Q) TGNz, (@)

< Cpa el % 72| fll, 0 (6.28)
for every A € X, with |A\| £ A\g. Since
V(A +A4,) " f = V(Ro(N) fola + ¢w — B[(V6) - w] + V)

as follows from (6.17) and (6.20), it suffices to estimate the L,(£2)-norm of the right hand
side. By (6.3), we have

n(1_1)_1
IVRN) oz, S Crg e N FE8 7 £l @)
By (6.24) and Lemma 4.6, we have
n 1
IV(¢w = B[(Vo) - w))lL,@) = Coallwlwz@ni) S CpaelA® 2 flL,@
By (6.27), (6.28) and Lemma 4.6, we have

mn 1
VUL, ) = Cpa.el A2 2| fllL,
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n(1

Combining these estimates and noting that |)\|2n77% < \)\|5(57%)7% for [A| < 1, we have
Lemma 6.2. 0

PROOF OF LEMMA 6.1. Set v = {se™ (") | s > 0} for 0 < € < 7/2 and

VT(t)f 1(/ +/ >€>\tV(/\+Ap)lfd)\_I(t)+II(t)
v IMExe Sy Az

= 2mi
for f € J,(2). By (6.2) we have

_nm(l_1y_ 1
I(®)|zy0) E Cpaet 26772 £l @ (6.29)

Since n < p < oo and p < g £ oo, by (6.6) and (2.14) we obtain

IOz, @) = CpallTIW)]] < Cpget e P flI 1

wi(9)

which combined with (6.29) implies (6.1) for ¢ =2 1. When 0 < ¢ < 1, by using (2.14) we
obtain

IN*T(t) fllz, @) S Cpet I flln, 0, IVT®fllr, ) < Cpet 2| fllL, @ (6.30)

By the interpolation inequality we have

IVT®) fllz,@) S Coal VTOAL, @ IVTOFIIL (o)

with a = n(1/p — 1/q), because n < p < ¢ < oo and p # oo, and therefore by (6.30) we
obtain

_m(l_1y_1
HI(®)12,0) S Cpaet 250721l 0 (6.31)
for 0 <t < 1. This completes the proof of Lemma 6.1. 0

A. The denseness of C§o, (R™) in Jp(2).
In the appendix, we shall show the following proposition.
PROPOSITION A.1.  Let 1 < p < oo. Then, C§5, (R") is dense in J,(Q2).

ProoOF. By Lemma 2.6, Z(A,) is dense in J,(€2), and therefore for any u € J,(£2)
and € > 0 there exists a v € W2(€)™ such that dive = 0 in Q and [ju — v[|1, ) < €/3.
Let ¢ be a function in C§°(R™) such that ¢(z) =1 for |z| £ 1 and ¢(x) = 0 for |z| = 2,
and set pr(z) = p(z/R). In view of Lemma 4.6, if we set wg = prv — B[(VpR) - v],
then we have

WR € W;(Q)”, divwg=0inQ and wgr=0for|z|22R (A1)
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Since
| B[(Ver) '“]ng((z) S C(Ver) - vllwz@) < ClIVellwz @R vllwz @

for R > 1 as follows from Lemma 4.6, we have [|wg — v[lwz@) — 0 as R — oo, which
shows that there exists an R > 1 such that ||wgr —v[z, @) < €/3. By the Lions extension
method we know that there exists a y € W2(R"™) such that y = wg on Q and lyllwz@) =
C||wRHW5(Q). Since y = wr on  and divwgr = 0 in , we have divy = 0 on Q, which
implies that divy € WI} (R"\ Q). To use Lemma 4.4 we observe that

/ divyd:r:—/z/-ydaz—/V-u)RdU:—/divu)Rdxzo
e r r Q

where do denotes the surface element of I' and we have used (A.1l), which implies that
divy € Wpl,a(R" \ Q). By Lemma 4.4, we see that B[divy] € W2(R")", div B[divy] =
divy in R™ and BJ[divy| vanishes on . Therefore, if we set z = y — B[divy], then
ze W2(R")", divz = 0in R" and z = wg on Q. Let ¢(z) be a function in C§°(R")
such that fR” Y dx =1 and set ¥, (x) = 77 ™(x/7). Then, z, = 1, *z has the properties
that

zr € Cg(R™), lim [|z; — z|lw2rr) =0
) 7—0 P
where * denotes the convolution operator. Since z = wg on 2, we have
lim {27 —wgllL, @) = lim 27 = 2[[1,0) = lim [|zr = 2]z, (r") =0

Therefore, there exists a 7 > 0 such that ||z; —wr||L, ) < ¢/3. Combining these results

implies that ||u — 2|z, (@) < ¢, which completes the proof of the proposition. O
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