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Abstract. In this paper, we obtain local energy decay estimates and Lp-Lq

estimates of the solutions to the Stokes equations with Neumann boundary condition
which is obtained as a linearized equation of the free boundary problem for the Navier-
Stokes equations. Comparing with the non-slip boundary condition case, we have a
better decay estimate for the gradient of the semigroup because of the null force at
the boundary.

1. Introduction.

Let Ω be an exterior domain in Rn (n = 3) with boundary Γ which is a C2,1 compact
hypersurface. ν is the unit outward normal to Γ. This paper is concerned with the decay
properties of solutions to the Stokes equation with Neumann boundary condition:

∂tu−Div S(u, π) = 0 in Ω, t > 0

div u = 0 in Ω, t > 0

S(u, π)ν = 0 on Γ, t > 0

u|t=0 = u0 in Ω

(1.1)

where u = t(u1, . . . , un) and π are unknown velocity vector and pressure, respectively.
u0 is an initial velocity vector. S(u, π) is the stress tensor given by

S(u, π) = D(u)− πI

D(u) = (Djk(u))n
j,k=1, Djk(u) = ∂uj/∂xk + ∂uk/∂xj

(1.1) is a linearized problem of the free boundary problem (cf. [22]):

∂tv + (v · ∇)v −∆v +∇q = f(x, t) in Ω(t), t > 0

∇ · v = 0 in Ω(t), t > 0
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S(v, q)ν(t) + q0(x, t)ν(t) = 0 on ∂Ω(t), t > 0

v|t=0 = v0 in Ω(0) (1.2)

where v0 is an initial velocity vector, f(x, t) is a prescribed external mass force and
q0(x, t) is a pressure. Ω(t) is occupied by the fluid which is given only on the initial time
t = 0, while Ω(t) for t > 0 is to be determined. ν(t) is the unit outer normal to ∂Ω(t),
and v(x, t) and q(x, t) are unknown velocity and pressure, respectively. In this model we
do not take the surface tension into account.

In order to solve (1.2) global in time at least with small initial data, it is important
to investigate the decay properties of solutions to (1.1), which is one of the motivations of
this paper. Another motivation is due to Kozono [13]. In fact, according to Kozono [13],
when we consider the nonstationary Stokes equation with nonslip boundary condition in
an exterior domain Ω ⊂ Rn (n = 3), to obtain the optimal decay rate (n/2)(1 − (1/r))
of the Lr norm of solutions (1 < r 5 ∞) it is necessary and sufficient that the net force
exerted by the fluid on the boundary is zero (the related results are cited therein). In
(1.1) the force on the boundary itself vanishes, and therefore we can expect to get better
decay properties of solutions compared with the nonslip boundary condition case. And
such better decay rate really appears in the estimate of the gradient of solutions to (1.1).
Namely, for any solution u to (1.1) there holds the gradient estimate:

‖∇u(t, ·)‖Lp(Ω) 5 Cp t−1/2‖u0‖Lp(Ω), t →∞ (1.3)

for any p with 1 < p < ∞, while this estimate holds only for p with 1 < p 5 n in the
nonslip boundary condition case. Moreover, there holds the L∞ estimate of the gradient
of u as follows:

‖∇u(t, ·)‖L∞(Ω) 5 Cp t−n/(2p)−1/2‖u0‖Lp(Ω), t →∞ (1.4)

for any p with 1 5 p < ∞, which can not be obtained in the nonslip boundary condition
case.

Now, we shall state our results precisely. To do this we shall formulate (1.1) in
the analytic semigroup theoretical framework, following Grubb and Solonnikov [11] and
Grubb [9], [10]. For 1 < p < ∞ there holds the second Helmholtz decomposition:

Lp(Ω)n = Jp(Ω)⊕Gp(Ω), ⊕ : direct sum

corresponding to (1.1) with the following notation:

Jp(Ω) =
{
u ∈ Lp(Ω)n | ∇ · u = 0 in Ω

}

Gp(Ω) =
{∇π | π ∈ Ẋp(Ω)

}

Ẋp(Ω) =
{
π ∈ Xp(Ω) | π|Γ = 0

}

Xp(Ω) =
{
π ∈ Ŵ 1

p (Ω) | ‖π‖Xp(Ω) < ∞}
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Ŵ 1
p (Ω) =

{
π ∈ Lp,loc(Ω) | ∇π ∈ Lp(Ω)n

}

‖π‖Xp(Ω) =

{‖∇π‖Lp(Ω) + ‖π/d‖Lp(Ω) n 5 p < ∞
‖∇π‖Lp(Ω) + ‖π/d‖Lp(Ω) + ‖π‖L np

n−p
(Ω)

1 < p < n

d(x) =

{
1 + |x| p 6= n

(1 + |x|) log(2 + |x|) p = n

Let Pp be the solenoidal projection: Lp(Ω)n → Jp(Ω) along Gp(Ω). To introduce the
Stokes operator associated with (1.1), we consider the resolvent problem corresponding
to (1.1):

λv −Div S(v, θ) = Ppf, div v = 0 in Ω, S(v, θ)ν|Γ = 0 (1.5)

If we take the divergence of (1.5) and multiply the boundary condition by ν, we have

∆θ = 0 in Ω, θ|Γ = ν · (D(v)ν)− div v|Γ (1.6)

because ν ·ν = 1 on Γ. We know that given v ∈ W 2
p (Ω)n there exists a unique θ ∈ Xp(Ω)

which solves (1.6) and enjoys the estimate: ‖θ‖Xp(Ω) 5 Cp‖v‖W 2
p (Ω). From this point of

view, let us define the map K : W 2
p (Ω)n → Xp(Ω) by θ = K(v). By using this symbol,

we know that (1.5) is equivalent to the reduced Stokes equation:

λv −Div S(v, K(v)) = Ppf in Ω, S(v, K(v))ν|Γ = 0 (1.7)

(cf. Grubb and Solonnikov [11]). Therefore we define the Stokes operator Ap corre-
sponding to (1.1) by the following formulas:

Apu = −∆u +∇K(u ) for u ∈ D(Ap)

D(Ap) =
{
u ∈ Jp(Ω) ∩W 2

p (Ω)n | S(u,K(u))ν|Γ = 0
}

From Grubb and Solonnikov [11] and Shibata and Shimizu [21], we know that Ap gen-
erates an analytic semigroup {T (t)}t=0 on Jp(Ω) for 1 < p < ∞, the details of which will
be explained in Section 2, below.

The first result is concerning the local energy decay estimate. Let R0 be a fixed
number such that Rn \ Ω ⊂ BR0 , where BL = {x ∈ Rn | |x| < L} for given L > 0. Set
ΩR = Ω ∩BR and

Lp,R(Ω)n =
{
f ∈ Lp(Ω)n | f(x) = 0 for x 6∈ BR

}

Theorem 1.1. Let 1 < p < ∞ and R = R0. Then for every f ∈ Lp,R(Ω)n and
t = 1 there holds the estimate:

‖T (t)Ppf‖W 2
p (ΩR) 5 Cp,R t−

n
2 ‖f‖Lp(Ω) (1.8)
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The second results are concerned with the Lp-Lq decay estimate. We define the
solenoidal space J1(Ω) by the completion of the space C∞0,σ(Rn) = {u ∈ C∞(Rn)n |
div u = 0 in Rn and u vanishes outside of some large ball} in L1(Ω)1. Then, combining
Theorem 1.1 and the Lp-Lq estimate for the whole space problem by cut-off technique,
we can show the following theorem along the standard argument (cf. [12], [14]).

Theorem 1.2. For every f ∈ Jp(Ω) and t > 0 there hold the estimates:

‖T (t)f‖Lq(Ω) 5 Cp,q t−
n
2 ( 1

p− 1
q )‖f‖Lp(Ω) for 1 5 p 5 q 5 ∞ (p 6= ∞, q 6= 1) (1.9)

‖∇T (t)f‖Lq(Ω) 5 Cp,q t−
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) for 1 5 p 5 q 5 n (q 6= 1) (1.10)

Moreover, thanks to the null force at the boundary, we obtain the following theorem.

Theorem 1.3. Let n < q 5 ∞ and 1 5 p 5 q 5 ∞ (p 6= ∞). For every f ∈ Jp(Ω)
and t > 0 we have

‖∇T (t)f‖Lq(Ω) 5 Cp,q t−
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) (1.11)

Theorem 1.3 shows a significant difference of asymptotic behavior of solutions be-
tween the Neumann boundary condition and nonslip boundary condition. In fact, as
already mentioned in (1.3) and (1.4), if we consider the nonslip boundary condition
u|Γ = 0 instead of the Neumann boundary condition, then we only have (1.9) and (1.10)
(cf. [3], [4], [5], [12], [15] and [19]). Moreover, the condition 1 5 p 5 q 5 n (q 6= 1) is
unavoidable to get (1.10), which was proved by Maremonti and Solonnikov [15].

To end this section, we explain the notation which we shall use throughout the
paper. Given vector or matrix M , tM denotes the transposed M . Given Banach space
X with norm ‖ · ‖

X
, we set

Xn =
{
v = t(v1, . . . , vn) | vj ∈ X

}
, ‖v‖X =

n∑

j=1

‖vj‖X

The dot · denotes the inner-product of Rn. F = (Fij) means the n × n matrix whose
i-th column and j-th row component is Fij . For the differentiation of the n×n matrix of
functions F = (Fij), the n-vector of functions u = t(u1, . . . , un) and the scalar function
π, we use the following symbols: ∂jπ = ∂π/∂xj ,

∇π = t(∂1π, . . . , ∂nπ), div u =
n∑

j=1

∂juj , Div F = t

( n∑

j=1

∂jF1j , . . . ,
n∑

j=1

∂jFnj

)

∇u = (∂iuj), D(u) = (∂iuj + ∂jui), I = (δij), S(u, π) = D(u)− πI

where δij is the Kronecker’s delta symbol, namely δij = 1 (i = j) and = 0 (i 6= j). The

1In fact, for 1 < p < ∞ we see that C∞0,σ(Rn) is dense in Jp(Ω), which will be proved in the appendix,

below.
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inner product (·, ·)Ω is defined by

(u, v)Ω =
∫

Ω

u(x) · v(x) dx

For Banach spaces X and Y , L (X, Y ) denotes the set of all bounded linear operators
from X into Y . We write L (X) = L (X, X). By C we denote a generic constant and
Ca,b,... denotes the constant depending on the quantities a, b, . . . . The constants C and
Ca,b,... may change from line to line.

2. An analytic semigroup associated with reduced Stokes equation.

In this section, we shall give an analytic semigroup theoretical formulation of (1.1)
and we shall show the generation of an analytic semigroup associated with reduced Stokes
equation corresponding to (1.1). Our argument here is based on the theory concerning
the corresponding resolvent problem:

λu−Div S(u, π) = f, div u = 0 in Ω, S(u, π)ν|Γ = 0 (2.1)

We use the following theorem which was proved by Grubb and Solonnikov [11] and
Shibata and Shimizu [21].

Theorem 2.1. Let 1 < p < ∞, 0 < ε < π and δ > 0. Set

Σε = {λ ∈ C \ {0} | | arg λ| 5 π − ε}

For every f ∈ Lp(Ω)n and λ ∈ C \ (−∞, 0], (2.1) admits a unique solution (u, π) ∈
W 2

p (Ω)n ×Xp(Ω), which enjoys the estimates:

|λ|‖u‖Lp(Ω) + |λ| 12 ‖∇u‖Lp(Ω) + ‖u‖W 2
p (Ω) + ‖π‖Xp(Ω) 5 Cp,ε,δ‖f‖Lp(Ω)

provided that λ ∈ Σε with |λ| = δ.

Letting λ →∞ in (2.1) and using Theorem 2.1 we have the following lemma.

Lemma 2.2. Let 1 < p < ∞. Then, for any f ∈ Lp(Ω)n, there exist g ∈ Jp(Ω) and
π ∈ Ẋp(Ω) such that

f = g +∇π in Ω (2.2)

‖g‖Lp(Ω) + ‖π‖Xp(Ω) 5 C‖f‖Lp(Ω) (2.3)

Proof. By Theorem 2.1 we see that for any integer m = 1, there exists a sequence
{(um, πm)}∞m=1 ⊂ W 2

p (Ω)n ×Xp(Ω) such that (um, πm) satisfies the equation:

mum −Div S(um, πm) = f, div um = 0 in Ω, S(um, πm)ν|Γ = 0 (2.4)
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and the estimate:

m‖um‖Lp(Ω) + ‖um‖W 2
p (Ω) + ‖πm‖Xp(Ω) 5 C‖f‖Lp(Ω) (2.5)

where C is independent of m. Set

W `−1/p
p (Γ) =

{
u ∈ W `−1

p (Γ) | ∃ v ∈ W `
p(Ω), v = u on Γ

}
` = 1, 2

‖u‖
W

`−1/p
p (Γ)

= inf
{‖v‖W `

p(Ω) | v ∈ W `
p(Ω), v = u on Γ

}

By the definition of the trace to the boundary we have

‖um‖W
2−1/p
p (Γ)

+ ‖πm‖W
1−1/p
p (Γ)

5 C‖f‖Lp(Ω)

for any integer m = 1. In view of the compactness theorem due to Rellich we see that
there exist a subsequence {(umj

, πmj
)} of {(um, πm)}, g ∈ Lp(Ω)n, u ∈ W 2

p (Ω)n and
π ∈ Xp(Ω) such that

mjumj → g weakly in Lp(Ω)n

∂α
x umj

→ ∂α
x u weakly in Lp(Ω)n, |α| 5 2

∂α
x πmj → ∂α

x π weakly in Lp(Ω), |α| 5 1

umj → u strongly in W 1
p (Γ)n

πmj
→ π strongly in Lp(Γ) (2.6)

as mj → ∞. By (2.5) we have ‖um‖Lp(Ω) 5 Cm−1‖f‖Lp(Ω), which implies that u = 0.
Therefore, letting mj → ∞ in (2.4) and using (2.6), we see that g and π are required
functions, which completes the proof of the lemma. ¤

By using the uniqueness of solutions to the Laplace equation with zero Dirichlet
condition we see the uniqueness of the decomposition in (2.2), and therefore we have

Lp(Ω)n = Jp(Ω)⊕Gp(Ω) (2.7)

We call this the second Helmholtz decomposition corresponding to the Neumann bound-
ary condition case.

We can show the following theorem by standard argument (cf. Fujiwara and Mori-
moto [8]).

Theorem 2.3. Let 1 < p < ∞ and 1/p + 1/p′ = 1. Then, Jp(Ω)∗ = Jp′(Ω).

Now, we shall eliminate π in (2.1). To do this, we need the following lemma.

Lemma 2.4. Let 1 < p < ∞. Then, for any h ∈ W
1−1/p
p (Γ) there exists a unique

π ∈ Xp(Ω) which solves the Laplace equation:
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∆π = 0 in Ω, π|Γ = h

and satisfies the estimate:

‖π‖Xp(Ω) 5 C‖h‖
W

1−1/p
p (Γ)

Let (u, π) ∈ W 2
p (Ω)n × Xp(Ω) solve (2.1). Set Pp be a continuous projection from

Lp(Ω)n into Jp(Ω) along Gp(Ω). We take the second Helmholtz decomposition: f =
Ppf +∇θ with θ ∈ Ẋp(Ω). Inserting this formula into (2.1), we have

λu−Div S(u, π − θ) = Ppf, div u = 0 in Ω, S(u, π − θ)ν|Γ = 0 (2.8)

Set π − θ = ρ. Taking the divergence of (2.8), we have

∆ρ = 0 in Ω (2.9)

because div u = 0 and div g = 0 in Ω. Since |ν|2 = 1, multiplying the boundary condition
by ν, we have ν ·(D(u)ν)−ρ|Γ = 0. Since div u = 0 on Γ, we have the boundary condition:

ρ|Γ = ν · (D(u)ν)− div u|Γ (2.10)

In view of Lemma 2.4, let ρ ∈ Xp(Ω) be a solution to the Laplace equation (2.9) with side
condition (2.10). Let K be a bounded linear operator from W 2

p (Ω)n into Xp(Ω) defined
by K(u) = ρ. Set π = θ + K(u), then we finally arrive at the equation:

λu−Div S(u,K(u)) = Ppf in Ω, S(u,K(u))ν|Γ = 0 (2.11)

On the other hand, if u ∈ W 2
p (Ω)n satisfies (2.11), then div u = 0. In fact, div u enjoys

the equation: (λ − ∆)(div u) = 0 in Ω. By (2.11), we have 0 = ν · (D(u)ν) − K(u)|Γ,
which combined with (2.10) implies that div u|Γ = 0. Therefore, by Lemma 2.4 we have
div u = 0.

From these observations, we see that the problem (2.1) is equivalent to the problem
(2.11). Therefore, let us define the reduced Stokes operator Ap by

Apu = −Div S(u,K(u)), u ∈ D(Ap) (2.12)

D(Ap) =
{
u ∈ W 2

p (Ω)n ∩ Jp(Ω) | S(u,K(u))ν|Γ = 0
}

(2.13)

By Theorem 2.1 we have the following theorem.

Theorem 2.5. Let 1 < p < ∞. Then, C \ (−∞, 0] is contained in the resolvent
set of Ap. Moreover, for any ε ∈ (0, π) and δ > 0 there exists a constant C = Cp,ε,δ such
that
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|λ|∥∥(λ + Ap)−1f
∥∥

Lp(Ω)
+ |λ| 12 ∥∥∇(λ + Ap)−1f

∥∥
Lp(Ω)

+
∥∥(λ + Ap)−1f

∥∥
W 2

p (Ω)

5 Cp,ε,δ‖f‖Lp(Ω) (2.14)

for any f ∈ Jp(Ω) provided that λ ∈ Σε with |λ| = δ.

To show the generation of analytic semigroup associated with Ap we have to show
the following lemma.

Lemma 2.6. Let 1 < p < ∞. Then, Ap is a densely defined closed operator on
Jp(Ω).

Proof. First we shall show that D(Ap) is dense in Jp(Ω). Let f ∈ Jp(Ω), and
then by Theorem 2.1 there exists a sequence {(um, πm)}∞m=1 ⊂ W 2

p (Ω)n × Xp(Ω) such
that

mum −Div S(um, πm) = f, div um = 0 in Ω (2.15)

S(um, πm)ν|Γ = 0 (2.16)

m‖um‖Lp(Ω) + ‖um‖W 2
p (Ω) + ‖πm‖Xp(Ω) 5 C‖f‖Lp(Ω) (2.17)

Since πm = K(um), (2.15) and (2.16) imply that um ∈ D(Ap). Employing the same
argument as in the proof of Lemma 2.2, passing to the subsequence if necessary, we see
that

mum → g weakly in Lp(Ω)n

∂α
x um → 0 weakly in Lp(Ω)n, |α| 5 2

∂α
x πm → ∂α

x π weakly in Lp(Ω), |α| 5 1

Letting m →∞ in (2.15) we have

g +∇π = f, div g = 0 in Ω, π|Γ = 0

with some g ∈ Lp(Ω)n and π ∈ Xp(Ω). Since f ∈ Jp(Ω), we have f = g and π = 0.
In particular, setting vm = mum, we see that vm converges to g weakly in Lp(Ω)n and
vm ∈ D(Ap). By Mazur’s theorem, we can choose a convex combination of sequence
{vm}, which is in D(Ap) and converges to g strongly in Lp(Ω)n. This shows that D(Ap)
is dense in Jp(Ω). Now we shall show that Ap is closed operator. Let {uj}∞j=1 ⊂ D(Ap)
be a sequence such that

uj → u in Lp(Ω)n, Apuj → v in Lp(Ω)n (2.18)

for some u, v ∈ Lp(Ω)n. Since D(Ap) = Jp(Ω), u ∈ Jp(Ω). If we set fj = uj + Apuj ,
then fj → u + v in Lp(Ω)n as j →∞. By Theorem 2.1 with λ = 1, we have
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‖uj − uk‖W 2
p (Ω) 5 C‖fj − fk‖Lp(Ω)

as j, k → ∞, and therefore there exists a w ∈ D(Ap) such that uj → w in W 2
p (Ω)n as

j → ∞, which combined with (2.18) implies that u = w ∈ D(Ap) and Apu = v, which
completes the proof of the lemma. ¤

Combining Theorem 2.5 with Lemma 2.6, we have the following theorem.

Theorem 2.7. Let 1 < p < ∞. Then Ap generates an analytic semigroup
{T (t)}t=0 on Jp(Ω).

Remark 2.8. We can show by the standard argument that A∗p = Ap′ provided
that 1 < p < ∞ and 1/p + 1/p′ = 1 (cf. Fujiwara and Morimoto [8], Miyakawa [16]).

3. Analysis of the whole space problem.

In this section, we consider the resolvent problem for the Stokes equation in the
whole space:

λu−∆u +∇π = f, div u = 0 in Rn (3.1)

For f ∈ Lp(Rn)n, 1 < p < ∞ and λ ∈ C \ (−∞, 0], let us define the solution operators
to (3.1) by

R0(λ)f(x) = F−1
ξ

[
P (ξ)f̂(ξ)
λ + |ξ|2

]
(x), Πf(x) = F−1

ξ

[−iξ · f̂(ξ)
|ξ|2

]
(x) (3.2)

where (P (ξ))jk = δjk − ξjξk/|ξ|2. Given R > 0, we set

Lp,R(Rn)n =
{
f ∈ Lp(Rn)n | f(x) = 0 for x 6∈ BR

}

Lp,R(Rn) = L
(
Lp,R(Rn)n,W 2

p (BR)n
)

The following theorem is the main result in this section.

Theorem 3.1. Let 1 < p < ∞ and 0 < ε < π/2. Then there exist Gj(λ) ∈
Anal(U1/2,Lp,R(Rn)), j = 1, 2, such that R0(λ) has the following expansion:

R0(λ) = λ
n
2−1(log λ)σ(n) G1(λ) + G2(λ) (3.3)

for any λ ∈ C \ (−∞, 0] with |λ| 5 1/2, where σ(n) = 1 (n = 4, even) and σ(n) = 0
(n = 3, odd). Moreover Gj(λ) satisfies the relation:

∇ · (Gj(λ)f) = 0 in Rn (3.4)

for any f ∈ Lp,R(Rn)n and λ ∈ C \(−∞, 0] with |λ| 5 1/2. Here Ur = {λ ∈ C | |λ| 5 r}
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and Anal(Ur, X) denotes the set of all X-valued analytic function on Ur.

Remark 3.2. Iwashita [12] gave an expansion formula corresponding to (3.3) by
using the result due to Murata [17], and therefore he had to use some weighted spaces,
which required more complicated and unessential arguments to obtain several estimates
in W 2

p (ΩR)n. To prove Theorem 1.1 without using such weighted spaces unlike [12],
we shall show Theorem 3.1 by our own method, below. Varnhorn [23] also gave an
expansion formula like (3.3) by using the Stokes potential and the expansion formula for
the Bessel functions, but we use the Fourier transform to represent the solution formula
of the Stokes resolvent problem, and therefore our proof below is also essentially different
from Varnhorn’s one.

Proof. Let ψ(r) ∈ C∞0 (R) such that ψ(r) = 1 (|r| 5 1) and ψ(r) = 0 (|r| = 2),
and set φ0(ξ) = ψ(|ξ|) and φ∞(ξ) = 1 − ψ(|ξ|). Given λ ∈ C \ (−∞, 0] with |λ| 5 1/2,
we set

RN
0 (λ)f = F−1

ξ

[
φN (ξ)P (ξ)f̂(ξ)

λ + |ξ|2
]
(x), N = 0,∞

First we shall show the analyticity of R∞0 (λ)f . Since (λ + |ξ|2)−1 is an analytic function
of λ when |ξ| = 1 and |λ| 5 3/4, we have

1
λ + |ξ|2 =

1
2πi

∫

|t|= 3
4

dt

(t− λ)(t + |ξ|2) =
∞∑

m=0

1
2πi

∫

|t|= 3
4

dt

(t + |ξ|2)tm+1
λm

and therefore R∞0 (λ)f is formally given by

R∞0 (λ)f =
∞∑

m=0

1
2πi

∫

|t|= 3
4

F−1
ξ

[
φ∞(ξ)P (ξ)f̂(ξ)

t + |ξ|2
]
(x)

dt

tm+1
λm (3.5)

Since |t + |ξ|2| = (1/8)(1 + |ξ|2) when |t| = 3/4 and |ξ| = 1, we have

∣∣∂β
ξ

[
ξαφ∞(ξ)P (ξ)(t + |ξ|2)−1

]∣∣ 5 Cβ |ξ|−|β|

for any β ∈ Nn
0 , |α| 5 2 and |t| = 3/4, where N0 = N ∪ {0}. By the Fourier multiplier

theorem,

∞∑
m=0

∥∥∥∥
1

2πi

∫

|t|=3/4

F−1
ξ

[
φ∞(ξ)P (ξ)f̂(ξ)

t + |ξ|2
]

dt

tm+1
λm

∥∥∥∥
Lp(Rn)

5
∞∑

m=0

Cp‖f‖Lp(Rn)
1
2π

∫

|t|=3/4

|dt|
|t|m+1

|λ|m 5 Cp‖f‖Lp(Rn)

∞∑
m=0

(
4
3
|λ|

)m

(3.6)

The right hand side of (3.6) converges uniformly when |λ| < 3/4. Thus
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R∞0 (λ) ∈ Anal
(
U1/2,L

(
Lp(Rn)n,W 2

p (Rn)n
)) ⊂ Anal

(
U1/2,Lp,R(Rn)

)

Moreover, we obviously have ∇ ·R∞0 (λ)f = 0.
Next we consider R0

0(λ)f . Let f = t(f1, . . . , fn) ∈ Lp,R(Rn)n. Changing the vari-
ables ξ = rω, ω ∈ Sn−1 and using ei(x−y)·rω =

∑∞
l=0[i(x− y) · rω]l/l!, we have

(
R0

0(λ)f
)
j

=
(

F−1
ξ

[
φ0(ξ)P (ξ)
λ + |ξ|2

]
∗ f(x)

)

j

=
n∑

k=1

1
(2π)n

∫

Rn

∫

|ω|=1

∫ ∞

0

ei(x−y)·rωψ(r)(δjk − ωjωk)
λ + r2

rn−1fk(y) dr dω dy

=
n∑

k=1

∞∑

l=0

1
(2π)n

∫

Rn

∫

|ω|=1

(i(x− y) · ω)l

l!
(δjk − ωjωk)fk(y) dω dy

×
∫ ∞

0

ψ(r)rn−1+l

λ + r2
dr

where (· · · )j denotes the j th component of · · · . We prepare the following lemma.

Lemma 3.3. Let m ∈ N0, λ ∈ C \ (−∞, 0] and |λ| 5 1/2. Then we have

∫ ∞

0

ψ(r)r2m

λ + r2
dr =

(−1)mπ

2
λm

√
λ

+ h2m(λ) (3.7)

∫ ∞

0

ψ(r)r2m+1

λ + r2
dr =

(−1)m+1

2
λm log λ + h2m+1(λ) (3.8)

where
√

λ takes the branch Re
√

λ > 0, and h2m(λ) and h2m+1(λ) are analytic functions
of λ when |λ| 5 1/2 which satisfy the estimates: |h2m(λ)| 5 C 22m and |h2m+1(λ)| 5
C 22m+1, respectively, where C is a constant independent of m.

Proof. Let us write

∫ ∞

0

ψ(r)rk

λ + r2
dr =

∫ ∞

1

ψ(r)rk

λ + r2
dr +

∫ 1

0

ψ(r)rk

λ + r2
dr = Ik(λ) + IIk(λ)

Since |λ + r2| = r2 − |λ| = 1/2 when r = 1 and λ 5 1/2, Ik(λ) is an analytic function
when |λ| 5 1/2 and

|Ik(λ)| 5 2
∫ 2

1

rk dr 5 4 · 2k for all k = 0

Now, we shall analyze IIk(λ). First, we consider the case that k is even. Set k = 2m.
Then
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II2m(λ) =
∫ 1

0

(r2 + λ− λ)m

r2 + λ
dr

=
m∑

l=1

(
m
l

)
(−λ)m−l

∫ 1

0

(r2 + λ)l−1 dr + (−λ)m

∫ 1

0

dr

λ + r2

By the residue theorem,

∫ 1

0

dr

λ + r2
=

1
2

∫ ∞

−∞

dr

r2 + λ
−

∫ ∞

1

dr

r2 + λ
=

π

2
1√
λ
−

∫ ∞

1

dr

r2 + λ

If we set

II2m,2(λ) =
m∑

l=1

(
m
l

)
(−λ)m−l

∫ 1

0

(r2 + λ)l−1 dr − (−λ)m

∫ ∞

1

dr

r2 + λ

then II2m,2(λ) is an analytic function in |λ| < 1, and |II2m,2(λ)| 5 2 ·2m when |λ| 5 1/2.
Therefore setting h2m(λ) = I2m(λ) + II2m,2(λ), we obtain (3.7).

Next, we consider the case that k is odd. Set k = 2m + 1. Changing the variable
r2 = s, we obtain

∫ 1

0

ψ(r)r2m+1

λ + r2
dr =

1
2

∫ 1

0

(s + λ− λ)m

s + λ
ds

=
1
2

m∑

l=1

(
m
l

)
(−λ)m−l

∫ 1

0

(s + λ)l−1 ds +
1
2
(−λ)m

∫ 1

0

ds

s + λ

=
1
2

m∑

l=1

(
m
l

)
(−λ)m−l 1

l

{
(1 + λ)l − λl

}
+

1
2
(−λ)m(log(1 + λ)− log λ)

If we set

II2m+1,2(λ) =
1
2

m∑

l=1

(
m
l

)
(−λ)m−l 1

l

{
(1 + λ)l − λl

}
+

1
2
(−λ)m log(1 + λ)

then II2m+1,2(λ) is an analytic function in |λ| < 1, and |II2m+1,2(λ)| 5 C 2m when
|λ| 5 1/2. Therefore setting h2m+1(λ) = I2m+1(λ) + II2m+1,2(λ), we obtain (3.8). ¤

Now we continue the proof of Theorem 3.1. In order to consider the analyticity of
R0

0(λ)f , we set

(Slf)j =
1

(2π)n

n∑

k=1

∫

Rn

∫

|ω|=1

(i(x− y) · ω)l(δjk − ωjωk)fk(y) dωdy (3.9)

First we consider the case that n is odd. By using the fact that
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∫

|ω|=1

(i(x− y) · ω)2m+1 dω = 0 (3.10)

for any m ∈ N0, we have S2m+1f = 0 for m ∈ N0. Since n− 1 + 2l is even, by (3.7) we
have

R0
0(λ)f =

∞∑

l=0

S2lf

(2l)!

∫ ∞

0

ψ(r)rn−1+2l

λ + r2
dr =

∞∑

l=0

S2lf

(2l)!

{
(−1)

n−1
2 +l

2
πλ

n
2−1+l + hn−1+2l(λ)

}

for λ ∈ C \ (−∞, 0] with |λ| 5 1/2. If we set

G0
1(λ)f =

∞∑

l=0

S2lf

(2l)!
(−1)

n−1
2 +l

2
πλl, G0

2(λ)f =
∞∑

l=0

S2lf

(2l)!
hn−1+2l(λ)

then

R0
0(λ)f = λ

n
2−1G0

1(λ)f + G0
2(λ)f

for λ ∈ C \ (−∞, 0] with |λ| 5 1/2. For every f ∈ Lp,R(Rn)n, we obtain

∥∥∂α
x Slf(x)

∥∥
Lp(BR)

5 C(l + 1)2
∫

BR

|x− y|l|f(y)| dy 5 CpR
n
p′ (l + 1)2(2R)l‖f‖Lp(Rn)

when |x| 5 R and |α| 5 2. By this inequality and Lemma 3.3 we have

∞∑

l=0

∥∥∥∥
S2lf

(2l)!
hn−1+2l(λ)

∥∥∥∥
W 2

p (BR)

5 Cp R
n
p′ 2n−1‖f‖Lp(Rn)

∞∑

l=0

(2l + 1)2(4R)2l

(2l)!

which implies that G0
2(λ) ∈ Anal(U1/2,Lp,R(Rn)). Moreover we obtain ∇ · Slf = 0,

since
∑n

j,k=1 iωj(δjk − iωjωk)fk(y) = 0 when l = 1 and since S0f is independent of
x when l = 0. Thus we have ∇ · G0

2(λ)f = 0. In the same manner, we see that
G0

1(λ) ∈ Anal(U1/2,Lp,R(Rn)) and that ∇ ·G0
1(λ)f = 0.

Next we consider the case that n(= 4) is even. Since n − 1 + 2l is odd, by (3.8),
(3.9) and (3.10) we have

R0
0(λ)f =

∞∑

l=0

S2lf

(2l)!

∫ ∞

0

ψ(r)rn−1+2l

λ + r2
dr =

∞∑

l=0

S2lf

(2l)!

{
(−1)

n
2 +l

2
λ

n
2−1+l log λ+hn−1+2l(λ)

}

If we set

G0
1(λ)f =

∞∑

l=0

S2lf

(2l)!
(−1)

n
2 +l

2
λl, G0

2(λ)f =
∞∑

l=0

S2lf

(2l)!
hn−1+2l(λ)



14 Y. Shibata and S. Shimizu

then

R0
0(λ)f = λ

n
2−1 log λG0

1(λ)f + G0
2(λ)f

for λ ∈ C \ (−∞, 0] with |λ| 5 1/2. Employing the same argument as in the case that n

is odd, we have G0
j (λ) ∈ Anal(U1/2,Lp,R(Rn)) and ∇·G0

j (λ)f = 0, j = 1, 2. Therefore if
we set G1(λ) = G0

1(λ), G2(λ) = G0
2(λ) + R∞0 (λ), then Gj(λ), j = 1, 2, satisfy the desired

properties, which completes the proof of the theorem. ¤

In the next theorem, we show some properties of the operator R0(λ) when λ = 0.

Theorem 3.4. Let 1 < p < ∞ and 0 < ε < π/2.
(1) For every f ∈ Lp(Rn)n and λ ∈ Σε, there holds the estimate:

|λ|‖R0(λ)f‖Lp(Rn) + |λ| 12 ‖∇R0(λ)f‖Lp(Rn) +
∥∥∇2R0(λ)f

∥∥
Lp(Rn)

5 Cp,ε‖f‖Lp(Rn) (3.11)

(2) If we define

R0(0)f = F−1
ξ

[
(P (ξ)/|ξ|2)f̂(ξ)

]
(x)

then for any f ∈ Lp,R(Rn)n there holds the estimate:

sup
|x|=R+1

|R0(0)f(x)||x|n−2 + sup
|x|=R+1

|∇R0(0)f(x)||x|n−1 + ‖R0(0)f‖W 1
p (BR+1)

+
∥∥∇2R0(0)f

∥∥
Lp(Rn)

+ sup
|x|=R+1

|Πf(x)||x|n−1 + ‖Πf‖Lp(BR+1) + ‖∇Πf‖Lp(Rn)

5 Cp,R ‖f‖Lp(Rn) (3.12)

(3) For every λ ∈ C \ (−∞, 0] with |λ| 5 1/2 and f ∈ Lp,R(Rn)n, there holds the
estimate

‖R0(λ)f −R0(0)f‖W 2
p (BR) 5 C pn(|λ|)‖f‖Lp(Rn) (3.13)

with a positive constant C = Cp,ε,R, where

pn(|λ|) = max
(|λ|, |λ|n

2−1 | log λ|σ(n)
)

(3.14)

Proof. (1) Since

|λ + |ξ|2| = sin(ε/2)(|λ|+ |ξ|2) (3.15)

for every λ ∈ Σε and ξ ∈ Rn, we obtain (3.11) by using the Fourier multiplier theorem.
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(2) By using the formula:

R0(0)f =
1

2ωn

(
xjxk

|x|n +
δjk

n− 2
|x|2−n

)
∗ f

where ωn denotes the surface area of unit sphere in Rn (cf. [7], [23]), and by [21,
Theorem 3.5], we obtain (3.12).

(3) Since R0(λ)f → R0(0)f in W 2
p (BR)n as λ → 0 for f ∈ Lp,R(Rn)n, we see that

R0(0) = G2(0) (3.16)

in Theorem 3.1. Therefore we have (3.13) by Theorem 3.1. ¤

4. Preliminaries.

Let D be a bounded domain in Rn (n = 2) and the boundary ∂D be a C2,1 hyper-
surface. In this section we consider the unique solvability of the problem:

−Div S(u, π) = f, div u = 0 in D, S(u, π)ν|∂D = g (4.1)

where ν is the unit outward normal to ∂D. In order to consider the uniqueness of (4.1),
we introduce the rigid space R:

R = {Ax + b | A is an anti-symmetric matrix and b ∈ Rn}

Let {pl}M
l=1 (M = n(n− 1)/2 + n) be an orthogonal basis in R such as (pj , pk)D = δjk.

We know that

D(u) = 0 ⇐⇒
iff

u ∈ R (4.2)

(cf. Duvaut and Lions [6]) and that if u ∈ R, then divu = 0. Set

L̇p(D)n =
{
u ∈ Lp(D)n | (u, pl)D = 0, l = 1, . . . , M

}

For the existence of the solution to (4.1), f and g should satisfy the compatibility con-
dition:

(f, pl)D + (g, pl)∂D = 0 for l = 1, . . . , M (4.3)

In fact, if (u, π) is a solution to (4.1), then for any pl ∈ R we have

(f, pl)D = (−Div S(u, π), pl)D

= −(g, pl)∂D + (1/2)(D(u), D(pl))D − (π, div pl)D = −(g, pl)∂D

because D(pl) = 0 and div pl = 0.
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The theorem which follows is the main result in this section.

Theorem 4.1. Let 1 < p < ∞. For every f ∈ Lp(D)n and g ∈ W
1−1/p
p (∂D)n

which satisfy (4.3), (4.1) admits a unique solution (u, π) ∈ (W 2
p (D)n∩ L̇p(D)n)×W 1

p (D)
having the estimate:

‖u‖W 2
p (D) + ‖π‖W 1

p (D) 5 Cp,D

(‖f‖Lp(D) + ‖g‖
W

1−1/p
p (∂D)

)
(4.4)

To show the uniqueness of the solution to (4.1), we prepare the following lemma.

Lemma 4.2. Let 1 < p < ∞. (u, π) ∈ W 2
p (D)n×W 1

p (D) satisfies the homogeneous
equation:

−Div S(u, π) = 0, div u = 0 in D, S(u, π)ν|∂D = 0 (4.5)

if and only if u ∈ R and π = 0.

Proof. Let (u, π) ∈ W 2
p (D)n ×W 1

p (D) satisfy (4.5). Then (u, π) satisfies

u−Div S(u, π) = u, div u = 0 in D S(u, π)ν|∂D = 0

By the boot-strap argument we know that (u, π) ∈ W 2
q (D)n × W 1

q (D) for any q ∈
[p,∞). The boundedness of D implies that (u, π) ∈ W 2

q (D)n×W 1
q (D) for any q ∈ (1, p].

Therefore (u, π) ∈ W 2
2 (D)n ×W 1

2 (D). By integration by parts, we have D(u) = 0, and
by (4.2) u ∈ R. Moreover since ∇π = 0 in D and π|∂D = 0, π = 0. The necessity is
obvious, which completes the proof of the lemma. ¤

To show the existence of the solution to (4.1), we consider the auxiliary problem:

u−Div S(u, π) = f, div u = 0 in D, S(u, π)ν|∂D = g (4.6)

Concerning (4.6), we know the following lemma which was proved in [21, Theorem 1.1].

Lemma 4.3. Let 1 < p < ∞. For every f ∈ Lp(D)n and g ∈ W
1−1/p
p (∂D)n, (4.6)

admits a unique solution (u, π) ∈ W 2
p (D)n ×W 1

p (D).

Proof of Theorem 4.1. If (u, π) ∈ (W 2
p (D)n∩L̇p(D)n)×W 1

p (D) satisfies (4.5),
then by Lemma 4.2, u ∈ R and π = 0. Since u ∈ L̇p(D)n, u = 0, which completes the
proof of the uniqueness.

Now we shall show the existence. If (u, π) ∈ W 2
p (D)n ×W 1

p (D) solves (4.6) and if f

and g satisfy (4.3), then u ∈ L̇p(D)n. In fact, for pl ∈ R we have

(u, pl)D = (Div S(u, π), pl)D + (f, pl)D

= (S(u, π)ν, pl)∂D − (1/2)(D(u), D(pl))D + (π, div pl)D + (f, pl)D

= (g, pl)∂D + (f, pl)D = 0 (4.7)
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where we have used the facts: D(pl) = 0 and div pl = 0. Therefore, by using the solution
of (4.6) we can reduce (4.1) to the case where g = 0. From this observation it is sufficient
to consider the equation:

−Div S(u, π) = f, div u = 0 in D, S(u, π)ν|∂D = 0 (4.8)

for f ∈ L̇p(D)n. By (4.7) and Lemma 4.3 we see that for every f ∈ L̇p(D)n, there exists
a unique solution (v, θ) ∈ (W 2

p (D)n ∩ L̇p(D)n)×W 1
p (D) to the problem:

v −Div S(v, θ) = f, div v = 0 in D, S(v, θ)ν|∂D = 0 (4.9)

which enjoys ‖v‖W 2
p (D) + ‖θ‖W 1

p (D) 5 Cp,D‖f‖Lp(D). Now, let us define the maps K, K1

and K2 by the formulas

K1f = v, K2f = θ, Kf = (K1f,K2f)

We know that K1 : L̇p(D)n → W 2
p (D)n ∩ L̇p(D)n and K2 : L̇p(D)n → W 1

p (D) are
bounded linear operators, respectively. Since

−Div S(K1h,K2h) = K1h−Div S(K1h,K2h)−K1h

= h−K1h = (I −K1)h in D (4.10)

if we show the existence of the inverse operator (I −K1)−1 : L̇p(D)n → L̇p(D)n, then
(u, π) = K(I − K1)−1f is a solution to (4.8). Since K1 ∈ L (L̇p(D)n) is a compact
operator, in order to show the existence of (I − K1)−1, it is sufficient to show that
I −K1 is injective in view of the Fredholm alternative theorem. Let h ∈ L̇p(D)n such
that (I −K1)h = 0. If we set (v, θ) = Kh, then by (4.10) v ∈ W 2

p (D)n ∩ L̇p(D)n and
θ ∈ W 1

p (D) enjoy the homogeneous equation (4.5), which implies that v = 0 and θ = 0,
namely h = v − Div S(v, θ) = 0. Therefore, we have the injectivity of I − K1, which
completes the proof of the theorem. ¤

Finally we shall state some technical lemmas which will be used to keep the diver-
gence free condition in what follows. First we shall state so-called the Bogovskĭı-Pileckas
lemma. To do this we introduce the following function spaces:

Ẇm
p (D) = C∞0 (D)

W m
p (D)

, Ẇ 0
p (D) = Lp(D)

Ẇm
p,a(D) =

{
f ∈ Ẇm

p (D) |
∫

D

f dx = 0
}

Lemma 4.4 (cf. [1], [2] and [18]). Let 1 < p < ∞ and m ∈ N0. There exists a
linear operator B : Ẇm

p,a(D) → Wm+1
p (Rn)n such that

∇ ·B[f ] = f0 in Rn, suppB[f ] ⊂ D
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‖B[f ]‖W m+1
p (Rn) 5 Cm,p‖f‖W m

p (D)

where f0 = f (x ∈ D) and f0 = 0 (x 6∈ D).

The next lemma was proved in [21, Lemma 8.3].

Lemma 4.5. Let k ∈ N0, rj ∈ R, j = 1, 2, 3, 4, such that 0 < r1 < r3 < r4 <

r2 and χ ∈ C∞(Rn) such that supp∇χ ⊂ Dr3,r4 . If u ∈ W k
p (Dr1,r2) satisfies the

condition: div u = 0 in Dr1,r2 , then there exists v ∈ W k
p (Rn)n which possesses the

properties: supp v ⊂ Dr1,r2 , div v = 0 in Rn, (∇χ) ·v = (∇χ) ·u in Rn and ‖v‖W k
p (Rn) 5

C‖u‖W k
p (Dr1,r2 ).

Combining Lemmas 4.4 and 4.5, we obtain the following lemma.

Lemma 4.6. Let k = 1, 0 < r1 < r2 and χ be the same function in Lemma 4.5. If
u ∈ W k

p (Dr1,r2) satisfies the condition: div u = 0 in Dr1,r2 , then (∇χ) · u ∈ Ẇ k
p,a(Dr1,r2)

and therefore

B[(∇χ) · u] ∈ W k+1
p (Rn), suppB[(∇χ) · u] ⊂ Dr1,r2

∇ ·B[(∇χ) · u] = (∇χ) · u in Rn

‖B[(∇χ) · u]‖W k+1
p (Rn) 5 Cp,k,r1,r2‖(∇χ) · u‖W k

p (Dr1,r2 )

Proof. By Lemma 4.5 and the divergence theorem

∫

Dr1,r2

(∇χ) · u dx =
∫

Rn

(∇χ) · v dx =
∫

Rn

div (χv) dx = 0

which implies that (∇χ) · u ∈ Ẇ k
p,a(Dr1,r2). Therefore by Lemma 4.4, we obtain the

lemma. ¤

5. An expansion formula of the resolvent around the origin in Ω.

In this section, we investigate the behavior of solutions to the resolvent problem
(2.1) at λ = 0. Set

Lp,R(Ω) = L
(
Lp,R(Ω)n,W 2

p (ΩR)n
)

The theorem which follows is the main result in this section.

Theorem 5.1. Let 1 < p < ∞, 0 < ε < π/2 and R > R0+3. Then there exist λ0 =
λp,R > 0, H0 ∈ Lp,R(Ω), H1(λ) ∈ B(U̇λ0 ,Lp,R(Ω)) and H2(λ) ∈ Anal(Uλ0 ,Lp,R(Ω))
such that

(λ + Ap)−1Ppf = λ
n
2−1(log λ)σ(n) H0f + λ

n
2−1H1(λ)f + H2(λ)f (5.1)
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in ΩR for any f ∈ Lp,R(Ω)n and λ ∈ Σε with |λ| 5 λ0. Moreover H0 and Hj(λ) (j = 1, 2)
satisfy the relation:

∇ · (H0f) = 0, ∇ · (Hj(λ)f) = 0 in Ω, j = 1, 2 (5.2)

for any f ∈ Lp,R(Ω)n and λ ∈ Σε with |λ| 5 λ0. Here B(U̇λ0 ,Lp,R(Ω)) denotes the set
of all Lp,R(Ω)-valued bounded analytic functions on U̇λ0 = Uλ0 \ (−∞, 0].

Proof. For f ∈ Lp,R(Ω)n, we set f0(x) = f(x) (x ∈ Ω) and f0(x) = 0 (x 6∈ Ω),
and set γf = f |ΩR+1 . Let (R0(λ)f0,Πf0) be given by (3.2). Let (u, π) be a solution to
the problem:

−Div S(u, π) = γf + M(λ)f, div u = 0 in ΩR+1

S(u, π)ν|Γ = 0, S(u, π)ν0|SR+1 = S(R0(λ)f0,Πf0)ν0|SR+1 (5.3)

where ν0 is the unit outward normal to SR+1 = {x ∈ Rn | |x| = R + 1} and M(λ)f is
defined by the formula:

M(λ)f = −
M∑

k=1

(S(R0(λ)f0,Πf0)ν0, pk)SR+1pk −
M∑

k=1

(γf, pk)ΩR+1pk (5.4)

From the definition of M(λ), we have

(γf + M(λ)f, pl)ΩR+1 + (S(R0(λ)f0,Πf0)ν0, pl)SR+1 = 0 (5.5)

In view of (5.5), by Theorem 4.1 we know that (5.3) admits a unique solution

(u, π) ∈ (
W 2

p (ΩR+1)n ∩ L̇p(ΩR+1)n
)×W 1

p (ΩR+1)

We define the operator (A′(λ), B(λ)) by the formula: u = A′(λ)f and π = B(λ)f . If
(u, π) solve (5.3), then (u +

∑M
k=1 akpk, π) also solve (5.3). Therefore for the later use,

we define the solution operator A(λ) by

A(λ)f = A′(λ)f +
M∑

k=1

(
R0(λ)f0 −A′(λ)f, pk

)
ΩR+1

pk (5.6)

In particular, (A(λ)f,B(λ)f) solves (5.3) and satisfies the condition:

(A(λ)f −R0(λ)f0, pl)ΩR+1 = 0, l = 1, . . . , M (5.7)

Now we discuss the expansion of (A(λ), B(λ)) at λ = 0. First we shall give expansion
formulas of S(R0(λ)f0,Πf0) and M(λ)f . Let Gj(λ) (j = 1, 2) be the operators defined
in Theorem 3.1. We see that
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Gj(λ) =
∞∑

m=0

Gjmλm (|λ| 5 1/2), Gjm =
1

2πi

∫

|z|=r

Gj(z)
dz

zm+1
(0 < r < 1/2)

‖Gjm‖Lp,R(Rn) 5 Ljr
−m (0 < r < 1/2), ∇ ·Gjmf = 0 in Rn for f ∈ Lp,R(Rn)n

(5.8)

By Theorem 3.1 and (5.7)

S(R0(λ)f0,Πf0)

= S(R0(0)f0,Πf0) + λ
n
2−1(log λ)σ(n)

∞∑
m=0

D(G1mf0)λm +
∞∑

m=1

D(G2mf0)λm

where we have used the fact that G2(0) = G20 = R0(0) (cf. (3.16)). By the divergence
theorem

(γf, pl)ΩR+1 + (S(R0(0)f0,Πf0)ν0, pl)SR+1 = 0, l = 1, . . . , M (5.9)

and therefore by (5.4) formally we have

M(λ)f = − λ
n
2−1(log λ)σ(n)

∞∑
m=0

[ M∑

k=1

(D(G1mf0)ν0, pk)SR+1pk

]
λm

−
∞∑

m=1

[ M∑

k=1

(D(G2mf0)ν0, pk)SR+1pk

]
λm

Since (Div D(Gjmf0), pl)BR+1 = (D(Gjmf0)ν0, pl)SR+1 , if we set

Mjmf = −
M∑

k=1

(Div D(Gjmf0), pk)BR+1pk (5.10)

then formally we have

M(λ)f = λ
n
2−1(log λ)σ(n)

∞∑
m=0

M1mf λm +
∞∑

m=1

M2mf λm

Since ‖Mjmf‖Lp(ΩR+1) 5 Cr−m‖f‖Lp(Ω) for f ∈ Lp,R(Rn)n and 0 < r < 1/2 as follows
from (5.8), if we set

M1(λ)f =
∞∑

m=0

(M1mf)λm, M2(λ)f =
∞∑

m=1

(M2mf)λm

then we have
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Mj(λ) ∈ Anal
(
U1/2,L (Lp,R(Ω)n, Lp(ΩR+1)n)

)
, j = 1, 2

M(λ) = λ
n
2−1(log λ)σ(n)M1(λ) + M2(λ) (5.11)

Now, we decompose (5.3) into the following problems:

−Div S(u20, π20) = γf, div u20 = 0 in ΩR+1

S(u20, π20)ν|Γ = 0, S(u20, π20)ν0|SR+1 = S(R0(0)f0,Πf0)ν0|SR+1 (5.12)

−Div S(ujm, πjm) = Mjmf, div ujm = 0 in ΩR+1

S(ujm, πjm)ν|Γ = 0, S(ujm, πjm)ν0|SR+1 = D(Gjmf0)ν0|SR+1 (5.13)

for m = 0, 1, 2, . . . when j = 1 and for m = 1, 2, . . . when j = 2. By (5.9), the right
members of (5.12) satisfy the compatibility condition (4.3). Noting that

(Mjmf, p`)ΩR+1 + (D(Gjmf0)ν0, pl)SR+1 = 0, l = 1, . . . , M

as follows from (5.10) and the divergence theorem, we see that the right members of (5.13)
also satisfy the compatibility condition (4.3). By Theorem 4.1 we know the existence of
the solution (ujm, πjm) ∈ (W 2

p (ΩR+1)n ∩ L̇p(ΩR+1)n)×W 1
p (ΩR+1). Therefore we define

the solution operator (A′jm, Bjm) of (5.12) and (5.13) by ujm = A′jmf and πjm = Bjmf

for m = 0, 1, 2, . . . and j = 1, 2. Obviously

A′jm ∈ L
(
Lp,R(Ω)n,W 2

p (ΩR+1)n ∩ L̇p(ΩR+1)n
)
, Bjm ∈ L

(
Lp,R(Ω)n,W 1

p (ΩR+1)
)

By (5.8), (5.10), Theorems 3.4 and 4.1 we have

∥∥A′20f
∥∥

W 2
p (ΩR+1)

+ ‖B20f‖W 1
p (ΩR+1)

5 C
(
‖γf‖Lp(ΩR+1) + ‖S(R0(0)f0,Πf0)ν0‖W

1−1/p
p (SR+1)

)
5 C‖f‖Lp(Ω)

∥∥A′jmf
∥∥

W 2
p (ΩR+1)

+ ‖Bjmf‖W 1
p (ΩR+1)

5 C
(
‖Mjmf‖Lp(ΩR+1) + ‖D(Gjmf0)ν0‖W

1−1/p
p (SR+1)

)
5 CLjr

−m‖f‖Lp(Ω) (5.14)

for f ∈ Lp,R(Ω)n and 0 < r < 1/2, where C is independent of m. Therefore if we set

A′j(λ)f =
∞∑

m=0

A′jmfλm, Bj(λ)f =
∞∑

m=0

Bjmfλm

then we have
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A′j(λ) ∈ Anal
(
U1/2,L (Lp,R(Ω)n,W 2

p (ΩR+1)n ∩ L̇p(ΩR+1)n)
)
, j = 1, 2

∇ ·A′j(λ)f = 0 in ΩR+1 for f ∈ Lp,R(Ω)n, j = 1, 2

Bj(λ) ∈ Anal
(
U1/2,L (Lp,R(Ω)n,W 1

p (ΩR+1)
)
, j = 1, 2 (5.15)

and we see that A′(λ) and B(λ) have the following expansion:

A′(λ) = λ
n
2−1(log λ)σ(n)A′1(λ) + A′2(λ), B(λ) = λ

n
2−1(log λ)σ(n)B1(λ) + B2(λ) (5.16)

In view of (5.6), (5.8), (5.15) and Theorem 3.1, setting

Aj(λ)f = A′j(λ)f +
M∑

k=1

(
Gj(λ)f0 −A′j(λ)f, pk

)
ΩR+1

pk, j = 1, 2

we have

A(λ) = λ
n
2−1(log λ)σ(n)A1(λ) + A2(λ)

Aj(λ) ∈ Anal
(
U1/2,L (Lp,R(Ω)n,W 2

p (ΩR+1)n ∩ L̇p(ΩR+1)n)
)

j = 1, 2

∇ ·Aj(λ)f = 0 in ΩR+1 for f ∈ Lp,R(Ω)n, j = 1, 2 (5.17)

Now we shall construct the parametrix of the problem (2.1). Let φ ∈ C∞0 (Rn) such
that φ(x) = 1 (|x| 5 R− 3/2) and φ(x) = 0 (|x| = R− 5/4). We define

Φ(λ)f = (1− φ)R0(λ)f0 + φA(λ)f + B[(∇φ) · (R0(λ)f0 −A(λ)f)]

Ψ(λ)f = (1− φ)Πf0 + φB(λ)f (5.18)

Since supp∇φ ⊂ DR−3/2,R−5/4, divR0(λ)f0 = 0 in Rn and divA(λ)f = 0 in ΩR+1, by
Lemma 4.6 we have (∇φ) · (R0(λ)f0 −A(λ)f) ∈ Ẇ 2

p,a(DR−2,R−1) and therefore

B[(∇φ) · (R0(λ)f0 −A(λ)f)] ∈ W 3
p (Rn)

suppB[(∇φ) · (R0(λ)f0 −A(λ)f)] ⊂ DR−2,R−1

∇ ·B[(∇φ) · (R0(λ)f0 −A(λ)f)] = (∇φ) · (R0(λ)f0 −A(λ)f) in Rn

∥∥B[(∇φ) · (R0(λ)f0 −A(λ)f)]
∥∥

W 3
p (Rn)

5 Cp,R

∥∥(∇φ) · (R0(λ)f0 −A(λ)f)]
∥∥

W 2
p (Rn)

(5.19)

By Theorem 3.1, (5.17), (5.18) and (5.19), Φ(λ) has the following expansion:

Φ(λ) = λ
n
2−1(log λ)σ(n)Φ1(λ) + Φ2(λ), Φ1(λ), Φ2(λ) ∈ Anal(U1/2,Lp,R(Ω))

∇ · Φj(λ)f = 0 in ΩR for f ∈ Lp,R(Ω)n, j = 1, 2 (5.20)
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By (3.1), (5.3) and (5.19), (Φ(λ)f,Ψ(λ)f) satisfies

λΦ(λ)f −Div S(Φ(λ)f,Ψ(λ)f) = f + Q(λ)f, div Φ(λ)f = 0 in Ω

S(Φ(λ)f,Ψ(λ)f)ν|Γ = 0 (5.21)

where

Q(λ)f =2(∇φ)∇(R0(λ)f0 −A(λ)f) + (∆φ)(R0(λ)f0 −A(λ)f) + λφA(λ)f + φM(λ)f

+ (λ−∆)B[(∇φ) · (R0(λ)f0 −A(λ)f)]− (∇φ)Πf0 + (∇φ)B(λ)f (5.22)

If we show the existence of (I +Q(λ))−1 ∈ L (Lp,R(Ω)n) for λ ∈ U̇λ0 with some λ0, then
by Theorem 3.4, (5.18), (5.19) and (5.21) we see that

(
Φ(λ)(I + Q(λ))−1f,Ψ(λ)(I + Q(λ))−1f

) ∈ W 2
p (Ω)n ×Xp(Ω) (5.23)

and it satisfies (2.1). Thus the uniqueness assertion in Theorem 2.5 implies that

(λ + Ap)−1Ppf = Φ(λ)(I + Q(λ))−1f (5.24)

for any f ∈ Lp,R(Ω)n and λ ∈ U̇λ0 . By Theorem 3.1, (5.11), (5.17) and (5.19) we can
write

Q(λ)−Q(0) = λ
n
2−1(log λ)σ(n)Q1(λ) + λQ2(λ) (5.25)

with some Q1(λ), Q2(λ) ∈ Anal(U1/2,L (Lp,R(Ω)n,W 1
p (ΩR)n)). In particular, we have

‖Q(λ)f −Q(0)f‖W 1
p (Ω) 5 Cpn(|λ|)‖f‖Lp(Ω) (5.26)

for any f ∈ Lp,R(Ω)n and λ ∈ U̇1/2, where pn(|λ|) is given by (3.14). Therefore if we
show the existence of (I + Q(0))−1 ∈ L (Lp,R(Ω)n), then there exists a λ0 > 0 such that
for λ ∈ U̇λ0

(I + Q(λ))−1 = (I + Q(0))−1
∞∑

j=0

[
(Q(0)−Q(λ))(I + Q(0))−1

]j

which combined with (5.20), (5.24), (5.25) and (5.26) implies (5.1) and (5.2). From
these observations, to complete the proof of Theorem 5.1 it suffices to show the following
lemma.

Lemma 5.2. (I + Q(0))−1 ∈ L (Lp,R(Ω)n).

Proof. Since Q(0) ∈ L (Lp,R(Ω)n) is a compact operator, in view of the Fredholm
alternative theorem to show the lemma it suffices to show that I + Q(0) is injective. Let



24 Y. Shibata and S. Shimizu

f ∈ Lp,R(Ω)n satisfy (I + Q(0))f = 0 in Ω. If we set u = Φ(0)f and π = Ψ(0)f , by
(5.21) we see that

−Div S(u, π) = 0 div u = 0 in Ω, S(u, π)ν|Γ = 0 (5.27)

By Theorems 3.4 and 4.1 and Lemma 4.6, we have

u = (1− φ)R0(0)f0 + φA(0)f + B[(∇φ) · [R0(0)f0 −A(0)f ]] ∈ W 2
p,loc(Ω̄)

π = (1− φ)Πf0 + φB(0)f ∈ W 1
p,loc(Ω̄)

|u(x)| 5 Cp,R |x|−(n−2)‖f‖Lp(Ω), |∇u(x)| 5 Cp,R |x|−(n−1)‖f‖Lp(Ω) for |x| = R + 1

|π(x)| 5 Cp,R |x|−(n−1)‖f‖Lp(Ω) for |x| = R + 1 (5.28)

By the boot-strap argument, we see that u ∈ W 2
2,loc(Ω̄)n and π ∈ W 1

2,loc(Ω̄). Let ρ(x) ∈
C∞0 (Rn) such that ρ(x) = 1 (|x| 5 1) and ρ(x) = 0 (|x| = 2), and set ρL(x) = ρ(x/L).
By the divergence theorem

0 = (−Div S(u, π), ρLu)Ω = (D(u),∇(ρLu))Ω − (π, div (ρLu))Ω

= (1/2)(D(u), D(u)ρL)Ω + (D(u), (∇ρL)u)Ω − (π, (∇ρL) · u)Ω (5.29)

By (5.28), for L > R + 2 we have

∣∣(D(u), (∇ρL)u)Ω
∣∣,

∣∣(π, (∇ρL) · u)Ω
∣∣

5 Cp,RL−1

∫

L5|x|52L

|x|−(n−2)|x|−(n−1) dx‖f‖2Lp(Ω)

5 Cp,RL−(n−2)‖f‖2Lp(Ω) as L →∞

because n = 3. So we obtain ‖D(u)‖2L2(Ω) = 0 by L → ∞ in (5.29). Thus D(u) = 0,
namely u ∈ R. Since u is represented by the formula: u = Ax + b with some anti-
symmetric matrix A and b ∈ Rn, by (5.28) u = 0. Since ∇π = 0, by (5.28) π = 0. Thus
we have

Φ(0)f = 0 Ψ(0)f = 0 in Ω (5.30)

By the definition of φ(x), we have

A(0)f = B(0)f = 0 |x| 5 R− 2, R0(0)f = Πf0 = 0 |x| = R− 1 (5.31)

If we set

w =

{
A(0)f x ∈ ΩR+1

0 x 6∈ Ω
θ =

{
B(0)f x ∈ ΩR+1

0 x 6∈ Ω
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then from (5.3) and (5.31) it follows that (w, θ) ∈ W 2
p (BR+1)n ×W 1

p (BR+1) and

−Div S(w, θ) = f0, div w = 0 in BR+1

S(w, θ)ν0|SR+1 = S(R0(0)f0,Πf0)ν0|SR+1 (5.32)

On the other hand, by (5.31) (R0(0)f0,Πf0) also satisfies (5.32). Therefore (w −
R0(0)f0, θ − Πf0) satisfies (4.5) with D = BR+1. By Theorem 4.1 and (5.7) with λ = 0
we have

A(0)f −R0(0)f0 = 0, B(0)f −Πf0 = 0 in ΩR+1 (5.33)

By (5.28), (5.30), (5.33) and suppφ ⊂ BR−1,

0 = R0(0)f0 + φ(A(0)f −R0(0)f0) = R0(0)f0 in ΩR+1

0 = Πf0 + φ(B(0)f −Πf0) = Πf0 in ΩR+1

Thus we obtain

f0 = −Div S(R0(0)f0,Πf0) = 0 in BR+1

namely f = 0, which completes the proof of the lemma. ¤

6. Proofs of main theorems.

Applying Theorems 2.5 and 5.1 to the representation formula of the analytic semi-
group {T (t)}t=0 in terms of (λ+Ap)−1Pp, we can prove Theorem 1.1 in the same manner
as in Iwashita [12] and Kubo and Shibata [14], and therefore we may omit the detailed
proof of Theorem 1.1. And also, replacing Lemma 2.5 in [14] by Lemma 4.6 and com-
bining the Lp-Lq estimates of the Stokes semigroup in Rn and the local energy decay
in Theorem 1.1 by cut-off technique, we can prove Theorem 1.2 in the same manner as
in Iwashita [12] and Kubo and Shibata [14]. Therefore, we may also omit the detailed
proof of Theorem 1.2.

Now, we shall prove Theorem 1.3. Once we obtain the next lemma, we immediately
prove Theorem 1.3.

Lemma 6.1. Let n < p 5 q 5 ∞ (p 6= ∞). For every f ∈ Jp(Ω) and t > 0 we have

‖∇T (t)f‖Lq(Ω) 5 Cp,q t−
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) (6.1)

In fact, if 1 < p 5 n < q 5 ∞, we choose r in such a way that n < r 5 q 5 ∞
and r 6= ∞. Then, for f ∈ Jp(Ω) by Lemma 6.1, (1.9) and the semigroup property:
∇T (t)f = ∇T (t/2)[T (t/2)f ], we have
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‖∇T (t)f‖Lq(Ω) 5 Cr,q(t/2)−
n
2 ( 1

r− 1
q )− 1

2 ‖T (t/2)f‖Lr(Ω)

5 Cr,qCp,r(t/2)−
n
2 ( 1

r− 1
q )− 1

2 (t/2)−
n
2 ( 1

p− 1
r )‖f‖Lp(Ω)

= Cp,qt
−n

2 ( 1
p− 1

q )− 1
2 ‖f‖Lp(Ω)

which shows Theorem 1.3 in the case that 1 < p 5 n < q 5 ∞. Therefore, we shall prove
Lemma 6.1, below.

The lemma which follows is a key to prove Lemma 6.1.

Lemma 6.2. Let 0 < ε < π/2 and n < p 5 q 5 ∞ (p 6= ∞). Then, there exist
positive constants λ0 and Cp,q,ε such that

∥∥∇(λ + Ap)−1f
∥∥

Lq(Ω)
5 Cp,q,ε |λ|

n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) (6.2)

for every λ ∈ Σε with |λ| 5 λ0 and f ∈ Jp(Ω).

In order to prove Lemma 6.2, we prepare an auxiliary lemma for the solution operator
R0(λ).

Lemma 6.3. Let 0 < ε < π/2 and n < p 5 q 5 ∞ (p 6= ∞).
(1) For any f0 ∈ Lp(Rn)n and λ ∈ Σε with |λ| 5 1 there holds the estimate:

‖∇R0(λ)f0‖Lq(Rn) 5 Cp,q,ε |λ|
n
2 ( 1

p− 1
q )− 1

2 ‖f0‖Lp(Rn) (6.3)

(2) For any f0 ∈ Lp(Rn)n ∩L1(Rn)n and λ ∈ Σε with |λ| 5 1 there holds the estimate:

‖∇R0(λ)f0‖Lq(Rn) 5 Cp,q,ε

(‖f0‖Lp(Rn) + ‖f0‖L1(Rn)

)
(6.4)

Proof. In the course of the proof below, we always assume that λ ∈ Σε and
|λ| 5 1. First we shall show the assertion (1) when q = ∞. Let ψ0(ξ) ∈ C∞0 (Rn) such
that ψ0(ξ) = 1 (|ξ| 5 2) and ψ0(ξ) = 0 (|ξ| = 3), and set ψ∞(ξ) = 1− ψ0(ξ) and

RN
0 (λ)f0 = F−1

[
ψN (ξ)P (ξ)f̂0(ξ)/(λ + |ξ|2)](x), N = 0,∞.

To estimate R∞0 (λ)f0, we observe that

∣∣∂α
ξ

[
ψ∞(ξ)(λ + |ξ|2)−1

]∣∣ 5 Cα(1 + |ξ|2)−1|ξ|−|α|

for any α ∈ Nn
0 and ξ ∈ Rn, because |λ+ |ξ|2| = (1/2)(|ξ|2 +1) when |ξ| = 2 and |λ| 5 1.

By the Fourier multiplier theorem we have

∥∥R∞0 (λ)f0

∥∥
W 2

p (Rn)
5 Cp‖f0‖Lp(Rn) (6.5)
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Since n < p 5 q 5 ∞ and p 6= ∞, by the Sobolev imbedding theorem, we know that

W 1
p (D) ⊂ Lq(D), ‖u‖Lq(D) 5 Cp,q‖u‖W 1

p (D) (6.6)

for D = Rn, Ω and ΩR+1. By (6.6) and (6.5) we have

∥∥∇R∞0 (λ)f0

∥∥
L∞(Rn)

5 Cp

∥∥∇R∞0 (λ)f0

∥∥
W 1

p (Rn)
5 Cp‖f0‖Lp(Rn) (6.7)

Next we consider R0
0(λ)f0. By (3.15) we have

∣∣∂α
ξ

[
ψ0(ξ)(λ + |ξ|2)−1

]∣∣ 5 Cα,ε(|λ|+ |ξ|2)−1|ξ|−|α|

for |ξ| 5 3 and α ∈ Nn
0 . Therefore

∣∣∂α
ξ

[
ψ0(ξ)ξjP (ξ)(λ + |ξ|2)−1

]∣∣ 5 Cα,ε|ξ|−1−|α| or 5 Cα,ε|λ|− 1
2 |ξ|−|α| (6.8)

for α ∈ Nn
0 . If we set

Kj
λ(x) = F−1

ξ

[
ψ0(ξ)iξjP (ξ)(λ + |ξ|2)−1

]
(x)

then ∂jR
0
0(λ)f0 = Kj

λ ∗ f0(x). To estimate Kj
λ(x), we use the following theorem (cf. [20,

Theorem 2.3]):

Theorem 6.4. Let B be a Banach space and | · |
B

its corresponding norm. Let α

be a number > −n and set α = N + σ−n where N = 0 is an integer and 0 < σ 5 1. Let
f(ξ) be a function in C∞(Rn \ {0};B) such that

∂γ
ξ f(ξ) ∈ L1(Rn;B) for |γ| 5 N

∣∣∂γ
ξ f(ξ)

∣∣
B

5 Cγ |ξ|α−|γ| ∀ξ 6= 0, ∀γ

Let

g(x) =
∫

Rn

e−ix·ξf(ξ) dξ

Then, we have

|g(x)|
B

5 Cn,α

(
max

|γ|5N+2
Cγ

)
|x|−(n+α), ∀x 6= 0

where Cn,α is a constant depending only on n and α.

By Theorem 6.4 and (6.8) we have
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∣∣Kj
λ(x)

∣∣ 5 Cε|x|−(n−1) for all x 6= 0 (6.9)
∣∣Kj

λ(x)
∣∣ 5 Cε|λ|− 1

2 |x|−n for all x 6= 0 (6.10)

By (6.9) and (6.10) we have

∫

Rn

∣∣Kj
λ(x)

∣∣p′dx 5 Cp,ε

( ∫

|x|5|λ|− 1
2

|x|−p′(n−1)dx + |λ|− p′
2

∫

|x|=|λ|− 1
2

|x|−p′ndx

)

5 Cp,ε

(|λ|− 1
2{n−p′(n−1)} + |λ|− p′

2 |λ|− 1
2 (−p′n+n)

)
5 Cp,ε |λ|(

n
2p− 1

2 )p′

Therefore by the Young inequality we have

∥∥∂jR
0
0(λ)f0

∥∥
L∞(Rn)

5
∥∥Kj

λ

∥∥
Lp′ (Rn)

‖f0‖Lp(Rn) 5 Cp,ε |λ|
n
2p− 1

2 ‖f0‖Lp(Rn) (6.11)

Since n/(2p)− 1/2 < 0 and |λ| 5 1, combining (6.5) with (6.11), we obtain

‖∇R0(λ)f0‖L∞(Rn) 5 Cp,ε |λ|
n
2p− 1

2 ‖f0‖Lp(Rn) (6.12)

which shows (6.3) when q = ∞ and n < p < ∞. When q = p < ∞, by (3.11) we obtain

‖∇R0(λ)f0‖Lp(Rn) 5 Cp,ε |λ|− 1
2 ‖f0‖Lp(Rn) (6.13)

for every f0 ∈ Lp(Rn)n and λ ∈ Σε, which shows (6.3) when q = p < ∞. When
n < p < q < ∞, using the interpolation inequality:

‖∇R0(λ)f0‖Lq(Rn) 5 Cp,q‖∇R0(λ)f0‖
p
q

Lp(Rn)‖∇R0(λ)f0‖1−
p
q

L∞(Rn)

and (6.12) and (6.13), we obtain (6.3), which completes the proof of (6.3).
In order to prove the assertion (2), it suffices to prove that

‖∇R0(λ)f0‖Lp(Rn) 5 Cp,ε

(‖f0‖Lp(Rn) + ‖f0‖L1(Rn)

)
(6.14)

for any f0 ∈ Lp(Rn)n ∩ L1(Rn)n and λ ∈ Σε with |λ| 5 1. In fact, since

‖∇R0(λ)f0‖Lq(Rn) 5 Cp,q

(‖∇2R0(λ)f‖Lp(Rn) + ‖∇R0(λ)f‖Lp(Rn)

)

as follows from (6.6), by (6.14) and (3.11) we have (6.4).
By (6.9) and the fact: (n− 1)p > (n− 1)n > n, we have

∫

|x|=1

∣∣Kj
λ(x)

∣∣pdx 5 Cε

∫

|x|=1

|x|−(n−1)pdx 5 Cε
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Since

∣∣Kj
λ(x)

∣∣ 5 Cε

∫

|ξ|53

|ξ|−1dξ = Cε

as follows from (6.8) with α = 0, we have

∫

|x|51

∣∣Kj
λ(x)

∣∣pdx 5 Cp,ε

Therefore ‖Kj
λ‖Lp(Rn) = Cp,ε < ∞. By the Young inequality we obtain

∥∥∂jR
0
0(λ)f0

∥∥
Lp(Rn)

5
∥∥Kj

λ

∥∥
Lp(Rn)

‖f0‖L1(Rn) 5 Cp,ε‖f0‖L1(Rn) (6.15)

Combining (6.5) with (6.15), we obtain (6.14), which completes the proof of the lemma.
¤

Proof of Lemma 6.2. Let R0(λ) and Π be the operators defined in (3.2). Since
(R0(λ)f0,Πf0 + c) solves (3.1) for any constant c, we may assume that

∫

ΩR+1

Πf0dx = 0

and therefore by Poincaré’s inequality and (3.12) we have

‖Πf0‖W 1
p (ΩR+1) 5 C‖∇Πf0‖Lp(Rn) 5 C‖f‖Lp(Ω) (6.16)

Let (u, π) be a solution of (2.1) for λ ∈ Σε with |λ| 5 1 and set

u = R0(λ)f0|Ω + v, π = Πf0|Ω + θ (6.17)

Then, (v, θ) enjoys the equation:

λv −Div S(v, θ) = 0, div v = 0 in Ω

S(v, θ)ν|Γ = −S(R0(λ)f0,Πf0)ν|Γ (6.18)

To represent (v, θ), we shall introduce (w, τ) which is a solution to the equation:

−Div S(w, τ) = g(λ), div w = 0 in ΩR+1

S(w, τ)ν|Γ = −S(R0(λ)f0,Πf0)ν|Γ, S(w, τ)ν0|SR+1 = 0 (6.19)

where we have set
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g(λ) = −
M∑

k=1

(λR0(λ)f0, pk)O pk

with O = Rn \ Ω. Since

(g(λ), pl)ΩR+1 − (S(R0(λ)f0,Πf0)ν, pl)Γ = 0, l = 1, . . . , M

by Theorem 4.1 we know the unique existence of (w, τ). Let φ ∈ C∞0 (Rn) such that
φ(x) = 1 (|x| 5 R − 2) and φ(x) = 0 (|x| = R − 1). By Lemma 4.6, we can define
B[(∇φ) · w]. Thus we set

v = φw −B[(∇φ) · w] + U, θ = φτ + Ψ (6.20)

where (U,Ψ) is a solution to

λU −Div S(U,Ψ) = G(λ), div U = 0 in Ω, S(U,Ψ)ν|Γ = 0 (6.21)

with

G(λ) = −φλw + (λ−∆)B[(∇φ) · w] + 2(∇φ)(∇w) + (∆φ)w − (∇φ)τ − φg(λ)

Since n/(2p)− 1/2 < 0 and |λ| 5 1, by (3.11) we have

‖g(λ)‖Lp(ΩR+1) 5 Cp,R‖λR0(λ)f0‖Lp(BR+1)

5 Cp,ε,R‖f‖Lp(Ω) 5 Cp,ε,R|λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.22)

By (3.11), (3.12), (6.3) with q = ∞ and (6.16), we have

‖S(R0(λ)f0,Πf0)‖W 1
p (ΩR+1) 5 Cp

(‖∇R0(λ)f0‖W 1
p (ΩR+1) + ‖∇Πf0‖Lp(ΩR+1)

)

5 C
(‖∇2R0(λ)f0‖Lp(Rn) + ‖∇R0(λ)f0‖L∞(Rn) + ‖∇Πf0‖Lp(ΩR+1)

)

5 Cp,ε,R |λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.23)

By (4.4), (6.22) and (6.23), we have

‖w‖W 2
p (ΩR+1) + ‖τ‖W 1

p (ΩR+1) 5 Cp,R

(‖g(λ)‖Lp(ΩR+1) + ‖S(R0(λ)f0,Πf0)‖W 1
p (ΩR+1)

)

5 Cp,ε,R |λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.24)

By (6.22), (6.24) and Lemma 4.6, we have

‖G(λ)‖Lp(Ω) 5 Cp,ε |λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.25)
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From the proof of Theorem 5.1 we know that there exists a constant λ0 > 0 such that
for λ ∈ U̇λ0 we can write

U =(1− φ)R0(λ)
[
(I + Q(λ))−1G(λ)

]
0

+ φA(λ)(I + Q(λ))−1G(λ)

+ B
[
(∇φ) · (R0(λ)

[
(I + Q(λ))−1G(λ)

]
0
−A(λ)(I + Q(λ))−1G(λ))

]

Ψ = (1− φ)Π
[
(I + Q(λ))−1G(λ)

]
0

+ φB(λ)(I + Q(λ))−1G(λ) (6.26)

where (A(λ), B(λ)) is the solution operator of (5.3) which satisfies (5.7). By (5.15),
(5.17), Lemma 5.2, (6.25) and (6.6), we have

∥∥A(λ)(I + Q(λ))−1G(λ)
∥∥

W 1
q (ΩR+1)

5 Cp,q

∥∥A(λ)(I + Q(λ))−1G(λ)
∥∥

W 2
p (ΩR+1)

5 Cp,q

∥∥(I + Q(λ))−1G(λ)
∥∥

Lp(Ω)

5 Cp,q‖G(λ)‖Lp(Ω) 5 Cp,q,ε |λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.27)

for every λ ∈ Σε with |λ| 5 λ0. By Theorem 3.1, Lemma 5.2, (6.4), (6.25), the fact that
supp (I + Q(λ))−1G(λ) ⊂ BR and (6.6), we have

∥∥∇[
R0(λ)[(I + Q(λ))−1G(λ)]0

]∥∥
Lq(Rn)

+
∥∥R0(λ)[(1 + Q(λ))−1G(λ)]0

∥∥
W 1

q (BR+1)

5 Cp,q,ε

(‖(I + Q(λ))−1G(λ)‖Lp(Ω) + ‖(I + Q(λ))−1G(λ)‖L1(Ω)

)

5 Cp,q,ε|λ|
n
2p− 1

2 ‖f‖Lp(Ω) (6.28)

for every λ ∈ Σε with |λ| 5 λ0. Since

∇(λ + Ap)−1f = ∇(
R0(λ)f0|Ω + φw −B[(∇φ) · w] + U

)

as follows from (6.17) and (6.20), it suffices to estimate the Lq(Ω)–norm of the right hand
side. By (6.3), we have

‖∇R0(λ)f0‖Lq(Ω) 5 Cp,q,ε|λ|
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω)

By (6.24) and Lemma 4.6, we have

‖∇(φw −B[(∇φ) · w])‖Lq(Ω) 5 Cp,q‖w‖W 2
p (ΩR+1) 5 Cp,q,ε|λ|

n
2p− 1

2 ‖f‖Lp(Ω)

By (6.27), (6.28) and Lemma 4.6, we have

‖∇U‖Lq(Ω) 5 Cp,q,ε|λ|
n
2p− 1

2 ‖f‖Lp(Ω)
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Combining these estimates and noting that |λ| n
2p− 1

2 5 |λ|n
2 ( 1

p− 1
q )− 1

2 for |λ| 5 1, we have
Lemma 6.2. ¤

Proof of Lemma 6.1. Set γ = {se±i(π−ε) | s > 0} for 0 < ε < π/2 and

∇T (t)f =
1

2πi

( ∫

γ,|λ|5λ0

+
∫

γ,|λ|=λ0

)
eλt∇(λ + Ap)−1f dλ = I(t) + II(t)

for f ∈ Jp(Ω). By (6.2) we have

‖I(t)‖Lq(Ω) 5 Cp,q,ε t−
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) (6.29)

Since n < p < ∞ and p 5 q 5 ∞, by (6.6) and (2.14) we obtain

‖II(t)‖Lq(Ω) 5 Cp,q‖II(t)‖
W1

p (Ω)
5 Cp,q,ε t−1e−(cos ε)λ0t‖f‖Lp(Ω)

which combined with (6.29) implies (6.1) for t = 1. When 0 < t < 1, by using (2.14) we
obtain

‖∇2T (t)f‖Lp(Ω) 5 Cp,ε t−1‖f‖Lp(Ω), ‖∇T (t)f‖Lp(Ω) 5 Cp,ε t−
1
2 ‖f‖Lp(Ω) (6.30)

By the interpolation inequality we have

‖∇T (t)f‖Lq(Ω) 5 Cp,q‖∇2T (t)f‖a
Lp(Ω)‖∇T (t)f‖1−a

Lp(Ω)

with a = n(1/p − 1/q), because n < p 5 q 5 ∞ and p 6= ∞, and therefore by (6.30) we
obtain

‖II(t)‖Lq(Ω) 5 Cp,q,ε t−
n
2 ( 1

p− 1
q )− 1

2 ‖f‖Lp(Ω) (6.31)

for 0 < t < 1. This completes the proof of Lemma 6.1. ¤

A. The denseness of C∞
0,σ(Rn) in Jp(Ω).

In the appendix, we shall show the following proposition.

Proposition A.1. Let 1 < p < ∞. Then, C∞0,σ(Rn) is dense in Jp(Ω).

Proof. By Lemma 2.6, D(Ap) is dense in Jp(Ω), and therefore for any u ∈ Jp(Ω)
and ε > 0 there exists a v ∈ W 2

p (Ω)n such that div v = 0 in Ω and ‖u − v‖Lp(Ω) < ε/3.
Let ϕ be a function in C∞0 (Rn) such that ϕ(x) = 1 for |x| 5 1 and ϕ(x) = 0 for |x| = 2,
and set ϕR(x) = ϕ(x/R). In view of Lemma 4.6, if we set wR = ϕRv −B[(∇ϕR) · v],
then we have

wR ∈ W 2
p (Ω)n, div wR = 0 in Ω and wR = 0 for |x| = 2R (A.1)
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Since

∥∥B[(∇ϕR) · v]
∥∥

W 3
p (Ω)

5 C‖(∇ϕR) · v‖W 2
p (Ω) 5 C‖∇ϕ‖W 2∞(Ω)R

−1‖v‖W 2
p (Ω)

for R > 1 as follows from Lemma 4.6, we have ‖wR − v‖W 2
p (Ω) → 0 as R → ∞, which

shows that there exists an R > 1 such that ‖wR− v‖Lp(Ω) < ε/3. By the Lions extension
method we know that there exists a y ∈ W 2

p (Rn) such that y = wR on Ω and ‖y‖W 2
p (Ω) 5

C‖wR‖W 2
p (Ω). Since y = wR on Ω and div wR = 0 in Ω, we have div y = 0 on Ω, which

implies that div y ∈ Ẇ 1
p (Rn \ Ω). To use Lemma 4.4 we observe that

∫

Ωc

div y dx = −
∫

Γ

ν · y dσ = −
∫

Γ

ν · wR dσ = −
∫

Ω

div wR dx = 0

where dσ denotes the surface element of Γ and we have used (A.1), which implies that
div y ∈ Ẇ 1

p,a(Rn \ Ω). By Lemma 4.4, we see that B[div y] ∈ W 2
p (Rn)n, div B[div y] =

div y in Rn and B[div y] vanishes on Ω. Therefore, if we set z = y − B[div y], then
z ∈ W 2

p (Rn)n, div z = 0 in Rn and z = wR on Ω. Let ψ(x) be a function in C∞0 (Rn)
such that

∫
Rn ψ dx = 1 and set ψτ (x) = τ−nψ(x/τ). Then, zτ = ψτ ∗z has the properties

that

zτ ∈ C∞0,σ(Rn), lim
τ→0

‖zτ − z‖W 2
p (Rn) = 0

where ∗ denotes the convolution operator. Since z = wR on Ω, we have

lim
τ→0

‖zτ − wR‖Lp(Ω) = lim
τ→0

‖zτ − z‖Lp(Ω) 5 lim
τ→0

‖zτ − z‖Lp(Rn) = 0

Therefore, there exists a τ > 0 such that ‖zτ −wR‖Lp(Ω) < ε/3. Combining these results
implies that ‖u− zτ‖Lp(Ω) < ε, which completes the proof of the proposition. ¤

References
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