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Iwahori-spherical representations ofGGGSSSppp(((444)))
and Siegel modular forms of degree 2 with square-free level

By Ralf SCHMIDT
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Abstract. A theory of local old- and newforms for representations ofGSp(4) over ap-adic
field with Iwahori-invariant vectors is developed. The results are applied to Siegel modular forms
of degree 2 with square-free level with respect to various congruence subgroups.

Introduction.

For representations ofGL(2) over ap-adic fieldF there is a well-known theory of local
newforms due toCASSELMAN, see [Cas]. This local theory together with the global strong
multiplicity one theorem for cuspidal automorphic representations ofGL(2) is reflected in the
classical Atkin-Lehner theory for elliptic modular forms. On the other hand, there is currently
no satisfactory theory of local newforms for the groupGSp(4,F). As a consequence, there is
no analogue of Atkin-Lehner theory for Siegel modular forms of degree2. It is the goal of this
paper to provide such theories for the “square-free” case. In the local context this means that
the representations in question are assumed to have non-trivial Iwahori-invariant vectors. In the
global context it means that we are considering various congruence subgroups of square-free
level.

This paper is organized into three parts. In the first part we shall take from [ST] the complete
list of irreducible, admissible representations ofGSp(4,F) supported in the minimal parabolic
subgroup and list their basic properties (Table 1). We shall describe the local Langlands corre-
spondence for these representations and give all the local parameters and local factors (Table 2).
Assuming the inducing characters are unramified, we shall compute the dimensions of the spaces
of fixed vectors under any parahoric subgroup for each of these representations (Table 3).

In the second part of this paper we shall define local new- and oldforms with respect to a
parahoric subgroup. Our main local result is Theorem 2.3.1, saying that, with respect to a fixed
parahoric subgroup, a representation has either oldforms or newforms, but never both. In Table
3 the spaces of newforms have been indicated by writing their dimensions in bold face. We see
that in almost all cases the space of newforms (with respect to a fixed parahoric subgroup) is
one-dimensional, but there are two exceptions.

In the third part we will apply the previously obtained local results to prove several theo-
rems on classical Siegel modular forms “of square-free level”. We will need the spin (degree 4)
L-function ofGSp(4) as a global tool. Even though we only need the usual analytic properties of
thisL-function for global representations whose local components at finite places are all Iwahori-
spherical, none of the current results on thisL-function seems to satisfy all our needs. We shall
thereforeassumethat anL-function theory with the desired properties exists. Under this assump-
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tion, we shall prove something similar to a “strong multiplicity one” result for certain cuspidal
automorphic representations ofGSp(4), but without actually knowing multiplicity one. We shall
then define old- and newforms for Siegel modular forms with respect to three different congru-
ence subgroups: The “minimal” congruence subgroupU/0(N) (corresponding to the local Iwahori
subgroups), the usual Hecke subgroupΓ0(N) (for systematic reasons here calledU1(N)), and the
paramodular groupU02(N). In each case we shall prove several results that would be expected
from any reasonable notion of newforms. For example, if a newform is an eigenform atalmost
all good places, then it is an eigenform atall good places. We shall also describe Euler factors at
bad places and define the completed spinL-function for these modular forms.

We shall now make some more comments on the local data given in Table 3. As mentioned
above, if a dimension in this table is typed in bold face, then the space consists entirely of
newforms, otherwise entirely of oldforms. We see that many representations have newforms
with respect to two different parahoric subgroups. Amongst the unitary representations only
those of type IIIa have a two-dimensional space of newforms with respect toP1, the “Hecke”
subgroup. In a sense, this can be naturally repaired in the global theory by considering a certain
Hecke operatorT2, see section 3.3.

The signs in Table 3 indicate eigenvalues of theAtkin-Lehner involutionwhere this makes
sense, namely for the “symmetric” parahoric subgroups and for representations with trivial cen-
tral character. The column “ε” gives the value of theε-factor of the representation at1/2. Inves-
tigating Table 3, we find an interesting relation between Atkin-Lehner eigenvalues andε-factors.
Roughly speaking, the trace of the Atkin-Lehner involution on the full space of newforms is
closely related to the sign defined by theε-factor. See Proposition 1.3.1 for a more precise
statement.

There have been several attempts in the literature to define a good notion of old and new
Siegel modular forms. The first one seems to beIBUKIYAMA [Ib1], who defines old- and new-
forms for the minimal congruence subgroupB(p). Then there is [Ib2], where definitions for the
paramodular group of prime level are given. In both cases the definitions coincide with ours.
The motivation to single out newforms in [Ib1] and [Ib2] comes from the comparison of global
dimension formulas, providing further evidence that these are the “correct” definitions.AN-
DRIANOV [An2] has defined newforms forΓ0(N) for any N, not only in the square-free case.
Recently, a definition of newforms forΓ0(p) that is equivalent to ours has been given byRASTE-
GAR [Ra] in a more geometric setting.

I would like to thank D. Prasad, B. Roberts and R. Schulze-Pillot for various helpful remarks. Most of
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Notation.

We shall realize the algebraic groupGSp(4) as the set of matrices1 ∈GL(4) that satisfy

t1J1= λ (1)J for someλ (1) ∈GL(1), whereJ =




1
1

−1
−1


 .
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This defines a homomorphismλ : GSp(4)→GL(1), called themultiplier homomorphism, whose
kernel is by definition the symplectic groupSp(4). As a minimal parabolic subgroup ofGSp(4)
we choose upper triangular matrices. There are two conjugacy classes of maximal parabolic
subgroups, represented by theSiegel parabolic subgroupP, whose Levi factor is

MP =

{(
A

uA′

)
: u∈GL(1), A∈GL(2)

}
'GL(1)×GL(2),

whereA′ :=
(

1
1

)
tA−1

(
1

1

)
, and theKlingen parabolic subgroupQ, whose Levi factor is

MQ =








u
A

u−1det(A)


 : u∈GL(1), A∈GL(2)




'GL(1)×GL(2).

Let F be a non-archimedean local field. We shall employ the notations of [ST] for representations
of GSp(4,F). For charactersχ1, χ2 andσ of F∗ let χ1×χ2oσ be the representation ofG(F) =
GSp(4,F) induced from the character




t1 ∗ ∗ ∗
t2 ∗ ∗

ut−1
2 ∗

ut−1
1


 7−→ χ1(t1)χ2(t2)σ(u)

of the Borel subgroup. The induction is always normalized, i.e., the standard space ofχ1×χ2oσ
consists ofCCC-valued functions onGSp(4,F) with the transformation property

f







t1 ∗
t2

ut−1
2

ut−1
1


1


 = χ1(t1)χ2(t2)σ(u) |t2

1t2| |u|−3/2 f (1). (1)

The central character of this representation isχ1χ2σ2. Provided thate(χ1) ≥ e(χ2) > 0, where
e(χi) denotes the real number with|χi(x)| = |x|e(χi) (the exponent), let L((χ1,χ2,σ)) be the
unique irreducible quotient (theLanglands quotient) of χ1×χ2oσ (see [ST], section 1). Ifπ is
a representation ofGL(2,F) andσ a character ofF∗ let πoσ be the representation ofGSp(4,F)
induced from the representation

(
A ∗

uA′

)
7−→ σ(u)π(A)

of P(F). The exponente(π) is the unique real number such that| |−e(π)π is unitarizable. Provided
thatπ is square integrable ande(π) > 0, the induced representationπoσ has a unique Langlands
quotient, denoted byL((π,σ)). Finally, assume thatχ is a character ofF∗ andσ a representation
of GSp(2,F) = GL(2,F). Thenχoσ denotes the representation ofGSp(4,F) induced from the
representation
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


u ∗ ∗
A ∗

u−1det(A)


 7−→ χ(u)σ(A)

of Q(F). If e(χ) > 0, there is a unique Langlands quotientL((χ,σ)). For the familiar induced
representationπ(χ1,χ2) of GL(2,F) we shall use the symbolχ1× χ2. Note that ifGL(2) is
considered as the group of symplectic similitudesGSp(2), thenχ1oχ2 = χ1χ2×χ2. As in [ST]
we shall writeν(x) = |x| for the normalized absolute value on the local fieldF .

1. Representations supported in the minimal parabolic subgroup.

By [Bo2], the Iwahori-spherical representations we are interested in are precisely the con-
stituents of representations parabolically induced from an unramified character of the minimal
parabolic subgroup. We shall therefore begin by making a complete list of such induced repre-
sentations and document their basic properties. Most results are taken from [ST]. In addition
we shall describe the local Langlands correspondence for these representations and compute all
the local factors (Table 2). After that we will compute the dimensions of spaces of fixed vectors
under each parahoric subgroup for each representation in our list. The results are summarized in
Table 3, which is quite important for this paper.

1.1. The list of irreducible representations.
The reducibilities of the representations ofGSp(4,F) parabolically induced from a charac-

ter of the minimal parabolic subgroup were all determined in the paper [ST]. This paper contains
also a complete list of unitary, tempered and square integrable representations supported in the
Borel subgroup. In the following we shall divide the irreducible representations ofGSp(4,F)
supported in the minimal parabolic subgroup into six groups I–VI and briefly describe each
group.

Group I: Irreducible representations of the formχ1×χ2oσ with charactersχ1,χ2,σ of F∗.

By [ST], Lemma 3.2, the induced representationχ1× χ2oσ is irreducible if and only ifχ1 6=
ν±1, χ2 6= ν±1 andχ1 6= ν±1χ±1

2 .

Group II: Constituents ofν1/2χ×ν−1/2χoσ , whereχ /∈ {ν±1,ν±3}.
By [ST], Lemma 3.3 and Lemma 3.7, there are two constituents. The unique irreducible subrep-
resentation isχStGL(2)oσ , and the quotient is isomorphic toχ1GL(2)oσ .

Group III: Constituents ofχ×νoν−1/2σ , whereχ /∈ {1,ν±2}.
By [ST], Lemma 3.4 and Lemma 3.9, there are the two irreducible constituentsχ oσStGSp(2)
andχoσ1GSp(1), the latter one being the quotient.

Group IV: Constituents ofν2×νoν−3/2σ .

By [ST], Lemma 3.5, we have (in the Grothendieck group)

ν2×νoν−3/2σ = ν3/2StGL(2)oν−3/2σ +ν3/21GL(2)oν−3/2σ

= ν2oν−1σStGSp(2) +ν2oν−1σ1GSp(2).
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Each of the four representations on the right is reducible and has two irreducible constituents as
shown in the following table. The quotients are on the bottom resp. on the right.

ν3/2StGL(2)oν−3/2σ ν3/21GL(2)oν−3/2σ

ν2oν−1σStGSp(2) σStGSp(4) L((ν2,ν−1σStGSp(2)))

ν2oν−1σ1GSp(2) L((ν3/2StGL(2),ν−3/2σ)) σ1GSp(4)

(2)

Group V: Constituents ofνξ0×ξ0oν−1/2σ , whereξ0 is a non-trivial quadratic character.

According to [ST] Lemma 3.6 we have

νξ0×ξ0oν−1/2σ = ν1/2ξ0StGL(2)oν−1/2σ︸ ︷︷ ︸
sub

+ν1/2ξ01GL(2)oν−1/2σ︸ ︷︷ ︸
quot

= ν1/2ξ0StGL(2)oξ0ν−1/2σ︸ ︷︷ ︸
sub

+ν1/2ξ01GL(2)oξ0ν−1/2σ︸ ︷︷ ︸
quot

.

Each of the representations on the right side has two constituents as indicated in the following
table. The quotients appear on the bottom resp. on the right.

ν1/2ξ0StGL(2)oξ0ν−1/2σ ν1/2ξ01GL(2)oξ0ν−1/2σ

ν1/2ξ0StGL(2)oν−1/2σ δ ([ξ0,νξ0],ν−1/2σ) L((ν1/2ξ0StGL(2),ν−1/2σ))

ν1/2ξ01GL(2)oν−1/2σ L((ν1/2ξ0StGL(2),ξ0ν−1/2σ)) L((νξ0,ξ0oν−1/2σ))

(3)

Hereδ ([ξ0,νξ0],ν−1/2σ) is a square integrable representation.

Group VI: Constituents ofν×1F∗ oν−1/2σ .

By [ST] Lemma 3.8, we have

ν×1F∗ oν−1/2σ = ν1/2StGL(2)oν−1/2σ︸ ︷︷ ︸
sub

+ν1/21GL(2)oν−1/2σ︸ ︷︷ ︸
quot

= 1F∗ oσStGSp(2)︸ ︷︷ ︸
sub

+1F∗ oσ1GSp(2)︸ ︷︷ ︸
quot

,

and each representation on the right side is again reducible. Their constituents are summarized
in the following table. Again the quotients appear on the bottom resp. on the right.

1F∗ oσStGSp(2) 1F∗ oσ1GSp(2)

ν1/2StGL(2)oν−1/2σ τ(S,ν−1/2σ) L((ν1/2StGL(2),ν−1/2σ))

ν1/21GL(2)oν−1/2σ τ(T,ν−1/2σ) L((ν ,1F∗ oν−1/2σ))

(4)

The representationsτ(S,ν−1/2σ) andτ(T,ν−1/2σ) are tempered but not square integrable.
Table 1 below summarizes the basic properties of the irreducible representations of

GSp(4,F) supported in the minimal parabolic subgroup. Complete information on unitariz-
ability can be found in [ST], Theorem 4.4. The same paper tells us which of the unitary repre-
sentations are tempered or square-integrable. In the column labeled “g” we have indicated the
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generic representations. If the characters are in the “Langlands position”, then these are always
the subrepresentations, see [CS]. The last column of Table 1 indicates thelocal Saito-Kurokawa
liftings. These are certain local functorial liftings fromPGL(2)×PGL(2) coming from the stan-
dard embedding ofL-groups

SL(2,CCC)×SL(2,CCC)−→ Sp(4,CCC).

For the global theory it is interesting to know which local representations are Saito-
Kurokawa lifts, because, as the name indicates, these are the local components of the classical
(and some less classical) Saito-Kurokawa liftings. See [Sch3] and [Sch4] for more information.

constituent of representation tempered L2 g SK

I χ1×χ2oσ (irreducible) χi ,σ ∈ (F∗)ˆ •
a ν1/2χ×ν−1/2χoσ χStGL(2)oσ χ,σ ∈ (F∗)ˆ •

II
b (χ2 /∈ {ν±1,ν±3}) χ1GL(2)oσ •
a χ×νoν−1/2σ χoσStGSp(2) χ,σ ∈ (F∗)ˆ •

III
b (χ /∈ {1,ν±2}) χoσ1GSp(2)

a σStGSp(4) σ ∈ (F∗)ˆ • •
b L((ν2,ν−1σStGSp(2)))IV
c

ν2×νoν−3/2σ
L((ν3/2StGL(2),ν−3/2σ))

d σ1GSp(4)

a δ ([ξ0,νξ0],ν−1/2σ) σ ∈ (F∗)ˆ • •
b νξ0×ξ0oν−1/2σ L((ν1/2ξ0StGL(2),ν−1/2σ)) •

V
c (ξ 2

0 = 1, ξ0 6= 1) L((ν1/2ξ0StGL(2),ξ0ν−1/2σ)) •
d L((νξ0,ξ0oν−1/2σ))

a τ(S,ν−1/2σ) σ ∈ (F∗)ˆ •
b τ(T,ν−1/2σ) σ ∈ (F∗)ˆ •

VI
c

ν×1F∗ oν−1/2σ
L((ν1/2StGL(2),ν−1/2σ)) •

d L((ν ,1F∗ oν−1/2σ))

Table 1. Irreducible representations ofGSp(4) supported in the minimal parabolic subgroup.

1.2. The local Langlands correspondence.
The dual group ofGSp(4) is the complex Lie groupGSp(4,CCC), see [Bo1]. Hence, by the

conjectural local Langlands correspondence, there is a parameterization of the set of equivalence
classes of irreducible, admissible representations ofGSp(4,F) by conjugacy classes of admissi-
ble homomorphisms

ϕ : W′
F −→GSp(4,CCC), (5)
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whereW′
F = WF ×SL(2,CCC) is the Weil-Deligne group. To every local parameterϕ as in (5)

there is associated anL-factor L(s,ϕ) and anε-factor ε(s,ϕ,ψ), the latter one also depending
on the choice of an additive characterψ of F , see [Ta] (in this paper we shall not consider the
more general factors involving a finite-dimensional representation of the dual group; this finite-
dimensional representation is here always the “standard” representationGSp(4,CCC)→GL(4,CCC)).
If ϕ corresponds to the representationπ of GSp(4,F), then the factors associated toπ are by
definition L(s,π) := L(s,ϕ) and ε(s,π,ψ) := ε(s,ϕ,ψ). Giving a representationϕ : W′

F →
GSp(4,CCC) is equivalent to giving a pair(ρ,N), whereρ : WF →GSp(4,CCC) is a homomorphism
whose image consists of semisimple elements and whereN is a nilpotent element of the Lie
algebra ofGSp(4,CCC) such thatρ(w)N = |w|Nρ(w) for all w∈WF . In the analogous situation
for GL(2), the pair(ρ,N) with

ρ(w) =

(
|w|1/2

|w|−1/2

)
, N =

(
0 1
0 0

)
(6)

is the local parameter for the Steinberg representationStGL(2). Since we shall only consider
representations ofGSp(4,F) that are supported in the minimal parabolic subgroup, we shall
be exclusively concerned with parameters of the form(ρ,N), whereρ = (ρ1,ρ2,ρ3,ρ4) is a
quadruple of characters ofWF (identified with characters ofF∗). This means that the semisimple
part of the local parameter is given byw 7→ diag(ρ1(w),ρ2(w),ρ3(w),ρ4(w)). ConjugatingN by
this diagonal matrix must yield|w|N.

The local Langlands correspondence forGSp(4,F) remains a conjecture, but for the type
of representations we are interested in (those supported in the minimal parabolic subgroup) it
is easy to “guess” the local parameters. Constituents of the same induced representation should
have the same semisimple part and only differ in theN part. The parameter withN = 0 should
belong to the Langlands quotient. We have listed the information on local parameters in Table 2
below. The last column of this table shows the resultingL-factors. We note that forgenericrepre-
sentations, theL-factors given in Table 2 coincide with those defined via Novodvorski integrals,
see [Tak], Theorem 4.1. All we shall assume in our global applications is that there exists anL-
function theory which assigns the localL-factors listed in Table 2 in the case of Iwahori-spherical
representations. One can check that for Iwahori-spherical representations the local parameters
listed coincide with the local parameters given in [KL ]; hence it is very likely that theL-factors
in Table 2 are the “correct” factors.

For each representation we have listed the pair(ρ,N), using the following abbreviations for
the nilpotent part.

N1 =




0
0 1

0
0


 , N2 =




0 1
0

0
0


 , N3 =




0 1
0 1

0
0


 ,

N4 =




0 1
0

0 −1
0


 , N5 =




0 1
0 1

0 −1
0


 .
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ρ N L-factor

I χ1χ2σ , χ1σ , χ2σ , σ 0 L(s,σ)L(s,χ1σ)L(s,χ2σ)L(s,χ1χ2σ)

a χ2σ , ν1/2χσ , N1 L(s,σ)L(s,ν1/2χσ)L(s,χ2σ)
II

b ν−1/2χσ , σ 0 L(s,σ)L(s,ν1/2χσ)L(s,ν−1/2χσ)L(s,χ2σ)

a ν1/2χσ , ν−1/2χσ , N4 L(s,ν1/2σ)L(s,χν1/2σ)
III

b ν1/2σ , ν−1/2σ 0 L(s,ν−1/2σ)L(s,χν−1/2σ)L(s,ν1/2σ)L(s,χν1/2σ)

a N5 L(s,ν3/2σ)

b ν3/2σ , ν1/2σ , N4 L(s,ν−1/2σ)L(s,ν3/2σ)
IV

c ν−1/2σ , ν−3/2σ N1 L(s,ν−3/2σ)L(s,ν1/2σ)L(s,ν3/2σ)

d 0 L(s,ν−3/2σ)L(s,ν−1/2σ)L(s,ν1/2σ)L(s,ν3/2σ)

a N3 L(s,ν1/2σ)L(s,ν1/2ξ0σ)

b ν1/2σ , ν1/2ξ0σ , N1 L(s,ν−1/2σ)L(s,ν1/2σ)L(s,ν1/2ξ0σ)
V

c ν−1/2ξ0σ , ν−1/2σ N2 L(s,ν−1/2ξ0σ)L(s,ν1/2σ)L(s,ν1/2ξ0σ)

d 0 L(s,ν−1/2σ)L(s,ν−1/2ξ0σ)L(s,ν1/2σ)L(s,ν1/2ξ0σ)

a N3 L(s,ν1/2σ)2

b ν1/2σ , ν1/2σ , N3 L(s,ν1/2σ)2
VI

c ν−1/2σ , ν−1/2σ N1 L(s,ν−1/2σ)L(s,ν1/2σ)2

d 0 L(s,ν−1/2σ)2L(s,ν1/2σ)2

Table 2. Local parameters.

There is one case ofL-indistinguishability in Table 2, namely, the two tempered representations
τ(S,ν−1/2σ) andτ(T,ν−1/2σ) (VIa and VIb) constitute a 2-elementL-packet. Regarding the
representationδ ([ξ0,νξ0],ν−1/2σ) of type Va, by [Pr], Theorem 7.1, there should exist a super-
cuspidal (and non-generic) representation ofGSp(4,F) with the same local parameter(ρ,N3).
This supercuspidal representation should be theθ10 type representation considered in [KPS].

1.3. Iwahori-spherical representations.
Consider the Dynkin diagram of the affine Weyl groupC2:

• • •
s0 s1 s2

We are going to realize the three generatorss0,s1,s2 for the affine Weyl group as the matrices

s0 =




−ϖ−1

1
1

ϖ


 , s1 =




1
1

1
1


 , s2 =




1
1

−1
1


 . (7)
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The elementss1 ands2 generate the usual 8-element Weyl groupW. Consider further the element

η =




1
1

−ϖ
−ϖ


s2s1s2 =




1
1

ϖ
ϖ


 ∈GSp(4,F). (8)

Since conjugation by this matrix corresponds to classical Atkin-Lehner involutions, we callη
also theAtkin-Lehner element. Note that

ηs0η−1 = s2, ηs1η−1 = s1, ηs2η−1 = s0,

i.e., η induces the non-trivial automorphism of the Dynkin diagram. Theparahoric subgroups
PS correspond to proper subsetsSof {s0,s1,s2}, the correspondence being thatPS =

⊔
w∈〈S〉 IwI ,

whereI is the Iwahori subgroup. We shall briefly describe each parahoric subgroup and introduce
notations.

• S= {s1,s2}. This is the standard special maximal compact subgroupGSp(4,o), which
we also denote byK.

• S= {s0,s1} defines the maximal compact subgroupP01 consisting of matrices of the block
form

(
o p−1

p o

)
. We haveP01 = ηKη−1.

• S= {s0,s2} defines another maximal compact subgroupP02 of smaller volume. It consists
of all 1 ∈GSp(4,F) such that

1 ∈




o o o p−1

p o o o

p o o o

p p p o


 and det(1) ∈ o∗. (9)

This parahoric subgroup is also called theparamodular group. In a classical context
this group appears, for instance, in [IO ]. The two groupsK andP02 represent the two
conjugacy classes of maximal compact subgroups ofGSp(4,F).

• S= {s1}. This is the Siegel congruence subgroupP1 consisting of elements of the block
form (o o

p o). It is the inverse image of the Siegel parabolic subgroup under the natural map
K →GSp(4,k), wherek = o/p is the residue field.

• S= {s2}. This is the inverse image of the Klingen parabolic subgroup under the natural
mapK →GSp(4,k). We denote it byP2.

• S= {s0} defines a groupP0 which is conjugate toP2 by η . It is not contained inK.
• S= Ø defines the Iwahori subgroup which we denote byI . It consists of all matrices that

are upper triangular modp.

Let χ1,χ2,σ be unramifiedcharacters ofF∗ and consider the representationχ1× χ2oσ in its
standard realizationV. Table 3 further below lists the dimension of the space of fixed vectors
under each parahoric subgroup in each irreducible constituent ofχ1× χ2oσ . Since some of
these groups are conjugate we only have to considerK, P02, P1, P2 andI .

We shall explain how the dimension information in this table was obtained, starting with
type I representations. These are full induced representations, so the dimensions forI , P1, P2 and
K are obtained by counting Weyl group elements. As forP02-invariant vectors it is not hard to
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prove that aP2-invariant functionf in the standard model forχ1× χ2oσ is P02-invariant if and
only if

f (s2s1) = χ2(ϖ)q−1 f (s1) and f (s1s2s1) = χ1(ϖ)q−2 f (1). (10)

Thus we get dimension 2 for theP02-invariant vectors. These arguments hold for every full
induced representation, irreducible or not. The rest comes down to determining how these di-
mensions are distributed amongst the irreducible constituents. The dimensions for IIb and IIIb
can also be determined by counting Weyl group elements. Subtracting from the dimensions for
the full induced representations, we get the numbers for IIa and IIIa. For the other representa-
tions we observe the tables (2), (3) and (4), which tell us how the full induced representation
decomposes. What we need is the information for justonerepresentation in each table, and the
rest will follow formally. As for type IV, the dimensions forσ1GSp(4) are 1 for each parahoric
subgroup, and the rest follows. The hardest cases are V and VI, where additional work needs
to be done. But this work was carried out in the paper [Sch4], where the dimensions for the
Saito-Kurokawa representations Vb,c and VIb,c were determined.

The signs under some of the entries denote Atkin-Lehner eigenvalues, to be explained fur-
ther below. The next-to-last column gives the signs defined byε-factors, see also below. The
numbers in bold face indicate newforms, to be defined in sections 2.2 and 2.3. The last column
contains the exponent of the conductor of the local parameter (as listed in Table 2).

Atkin-Lehner eigenvalues.
The parahoric subgroups normalized by the Atkin-Lehner elementη (see (8)) are precisely

the “symmetric” groupsI , P1 andP02. Therefore, ifH denotes one of these groups, thenη acts
on the space ofH-invariant vectors, for any representation(π,V) of GSp(4,F). Let us assume in
addition thatπ has trivial central character. Thenπ(η) acts as an involution, becauseη2 = ϖ1.
We call these operatorsAtkin-Lehner involutions. They split the spaceVH of H-invariant vectors
into±1-eigenspacesVH

+ andVH− . The plus and minus signs under the dimensions of the spaces
VH in Table 3 indicate how these spaces split into Atkin-Lehner eigenspaces (provided the central
character is trivial). The signs listed in Table 3 are correct if one assumes that

• in Group II, where the central character isχ2σ2, the characterχσ is trivial.
• in Groups IV, V and VI, where the central character isσ2, the characterσ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and minus signs in Table 3
to get the correct dimensions.

Now we shall explain how the information on Atkin-Lehner eigenvalues in Table 3 can be
obtained. In a full induced representation, the distribution of the signs is as given in the type
I row. This follows from direct computations in the standard induced model. If the induced
representation is reducible, we have to see how these signs are distributed amongst irreducible
constituents, for which we observe the tables (2), (3) and (4). The additional information we
require comes from the trivial representation in case IV, and from the Saito-Kurokawa repre-
sentations in cases V and VI. As for the latter, the necessary computations were carried out in
[Sch4].

εεε-factors.
Let ε(s,π,ψ) be the localε-factor attached to an irreducible representationπ of GSp(4,F)

and an additive characterψ (and the standard representation of theL-group). Here we mean the
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representation K P02 P2 P1 I ε a

I χ1×χ2oσ (irreducible) 1 2
+− 4 4

++−−
8

++++−−−−
1 0

a χStGL(2)oσ 0 1− 2 1− 4
+−−−

−(σ χ)(ϖ) 1
II

b χ1GL(2)oσ 1 1
+

2 3
++− 4

+++− 1 0

a χoσStGSp(2) 0 0 1 2
+− 4

++−− 1 2
III

b χoσ1GSp(2) 1 2
+− 3 2

+− 4
++−− 1 0

a σStGSp(4) 0 0 0 0 1−
−σ(ϖ) 3

b L((ν2,ν−1σStGSp(2))) 0 0 1 2
+− 3

++− 1 2
IV

c L((ν3/2StGL(2),ν−3/2σ)) 0 1− 2 1− 3
+−−

−σ(ϖ) 1

d σ1GSp(4) 1 1
+

1 1
+

1
+

1 0

a δ ([ξ0,νξ0],ν−1/2σ) 0 0 1 0 2
+−

−1 2

b L((ν1/2ξ0StGL(2),ν−1/2σ)) 0 1
+

1 1
+

2
++

σ(ϖ) 1
V

c L((ν1/2ξ0StGL(2),ξ0ν−1/2σ)) 0 1− 1 1− 2−−
−σ(ϖ) 1

d L((νξ0,ξ0oν−1/2σ)) 1 0 1 2
+− 2

+− 1 0

a τ(S,ν−1/2σ) 0 0 1 1− 3
+−− 1 2

b τ(T,ν−1/2σ) 0 0 0 1
+

1
+

1 2
VI

c L((ν1/2StGL(2),ν−1/2σ)) 0 1− 1 0 1−
−σ(ϖ) 1

d L((ν ,1F∗ oν−1/2σ)) 1 1
+

2 2
+− 3

++− 1 0

Table 3. Invariant vectors.

local factors defined via the local Langlands correspondence and representations of the Weil-
Deligne group, but these factors should coincide with the ones defined in [PS2] via local zeta
integrals. We have the general relation

ε(s,π,ψ)ε(1−s, π̂,ψ) = ωπ(−1), (11)

whereπ̂ is the contragredient representation andωπ is the central character ofπ. It is known
that if ωπ is trivial, thenπ ' π̂. In this case it follows from (11) thatε(1/2,π,ψ) ∈ {±1}. By
general properties ofε-factors, this sign is independent of the choice ofψ. Hence there is a
signε(1/2,π) canonicallyattached to any irreducible, admissible representation ofPGSp(4,F)
(provided we know the local Langlands correspondence).

If π is not square integrable, then the image of the local parameterW′
F →GSp(4,CCC) lies in

a Levi component of a proper parabolic subgroup and theε-factor is easy to determine since it
factorizes. For example, ifπ = χ1×χ2oσ is irreducible, then
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ε(s,π,ψ) = ε(s,σ ,ψ)ε(s,σ χ1,ψ)ε(s,σ χ2,ψ)ε(s,σ χ1χ2,ψ).

Provided all the characters are unramified andχ1χ2σ2 = 1, it follows thatε(1/2,π) = 1. Using
the information from Table 2 it is thus easy to compute the signs for most of the representations
in our list. For the square-integrable representation of type Va, note that the image of the local
parameter is not contained in a proper Levi subgroup ofGSp(4,CCC). It is however contained in a
Levi subgroup ofGL(4,CCC), and hence theε-factor still factorizes. The only representation in our
list where this is not the case is the Steinberg representation (and its unramified quadratic twist).
But there we can use the formula in section (4.1.6) of [Ta], which tells us that the sign is−σ(ϖ).

In the next-to-last column of Table 3 we have listed the signs defined byε-factors under
the assumption that the central character is trivial and all inducing characters are unramified.
The numbera in the last column contains the exponent of the conductor of the local parameter
(this number is denoted bya(V) in section (4.1.6) of [Ta]). Its relevance is that theε-factor is a
constant multiple ofq−as.

In the next section we will definenewformswith respect to a fixed parahoric subgroupP. If
a representation contains such newforms with respect toP, we have indicated this in Table 3 by
writing the corresponding dimension in bold face. For example, IIIa contains a one-dimensional
space of newforms with respect toP2, and a two-dimensional space of newforms with respect to
P1. Note that if there are newforms with respect toP2 (resp.P12), then there are also newforms
with respect to the conjugate groupP0 (resp.P01) which are not listed in the table.

For irreducible representations ofPGL(2,F) the sign defined by theε-factor coincides with
the eigenvalue of the Atkin-Lehner involution on the one-dimensional space of local newforms;
see section 3.2 of [Sch1]. We can observe a similar phenomenon in the present situation. We have
distinguished 17 types of representations supported in the minimal parabolic subgroup. Types
VIa and VIb constitute anL-packet, so let us instead talk about 16 types ofL-packets that contain
Iwahori-invariant vectors. Then we observe:

PROPOSITION1.3.1. The following are equivalent for anL-packetπ of PGSp(4,F) con-
taining Iwahori-fixed vectors.

i) The exponenta of the conductor of theL-packetπ is even.
ii) Theε-factor does not change when the representations inπ are twisted withξ0, the non-

trivial unramified quadratic character ofF∗.
iii) π contains newforms with respect to one of the “non-symmetric” groupsK or P2.
iv) The trace of the Atkin-Lehner involution on the full space of newforms is0.

If these conditions are notfulfilled, then every local newform inπ is an eigenvector for the
Atkin-Lehner involution, and the eigenvalue coincides withε(1/2,π).

PROOF. Everything follows by examining Table 3. The equivalence of i) and ii) also
follows from the definitions ofa andε(s,π). ¤

2. Local newforms.

We shall now define local old- and newforms for the Iwahori-spherical representations. Our
main tool is the Iwahori-Hecke algebraI . Once we have chosen a suitable basis of the8-
dimensional space of Iwahori-fixed vectors of a full induced representation, we can compute the
action ofI explicitly. Then all our results follow essentially from elementary linear algebra.
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2.1. The Iwahori-Hecke algebra.
The Iwahori-Hecke algebraI of GSp(4,F) is the convolution algebra of left and right

I -invariant functions onGSp(4,F). It acts on the space ofI -invariant vectorsV I of any irre-
ducible, admissible representation(π,V) of GSp(4,F). If V I 6= 0, then this finite-dimensional
representation determines the isomorphism class ofπ, see [Bo2].

The structure ofI is as follows. The identity elemente is the characteristic function ofI .
For j = 0,1,2 let ei be the characteristic function ofIsi I (see (7)). Ifη is as in (8), we denote the
characteristic function ofη I again byη . ThenI is generated bye0,e1,e2 andη , and we have
the following relations.

• e2
i = (q−1)ei +qe for i = 0,1,2.

• ηe0η−1 = e2, ηe1η−1 = e1, ηe2η−1 = e0.
• e0e1e0e1 = e1e0e1e0, e1e2e1e2 = e2e1e2e1, e0e2 = e2e0.

All of this follows from general structure theory. There are other relations, but we will not need
them.

Let χ1,χ2,σ be unramified characters ofF∗, and letV be the standard space of the induced
representationχ1× χ2oσ . We shall now explicitly compute the action ofI on V I . This 8-
dimensional space has the basisfw, w ∈W, where fw is the uniqueI -invariant function with
fw(w) = 1 and fw(w′) = 0 for w′ ∈W, w′ 6= w. It is convenient to order the basis as follows:

fe, f1, f2, f21, f121, f12, f1212, f212, (12)

where we have abbreviatedf1 = fs1 and so on. Having fixed this basis, the operatorse0,e1,e2

andη onV I become8×8-matrices. These are given in the following lemma.

LEMMA 2.1.1. Let notations be as above. With respect to the basis(12) of V I , the action
of the elementse1 ande2 onV I is given by the following matrices.

π(e1) =




0 q

1 q−1

0 q

1 q−1

0 q

1 q−1

0 q

1 q−1




, π(e2) =




0 0 q 0 0 0 0 0

0 0 0 0 0 q 0 0

1 0 q−1 0 0 0 0 0

0 0 0 0 0 0 0 q

0 0 0 0 0 0 q 0

0 1 0 0 0 q−1 0 0

0 0 0 0 1 0 q−1 0

0 0 0 1 0 0 0 q−1




The action ofη is given by

π(η) =




γq3/2

γq3/2

βγq1/2

βγq1/2

αγq−1/2

αγq−1/2

αβγq−3/2

αβγq−3/2




.
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The action ofe0 is given by the matrixπ(η)π(e2)π(η)−1.

PROOF. A standard system of representatives forIs1I is given by




1 x
1

1 −x
1


s1, x∈ o/p, (13)

and similarly forIs2I . Using these representatives and the identity

(
1
λ 1

)
=

(
−λ−1

−λ

)(
1 λ

1

)(
1

−1

)(
1 λ−1

1

)
, (14)

our claims follow by straightforward computations which are left to the reader. ¤

Let us introduce a partial ordering on the set of standard parahoric subgroups as follows:

(15)

Groups on a higher level have a bigger volume. On top we have the special maximal compact
subgroupsK = P12 and itsη-conjugate. For parahoric subgroupsR andR′ let us writeR′ Â R if
there is an arrow fromR′ to R.

PROPOSITION2.1.2. Let (π,V) be an Iwahori-spherical unitary representation of
GSp(4,F). Let 〈 , 〉 be aGSp(4,F)-invariant scalar product onV. Then the elementse0,e1,e2

of the Iwahori-Hecke algebra act as self-adjoint operators onV I . If π has central characterωπ ,
then we further have

〈π(η)v,w〉= ωπ(ϖ)〈v,π(η)w〉 for all v,w∈V. (16)

PROOF. The last assertion is obvious sinceη2 = ϖ1. As for e1, let us abbreviate the
4×4-matrix in (13) byn(x). Then, since the scalar product isK-invariant,

〈π(e1)v,w〉= ∑
x∈o/p

〈π(n(x)s1)v,w〉= ∑
x∈o/p

〈v,π(s1n(−x))w〉.

If w is I -invariant, we can eliminate then(−x) in the last expression. Ifv is alsoI -invariant, we
can insert aπ(n(−x)) in front of thev. We can then use theK-invariance again and arrive at
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∑〈v,π(n(x)s1)w〉 = 〈v,π(e1)w〉. The proof fore2 is similar. The assertion fore0 follows using
ηe2η−1 = e0 and (16). ¤

REMARK 2.1.3. Even if the induced representationπ1×π2oσ is not unitary, it will be
useful to consider theK-invariant scalar product

∫

K

f1(1) f2(1)d1 (17)

on the standard space of this representation. If the measure is normalized to giveI volume1,
then the matrix of this scalar product restricted to the space ofI -invariant vectors with respect to
the basis (12) isdiag

(
1, q, q, q2,q3,q2,q4,q3

)
(the exponents are the lengths of the Weyl group

elements). The argument in the proof of Proposition 2.1.2 shows thate1 ande2 act as self-adjoint
operators with respect to this scalar product.

Special elements in the Iwahori-Hecke algebra are theprojection operators

dS =
1

vol(PS)
char(PS), (18)

where “char” stands for characteristic function. HereS is a subset of{s0,s1,s2} andPS is the
corresponding subgroup. The measure is normalized so thatI has volume 1. In particular, we
havedØ = char(I) = eanddi = (1/(q+1))(e+ei) for i = 0,1,2. Since the projection operators
satisfyd2

S = dS, we have

V I = im(π(dS))⊕ker(π(dS)) (19)

for any representation(π,V), whereπ(dS) is considered as an endomorphism ofV I . Thus the
space ofPS-fixed vectorsVPS = im(π(dS)) always has a natural complement inV I . It follows
from Proposition 2.1.2 that ifπ is a unitary representation, thenker(π(dS)) coincides with the
orthogonalcomplement ofVPS in V I .

2.2. Newforms forIII .
Let (π,V) be an irreducible, admissible representation ofGSp(4,F). For any of the para-

horic subgroupsRof GSp(4,F) we shall give a separate definition of “local newform with respect
to R”. The idea is that if there is a “bigger” parahoric subgroupR′ such thatVR′ 6= 0, then cer-
tain elements ofVR will be “old” since they can be obtained in a simple way fromVR′ . More
precisely, we shall do the following.

• WheneverR′ Â R (see diagram (15)), we shall define natural linear operators fromVR′ to
VR. If R′ ⊃ R, then one such operator is the identity.

• The image of all these operators for allR′ Â R is by definition the space ofoldforms
with respect toR. If π is unitary, we can define the space ofnewformsas the orthogonal
complement of the space of oldforms.

• By Proposition 2.1.2, newforms can also be characterized as the kernel of certain linear
operators. This leads to a definition of newforms that does not require unitarity.

• We shall prove that if there exists anR′ with R′ ÂRandVR′ 6= 0, thenVR consists entirely
of oldforms. Otherwise, by definition,VR consists entirely of newforms.
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• If VR consists of newforms, then its dimension is1 or 2. The second case can only
happen forR= P1, and in this case, ifπ has trivial central character, there are two linearly
independent newforms that can be distinguished by their Atkin-Lehner eigenvalue.

As an illustration, let us define local newforms with respect to the Iwahori subgroupI . SinceI
is minimal parahoric, it is natural to consider anI -invariant vector “old” if it is invariant under
some bigger parahoric subgroup. In other words, the subspaceV I0 +V I1 +V I2 of V I constitutes
the space of oldforms, and ifπ is a unitary representation, we define its orthogonal complement
as the space of newforms. In this case, by (19) and the remarks thereafter,

V I =
(
V I0 +V I1 +V I2

)⊕ (
ker(π(d0))∩ker(π(d1))∩ker(π(d2))

)
(20)

(orthogonal decomposition). Thus, newforms with respect toI can be characterized as the com-
mon kernel of the projection operatorsd0,d1,d2. The following proposition shows that this leads
to a very restricted set of representations containing local newforms with respect toI .

PROPOSITION2.2.1. The following three conditions are equivalent for an irreducible,
admissible representation(π,V) of GSp(4,F).

i) π is an unramified twist of the Steinberg representation.
ii) There exists a non-zerov ∈V I such that

d0(v) = d1(v) = d2(v) = 0.

iii) VP0 +VP1 +VP2 is a proper subspace ofV I .

PROOF. For unitary representations, ii) and iii) are equivalent by (20). In general it can
be checked case by case using Table 3. Statement ii) says that the Iwahori-Hecke algebra acts by
thesign charactersending eachei to −1. It is well known that this characterizes the Steinberg
representation, see [Bo2] (it also follows by examining Table 3). ¤

The proposition says that it is only the unramified twists of the Steinberg representation
that admitlocal newformswith respect toI . If we restrict to representations with trivial central
character, then there are precisely two such representations,StGSp(4) andξ0StGSp(4), whereξ0

is the non-trivial unramified quadratic character. These two representations can be distinguished
by the eigenvalue of the Atkin-Lehner involution on the local newform. Hence the situation
is completely analogous toGL(2). We note that condition ii) in Proposition 2.2.1 leads to a
characterization of classical newforms in terms of Fourier coefficients, see section 3.3.

2.3. Newforms forPPP111, PPP222 and PPP000222.
Let (π,V) be an irreducible, admissible representation ofGSp(4,F). We consider the fol-

lowing natural linear operators between spaces of vectors fixed under parahoric subgroups. Their
images will define oldforms.

• WheneverR′ ⊃ R, we have an inclusionVR′ ⊂VR.
• There is a natural operator fromVK toVP1 provided by the elemente0e1e0 of the Iwahori-

Hecke algebra. Note that this element commutes withe1. Symmetrically, we have the
operatore2e1e2 from VP01 to VP1.

• Since the elemente1e2e1 commutes withe2, it provides a natural operator fromVP02 to
VP2. Similarly, e1e0e1 defines an operatorVP02 →VP0.
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• FromVK to VP02 we have the “trace operator”d0. Similarly we haved2 : VP01 →VP02.

Now if R is any of the standard parahoric subgroups, we define the space ofoldforms(VR)old

with respect toR as the space spanned by the image of all these operators for allR′ Â R (see
diagram (15)). Forunitary representations, the space ofnewforms(VR)new with respect toR is
defined as the orthogonal complement of(VR)old within VR. By Proposition 2.1.2, this orthogo-
nal complement can be described as the intersection of the kernels of the operators given in the
last column of table (21) below. It is this description as a common kernel that we take as our
definitionof (VR)new for an arbitrary representation.

THEOREM 2.3.1. Let (π,V) be an irreducible, admissible representation ofGSp(4,F).
Let R be one of the parahoric subgroupsI , P1, P2 or P02. We define subspaces(VR)old and
(VR)new of the spaceVR as in the following table.

R (VR)old = (VR)new = common kernel of

I VP0 +VP1 +VP2 d0, d1, d2

P1 VP01 +e2e1e2VP01 +VK +e0e1e0VK d01, d01e2e1e2, d12, d12e0e1e0

P2 VK +VP02 +e1e2e1VP02 d12, d02, d02e1e2e1

P02 d2VP01 +d0VK d01d2, d12d0

(21)

Then exactly one of the following alternatives is true.

i) There exists a parahoric subgroupR′ such thatVR′ 6= 0 and such thatR′ ÂR (see diagram
(15)). In this caseVR = (VR)old and(VR)new = 0.

ii) There exists no parahoric subgroupR′ as in i). In this caseVR = (VR)new and(VR)old = 0.

PROOF. The Iwahori subgroup has already been treated in the previous section. We shall
deal withR= P1, the other cases being similar. We may realizeπ as a subrepresentation of an
induced representationχ1×χ2oσ . Let us defineα,β ,γ ∈CCC∗ by

α = χ1(ϖ), β = χ2(ϖ), γ = σ(ϖ). (22)

Using the basis (12), we identify the space ofI -invariant vectors inχ1×χ2oσ with CCC8. TheK-
spherical vector is given byv0 = t(1,1,1,1,1,1,1,1). Using Lemma 2.1.1, it is easy to compute
the action of the Iwahori-Hecke algebra onv0. The result is that(VP1)old is spanned by the first
four columns of the following matrix.




1 q2(β (q−1)+α(1+β )(q−1)+q)/αβ γq3/2 αβγq3/2 0 0 0 −q

1 q2(β (q−1)+α(1+β )(q−1)+q)/αβ γq3/2 αβγq3/2 0 0 0 1

1 q(α(1+β )(q−1)+βq)/α βγq1/2 αγq1/2(β (q−1)+q) 0 0 −q 0

1 q(α(1+β )(q−1)+βq)/α βγq1/2 αγq1/2(β (q−1)+q) 0 0 1 0

1 α(q−1+qβ−1) αγq−1/2 γq1/2(α(1+β )(q−1)+βq) 0 1 0 0

1 α(q−1+qβ−1) αγq−1/2 γq1/2(α(1+β )(q−1)+βq) 0 −q 0 0

1 αβ αβγq−3/2 γq1/2((αβ +α +β )(q−1)+q) 1 0 0 0

1 αβ αβγq−3/2 γq1/2((αβ +α +β )(q−1)+q) −q 0 0 0






276 R. SCHMIDT

The last four columns span the intersection of the kernels onV I of the operators defining
(VP1)new. All of this is easily computed using Lemma 2.1.1 and a computer algebra program.
We see that the intersection of(VP1)new and(VP1)old is always trivial. In fact, we observe that
these two spaces areorthogonalwith respect to the scalar product introduced in Remark 2.1.3.
The determinant of the above matrix is given byα−1β−1γ2q−1(1+q)4(α−q)2(β −q)2(αβ −
q)(α − βq). This determinant vanishes only at points of reducibility, proving our assertion in
case thatχ1×χ2oσ is irreducible. Each of the remaining cases is also easily checked.¤

REMARKS 2.3.2.

i) Observing thatηKη−1 = P01 andηP2η−1 = P0, we have similar statements for the groups
P01 andP0 which we shall not state explicitly.

ii) Fixing a parahoric subgroupR, the theorem says that a given representation has either
newforms or oldforms with respect toR, or none of them, but never both.

iii) A given representation may have newforms for two different groups. For example, repre-
sentations of type IIa have newforms for bothP1 andP02, and representations of type IIIa
have newforms for bothP1 andP2.

iv) Our definition of old- and newforms forP02 coincides with the one given in [Ib2], §1,
since the “trace operators” considered there coincide with our operatorsd0 andd2.

v) As mentioned in the proof of Theorem 2.3.1,(VP1)old and(VP1)new are orthogonal with
respect to the scalar product introduced in Remark 2.1.3. This is also true for the groups
I , P2 andP02, as explicit calculations show.

REMARK 2.3.3. We consider the analogous situation for the groupGL(2,F). Here
we have the standard maximal compact subgroupK = P1 := GL(2,o) and its conjugateP0 :=
ηP1η−1, whereη =

(
1

ϖ
)
. The Iwahori subgroup isI = P0∩P1. Given a representation(π,V),

the subspaceVP0 +VP1 of V I constitutes the space of oldforms with respect toI . In a unitary
representation its orthogonal complement can be described as the common kernel ofd0 = e+e0

andd1 = e+e1. In a classical language, a modular formf ∈ Sk(Γ0(N)) is a newform if and only
if for eachp|N both f andηp f are annihilated by the trace operator atp. Hereηp is the classical
Atkin-Lehner involution atp.

REMARK 2.3.4. Instead of the operatorid : VP01 →VP1 which we considered when defin-
ing oldforms forP1, we can as well takeη : VK →VP1. Similarly, instead ofe2e1e2 : VP01 →VP1

we may takee2e1e2η : VK →VP1. SinceIs2s1s2I/I ' P1s2s1s2P1/P1, it is easy to see that this
latter operator is given by

π(e2e1e2η)v0 = ∑
µ,κ,x∈o/p

π







1 µ κ
1 x µ

1
1







ϖ
ϖ

1
1





v0

= ∑
1∈P1

(
ϖ1

1

)
P1/P1

π(1)v0 (v0 ∈VP1). (23)

We see from (23) thate2e1e2η corresponds to a Hecke operator which is sometimes used in the
classical theory of Siegel modular forms. For our global applications we shall therefore list in
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the following table the eigenvalues ofe2e1e2η onVP1 for those representations that contain new-
forms. We shall also list the eigenvalues of the operatord1d02 on (VP1)new, and the eigenvalues
of d02d1 on (VP02)new. When represented as8×8-matrices, the two operatorsd1d02 andd02d1

turn out to have a surprisingly simple description (which we shall not state explicitly).

e2e1e2η onVP1 (1+q)2d1d02 onVP1 (1+q)2d02d1 onVP02

IIa q(χσ)(ϖ)
q2

q+1
(q−1/2−α)(q−1/2−α−1)

q2

q+1
(q−1/2−α)(q−1/2−α−1)

IIIa q(χσ)(ϖ), qσ(ϖ) 0, 0 —

IVb q2σ(ϖ), σ(ϖ) 0, 0 —

IVc qσ(ϖ) −(q−1)2 −(q−1)2

Vb −qσ(ϖ) 2q 2q

Vc qσ(ϖ) 2q 2q

VIa qσ(ϖ) 0 —

VIb qσ(ϖ) 0 —

VIc — — 0

(24)

The numberα in the first row of the table abbreviatesχ(ϖ). Sinceα2 is not allowed to take
the valuesq±1 or q±3, we can see from the last column that one can distinguish newforms for
P02 by their eigenvalues underd02d1 and under the Atkin-Lehner involution. Moreover, knowing
nothing more than these two numbers, one can write down the correctL-factor. Similarly, for
a newform with respect toP1, knowledge of the eigenvalues undere2e1e2η andd1d02 allows to
determine theL-packet and theL-factor (but we cannot distinguish types VIa and VIb). These
facts will be exploited in our global applications, see Theorem 3.3.9.

We note that, given a representation in the above list with trivial central character, one can
tell if the representation is of type IIIa or not by knowing the eigenvalues undere2e1e2η . This is
because all the other representations have eigenvalues±1,±q or±q2, while these values do not
occur for IIIa (we haveχσ2 = 1 andχ /∈ {1,ν±2}). This observation will be used in the proof
of Theorem 3.3.7.

3. Global newforms.

We shall now apply the previously obtained local results to classical Siegel modular forms
of degree2. Assuming the existence of a suitableL-function theory, we will first prove a strong
multiplicity one result for certain cusp forms with Iwahori-spherical local components. After
recalling several basic facts on the relation between classical modular forms and automorphic
representations ofGSp(4), we will define classical newforms for various congruence subgroups
of square-free level. Our local and global representation-theoretic results will yield a number of
theorems on the newforms thus defined.
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3.1. Strong multiplicity one results.
In this section we shall prove results of the following kind. Letπ1 =⊗π1,v andπ2 =⊗π2,v be

two cuspidal automorphic representations ofGSp(4,AAA) of a certain kind. Assume thatπ1,v ' π2,v

for almost allv. Thenπ1' π2. It is presently not known in general ifπ1' π2 impliesπ1 = π2 as
spaces of automorphic forms, but if this weak multiplicity one is true, then our results are special
cases of what is called strong multiplicity one.

LEMMA 3.1.1. Let S be a finite set. For eachi ∈ S let qi be a positive power of some
prime numberpi . We assume thatpi 6= p j for i 6= j . Let Ri ∈CCC(X) be rational functions such
that

∏
i∈S

Ri(qs
i ) = 1 for all s∈CCC. (25)

Then all theRi are constant.

PROOF. Left to the reader. ¤

LEMMA 3.1.2. Let F be a non-archimedean local field, and letπ1 andπ2 be irreducible,
unitary representations ofGSp(4,F) with non-zero Iwahori-fixed vectors. Assume that there
existsc∈CCC∗ and an integerm such that

L(s,π1)
L(s,π2)

= cqmsL(1−s, π̂1)
L(1−s, π̂2)

, (26)

whereL(s,πi) are the localL-factors as listed in Table 2. Assume also thatπ1 andπ2 have the
same central character. Thenπ1 and π2 are constituents of the same induced representation
(from an unramified character of the Borel subgroup).

PROOF. This can be checked case by case, going through all the possibilities forπ1 and
π2 that are listed in Table 2. Note that we can count out representations of type IVb and IVc,
since by [ST], Theorem 4.4, they are not unitary. As an example we will treat the case that both
representations are of type I, where we have to show thatπ1 ' π2.

By our hypothesis that both representations have non-trivial Iwahori-fixed vectors, all the
characters used for the induction are unramified. Hence there areαi ,βi ,γi ∈CCC∗ such that

L(s,πi) =
(
(1− γiq

−s)(1−αiγiq
−s)(1−βiγiq

−s)(1−αiβiγiq
−s)

)−1
.

It follows from (26) that there is an equality of rational functions

(1− γ2X)(1−α2γ2X)(1−β2γ2X)(1−α2β2γ2X)
(1− γ1X)(1−α1γ1X)(1−β1γ1X)(1−α1β1γ1X)

=

cX−m(1− γ−1
2 q−1X−1)(1−α−1

2 γ−1
2 q−1X−1)(1−β−1

2 γ−1
2 q−1X−1)(1−α−1

2 β−1
2 γ−1

2 q−1X−1)
(1− γ−1

1 q−1X−1)(1−α−1
1 γ−1

1 q−1X−1)(1−β−1
1 γ−1

1 q−1X−1)(1−α−1
1 β−1

1 γ−1
1 q−1X−1)

.

Eliminating denominators and comparing zeros on both sides, we find that

{γ1,α1γ1, β1γ1, α1β1γ1, γ2q, α2γ2q, β2γ2q, α2β2γ2q}
= {γ2, α2γ2, β2γ2, α2β2γ2, γ1q, α1γ1q, β1γ1q, α1β1γ1q},
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where these are multisets, meaning elements are allowed to appear more than once. First con-
sider the tempered case, meaning all the constants have absolute value 1 (see Table 1). Then
necessarily

{γ1, α1γ1, β1γ1, α1β1γ1}= {γ2, α2γ2, β2γ2, α2β2γ2}.

Again considering several cases, one can easily check that this condition, together with the equal-
ity α1β1γ2

1 = α2β2γ2
2 , which is equivalent to the equality of the central characters, implyπ1' π2.

In the non-tempered case one argues similarly, but uses estimates on the absolute values of the
inducing characters taken from [ST], Theorem 4.4 (this is where the unitarity condition is used).

¤

REMARK 3.1.3. The statement of the lemma would be false without the hypothesis on
the central character, as the following examples show. Letξ0 be a non-trivial quadratic character
of F∗.

• The representationsξ0 × χ o σ and ξ0 × ξ0χ o σ , if irreducible, have the sameL-
functions, but are not isomorphic.

• π1 is a constituent ofξ0× ν o ν−1/2σ (type III) andπ2 is a constituent ofνξ0× ξ0o
ν−1/2σ (type V).

In the following we shall utilize the spinL-function for cuspidal automorphic representations of
GSp(4) as a global tool. AnyL-function theory that has the following properties would suffice.

3.1.4 LLL-Function Theory for GGGSSSppp(((444))).

i) To every cuspidal automorphic representationπ of PGSp(4,AAA) is associated a globalL-
functionL(s,π) and a globalε-factor ε(s,π), both defined as Euler products, such that
L(s,π) has meromorphic continuation to all ofCCC and such that a functional equation

L(s,π) = ε(s,π)L(1−s,π)

of the standard kind holds.
ii) For Iwahori-spherical representations, the local factorsLv(s,πv) coincide with the spin

local factors as given in Table2, and the factorsεv(s,πv,ψv) coincide with theε-factors
as given in Table3.

Of course such anL-function theory is predicted by general conjectures over any number
field. For our classical applications we shall only need it overQQQ. Furthermore, we can restrict
to the archimedean component being a lowest weight representation with scalar minimalK-type
(a discrete series representation if the weight is≥ 3). All we need to know aboutε-factors is in
fact that they are of the formcpms with a constantc∈CCC∗ and an integerm. Unfortunately, none
of the current results on the spinL-function (see [No], [PS2] or [An1]) fully serves our needs;
hence, in what follows, we have to make assumptions.

THEOREM 3.1.5. Letπ1 =⊗π1,v andπ2 =⊗π2,v be two cuspidal automorphic represen-
tations ofGSp(4,AAA), whereAAA is the ring of adeles of some number fieldF. Let Sbe a finite set
of finite places ofF. Assume the following holds:

i) Different elements ofSdivide different places ofQQQ.
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ii) π1,v ' π2,v for eachv /∈ S.
iii) For eachv ∈ S, bothπ1,v andπ2,v possess non-trivial Iwahori-invariant vectors.
iv) The central characters ofπ1 andπ2 coincide.

Assume also that anL-function theory as in3.1.4 exists.1 Then, for eachv ∈ S, the representa-
tionsπ1,v andπ2,v are constituents of the same induced representation.

PROOF. Let L(s,πi) = ∏v Lv(s,πi,v) be the globalL-function of πi . By our L-function
theory, we have meromorphic continuation to all ofCCC and a functional equation

L(s,πi) = ε(s,πi)L(1−s, π̂i).

Hereπ̂i is the contragredient ofπi , andε(s,πi) = ∏v εv(s,πi,v,ψv) is the globalε-factor. Dividing
the two functional equations and observing hypothesis ii), we obtain a relation

∏
v∈S

L(s,π1,v)L(1−s, π̂2,v)ε(s,π2,v,ψv)
L(s,π2,v)L(1−s, π̂1,v)ε(s,π1,v,ψv)

= 1.

Note that each quotient on the left side is a rational function inqs
v, whereqv is the number of

elements of the residue field ofFv. Hypothesis i) and Lemma 3.1.1 therefore imply that each
factor in the product is constant. This shows that for eachv ∈ S there is a relation

L(s,π1,v)
L(s,π2,v)

= cvqmvsL(1−s, π̂1,v)
L(1−s, π̂2,v)

(27)

with a constantcv ∈CCC∗ and an integermv. Sinceπi is cuspidal, each of the local representations
is unitary. Furthermore, the central characters ofπ1,v andπ2,v coincide by hypothesis. The result
therefore follows from Lemma 3.1.2. ¤

COROLLARY 3.1.6. Let π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic rep-
resentations ofPGSp(4,AAA), whereAAA is the ring of adeles ofQQQ. Let S be a finite set of prime
numbers such that:

i) π1,p ' π2,p for eachp /∈ S.
ii) For eachp∈ S, bothπ1,p andπ2,p are generic representations with non-trivial Iwahori-

invariant vectors.

Assume also that anL-function theory as in3.1.4exists. Thenπ1 ' π2.

PROOF. Hypothesis i) of Theorem 3.1.5 is fulfilled because we are overQQQ. Both represen-
tations are assumed to have trivial central character, so hypothesis iv) of Theorem 3.1.5 is also
fulfilled. Hence we can apply this Theorem and obtain that for eachp∈Sthe representationsπ1,p

andπ2,p are constituents of the same induced representation. But each induced representation
has only one generic constituent, so necessarilyπ1,p ' π2,p. ¤

COROLLARY 3.1.7. Let π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic rep-
resentations ofPGSp(4,AAA), whereAAA is the ring of adeles ofQQQ. Let S be a finite set of prime
numbers such that:

1For this theorem and its corollaries we do not need the assertion aboutε-factors in 3.1.4 ii).
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i) π1,p ' π2,p for eachp /∈ S.
ii) For eachp∈ S, the representationπ1,p is K-spherical if and only ifπ2,p is K-spherical.

iii) For eachp∈ Ssuch thatπ1 andπ2 are notK-spherical, the representationπi,p (i = 1,2)
contains a non-zero vectorvi,p invariant under the local paramodular groupP02 at p.

iv) For each p ∈ S such thatπ1 and π2 are notK-spherical, the vectorsv1,p and v2,p are
eigenvectors for the Atkin-Lehner involutionηp with the same eigenvalue.

Assume also that anL-function theory as in3.1.4exists. Thenπ1 ' π2.

PROOF. The hypotheses of Theorem 3.1.5 are fulfilled, soπ1,p andπ2,p are constituents
of the same induced representation. But a look at Table 3 shows that two representations with
P02-invariant vectors in the same group can be distinguished by their Atkin-Lehner eigenvalues.

¤

3.2. Classical modular forms.
This section is to collect several definitions and conventions on classical Siegel modular

forms. We shall only treat holomorphic scalar-valued modular forms, but since all our ma-
nipulations will be done at finite places, everything we are saying in the following generalizes
immediately to vector-valued modular forms. Also, for the sake of simplicity, we refrain from
considering modular forms with character (these could be considered except when we are talking
about Atkin-Lehner involutions).

When speaking about classical modular forms, it is more convenient to realize symplectic
groups using the symplectic form

(
1

−1

)
, which we shall do from now on. ForN a positive

integer, global analogues of the local parahoric subgroups are defined as follows (notations as in
[HI ]).

B(N) := Sp(4,ZZZ)∩




ZZZ NZZZ ZZZ ZZZ
ZZZ ZZZ ZZZ ZZZ

NZZZ NZZZ ZZZ ZZZ
NZZZ NZZZ NZZZ ZZZ


 ,

U1(N) := Sp(4,ZZZ)∩




ZZZ ZZZ ZZZ ZZZ
ZZZ ZZZ ZZZ ZZZ

NZZZ NZZZ ZZZ ZZZ
NZZZ NZZZ ZZZ ZZZ


 ,

U2(N) := Sp(4,ZZZ)∩




ZZZ NZZZ ZZZ ZZZ
ZZZ ZZZ ZZZ ZZZ
ZZZ NZZZ ZZZ ZZZ

NZZZ NZZZ NZZZ ZZZ


 ,

U0(N) := Sp(4,QQQ)∩




ZZZ NZZZ ZZZ ZZZ
ZZZ ZZZ ZZZ N−1ZZZ

NZZZ NZZZ ZZZ ZZZ
NZZZ NZZZ NZZZ ZZZ


 ,
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U02(N) := Sp(4,QQQ)∩




ZZZ NZZZ ZZZ ZZZ
ZZZ ZZZ ZZZ N−1ZZZ
ZZZ NZZZ ZZZ ZZZ

NZZZ NZZZ NZZZ ZZZ


 .

The groupU1(N) is usually denotedΓ0(N). The groupU02(N) is theparamodular groupof level
N and corresponds to the local maximal compact subgroupP02. Note that

ηNU2(N)η−1
N = U0(N), where ηN =




1
1

N
N


 , (28)

while B(N), U1(N) andU02(N) are normalized byηN. If Γ ′ is one of the above groups, we define
Sk(Γ ′) to be the space of Siegel modular forms of degree2 and weightk with respect to the group
Γ ′. This space is a hermitian vector space with respect to the Petersson scalar product. In this
paper we shall not consider non-cuspidal modular forms.

Generalities on lifting modular forms.
Let G = GSp(4). For each prime numberp let Kp be an open compact subgroup ofG(ZZZp)

such that the multiplier mapKp → ZZZ∗p is surjective. Then it follows from strong approximation
for Sp(4) that

G(AAAQQQ) = G(QQQ)G(RRR)+K f , K f = ∏
p<∞

Kp, (29)

whereG(RRR)+ is the group of elements ofG(RRR) with positive multiplier. Now letf ∈ Sk(Γ ′) be a
modular form for a subgroupΓ ′. We assume that

Γ ′ = G(QQQ)∩G(RRR)+K f , K f = ∏
p<∞

Kp,

with local subgroupsKp for which the above hypothesis on the multiplier map holds. We define
a functionΦ f : G(AAAQQQ) → CCC as follows. By (29), it is possible to write a given1 ∈ G(AAA) as
1= ρ1∞h with ρ ∈G(QQQ), 1∞ ∈G(RRR)+, h∈ K f . Then we put

Φ f (1) = λ (1∞)k j(1∞, I)−k f (1∞〈I〉). (30)

Hereλ denotes the multiplier map andI =
(

i
i

)
. The symbolj(1∞, I) stands for the usual mod-

ular factor, andZ 7→ 1∞〈Z〉 is the action ofG(RRR)+ on the Siegel upper half planeHHH2. Using the
transformation property of the modular formf , one checks easily thatΦ f is well-defined. The
factorλ (1∞)k ensures that

Φ f (1z) = Φ f (1) for all 1 ∈G(AAA), z∈ Z(AAA)' AAA∗. (31)

Here Z denotes the center ofG. Since f is a cuspform, the functionΦ f is an element of
L2(G(QQQ)\G(AAA)/Z(AAA)). Letπ be the automorphic representation ofG(AAA) generated byΦ f inside
this L2-space. It decomposes into a finite direct sum of irreducible representations,π =

⊕
i πi .

Let us write eachπi as a tensor product of local representations,
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πi =
⊗

p≤∞
πi,p, πi,p an irreducible representation ofG(QQQp).

Since f is a modular form of weightk, all the archimedean componentsπi,∞ are isomorphic to
a representationπ+

k of G(RRR) that has a lowest weight vector of weight(k,k) (it belongs to the
discrete series ifk ≥ 3, see [AS] for more details). Let us now assume thatf is a common
eigenfunction for almost all the local (commutative) Hecke algebrasHp. Then it follows easily
that for all suchp and alli, j we haveπi,p ' π j,p. In theGL(2)-case we could now conclude by
strong multiplicity one thatπ must be irreducible. Unfortunately, strong multiplicity one or even
multiplicity one is currently not available forGSp(4).

But assume now thatN is a square-free number and that the subgroupΓ ′ containsB(N).
Then eachπi,p for p|N has non-zero Iwahori-fixed vectors, and we can use the results of section
3.1 to show in several cases that all theπi are globally isomorphic (see the next section). In these
cases we can therefore associate a unique equivalence classπ f of automorphic representations
with the modular formf .

Atkin-Lehner involutions.
Let N be an integer andΓ ′ one of the groupsB, U1 orU02. We shall define the Atkin-Lehner

involutions on the spaceSk(Γ ′(N)). For a primep dividing N let p j be the exact power ofp
dividing N. Choose a matrixγp ∈ Sp(4,ZZZ) such that

γp ≡




1
1

−1
−1


mod p j and γp ≡




1
1

1
1


mod Np− j ,

and define theAtkin-Lehner element

up := γp




p j

p j

1
1


 .

A different choice ofγp results in multiplyingup from the left with an element of the principal
congruence subgroupΓ (N). Therefore the action ofup on modular forms forΓ (N) is unam-
biguously defined. One can check thatup normalizesΓ ′(N). Consequently the mapF 7→ F

∣∣up

defines an endomorphism ofSk(Γ ′(N)), which is an involution sinceu2
p ∈ p jΓ (N). This is the

Atkin-Lehner involutionat p. We also denote it byf 7→ ηp f . A straightforward calculation shows
that theseηp on classical modular forms are compatible with the local Atkin-Lehner involutions
of the same name defined in section 1.3. More precisely, we have

Φηp f (1) = Φ f (1ηp) (32)

for the associated adelic functions, where theηp on the right is the local element as defined in
(8) at the placep.
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Some trace operators.
We have defined the local projection operatorsdi at the end of section 2.1. We will now

introduce analogous operators of the same name on global modular forms. LetN be a square-
free positive integer andp a prime dividingN. Let f ∈ Sk(B(N)). Then

(d1(p) f )(Z) :=
1

p+1 ∑
h∈B(N)\(B(Np−1)∩U1(p))

( f |kh)(Z) (33)

and

(d2(p) f )(Z) :=
1

p+1 ∑
h∈B(N)\(B(Np−1)∩U2(p))

( f |kh)(Z). (34)

Here |k is the usual classical operator. We further haved0(p) f := η−1
p d2(p)ηp f , whereηp is

the Atkin-Lehner involution. Note that since the definition ofdi(p) also depends on the levelN,
it should more precisely be denoted bydi(N, p). Instead, to ease notation, we will sometimes
also drop thep and simply writedi , hoping thatN andp are clear from the context. It is easily
checked that these operators are compatible with the associated adelic functions in the sense that

Φdi(p) f = di(p)Φ f for i = 0,1,2. (35)

On the right side of each equation we have the local operators at the placep defined in section
2.1, acting on the adelic function in the obvious way. Let

f (Z) = ∑
T

c(T)e2π i tr(TZ) (36)

be the usual Fourier expansion off , whereT runs over positive definite, half-integral matrices,
and let

f (Z) =
∞

∑
m=1

fm(τ,z)e2π imτ ′ , Z =

(
τ z
z τ ′

)
, (37)

be the Fourier-Jacobi expansion off . Here fm is a Jacobi form of indexmand levelN (meaning
for the subgroupΓ0(N) of SL(2,ZZZ)). Then easy calculations show

(d1(p) f )(Z) = ∑
T

c̃(T)e2π i tr(TZ) with c̃(T) = ∑
γ∈Γ0(N)\Γ0(Np−1)

c(γT tγ) (38)

and

(d2(p) f )(Z) =
∞

∑
m=1

f̃m(τ,z)e2π imτ ′ with f̃m = ∑
γ∈Γ0(N)\Γ0(Np−1)

fm|kγ. (39)

In both equationsΓ0(N) andΓ0(Np−1) mean subgroups ofSL(2,ZZZ) (not ofSp(4,ZZZ)). In equation
(39), the symbolf |kγ denotes the usual action of an element ofSL(2,ZZZ) on a Jacobi form, as in
[EZ].

In a similar way we can also define operatorsdi j (p) (or di j (N, p), or simplydi j ) onSk(B(N))
that are compatible with the local operatorsdi j defined in (18) and used in section 2.3. We shall
refrain from giving explicit formulas here, but these operators will have some significance for
the newform theory with respect toU1(N) andU02(N) in the next section.
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3.3. Classical newforms.
In this section we will use our previous representation-theoretic results to develop a theory

of old- and newforms for Siegel cusp forms of degree 2 with square-free level. We will obtain
different theories for the “minimal” subgroupB(N), the Hecke subgroupU1(N) and the parahoric
subgroupU02(N).

Newforms for BBB(((NNN))).
Let N be a positive integer, decomposed asN = N1N2 with coprimeN1,N2. ThenB(N) ⊂

B(N1)∩U1(N2), soSk
(
B(N1)∩U1(N2)

)
is a subspace ofSk(B(N)). Similarly we have the sub-

spacesSk
(
B(N1)∩U2(N2)

)
andSk

(
B(N1)∩U0(N2)

)
. The definition of newforms forB(N) we

shall now give is designed to be compatible with the local definition given in section 2.2. It is
also the same definition as given in the papers [Ib1] and [HI ].

DEFINITION 3.3.1. Let N be a square-free positive integer. InSk(B(N)) we define the
subspace ofoldformsSk(B(N))old to be the sum of the spaces

Sk
(
B(N1)∩U0(N2)

)
+Sk

(
B(N1)∩U1(N2)

)
+Sk

(
B(N1)∩U2(N2)

)
,

whereN1,N2 run through all positive integers such thatN1N2 = N, (N1,N2) = 1 andN2 > 1.
The subspace ofnewformsSk(B(N))new is defined as the orthogonal complement of the space
Sk(B(N))old insideSk(B(N)) with respect to the Petersson scalar product.

Thus, a modular form forB(N) is considered to beold if it is invariant underΓ ′(p) for some
p|N and someΓ ′ defined atp by a parahoric subgroup different from the minimal one.

THEOREM 3.3.2. Let N be a square-free positive integer, and letf ∈ Sk(B(N))new. We
assume thatf is an eigenform for the local Hecke algebrasHp for almost all primesp. Assuming
that anL-function theory as in3.1.4exists,2 the following holds.

i) The corresponding adelic functionΦ f as defined in(30) generates a multiple of an auto-
morphic representationπ f of PGSp(4,AAAQQQ).

ii) f is an eigenfunction for the local Hecke algebrasHp for all primesp - N.
iii) Let Wf be the subspace ofSk(B(N))new spanned by all eigenforms that have the same

Satake parameters asf for almost allp. Then

dimCCC(Wf ) = mult(π f ), (40)

where the right side denotes the multiplicity of the automorphic representationπ f defined
in i) within the space of all cusp forms. In particular, if multiplicity one holds, then a
newform is determined, up to multiples, by almost all of its Satake parameters.

iv) f is an eigenform for the Atkin-Lehner involutionηp for eachp|N.
v) For eachp|N, the local component ofπ f at p is given by

π f ,p =

{
StGSp(4,QQQp) if ηp f =− f ,

ξ0StGSp(4,QQQp) if ηp f = f .

2We need to assume 3.1.4 ii) only for the Steinberg representation. We also need to assume that ourL-function theory
produces the Langlands local factors at the archimedean place, since otherwise the factor given in (42) would not be the
correct one.
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Hereξ0 is the unique non-trivial unramified quadratic character ofQQQ∗
p.

vi) For primesp - N we define local spinL-factors as usual. Withεp being the Atkin-Lehner
eigenvalue atp|N, we further define

Lp(s, f ) =
(
1+ εpp−3/2−s)−1

for p|N, (41)

L∞(s, f ) = 4(2π)−2s+1−kΓ
(

s+k− 3
2

)
Γ

(
s+

1
2

)
. (42)

Then the spinL-functionL(s, f ) = ∏p≤∞ Lp(s, f ) has meromorphic continuation to all of
CCC and satisfies the functional equation

L(s, f ) = ε(s, f )L(1−s, f ) with ε(s, f ) := (−1)k
(
∏
p|N

εp

)
N3(1/2−s). (43)

If N > 1, thenL(s, f ) is holomorphic.

PROOF. i) As explained above,Φ f generates a representationπ which we decompose into
irreduciblesπi . If we decompose eachπi into a tensor product⊗πi,p of local representations,
then all theπi,∞ will be isomorphic. Moreover, by hypothesis, there is a finite setS of primes
(containing the primes dividingN) such that for eachp /∈ Sall theπi,p are isomorphic. It follows
from the definition of newforms and Proposition 2.2.1 thatπi,p is an unramified twist of the
Steinberg representation, for eachp|N and eachi. In particular, the local components ofπi at
everyfinite place are generic. We can therefore apply Corollary 3.1.6 to conclude that all theπi

are isomorphic.
ii) follows immediately from i).
iii) The dimension dim(Wf ) is obviously the number of linearly independent1 ∈

Sk(B(N))new that can be extracted from the direct sum of all cuspidal automorphic representa-
tions that are isomorphic toπ f . Equation (40) therefore is equivalent to the fact that in each local
representationπi,p there is exactly one linearly independentlocal newform. But this is obvious,
since the space of Iwahori-invariant vectors of the Steinberg representation is one-dimensional;
see Table 3. (We are also using the fact that in the lowest weight representationsπ+

k at the
archimedean place the space of lowest weight vectors is one-dimensional.)

iv) and v) We already saw thatπ f ,p is an unramified twist of the Steinberg representation.
Since the central character is trivial, there are only the two possibilities listed in v). In either case
we have a one-dimensional space of Iwahori-invariant vectors, proving iv). Which of the two
representations actually appears is decided by the Atkin-Lehner eigenvalue, see Table 3.

vi) A look at Table 2 shows that forp|N the L-factor is given as in (41). Theε-factor of
σStGSp(4) for unramifiedσ (and choice of a suitable unramified additive characterψ) is given

by −σ(ϖ)q3(1/2−s), as can be determined from [Ta]. Thusε(s,π f ,p,ψ) = εpp3(1/2−s) for p|N.
The archimedean factor in (42) is, up to a constant and up to a shift in the argument, just the
usual AndrianovΓ -factor (which in degree 2 coincides with the archimedean LanglandsL-
factor, see [Sch2]). Since the archimedeanε-factor is (−1)k, the globalε-factor is given by
(−1)k(∏p|N εp)N3(1/2−s). Now all the claimed analytic properties ofL(s, f ) follow from our L-
function theory and from [PS2], Theorem 5.3 (ifN = 1 then f may be a Saito-Kurokawa lifting
in which caseL(s, f ) would have poles). ¤

REMARK . It was mentioned in [HI ], p. 38, that (for any degree) the local components at
p|N of the automorphic representations associated to newforms inSk(B(N)) are special repre-
sentations.
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In view of (38) and (39), the next result shows that newforms forB(N) can be characterized
in terms of their Fourier and Fourier-Jacobi expansions.

COROLLARY 3.3.3. An elementf ∈ Sk(B(N)) is a newform if and only if

d1(p)( f ) = d2(p)( f ) = d2(p)(ηp f ) = 0 for all p|N,

whered1(p) andd2(p) are the operators defined in(33) resp.(34).

PROOF. This follows from Theorem 3.3.2 iv), Proposition 2.2.1 and equation (35).¤

COROLLARY 3.3.4. If a cusp formf ∈ Sk(Sp(4,ZZZ)) is an eigenfunction for almost all
Hecke algebrasHp, then it is an eigenfunction for allthose Hecke algebras.3

PROOF. Theorem 3.3.2 applies withN = 1. ¤

Newforms for UUU111(((NNN))).
LetN be a square-free positive integer. To describe newforms for the Hecke subgroupU1(N)

(usually calledΓ0(N)) we shall begin by describing, forp|N, four endomorphismsT0(p), T1(p),
T2(p), T3(p) of Sk(U1(N)) which are analogous to some of the local operators considered in
section 2.3. The operatorT0(p) is simply the identity. We defineT1(p) := ηp, the Atkin-Lehner
involution. Note that iff ∈ Sk(U1(N)) happens to be a modular form forU1(Np−1), then

(T1(p) f )(Z) = pk f (pZ) (Z ∈ HHH2).

We defineT2(p) by

(T2(p) f )(Z) = ∑
x,µ,κ∈ZZZ/pZZZ


 f

∣∣∣
k




1
1

p
p







1 x µ
1 µ κ

1
1





(Z)

= ∑
1∈P1\P1

(
1

p1

)
P1

(
f
∣∣
k1

)
(Z) (44)

(cf. Remark 2.3.4). In terms of Fourier expansions, iff (Z) = ∑n,r,mA(n, r,m)e2π i(nτ+rz+mτ ′), then

(T2(p) f )(Z) = ∑
n,r,m

A(np, rp,mp)e2π i(nτ+rz+mτ ′), Z =

(
τ z
z τ ′

)
. (45)

Finally, we defineT3(p) := ηp◦T2(p). It is easy to check that with these definitions

ΦT0(p) f = eΦ f , ΦT1(p) f = ηΦ f , ΦT2(p) f = e2e1e2ηΦ f , ΦT3(p) f = e0e1e0Φ f (46)

holds for the associated adelic functions. On the right side of each equation we have elements of
the local Iwahori-Hecke algebra acting on the adelic functions in the obvious way.

3In this completely unramified case we can work with the AndrianovL-function and need not make any additional
assumptions on the existence of a suitableL-function theory.
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DEFINITION 3.3.5. Let N be a square-free positive integer. InSk(U1(N)) we define the
subspace ofoldformsSk(U1(N))old to be the sum of the spaces

Ti(p)Sk
(
U1(Np−1)

)
, i = 0,1,2,3, p|N.

We define the subspace ofnewformsSk(U1(N))new to be the orthogonal complement of the space
Sk(U1(N))old insideSk(U1(N)) with respect to the Petersson scalar product.

We remark that, for this congruence subgroup, the same definition of the space of oldforms
as the image of four linear operators has been given in [Ra].

REMARK 3.3.6. It follows from Theorem 2.3.1 that the spaceSk(U1(N))new can be char-
acterized as the common kernel of the operatorsd12, d12e0e1e0, d12η andd12ηe2e1e2 for all p|N
insideSk(U1(N)). This is analogous to Corollary 3.3.3.

Some attempts to defineL-functions for modular formsf ∈ Sk(U1(N)) are based on eigen-
functions forT2(p) at the placesp|N (see [An3]). Along these lines we can prove the following
result.

THEOREM 3.3.7. Let N be a square-free positive integer and letf ∈ Sk(U1(N))new. We
assume thatf is an eigenform for the local Hecke algebrasHp for almost all primesp. We
further assume that

T2(p) f = λp f with λp 6=±p for all p|N. (47)

Then:

i) The corresponding adelic functionΦ f as defined in(30) generates a multiple of an auto-
morphic representationπ f of PGSp(4,AAAQQQ).

ii) f is an eigenfunction for the local Hecke algebrasHp for all primesp - N.
iii) For primesp - N we define local spinL-factors as usual. We further define

Lp(s, f ) =
(
(1−λpp−3/2−s)(1−λ−1

p p1/2−s)
)−1

for p|N, (48)

and the archimedean factor as in(42).4 Then the spinL-functionL(s, f ) = ∏p≤∞ Lp(s, f )
has meromorphic continuation to all ofCCC and satisfies the functional equation

L(s, f ) = ε(s, f )L(1−s, f ) with ε(s, f ) := (−1)kN1−2s. (49)

If N > 1, thenL(s, f ) is holomorphic.

PROOF. We argue essentially as in Theorem 3.3.2. Sincef is a newform, everyπi,p for
p|N must contain local newvectors with respect toP1 in the sense of Theorem 2.3.1. The operator
T2 corresponds to the elemente2e1e2η of the local Iwahori-Hecke algebra atp, see (46). In view
of table (24) and the remarks following it, the hypothesis (47) implies thatπi,p is of type IIIa. In
particular it is generic. We can therefore invoke Corollary 3.1.6 to prove i) (and ii).

4We need to assume that ourL-function theory really assigns this (Langlands) localL-factor to the discrete series
representation at the archimedean place.
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We now know forp|N thatπ f ,p = χoσStGSp(2) with unramified charactersχ andσ of QQQ∗
p

such thatχσ2 = 1. By table (24) we haveλp = σ(p) or λp = σ(p)−1. Hence a look at Table 2
shows that theL-factor is given as in (48). Theε-factor atp|N is given by

ε(s,χoσStGSp(2),ψ) = ε(s,σStGL(2),ψ)ε(s,χσStGL(2),ψ)

= (−σ(p)p1/2−s)(−(χσ)(p)p1/2−s) = p1−2s

(choosing some unramified additive characterψ). Here we have used the fact (see, e.g., [Sch1])
thatε(s,σStGL(2),ψ) = −σ(ϖ)p1/2−s for an unramified local characterσ . Including the archi-
medean place, the globalε-factor is therefore given by(−1)kN1−2s. Now the analytic properties
of L(s, f ) follow from ourL-function theory and from [PS2], Theorem 5.3. The conditionN > 1
ensures thatf is not a Saito-Kurokawa lifting. ¤

If one of theT2(p) eigenvalues is±p, then the situation becomes more complicated because
we cannot distinguish representations of type IIa, Vb,c and VIa,b (representations of type IVb,c
are irrelevant since they are not unitary by [ST], Theorem 4.4; the trivial representation does also
not appear as a local component of a global cuspidal automorphic representation, which follows
from the existence of global generalized Whittaker models, see [PS2]). In this case we need more
information to determine the type of local representation. Such information can be obtained by
requiring that our modular form is also an eigenfunction for the operator

T4(p) := (1+ p)2d1(p)d02(p) (50)

for eachp|N. Investigating table (24) we find that knowing the eigenvalues underT2(p) and
T4(p) we can determine the local representation, except that we cannot distinguish types VIa
and VIb. But VIa and VIb constitute anL-packet, so for defining the correctL-factor it is not
necessary to distinguish these two representations.

Unfortunately, we cannot see an easy description for the Hecke operatorT4(p) in (50) in
terms of Fourier coefficients, in contrast to the simple formula (45) forT2(p). However, as
already mentioned towards the end of section 2.3, the corresponding local operator is represented
by a surprisingly simple8×8-matrix.

PROPOSITION3.3.8. Let N be square-free. The spaceSk(U1(N))new has a basis consist-
ing of common eigenfunctions for the operatorsT2(p) andT4(p), all p|N, and for the unramified
Hecke algebras at all good placesp - N.

PROOF. The assertion follows from the fact that for each local representation(π,V) con-
taining newforms with respect toP1 the spaceVP1 has a common eigenbasis fore2e1e2η and
d1d02. This in turn is evident from a look at table (24). ¤

THEOREM 3.3.9. Let N be a square-free positive integer and letf ∈ Sk(U1(N))new. We
assume thatf is an eigenform for the local Hecke algebrasHp for almost all primesp. We
further assume thatf is an eigenfunction forT2(p) andT4(p) for all p|N,

T2(p) f = λp f , T4(p) f = µp f for p|N. (51)

Assuming that anL-function theory as in3.1.4exists, the following holds.

i) f is an eigenfunction for the local Hecke algebrasHp for all primesp - N.
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ii) Only the combinations ofλp and µp as given in the following table can occur. Hereε is
±1.

λ µ rep. Lp(s, f )−1 εp(s, f )

−ε p /∈ {0,2p} IIa (1+ ε(p+1)(p−µ)p−3/2−s+ p−2s)(1+ ε p−1/2−s) ε p1/2−s

6=±p 0 IIIa (1−λ p−3/2−s)(1−λ−1p1/2−s) p1−2s

−ε p 2p Vb,c (1− ε p1/2−s)(1− p−1/2−s)(1+ p−1/2−s) ε p1/2−s

−ε p 0 VIa,b (1+ ε p−1/2−s)2 p1−2s

(52)

(We skipped some indicesp.)
iii) We define the archimedeanL-factor as in(42)and the archimedeanε-factor by(−1)k. We

further define the unramified spin Euler factors forp - N as usual, and theε-factors to be
1. For placesp|N we defineL- andε-factors according to table(52). Then the resulting
L-function has meromorphic continuation to the whole complex plane and satisfies the
functional equation

L(s, f ) = ε(s, f )L(1−s, f ), (53)

whereL(s, f ) = ∏p≤∞ Lp(s, f ) andε(s, f ) = (−1)k ∏p|N εp(s, f ).
iv) L(s, f ) has at most two simple poles ats= 3/2 ands=−1/2. If λp 6=±p or µp /∈ {0,2p}

for somep|N, thenL(s, f ) is holomorphic everywhere.

PROOF. i) We argue as before, considering the global representationπ f = ⊕πi . Since f
is a newform, everyπi,p for p|N must contain local newvectors with respect toP1 in the sense
of Theorem 2.3.1. In the present case we cannot conclude that all the irreducible components
πi must be isomorphic, because, as mentioned above, the eigenvalues in (51) cannot tell apart
local representations VIa and VIb. This is however the only ambiguity, so that we can at least
associate aglobalL-packetwith f . In particular, we obtain i) by a familiar reasoning.

ii) The possible combinations forλ andµ follow immediately from the data given in table
(24).

iii) The L-factors can be easily determined from Table 2 and the values given in table (24).
Theε-factors are also easily computed from the local parameters given in Table 2. The functional
equation then follows from ourL-function theory.

iv) By [PS2], theL-functionL(s, f ) has at most two simple poles ats= 3/2 ands=−1/2. If
λp 6=±p or µp /∈ {0,2p} for somep|N, then, according to table (52), we have a local component
of type IIa or IIIa, hence a generic representation. In particular, our representations are not Saito-
Kurokawa liftings, which impliesL(s, f ) is holomorphic (see also part 4) of [PS2], Theorem
5.3). ¤

Newforms for UUU02(((NNN))).
We have defined trace operatorsd0,d1,d2 in section 3.2, and we shall use these to define

newforms for the paramodular groupU02(N) of levelN. We remark that in caseN = p is a prime
the same definition has already been given in [Ib2]. The trace operators used there essentially
coincide with ourd operators.
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DEFINITION 3.3.10. Let N be a square-free positive integer. InSk(U02(N)) we define the
subspace ofoldformsSk(U02(N))old to be the sum of the spaces

d0(p)Sk
(
U02(Np−1)

)
+d2(p)ηpSk

(
U02(Np−1)

)
, p|N.

The subspace ofnewformsSk(U02(N))new is defined as the orthogonal complement of the space
Sk(U02(N))old insideSk(U02(N)) with respect to the Petersson scalar product.

REMARK 3.3.11. Just as in the previous cases we can characterize newforms as the kernel
of certain operators. In fact, by Theorem 2.3.1 an elementf ∈ Sk(U02(N)) is a newform if and
only if it is annihilated by the operatorsd12η andd12ηd2η for all p|N.

In the following theorem we will make use of the Hecke operators

T5(p) := (1+ p)2d02(p)d1(p) (54)

on Sk(U02(N))new for p|N (the theorem will show that global newforms are composed of local
newforms at every place, so it is obvious thatT5(p) acts onSk(U02(N))new). This operator is
analogous toT4(p) introduced in (54) and serves a similar purpose. Again, we did not find a
simple description in terms of Fourier coefficients, but the local representation ofT5(p) as an
8×8-matrix has a simple shape.

THEOREM 3.3.12. Let N be a square-free positive integer, andf ∈ Sk(U02(N))new. We
assume thatf is an eigenform for the local Hecke algebrasHp for almost all primesp and for
the Atkin-Lehner involutionsεp for all p|N. Assuming that anL-function theory as in3.1.4exists,
the following holds.

i) The corresponding adelic functionΦ f as defined in(30) generates a multiple of an auto-
morphic representationπ f of PGSp(4,AAAQQQ).

ii) f is an eigenfunction for the local Hecke algebrasHp for all primesp - N.
iii) Let Wf be the subspace ofSk(B(N))new spanned by all eigenforms that have the same

Satake parameters asf for almost all p, and the same Atkin-Lehner eigenvalue for all
p|N. Then

dimCCC(Wf ) = mult(π f ), (55)

where the right side denotes the multiplicity of the automorphic representationπ f defined
in i) within the space of all cuspforms.

iv) f is an eigenfunction for the Hecke operatorT5(p), for eachp|N. Letµp be the eigenvalue.
v) For each p|N, the local component ofπ f at p is one of the unitary representations of

PGSp(4,QQQp) listed in the following table. Which type of representation it is can be de-
cided by the value ofµp.

µp rep. Lp(s, f )−1 εp(s, f )

/∈ {0,2p} IIa (1+ εp(p+1)(p−µp)p−3/2−s+ p−2s)(1+ εpp−1/2−s)

2p Vb,c (1− εpp1/2−s)(1− p−1/2−s)(1+ p−1/2−s) εpp1/2−s

0 VIc (1+ εpp1/2−s)(1+ εpp−1/2−s)

(56)

In this tableεp is the eigenvalue of the Atkin-Lehner involution atp.
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vi) If we define spinL-factors for p|N as in table(56), then the globalL-functionL(s, f ) =
∏p≤∞ Lp(s, f ) has meromorphic continuation to all ofCCC and satisfies the functional equa-
tion

L(s, f ) = ε(s, f )L(1−s, f ), with ε(s, f ) = (−1)k(∏
p|N

εp
)
N1/2−s. (57)

HereL∞(s, f ) is defined as in(42), and the unramified spin Euler factors forp -N are the
usual ones.

vii) L(s, f ) has at most two simple poles ats= 3/2 ands= −1/2. If µp /∈ {0,2p} for some
p|N, thenL(s, f ) is holomorphic everywhere.

PROOF. The argument for i), ii) and iii) is similar to the one in the proof of Theorem 3.3.2.
Instead of Corollary 3.1.6 we are using Corollary 3.1.7. The fact thatf is a newform assures that
hypothesis ii) of Corollary 3.1.7 is satisfied.

iv) and v) A look at Table 3 shows that only the representations listed in (56) are unitary
and have newforms with respect toP02. In each case the dimension of the space ofP02-invariant
vectors is one-dimensional, proving iv). The data given in the last column of table (24) shows
the relation between the eigenvalueµp and the type of representation.

vi) and vii) TheL-factors forp|N can be read off from Table 2, and theε-factors are easily
seen to beεpp1/2−s in each case. Now we can refer to ourL-function theory and [PS2], Theorem
5.3, again. Ifµp /∈ {0,2p}, thenπ f ,p is of type IIa, hence generic, and the holomorphy follows
sinceπ f is not a Saito-Kurokawa representation. ¤

REMARK 3.3.13. For simplicity assumeN = p is a prime and consider the following
linear maps:

Sk(U1(p))new
d02−−−→←−−−
d1

Sk(U02(p))new (58)

We see from Table 3 that the occurrence of representations of type IIIa accounts for the kernel of
d02(p), and the occurrence of representations of type VIc accounts for the kernel ofd1(p). The
composite mapsd1◦d02 andd02◦d1 are, up to normalization, the Hecke operatorsT4 andT5 we
used in the newform theory forU1 resp.U02.
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