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Abstract. In this paper we characterize symmetric cones among homogeneous convex
cones by the condition that the corresponding tube domains are mapped onto the dual tube do-
mains under pseudoinverse maps with parameter. The condition also restricts the parameter to
specific ones.

1. Introduction.

We begin this paper with a simple fact. L&te a complex x r symmetric matrix. Then
ReZ is positive definite if and only iZ ! exists andReZ ! is positive definite. Denoting by
Sym(r,R)** the cone of reat x r positive definite symmetric matrices, we rephrase the above
fact as

ReZ € Symr,R)™" = Z ! exists andReZ ! € Symr,R)*™.

In this way, it is easy to generalize the fact to the case of symmetric coneQ. heta symmetric
cone in areal Euclidean vector spatewe recall that/ has a Euclidean Jordan algebra structure
[5], and thus the complexificatioV := [ is a complex Jordan algebra. L=t W. Then

z€ Q +iV <= Jordan algebra inverse?! exists an&z 1 € Q +iV. (1.1)

The purpose of the present paper is to show that this equivalence characterizes symmetric cones
in a certain sense among homogeneous convex cones.

Symmetric cones form a specific class. Analysis on them and on symmetric tube domains
is developed in a fairly explicit manner as describedd Thus it is significant to characterize
symmetric cones among homogeneous convex cones. Vinberg's characteriz@tamnferning
equal dimensionality of certain eigenspaces is of particular importance. Differential geometric
characterizations are given i) and [13]. Another characterization making use of the con-
nection algebra of a homogeneous convex cone is givel]mnd [L4]. Ours is more analytic
and motivated by Corollary 2.9 of Rothaus’ pap&t][ where it is investigated if the analytically
continued Vinberg's--map preserves the tube domain (see és&®fpmark 2.12]).

Let Q be a homogeneous regular open convex cone in a real vectorépakssociated
with Q and a poinkE € Q, the ambient vector spatehas a structure of non-associative algebra
with unit elementE. This algebra is called elan after Vinberg [L5]. The multiplication in this
algebraV will be denoted axAy, and the left multiplication operator byasLy. Then, one
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knows by [L5] that (x]y) := Tr Lysy defines a positive definite inner product gn called the
trace inner product. Lep be the characteristic function of the cofee

49— [ ey (xe),
whereQ* is the dual cone of2 taken inV relative to the trace inner product:
Q*:={yeV;(xly) >0 forallxe Q\ {0}}.

Vinberg'sx-mapQ — Q* is by definitionx* := —grad logg (x). One knows that the map— x*
extends to a birational mdp: W — W, whereW =\, and that it is holomorphic on the tube
domainQ +iV. A weaker version of our theorem is the following.

THEOREM1.1. Suppose thaf is irreducible. ThenQ = Q* if and only if one has
(Q+iV)=Q"+iV.

For irreducible symmetric cones, Proposition I11.4.3%htells us thatx* is a positive num-
ber multiple of the Jordan algebra inversé (see Lemma 5.2 of the present paper for a more
precise relation between themap and the Jordan algebra inverse). Therefore Theorem 1.1
shows that the equivalence in (1.1) can be a characterization of symmetric cones.

Our actual theorem still generalizes Theorem 1.1 by using pseudoinverse maps. We note
that Vinberg'sx-map is a pseudoinverse map with a specific parameter (see subsection 5.2 of this
paper withp = 1).

Let f be a linear form on the cla¥i. Thenf is said to beadmissiblef the bilinear form
(X]y) 1 := (xAy, f) defines a positive definite inner product\dnin Proposition 2.1 of this paper
we prove that to every admissible linear forfinthere corresponds a parameset (s, ...,S)
with s; > 0,...,5 > 0 so thatf = EZ, wherer is the rank oV (see (2.6) folEZ). In this case
we say that the parametsiis positive and we write(|-)s instead of(-|-)g; for simplicity. By
Vinberg [15] there exists a split solvable subgroHpn the linear automorphism group(Q) of
Q such thaHH acts onQ simply transitively. Lety be the Lie algebra dfl. Define function\g
on Q by

As((expT)E) := elTEEs) (T eb).

Let the parametes be positive. The pseudoinverkgx) of x € Q is defined to be

(Is(X)|y)s = —%IogA_s(erty) o (yeVv).

LetW :=V¢c. We extend(-|-)s to W by complex bilinearity, and denote it by the same symbol.
The pseudoinverse mag: X — Is(x) extends to a birational may — W and has the following
properties:

(1) |s(E) =E,
(2) 1s(hE) = Sh~lIg(E) for all h € He, whereHg is the complexification oH andsh stands
for the adjoint operator di relative to(:|)s.

If Q is a symmetric cone arslis a positive number multiple af (see (2.5) of this paper for the
definition ofd), thenls coincides with a positive number multiple of the Jordan algebra inverse
map associated witt®.



Characterization of symmetric cones 197

Let QS be the dual cone a® realized inv by means of-|-)s. Our result is as follows:

THEOREM1.2. Suppose thaf? is irreducible, and letsss R" be positive. Then, the
following are equivalent

(A) 1s(Q+iV)=QS+iV.
(B) s is a positive number multiple df dndQ is a symmetric cone.
(C) s is a positive number multiple df andQ = QS.

We now describe the organization of this paper. In Section 2, we summarize basic facts
about the clan associated with a homogeneous convex cone. Section 3 is the introduction of the
pseudoinverse maps. In Section 4, we present some formulas and norm computations needed in
Section 7. The results of this section are valid without any restrictions on clans. In Subsection
5.1, we recall some basic facts about symmetric cones, and they are used in Subsection 5.2 and
Section 6. Proof of (C}» (A) in the main theorem is given in Subsection 5.2. In Section 6, we
prove the equivalence of (B) and (C), which is valid for homogeneous convex cones which are
not necessarily irreducible. Proof of (A) (B) is accomplished in Section 7 through quite a bit
of computations divided into several steps. Our way of the computations is inspired by the one
taken in Section 5 of1(Q].

The second author is grateful to Richard Penney, Ewa Damek and Jacques Faraut for con-
versations about the contents of this paper.

2. Preliminaries.

2.1. Clan associated with a homogeneous convex cone.

We begin with the introduction of clan and its normal decomposition. \L&e a finite
dimensional vector space oV@r A regular open convex core C V is said to béhomogeneous
if the linear Lie group

G(Q):={geGL\V);g(Q)=Q}

of the automorphism group @ acts transitively on it. Here by regularity, we mean tfatioes

not contain any straight line (not necessarily passing through the origin). In this paper, we assume
thatQ is irreducible. By L5, Theorem 1] there exists a connected split solvable subdgroap

G(Q) acting simply transitively o2. Let § be the Lie algebra ofi. Take any poinE € Q.

Since the orbit mapd 5 h— hE is a diffeomorphism, differentiation at the unit element-bf

gives a linear isomorphisi > T — TE € V. Let us denote by : x — Ly its inverse map, so

that LyE = x for all x e V. We define a multiplicatiom\ by xAy := Lyy (x,y € V). Setting

[XAY] := xAy — yAXx, we get by the definition df

[Lx, Ly|E = Ly(LyE) — Ly(L«E) = Ly — Lyx = XAy — yAX,
so that,
[Ly Lyl = Lixay- (2.1)
By [15, Chapter I1,51] it holds that

TrLyax >0 for any non-zercx. (2.2)
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Moreover sincé) is split solvable, every linear operatoy (x € V) has only real eigenvalues. The
spaceV with A defined in this way is callethe clan associated witk2. SinceH is maximal
among the connected split solvable subgroup&@®), the Lie algebrd) contains the identity
operator. This together witheE = E ensures us thdtg is the identity operator, so thét is
a unit element of/. We refer toE asthe base point used in the construction of the clan V
associated with2. Conversely, we can construct a homogeneous convex cone from a clan with
unit element, and there is a one-to-one correspondence between the set of isomorphic classes of
homogeneous convex cones and the set of isomorphic classes of clans with unit element.
Let V be a clan with unit elemerE. Then,V has a direct sum decomposition called a
normal decompositianthere exists a positive integerand idempotentg; (i = 1,...,r) such
that

r
V=SYRE® Vijs E=E +---+E, (2.3)
i; 1§JZk<r
where we put
1
Vj = {er;ch: é(/\k+/\j)x,xAc:)\jxforc: SAE (VA € R)}.

The integer is calledthe rank of V| SettingVkk := RE for k=1,...,r, we have the following
multiplication table:

VikAVj C Vi,
if k1, j,thenVicAV;j = 0, (2.4)

Vik AVimk C Vim Or Vi according td > morm > |I.

2.2. Inner products defined by positive parameters.
LetV be a clan with unit elemeriE. We keep to the notation of the previous subsection.
Let us define linear formg* (i=1,...,r) onV by

r
<ZXjEj+zkxkj7Ei*>_Xi (XjéR, ijGij).
=1 j<

We put

ngj :=dimVy; (j <Kk), d=1+=9% ng+ nij . (2.5)

Fors=(s,...,5) € R, we set
Es:=Y sE, (2.6)
and define a bilinear form|-)s by

Xy)s:= (xAy,Es)  (xyeV). (2.7)
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Letd := (di,...,d;). Then, taking a basis &f compatible with the normal decomposition (2.3),
we know by (2.4) that

Tr Ly = (X, Eg). (2.8)
By (2.2), the bilinear form
<X‘y>d = (xAy, E§> =Tr I—xAy

is a positive definite inner product & which we shall calthe trace inner product associated
with the clan'\. Then by (2.4) and (2.7), we see easily thag if € Vi, thenxAy = dk‘1<x|y>d Ex.
Let us assume tha&= (s,...,5) € R is positive that is,s > 0for alli =1,...,r. We obtain
by (2.4)

(XX)s = _2<X|'2Ei + Y XialXa,S Ei*>

a<li

;<(PiXi)2Ei+ Z(pixia)ﬁ(pixm),diEi*> — ¥,

a<li

where we pufp; := 5,11/2di—1/2’ X =511 PiXE + Yis1Pi Y a<iXia. Therefore(:|-)s also defines

a positive definite inner product dA This inner product is generic in the following sense:

ProPOSITION2.1. Let f be a linear form on V. If the bilinear forfx|y) s := (xAy, f)
defines a positive definite inner product on V, then there exists a positive paraseter s
(s1,...,5) € R such that f=E§.

PROOF. Take anyx; € Vi; (j <k). Since(:|-) t is a symmetric bilinear form by hypothesis,
it holds that([Ej Axyj], f) = 0. By the definition ofj;, we have

1 1
(B A%i] = 5% = Xkj = = 5Xis

so that(xj, f) = 0. Hence there exists a paramegee R' such thatf = E5. The positive
definiteness of-|-)¢ givess > Oforalli=1,...,r. O

We note that owing to (2.4), the subspaces appearing in the normal decomposition (2.3) are
orthogonal with each other relative {d-)s for any positives.
3. Pseudoinverse maps.

We shall introduce pseudoinverse maps and present their properties briefly. We assume that
s=(s1,...,5) € R is positive from now on.

We putH; := Lg, anda := 5|_; RH. Thena is a commutative Lie subalgebra bf For
u=(ug,...,u) € R, we define a one-dimensional representafjgof A := expa by

xa(exp( 3 k) ) = exp( 3 uit).

Let bj := {L;X € Vkj} andn := ¥;_hxj. Thenn is a nilpotent Lie subalgebra ¢f, anda
acts onn semisimply. PuilN := expn. Thenh = a x n, andH = Ax N. We extendy, to a
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one-dimensional representationkdfby definingxy = 1 on N. Recall thatH acts onQ simply
transitively and define function&, (u € R") on Q by

Au(hE) = xuh)  (heH).

If T=73tH +T withti € RandT’ € n, then it holds from (2.4) that

Au((eXpT)E) = exp(z uiti) — exp(TE,E}).

In Introduction we used this relation for the definition&f for the sake of brevity. Evidently it
holds that

Au(hX) = xu(WAu(X)  (heH, xe Q). (3.1)

Let Dy be the directional derivative in the directiore V: for smooth functions onV,

d
D\,f(x):af(x+tv)

Forx € Q we definelg(x) €V by

(Is(x)|y)s = —DylogA_g(x) (YeV).

Is: Q — V is called thepseudoinverse mapinberg'sx-map corresponds ®= d. It should be
noted that, unlikeg], we make the image of the pseudoinverse map within the spaheough

the inner product (2.7). This slight modification fits to our purpose. Various properties of the
original Is proved in P] are easily translated to our modifiégd Here we refer the reader t@,[

p. 536] for the translation of normatalgebra language to our language of clan. We denote by
QS the dual cone of2 realized inV by means of the inner product (2.7):

Q%= {xeV;(xly)s>0forvye Q\{0}}.

Then, by P, Proposition 3.12]ls gives a diffeomorphism of2 onto QS. The groupH acts also
onV by the coadjoint actionx — Sh=1x (h € H,x € V), where®T stands for the adjoint operator
of an operatofl with respect tq-|-)s. It is easy to show by using (3.1) thigtis H-equivariant:

Isthx) =Sh~tig(x)  (heH,xe Q). (3.2)

In particular,ls(Ax) = A ~Lg(x) for all A > 0. We havels(E) = E by [9, Lemma 3.10, (ii)], and
H acts also o2 simply transitively.

PutW :=Vc. We extend the multiplicatior of the clanV to W by complex bilinearity.
We also extend:|-)s to W by complex bilinearity. We denote the extended multiplication and
the bilinear form by the same symbols. o W we denote byR,, the right multiplication by
w: Ryx = xAw. Then,Re = 1. Thereforew — detRy is a non-zero polynomial function of.
Hence the subsef := {w € W;detR,, # 0} is a non-empty Zariski-open set. The sym#blfor
a complex linear operatdr onW has an obvious meaning.

LEMMA 3.1 ([9, Lemma 3.17]). The pseudoinverse magdan be continued analytically
to a rational map W— W, and one has(w) = R,'E forwe 6.
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Recall thatH acts onQS simply transitively by the coadjoint action and set foe R
AL(ShTIE) == xu(h)  (heH).
A is a function onQS such thatd (Sh=1&) = xu(h)A; (&) for h€ H andé € QS. Forx e QS
we definel{(x) by
(Is®)ly)s=—Dylogls(x)  (yeV).

Then, by P, Proposition 3.15])% gives a diffeomorphism of2® onto Q. Moreover,|{ is H-
equivariant, that isl(Sh=1x) = hi3(x) for everyh € H andx € QS. We havel(E) = E by
[9, Lemma 3.13].l§ is also continued analytically to a rational ma&p— W. We know by P,
Proposition 3.16] thdg andl§ are inverse to each other. Thiisis a birational magV — W with
Igl =1%. By [9, Theorem 3.19]|s is holomorphic onQ +iV, andl on Q%+iV. Moreover,
Is(Q +iV) is contained in the holomorphic domainigf andl$(Q%+iV) in the holomorphic
domain ofls.

Before closing this section, we would like to mention possible singularitids. diVe see
from the proof of B, Lemma 2.7] that

detRye = detAdy(h)detAdy (h!)  (heHg),

so thatw — detR,, is a holomorphic polynomial function oW relatively invariant under the
action ofH. LetAy,...,A; be the basic relative invariants associated vtintroduced in ,
p.161]. We consider them as holomorphic polynomial functiong\bim a natural way. By,
Theorem 2.2], there exist non-negative integars..,a anda € Rsuch that

detRy = aly(w)® --- A (w)¥.
This together with Lemma 3.1 gives

PROPOSITION3.2. Let4f:={weW;Ai(w) =0} (i=1,...,r). Then kis holomorphic
onW\ U, 4.

4. Formulas and norm computations.
PutW; := (Wj)c (j <k). Then the properties similar to (2.4) hold:
Wik AW € W,
if K#1, J, thenWxAW; =0, (4.2)
Wik AWk € Wi or Wiy, according td > morm > 1.
Note that ifvij, wxj € Wk;j, then we have
Vi AW = S (Vi [Whej) sEi- (4.2)
H-equivariance ofs andl§ gives

Is(hE) =Sh1E,  1Z5h"'E)=hE  (heH).
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Moreover these equalities hold for evdryg He by analytic continuation. Throughout this sec-
tion we always assume that the integefis | satisfyl < j < k <| <r and write(|-) instead of
(-|])s for simplicity. We setv[w] := (w|w) (w € W) to simplify the description.

Letwix € W, wi; € W andwj € W; in this section.

4.1. Formulas.
LEMMA 4.1. Forevery x= 3 XEi +3 q-pXap (Xi €C, Xgp € Wyp), ONe has

exp(Lw; +Lugg )X = X+XWj + 5 Wi AxXg +ﬁzvv|ijjB
<i

a>j

X)W + z Wi jAXgj + z WkjAXjg
a>j B<j

+27 (VWi Ex+ 5 TV W TE) + (Wi AW + Wi AW ) ).

PROOF. We get by (4.1)

(L L)X = XjWhj -+ 5 Wi Axaj + 5 Wi AXjg
j B<i

a>j

X)W + Z.ijAng + Z.WKJAXJ'B' (4.3)

a>|) B<j
Sincewjj AXqj € Wg 0or Wy, and sincev; Ax;g € Wg, we obtain
a>j B<]j

Similarly

(LW“. +Lij) ( Z_ijAXaj + Z‘ijAXjB> =0.

a>]j B<j
This together with (4.2) and (4.3) yields
(LW”. + kaj)zx = Xj (Wi} +Wij) A (W) +Wj)
= X} (S VWi B+ § 1V Wi ]+ Wi AW + Wi Aw ).
The last term belongs BE, ¢ CE & Wy by virtue of (4.1), so that we have by (4.1) again
(Lwy, + L) x=0.
From these observations we arrive at the lemma easily. O

In what follows, giverw;; € Wj andwy; € W, we set

1

We haveSy € W by (4.1).

PROPOSITION4.2. Lettj,t,t € R. Then one has
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exp(Lw; + Lw;) exp(Lw, ) exp(tjHj + tHk -+t H)E

= Em+€UEj + (€% + (2s¢) el v [wij] ) Ex
1,k

+(et' + (25 )‘1etkv[w|k] + (25 )‘1eti V[W|j])E| + e‘iw“- + e‘J’wa- + (etj Sk+ etkW“().
PROOF. We see easily that

exp(thj+tka+t|H|)E: Em+etiEj+etkEk+et'E|.
1,k

Form=1....r, we have by Lemma 4.1
exp(Lw) Em = Em+ Smic((29) v Wi By + Wik ) -
Hence it holds that
exp(Lw, ) exp(tjH;j +tH +tiH ) E

= Em+ €YEj +e%Ex+ (€' + (25) " te%v[wi]) B + e%wiy.
1,k

Now by Lemma 4.1 we have fan=1,....r
exp(LWIj + Lij)Em
= Em+ Omj(Wij +Wi;j) + 2 28mj (S v [Wij]Ex + 5 VWi Bl + (Wi AW + Wi Awgj) ) -
Moreover it holds that
exp(Lw; + Lwy;) Wik = Wik-
The proposition follows from these formulas. O

LEMMA 4.3. One has

s(eXp(LWu + Lij))_l

=En+ @nk((ZSj)flv[ij]Ej —ij) + an|((251)7lv[W|j]Ej —W|j).

Em

PROOF. Takex = Y XEi + Yg-pXap (X € C,Xqp € Wyp). Since the spaced/,z are
orthogonal to each other relative ¢¢-), Lemma 4.1 yields

(x| S(exp(Lw; + Lij))ilEm> = (exp(—Lw; — Lij)X|Em>
= <X7W|j AX“' fijAij + 2_1Xj (51:1v[wkj]Ek + §_1V[W|j]E| ) ‘ Em>

= (X|Em) + i (25¢) %) v [Wicj] B — Wi A% [ Exc) + Bmi{(25) 1% v [Wij ] Bl — wj Ax; |y ).

HerewyjAxyj = q;l(wkj|xkj>Ek by (4.2), so that|Ex||? = s¢ implies
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{(25) %)V [Whej ] Bie — Whj A% | Eic) = 27 x5V [Wij] — (Wi [Xj) = (X[ (25)) v [Wij Ej — Whj)-
A similar computation gives
((23) v E —wi Axi [ Er) = (x](28) v iwg]Ej —wi),
which completes the proof. O
LEMMA 4.4. One hasiwle”( e W andSLWkJ.W|k € W;j.

PROOF.  We putW’ := 5 CE @ Y (q.8)4(k j) Wap, SO thatW’ is complement td\k; in W.
Foranyx =73 XE + Y a,p)4(kj)Xap € W', it follows from (4.1) that

<ﬁ—W|j W|k|X> = <W|k|LW|j X>

:<W|k’wle<ij,-+ > Xaj+zxjﬁ>> 0.

oa>],a#k B<j
Hence we havé_wljw”( € W;. The proof forﬁ_wkjvwk € W; is similar and omitted. O

LEMMA 4.5. One has
-1
s(eXp(LWu JrI-ij)) Wik
= Wi+ (25) 7 (Whj AW + Wi AW [Wik) Ej — Ly Wik — Ly Wik -

PROOF. Takex= Y XE +3q-pXap (X € C,Xsp € Wyp). Discussing as in the proof of
Lemma 4.3, we get

-1
<X|s(eXp(LW|j JrI-ij)) W|k>
= (XWik) + (25)) " HXIE;) (Whj AW + Wi AW [Wik) — (X g Wik ) — (X5 L Wik )
Lemma 4.4 shows that the last two terms are equak(ixi L Wik +ﬁ_wkjw|k>. Hence we obtain
the lemma. O

PROPOSITION4.6. LetSk be asin (4.4). Then we have

S(exp(LWIj + kaj) exp(Lw, ) exp(tjH;j +tHic+t Hy ))71E

= Em+ (e7% +(25) 7 (e7% + (25¢) te " v[wik] ) v [wi;]
1,k
+(2s)) te tvwi] — sy te ! (Sdwik) ) Ej

ety [W|k]) Ex+ et E

+(e%+ (25"
(&7 Sy Wik — (€% + (250 ~Le Y v wik] wi)

—t (S — 1]
+€e '( kajvv|k—w|j)—e Wik .
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PROOF. First we see easily that

S(exp(tjH; +tcHy +tiH)) E = Em+eEj+e *Ex+e E.
1.kl

On the other hand, Lemma 4.3 says that
s(exp(Lwlk) ) 71Em =Em+ i ((2&)71V[W|k]Ek — W|k).
Hence we have

S(exp(Ly ) €Xp(tjH; +tcH+tH)) ' E

= Em-+e UEj+ (e %+ (25) !

m#£ k|

el V[W|k]) Ex + et E — el Wik .

Therefore Lemmas 4.3 and 4.5 give

S(exp(LW” + kaj) exp(Lwy, ) exp(tjH;j +tHic+t Hy ))_1E

= Em+e UEj+e™" (B +(25) v [wj]Ej — wij)
J:kl

+ (e7%+ (250) e " viwik]) (Ex+ (25)) v wi|Ej — W)
_e*tI(W|k+S <Sk|W|k> SLW“W”( ﬁ—WkJWIk)

The proposition follows from this easily. O

4.2. Norm computations.
LEMMA 4.7, |[vikAi|12 = (2s) " vik||?|| vij |2 for everyvik € Vi and v € V.

PROOF. Putz:= vikAv; € Vij. Then (2.1) and (2.4) givRz, Ly, ] = Lizay,) = 0, so that

ZAZ= Ll y, Vj = Ly LaWkj = Ly, (LijAVu( + [Lvnu I-ijDVKJ'

Lvlk(kaAka) Lvlkkajz,

because/jAvik = 0. Moreover, by (2.1) and (4.2) the last term is equal to
%( ||ij ||2L€|k (LijLV|k + L\qkAij)Z: %Z]-”ij HZLV|k V|k - ZAZ
=515 v ?lIvic | PEr - 222
Hence we gerAz = (25§ ) Y| wil|?[| vi||?Ei. SincezAz= s 1(|Z|?E; by (4.2), we obtain the

lemma. O

LEMMA 4.8. (1) If nj # 0, then one hasjp> n.
(2) Ifny # O, then one hasip> ny;.
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PROOF. Let us assumej # 0. Take any non-zergg; € Vkj, and consider the linear map
Vik 2 Vik — VikAVj € Vij. We see that this map is injective by virtue of Lemma 4.7. Hence we
getn;j > ni. The proof for (2) is similar. O

Givenvjj € Vjj, Vj € Vj, we set

Uk := %(ijvkj—kvijv”). (4.5)
By (2.4) we know thab, € Vik.
LEMMA 4.9, [[Ui[? < (25 7| vj |2l v 1%
PROOF.  Sincevij Avj € Vik by (2.4), we get by (2.1) and (2.4)
(Lw; aug)s L] = Liw; aug) avy) =0
Hence it follows from (2.7) that
HVlJ'AVkJ'”2 = <L(VIJAij>(‘/|jAVkJ)7E;> = <L(V|1Aij)LV|j Vki’E;> = <LVIj L(WjAij)vki’E;>'
SinceLVlj L(‘,IjAvkj)ij = Vi A((vij Awj) Avj), we have by (2.7)
(Lwy L avg Viis Es) = (Vi (i A Vi) Avig) < [ || (v Avi) A v |
= (2302w llIvi A vig T v
where the last equality follows from Lemma 4.7. Thus we get
vty Avig | < (2502w ]| v - (4.6)
On the other hand, sinag;Avj; € Vi, it follows from (2.4) that
[Lyg»Lw; ] (%jAvij) =0,
so that we have by (2.7) and (2.1)
Vi AV 117 = (L ang) (Wi 2V5),Es) = (L, aug) (VA ), ES)- (4.7)
By (2.7), the last term is equal to
(V1 Ak Vi AV ) = (L amy) (Vi A), Es).-
Discussing as in (4.7), we see that this is equalu@A v;||?, so that we obtair|vijAvij|| =

Ivij Avgjll. Then we see thalUic|| < ||vi; Avkj||. Now (4.6) completes the proof. O

5. Proof of (C) = (A) in the main theorem.

We are now able to begin the proof of our main theorem (Theorem 1.2). We first need to
guote two lemmas for the proof of (G} (A).
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5.1. Some facts about symmetric cones.
LetV; be a real Euclidean vector space with an inner progiigtand Q; C V; a self-dual
cone with respect to this inner product. The characteristic fungtiosf Q; is defined by

1(x) = / e Mdy  (xe Q). (5.1)
Q
Let us define Vinberg's-mapQ; — V1 by

(X"ly) = —Dylog¢1(x) (xe Q1,ye V).

It is known that thex-map has a unique fixed poiet ([5, Proposition 1.3.5]). Since&; is a
symmetric coney; has a Jordan algebra structure with unit elenegntn this case, we have the
following lemma (b, Chapter 3, Exercise 5]):

LEMMA 5.1. Let L(v) be the multiplication by in the Jordan algebra} Then

Tr L'(uv) = DyDylog¢s(e1) = (u|v).

Therefore(-|-) coincides with(:|-}1r : (u, V) — Tr L’(uv). We note here that even if we re-
place the inner produgt|-) by its positive number multiple in Definition (5.1) ¢f;, Dylog ¢1(x)
is the same.

Suppose now tha®; is irreducible. Thefv; is simple. We know by Proposition 111.4.2 of
[5] that Tr L'(x) = (n1/r1)tr(x), wheretr(x) is the trace ok in the Jordan algebn, andr; and
n; are the rank and the dimension\afrespectively.

LEMMA 5.2. x* = xfor every invertible xc V.

PRoOOF.  Denoting byx!" the x-map used in %, Proposition 111.4.3], we have" =
(ny/r1)x~%. On the other hand, the discussion done just before the present lemma gives
(ny/r1)x* = x". Now the lemma follows. O

5.2. Proof of (C)= (A).

Now we assume that (C) in Theorem 1.2 holds. Proceeding as in Subsection 5V, With
and(-|-)s, we see tha¥ has a Jordan algebra structure and we haverapQ — V. We shall
show thats is a positive number multiple of themap in this situation. By assumption, we have
s=pd (p> 0), so thatA_s(x) =A_4(x)P for everyx € Q. On the other hand it is easy to see that
Deth = xq(h) (h€ H). Let ¢ be the characteristic function &. Sinced (hE) = (Deth) ¢ (E)

([5, Proposition 1.3.1]), it holds thap (x) = A_g(X)¢(E) (x € Q). Thus, for everyx € Q and
y €V one has

(Is(x)ly)s = —DylogA_g(x) = —pDylog ¢ (x) = (pX'|y)s-

Hence we gels(x) = px*. From Lemma 5.2 it follows thdg(x) = px 1. Since the inverse map
w— w1 in the complexified Jordan algeBta=\¢ is an involutive holomorphic automorphism
of Q +iV by [5, Theorem X.1.1], we obtaily(z) = pz X forallze Q +iV, and (A) of Theorem
1.2 follows.
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6. Equivalence of (B) and (C).

The implication (C)= (B) is trivial. In [15, Chapter 111,56] the dual cone of an irreducible
symmetric con&? is realized iV by means of the trace inner product of the corresponding clan
and we see easily fronig, Chapter 11,52] that it coincides withQ.

In this section, we give a proof of equivalence of (B) and (C) that is valid for homogeneous
convex cones which are not necessarily irreducible. Let us assunie thaelf-dual with respect
to an inner product:|-)o of V.

Let ¢o be the characteristic function @, andEy the unique fixed point of the-map.
Discussing as in Subsection 5\ has a Jordan algebra structure with unit elentgntOne has
by Lemma 5.1

D,Dylogdo(Eo) = (Xly)o. (6.2)

In §2 we tookE as the base point in the construction of the dlanWe shall denote this clan
by (V,E). Now, takingEp as the base point, we obtain a new cld8hEp). It follows from
[15, Chapter 11,81] that there exists an algebra isomorphigm (V,E) — (V,Ep) such that
®(Q) = Q. Let (|-} be the trace inner product of the clan Ey). We have by 15, Chapter I,
§1]

DxDylogdo(Eo) = (X|Y)1r- (6.2)

Hence we get from (6.1) and (6.2) thalt)o coincides with(|-);. ThereforeQ is self-dual with
respect tq-|- )y, t0O.

LEMMA 6.1. An algebra isomorphism between two clans is a unitary map when both
clans are equipped with their respective trace inner products.

PROOF. LetV, V' be two clans, and’ : V — V' an algebra isomorphism. We denote
the multiplications o, V/ by A, 2/, the left-multiplication operators bly, L', and the trace
inner products by-|-)1, (:|-)2 respectively. Sinc&’ is an algebra isomorphism, we see easily
thatL{Wx) =WYLW 1 ThereforeTrL,=Tr L{p(x), so that we get

(PX)|P(Y)2=Tr L/(w(x)Au,u(y)) =Tr I—i,u(xAy) =Tr Lxay = (X|y)1.
Hence the proof is complete. O

Let Q9, Q' be the dual cones d® realized inV by means of the trace inner products of
(V,E), (V,Ep) respectively. Sinc® is self-dual with respect t¢|-)y, we get

Q=0YQ)={®(x); (xly)s > 0for vy € Q\ {0} }
= {07 (x); (@7 (x)|®7H(y))a > Ofor Vo H(y) € @\ {0}}
=09

ThereforeQ is also self-dual with respect to the trace inner produg\E). This completes
the proof of (B)= (C).



Characterization of symmetric cones 209

7. Proof of (A) = (B).

We assume that (A) of Theorem 1.2 holds. In particular, we have
Rels(E+iV)C QS,  RelZ(E+iV)cC Q. (7.1)
Sincey eEj € Q andy e'iE;j € QSfor all tj € R, it follows that
EmeQnQsS (m=1,...r). (7.2)

We assume that the integegirk, | satisfyl < j < k < | <r throughout this section.

7.1. Firststep.
LEMMA 7.1. Ifng; # 0, then one hasjs> sq.

PROOF. Take anyv; € V;. In Proposition 4.2, we put
tj =t =0 t= Iog (1—|— (ZSk)71||ijH2) ,

Wij =Wk =0, Wj=ivj,

andn := expLiy; exp(tcHk). Then the formula becomegE = E +ivi;. By Proposition 4.6 we
obtain

SnlE = Em+ (1—(25) te %||vij||?) Ej + & By + ) —ie k.
JRS

Sincels(E +ivj) = Is(NE) = Sn~Is(E) = Sn~1E, we get

Rels(E +ivj) = Em+ (1 (25)) e || w||?) Ej + & *Ex +E.
m£ k|

Since we have (7.1), the coefficients Bf, are all positive by (7.2). Hence we obtain
1—(2s)) te ||vj||2 > 0, that s,

25 > (1+ (2307w l12) vl
Limiting procedurd| v|| — o yieldss;j > s. d
LEMMA 7.2. If ngj # 0, then one has,s> s;.
PROOF. Take anyv; € V;. In Proposition 4.6 we put
tj = —log (1+(2s) Hwill’), =t =0,
Wij =Wk =0, W= —iVj,

andn” := expL iy, exp(tjH;j). Then the formula becomé&én*)~1E = E +ivj. By Proposi-
tion 4.2 we have

n*E = Em+€YEj + (1— (25) €' || vkj[|%) Ex + Er — ie"i .
1,k
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Sincel(E +iwj) = 15(3(n*)~1E) = n*IZ(E) = n*E, it holds that

Reld(E +ivj) = Em+€YEj + (1— (25) €' || w|*) Ex + Ei. (7.3)
1,k

The assumption (7.1) together with (7.2) shows that the coefficierts, @fi (7.3) are positive
for all m. Hence we get — (25,) 2l || w;||? > 0, that is,
25> (1 (257) Hug2) " vl
Taking the limit ag| vij|| — o, we arrive ats, > s;. O
Lemmas 7.1 and 7.2 give
PROPOSITION7.3. If ngj # 0, then one has,s=s;.

Now, Asano’s theoreml] Theorem 4] tells us tha® is irreducible if and only if for each
pair (j,k) with 1 < j < k <, there exists a serigj,.. ., jm Of distinct positive integers such
that jo =K, jm=j andnj, ,j, #0foranyA =1,....m, where if j,_, < j,, then one puts
Nj, ,i, = Nj,j, ,- Therefore we arrive at

PROPOSITION7.4. The numbersgform=1,... r are independent of m.
7.2. Second step.

We next show that ifi, # O, thenn;; = n;. Before starting, we present three lemmas which
hold in general.

LEMMA 7.5. Letv; € Vkj. Then the following two statements are equivalent

0] zamEm—Fij € Q,
(i) am>0(m=1,...,r) and gax — (2s¢) || ;|2 > 0.

PrROOF. We assume that (i) holds. It follows from (7.2) thet > 0 form=1,...,r. Put
Wj = —aj_1ij €V andz:= (expLw,;) (Y mamEm+ V;). Lemma 4.1 and (4.2) give

1 -
z="Y amEm-+ Vi +ajWiq + Whj AV + 5 (@550 | i | *Ex
m

= Y amEm+ajE) + (a— (2150 | vig %) Ex. (7.4)
m:#£ ],k

Now the assumption impliese Q, so that (7.2) givesjax — (2s¢) 1| w[|? > 0.
Conversely we assume that (i) holds. Then (7.4) tells uszka®, so that

Z amEm+ Vkj = (expL(,ij))z €Q,

whence the proof is complete. O
Discussing as in the proof of Lemma 7.5, we get

LEMMA 7.6. Letvj € ;. Then the following two statements are equivalent
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0} > mamEm+ Vkj € Q5,
(i) an>0(m=1,...,r) and gax— (2sj) }||v;[*> > 0.

LEMMA 7.7. Letvy € Vi andvj € Vij. Then one hal.,,, v; :ﬂ_vljv”(.

PrROOF. Note that since/y, vij remain inV, bothS.
4.4. Take any € V. We obtain by (2.7) and (2.1)

wMj andLy; vig are inVi; by Lemma

(Luvijx) = (vij ik AX) = (Ly; Ly, % Eg)
= ((LuyLuj + Ly 2% Es)-
Sincevi; Avik = ikAvij = 0 by (2.4), the last term is equal to
(LwicLy; %, Eg) = (Vik|vij A%) = (Ly Vik[X).-

Therefore we obtaiflL, vij = SI_\,Ij Vik- O

Vik

Let us return to the proof of our main theorem. In view of Proposition 7.4 wes pusy,
independent ofm, from now on.

LEMMA 7.8. Ifny # 0, then one hasyj > n;.

ProOOF. If n;; = 0, then the conclusion of the lemma is trivially true. Thus we assume
nj # 0 as well any # 0. Take anyvik € Vik andvjj € Vjj. In Proposition 4.6 we put

Wik 1= —iViK, W} = i), Wy i= =Ly, Vik,
tj := —log (1+ (28) " |wij[|*+ (29) *|[u; %) , (7.5)
tc:= —log (1+ (29) Y|vik||?), t =0.

It should be noted here thak; € V; just as in the proof of Lemma 7.7. Let us see what the
right-hand side of the formula in Proposition 4.6 looks like. By definition we get

(W Awicj W) = —(Vij AW [Vik) = [[wij][%. (7.6)

Sincely, vij = OandL(ijAvlk> =0by (2.4), we have A (Wi AVij) = (ikAWkj) Avij by (2.1).
This gives

(Wi AW [Wi) = — (Wi AV [Vik) = —(Vik A (WkjA Vi), ES)
= —((vikAWkj) Avij, Eg) = —(ik AWkj|vij)
= —(Wigj| Ly vij)-
Lemma 7.7 shows that the last term equalsvj| Ly, Vik), S0 that we obtain
(Wi A [whe) = [|wi |- 7.7

Let Sk be asin (4.4). Then it follows from (7.6) and (7.7) that
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(SikIwik) = [Iwij .
Let us put
n* = exp(Lw; + Lw;) exp(Lw, ) exp(tjH;j + tHx).
Then we see without difficulty that the formula in Proposition 4.6 becomes
(") 'E = E+i(Vik — L Vik + j)-
Now we have

I (E+i(vic— Lwgvic+vij)) =15 (5(n*) 'E) = n"15(E) = n"E,

and Proposition 4.2 gives

nNE= Em+€YEj + ((29) el [|wy|* +e'%) Ex

m£ k|

+ (1 (29)716H|vij |12 — (29) e viel ) B + et

—i(eivj +e%vig + 27l (v Awi + Wi Avj ).
By (7.1), the real part of this belongs @. Hence by Lemma 7.5

1—(29)"e'||vij||> — (29) ‘€% || vk]|* > 0.
Rewriting this by using (7.5), we arrive at
(28) | vik | [[vij 1 — 25 < [|wis % (7.8)

We observe here that (7.8) foraag # 0, because we are assumimg # 0 andny, # 0 and note
that vix and vj; are arbitrary. Let{an}gil be an orthonormal basis ¥;. Since Lemma 7.7
yields

i Nkj

||ij||2: z <ij‘em>2: z <S|-V|j‘/lk|em>2
m=1 m=1
Nkj 5 Ny j
= > (Luvjlem)" =y (| vikAem)?,
m=1 =1

(7.8) is equivalent to the inequality

nkj

(28) Hlvil?lvij [P =25 < Y (vij|viksem)?. (7.9)
m=1

We makewij run over an orthonormal basis\4f in (7.9) and sum up the resulting formulas. We
get

nkj

nj (29 Hvikl>=25) < 5 [[vikeml®.
m=1
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Here we havé|vixAen||? = (25)71||vik||? by Lemma 4.7, so that we obtain
vl =2 (iK1 = (29)%) mij < ;.
Taking the limit ag| vix|| — oo, we obtainn;; < ny;. O
Lemma 7.8 together with the statement (2) of Lemma 4.8 yields

PROPOSITION7.9. If ni # 0, then one has|p= ny;j.

7.3. Third step.
We show that ifny; # O, thenny = njj. LetU be as in (4.5). Under (7.1) the normd
can be calculated.

LEMMA 7.10. [|Uycl|? = (25)H|waj 2| vij 2.
PROOF. In view of Lemma 4.9, it suffices to show
2 - 2 2
[Uikl[* > (29) [ vij I v 1.

This inequality is trivial ifn;; = 0 or ng; = 0. Therefore we assume tha} # 0 andny; # 0. In
Proposition 4.2 we put

tj:=0, tc:=log(1+(29) Ywl?),
tr:=log (14 (28) *[[vj |1 — (254 [|vig1?) [ Uiel?) ,

W=V, Wi =V, W= € KU,

where we note that Lemma 4.9 guaranteestihatactually a real number as is easily seen. Put
n:= exp(LW“. + kaj) exp(Lwy ) expltcHic+tiHy).
Then we see that the formula in Proposition 4.2 is the following:
NE =E+i(vj + w;j)-

We havels (E+i(vij + W) = Is(NE) = Sn~tIs(E) = Sn~'E as before, and Proposition 4.6
gives

nE = mg Em+ (1 (29) (e + (29)te ™ [|wik]|*) | v |2
1,k

—(25) e [|vj |2+ st " (Ui [wi)) E;

1

+(e %+ (29) e lwik|*)Ex + € VB — e wik

i (—e % v+ €7 (S Wik — (29) Wi || P Vi + Ly Wik — vij ) ).

Since the real part of this belongs @, it follows from Lemma 7.6 that the coefficient Bf is
positive. We putx := [|Ui||?, B := ||w;]|? andy := | w||? for simplicity. Then we have after
some simplification
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(the coefficient oF;) x € € = (25)7%((2s+ B)(25+y) — 2sa) — (25) >B(25+y)?
+(28%) Y25+ y)a — (25)2ay. (7.10)

Let x > 0 be arbitrary, and replacg; andvy; with xvj; andxvy; respectively in (7.10), so that
a,B andy are replaced bwx*, Bx? andyx? respectively. Let us denote (x) the right-hand
side of (7.10). We see th&t(x) is a polynomial of degree 6 and

(the coefficient o&® in F(x)) = (25) 3y(—By+2sa). (7.11)

SinceF (x) > Ofor everyx > 0, itis necessary for the right-hand side of (7.11) to be non-negative.
Hence it follows thaRsa > By. This completes the proof. O

PROPOSITION7.11. If ny; # 0, then one hasjp= ;.

PrROOF.  If ngj # 0, then we choose; # 0, so that the linear map; — Uy, fromV;; to
Vik is injective by virtue of Lemma 7.10. Thug > nj;. The reverse inequality follows from (1)
of Lemma 4.8. O

7.4. Last step.
The concluding step is parallel to that 40 Subsection 5.5].

LEMMA 7.12. If at least two of i, njj, ngj are non-zero, they are all equal.

PrROOF. In view of Propositions 7.9 and 7.11, the proof is completely similar to that of
[10, Lemma 5.15]. O

PROPOSITION7.13. The numbersyj are independent of j, k.

PROOF. We first show thahy; # 0 for anyk with 2 < k < r. By Asano’s theorem, there
exists a series of distinct positive integers such fpat k, jm = 1, nj, ,j, # 0. Sincenj,j, #0
andnj,j, # 0, we get by Lemma 7.12 thai,j, = nj,j, = Nj,j, # 0. Then, sincen;,;, # 0 and
Nj,j; 7 0, we obtaimn;j, = nj,j, = Nj,j, # 0. Continuing this argument, we haug ., # O, that
is, Nky # 0.

Now, we see thahy; are independent df by Lemma 7.12. Take two integejjsk with
1< j<k<r. Sincenjy, ng # 0, Lemma 7.12 givesj1 = Nk, = Nnkj, whence the conclusiof

Now the following proposition due to Vinberg completes the proof of £A]B).

PROPOSITION7.14 ([16, Proposition 3]). The irreducible homogeneous convex céhis
self-dual if and only if the numberg nare independent of, k.
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