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Abstract. In [19] a method was presented, which constructs via loop group splittings all
harmonic maps into a compact symmetric space. The present paper generalizes this method to all
spacesG/K, whereG is an arbitrary Lie group (semisimple or not) andK is the fixpoint group of
some involution ofG. The method is illustrated by a number of examples.

1. Introduction.

In [19] a Weierstrass-type representation was introduced for harmonic mapsϕ from Rie-
mannian surfacesM to compact symmetric spacesN = G/K, whereK is a closed subgroup of
G. The paper associates first with a harmonic mapϕ : M → N a frameF : M →G, such that the
canonical projectionπ : G→ N forms withϕ andF a commutative diagram. Then, after choos-
ing conformal coordinates onM one decomposes the Maurer Cartan formF−1dF = α ′ + α ′′,
whereα ′ is of type (1,0) andα ′′ of type (0,1).

Similar to [4] and [41], [19] introduces a parameterλ from S1 ⊂ CCC. Then it turns out
that the integrability forαλ is equivalent with the harmonicity of the mapϕ. This permits to
integrate the Maurer Cartan equationF−1dF = αλ , whereF now depends onλ (“extended
frame”). The most crucial feature of [19] then is that one can splitF everywhere intoF = H ·F+

whereH is holomorphic inz (“holomorphic extended frame”) andF+ is holomorphic inλ in
the open unit disk. Moreover, the Maurer Cartan formη = H−1dH of H is a holomorphic
differential one-form. It is obvious that anyη of this form trivially satisfies the integrability
condition for the differential equationη = H−1dH. We have thus replaced the Maurer-Cartan
form of the extended frameF with its non-linear integrability condition withη , which satisfies
its integrability condition trivially. It is crucial to observe, that fromη one can reconstruct
the (associated family of the) original harmonic map. Namely: starting, conversely, from an
arbitary holomorphic one formη one can obtain a harmonic mapϕ : M → N as follows: first,
one integrates the ordinary differential equationdH = H ·η , H(z = 0) = I . Then one carries
out an Iwasawa splittingH = F ·V+ and sees thatF is an extended frame for a harmonic map
ϕ = F modK.

1.1.
Let 1 be a finite-dimensional real Lie algebra, satisfying the following conditions:
• There exists an involutive automorphism of1, σ ∈ End(1)\{Id}, σ2 = Id;
• Ker(σ − Id)∩Z(1) = {0}, whereZ(1) = {ξ ∈ 1 | [ξ ,η ] = 0 for all η ∈ 1} is the center

of 1.
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Then1 admits the splitting

1= kkk⊕ ppp, (1.1.1)

wherekkk andppp are the eigenspaces ofσ

kkk = Ker(σ − Id), ppp = Ker(σ + Id). (1.1.2)

In the following we consider two connected Lie groupsK ⊂G, K closed inG, such that

Lie(K) = kkk⊂ Lie(G) = 1.

We assume as in [3] and [4] that G admits a faithful linear continuous representation. Actually,
we assume that there exists some complex matrix groupGCCC, the universal complexification ofG
in the sense of [30, Section 17.5], which hasG as a real form. The vector space, on whichGCCC

acts linearly will be denoted byV.

1.2.
In this paper we consider harmonic maps from non-compact simply connected, Riemann

surfacesDDD to pseudo-Riemannian general symmetric spacesG/K. First we need to define the
notion of general symmetric space (see, e.g., [35]):

We consider a connected matrix groupG, σ an automorphism of order two and denote

Fix σ = {1 ∈G | σ(1) = 1}

and by(Fix σ)0 the connected component ofFix σ containing the identityI . LetK be a subgroup
of G such that(Fix σ)0 ⊂ K ⊂ Fix σ , thenG/K is called a general symmetric space. Starting in
Section 1.3 we will assume in addition that we have a non-degenerate symmetric bilinear form
invariant by1.

Then we have ([3]) the semidirect productG≡ H.M, whereH is a connected, reductive
subgroup andM is a connected, simply connected solvable subgroup ofG. For our purposes it
will be important that the groups under consideration are invariant underσ . If we would only
want a Levi factor to be invariant, then it would suffice to refer to [39] and for uniqueness ques-
tions also [40]. However, we also want a reductive subgroup to be invariant underσ . Therefore
we prove:

THEOREM. There exists a choice of the subgroupsH andM as above, such thatσH = H
andσM = M.

PROOF. We writeG≡ S.R, whereS is semisimple andR is the radical ofG. SinceLie(R)
is a maximal solvable ideal, it is easy to seeσLie(R) = Lie(R). Thus we obtainσR= R. By [30,
Theorem 18.4.3], and our assumptions we knowR= LM, whereL is maximal compact inRand
abelian andM is simply connected. Analyzing the proof of loc.cit. it is easy to observe thatM
is preserved byσ . We will show next that one can, if necessary, replaceL by some conjugate
maximal compact subgroup̃L = hLh−1, such that̃L is invariant underσ . For the proof we will
use mostly Lie algebras. To simplify notation we abbreviatesss = Lie(S) andmmm = Lie(M) etc.
and recall the descending central series:rrr(0) = rrr andrrr( j+1) = [rrr( j), rrr( j)]. Moreover, sinceσ is
semisimple and leaves everyrrr( j) invariant, there areσ -invariant subspacesWj , j = 0,1, . . . ,n
such thatWj +Wj+1 + . . .+Wn = rrr( j) and the sum is direct. First we note that
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σL = mLm−1 for somem∈M, (1.2.1)

since maximal compact subgroups are conjugate to each other. Therefore for everyl in L we
have somel ′ ∈ L such thatσ l = ml′m−1. Applying σ again we obtainl = [σ(m)m]l ′′[σ(m)m]−1.
Multiplying from the left by(l ′′)−1 and observing thatM is normal inR, we conclude thatl = l ′′,
and thatσ(m)m= c commutes with everyl ∈ L:

σ(m)m= c∈C, (1.2.2)

where

C = {r ∈M; rl = lr for all l ∈ L}. (1.2.3)

Since the exponential mapexp :mmm→ M is a diffeomorphism, we can writem = exp(m̂) etc.
Decomposingm̂ relative to the subspacesWj the idea of the proof is to replace iterativelyL
by some conjugate subgroupL̂ such that the “m” associated witĥL andσ has fewer and fewer
components. Altogether, we will finally obtain someh ∈ M such thatL̃ = hLh−1 is invariant
underσ , i.e. is so that for everyl ∈ L there exists somel ′ ∈ L such thatσ(hlh−1) = hl′h−1 holds.

Applying (1.2.1) we obtainσ(h) ·ml′′m−1 ·σ(h−1) = hl′h−1.

Therefore[h−1σ(h)m]l ′′[h−1σ(h)m]−1 = l ′. As above one derives from thisl ′ = l ′′ and we obtain

(σ(h))−1hd = m, (1.2.4)

for somed ∈C. Taking logarithms and comparing the coefficients inW0 we obtain from (1.2.2)
and (1.2.4) the equations

σ(m̂0)+ m̂0 = ĉ0 (1.2.5)

and

−σ(ĥ0)+ ĥ0 + d̂0 = m̂0. (1.2.6)

Next we note that every subspace invariant underσ decomposes into its eigenspaces relative to
1 and−1. With the obvious notation we thus obtain from (1.2.5) and (1.2.6) the equations

ĉ0 = 2m̂0
(+) (1.2.7)

and

2ĥ0
(−) + d̂0

(−) = m̂0
(−), (1.2.8)

and

d̂0
(+) = m̂0

(+) =
1
2

ĉ0
(+) = ĉ0. (1.2.9)

Note thatm in equation (1.2.1) is only unique up to multiplication with elements ofC. Thus,
in view of (1.2.7) we would like to replacem with m′ = m/

√
c. To make this precise, we write

c = exp(ĉ) and noteAd(l)ĉ = ĉ. Thus “
√

c”= exp(ĉ/2) = d is still in C, and theW0 component
of the logarithm ofm′ = md−1 is in the−1−eigenspace ofσ . This means, that we can assume

w.r.g. m̂0 = m̂(−)
0 . Now we sets = exp(m̂(−)

0 /2) and L] = sLs−1. Thenσ(s) = s−1 and for
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l ] ∈ L] we obtainσ(l ]) = σ(sls−1) = s−1ml′m−1s= m](sl′s−1)m]−1
, wherem] = s−1ms−1. We

note the crucial observation that the logarithm ofm] does not have anyW0 component anymore.
Repeating the procedure forσ , L] and m] we obtain some new maximal compact subgroup
and some new “m”, the logarithm of which does not contain anyW1-component nor anyW0-
component. Repeating this procedure finally yields a maximal compact subgroupL̃, which is
invariant underσ . It now remains to prove that one can find not only some semisimple subgroup
of G, which is invariant underσ , but one, which also commutes withA = L̂. But this follows
precisely from the first part of the proof of [30, Theorem 18.4.2]. ¤

1.3.
Let F : DDD→G be a smooth map,DDD = D1 or CCC; D1 = {z∈CCC | | z |< 1}.
In view of (1.1.1), the Maurer-Cartan form associated toF , α = F−1dF ∈ Λ 1(DDD,1), de-

composes canonically

α = αkkk +αppp ∈Λ 1(DDD,kkk)⊕Λ 1(DDD, ppp). (1.3.1)

Denoting byz, z̄ the complex coordinates inDDD⊂ RRR2 ≡CCC, we haveTDDD = T(1,0)DDD⊕T(0,1)DDD, and
d = ∂ + ∂̄ . Thenαppp splits accordingly,

αppp = α ′
ppp +α ′′

ppp ∈Λ (1,0)(DDD, pppCCC)⊕Λ (0,1)(DDD, pppCCC). (1.3.2)

We consider the symmetric bracket onΛ 1(DDD,1CCC)

[α ∧β ] = ([α ′,β ′′]− [α ′′,β ′])dz∧dz̄,

for α = α ′dz+α ′′dz̄, β = β ′dz+β ′′dz̄∈Λ 1(DDD,1CCC) = Λ (1,0)(DDD,1CCC)⊕Λ (0,1)(DDD,1CCC), 1CCC⊂ 1l(V).
ComposingF with the projectionπ of the principalK-bundle(G,π,N = G/K), one obtains

the mappingϕ which closes the diagram

DDD

G

N = G/K.

πF

ϕ
-¡
¡µ

?

We can characterize the harmonicity of the mapϕ (the quality of being minimizer of the
energy map (1.5.3); [22], [23], [42], [19]), in terms of the Maurer-Cartan formα associated to
its lift F , as follows

THEOREM. AssumeG/K carries a non-degenerate symmetric bilinear form invariant by
G. Then the following statements are equivalent:

a) The mapϕ associated withF is harmonic.
b) The formα satisfies the integrability and harmonicity equations:





dαkkk +
1
2
[αkkk∧αkkk] =−[α ′

ppp∧α ′′
ppp]

∂̄α ′
ppp +[αkkk∧α ′

ppp] = 0.
(1.3.3)

c) The forms αkkk ∈ Λ 1(DDD,kkk) and λ−1α ′
ppp + λα ′′

ppp ∈ Λ 1(DDD, ppp) ∩ (Λ (1,0)(DDD, pppCCC) ⊕
Λ (0,1)(DDD, pppCCC)) satisfy the equations(1.3.3), for all λ ∈ S1.
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d) The “loopified form”

αλ = λ−1α ′
ppp +αkkk +λα ′′

ppp ∈Λ 1(DDD,1) (1.3.4)

is integrable for allλ ∈ S1, i.e., it satisfies for everyλ ∈ S1 the integrability condition:

dαλ +
1
2
[αλ ∧αλ ] = 0. (1.3.5)

PROOF. b)⇔ c). Straightforward, replacing in (1.3.3)α ′
ppp with λ−1α ′

ppp andα ′′
ppp with λα ′′

ppp,
whereλ ∈ S1.

c)⇔ d) The relation (1.3.5) rewrites as

λ−1{∂̄α ′
ppp +[α ′

ppp∧αkkk]}+λ{∂α ′′
ppp +[α ′′

ppp∧αkkk]}

+{dαkkk +[α ′
ppp∧α ′′

ppp]+
1
2
[αkkk∧αkkk]}= 0, (1.3.6)

for all λ ∈ S1. Then the three braces vanish separately, provided the last equation of (1.3.3), its
conjugate and the first equation of (1.3.3) vanish, whence the whole system (1.3.3) vanishes.

On the other hand, insertingλ−1, λ and 1 respectively into the equations (1.3.3) and adding,
we obtain (1.3.6), whence (1.3.5).

a)⇔ b). Sinceσ is an involution, one obtains by a direct computation that its eigenspaces
satisfy the relations

[kkk,kkk]⊂ kkk, [kkk, ppp]⊂ ppp, [ppp, ppp]⊂ kkk. (1.3.7)

Then the integrability condition for a 1-formα,

dα +
1
2
[α ∧α] = 0 (1.3.8)

rewrites, using (1.3.7) and (1.3.1),




dαkkk +
1
2
{[αkkk∧αkkk]+ [αppp∧αppp]}= 0

dαppp +[αkkk∧αppp] = 0.
(1.3.9)

Thus, ifF andφ are as in the discussion preceding the theorem, thenα = F−1dF satisfies (1.3.8),
whence (1.3.9). Conversely, sinceDDD is simply connected and open, anyα satisfying (1.3.9), i.e.
satisfying (1.3.8), integrates to anF via α = F−1dF.

The harmonicity ofϕ = F modK is then equivalent toα satisfying the following equation
(1.3.10), which we prove independently in Proposition 1.4 below:

∂̄α ′
ppp +[αkkk∧α ′

ppp] = 0. (1.3.10)

Assuming this, it is easy to observe that the system (1.3.3) is equivalent to the system (1.3.8),
(1.3.10).

Indeed, using (1.3.2), the first equation in (1.3.9) becomes exactly the first one in (1.3.3).
Also, using∂α ′

ppp = ∂̄α ′′
ppp = 0, the second equation in (1.3.9) rewrites

(∂̄α ′
ppp +[αkkk∧α ′

ppp])+(∂α ′′
ppp +[αkkk∧α ′′

ppp]) = 0,



74 V. BALAN and J. DORFMEISTER

where the two parentheses are the complex conjugate of each other. Hence, this equation is just
a consequence of (1.3.10), which is exactly the second equation of (1.3.3). ¤

1.4.
The basic result, used in the proof of Theorem 1.3, which characterizes the harmonicity of

the mappingϕ is provided by the following

PROPOSITION. AssumeG/K carries a non-degenerate symmetric bilinear form invariant
by G. The mapϕ : DDD → G/K induced byF : DDD → G is harmonic if and only if the associated
Maurer-Cartan formα = F−1dF satisfies(1.3.10).

REMARK . This result is restricted to harmonic maps from 2-dimensional domains to gen-
eral symmetric spaces. We sketch its proof briefly throughout sections 1.4–1.7, following a
procedure similar to [12], [7].

SKETCH OF PROOF. We describe first the (right) Maurer-Cartan form of the homogeneous
spaceN = G/K and characterize its tangent bundle.

a) The tangent spaceTN is characterized by the property that there exist a canonical iso-
morphism ofK-bundles

ψ0 : G×K (1/kkk)→ T(G/K), (1.4.1)

given by

ψ0(1, ξ̂ ) =
d

dt

∣∣∣
t=0

[exp t (Ad 1 ξ )].1̂, (1.4.2)

where(1, ξ̂ ) ∈G×K 1/kkk, and1̂≡ 1 modK.
b) In the case when[kkk, ppp]⊂ ppp, which is always satisfied under our assumptions (1.3.7), we

have the isomorphism ofK-bundles

ψ1 : G×K (1/kkk)→ [ppp]≡G×K ppp,

given by ψ1(1, ξ̂ ) = (1,πppp(ξ )),

whereξ̂ ≡ ξ modkkk andπppp : 1→ ppp is the projection associated to the decomposition (1.1.1). We
consider the map

β0 = ψ1◦ψ−1
0 : TN→ [ppp], β0(X1̂) = (1,πppp(ξ )),

whereX1̂ ∈ T1̂N, and whereξ ∈ 1 is determined by the relation

X1̂ =
d

dt

∣∣∣
t=0

[exp t (Ad1 ξ )]. 1̂ ∈ T1̂N. (1.4.3)

Then it is easy to verify thatβ0 is an isomorphism ofK-bundles, closing the diagram

TN

G×K 1/kkk

[ppp] = G×K ppp
β0

ψ−1
0

ψ1

-

¡
¡µ@

@@R
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c) The bundle[ppp] = G×K ppp is a subbundle of[1]≡G×K 1, via [ppp]
i

↪→[1], which is induced

by the natural injection.
d) [1] can be canonically identified with the trivial bundleN×1, via the diffeomorphism

ψ2 : [1]→ N×1, ψ2(1,ξ ) = (1̂,Ad1 ξ ) for all (1,ξ ) ∈ [1].

e) As a consequence,TN can be identified with[ppp] ⊂ [1]
ψ2∼=N× 1, whence there exists the

canonical injective mapping

β̃ : TN→ N×1, β̃ = ψ2◦ i ◦β0,　　

β̃ (X1̂) = (1,Ad 1πppp(ξ )) for all X1̂ ∈ T1̂N,

whereξ is determined by the relation (1.4.3).
f ) The right Maurer-Cartan form of the homogeneous spaceN = G/K is the mapping [12,

p. 6]

β : TN→ 1, β = pr2◦ β̃ , β (X1̂) = Ad1 πpppξ for all X1̂ ∈ T1̂N

and represents a vector-valued 1-formβ ∈ Λ 1(N,1), which is equivariant with respect to the
action ofG on TN (the left translation) and the action ofG on1 (the adjoint action), i.e.,1∗β =
Ad1 ◦β for all 1 ∈ G. One can verify that its pullback toG satisfies(π∗β )1 = Ad1θ1, where
θ1 = πppp◦θ , with θ ∈Λ 1(G,1) being the (left) Maurer-Cartan 1-form ofG,

θ(ζ1) = 1−1
∗ (ζ1), for all ζ1 ∈ T1G.

1) The mapβ ′ = β ◦∂ϕ = ϕ∗β |T(1,0)D satisfies the relation

β ′ = AdF ◦α ′
ppp. (1.4.4)

1.5.
Note that the generalization of the notion of harmonicity of a mapϕ : DDD→ N to a pseudo-

Riemannian manifoldN can be chosen in several ways. At one hand one can consider the vari-
ational problem [4, (2.1.2)] under compactness conditions. One obtains [4, (2.1.7), (2.2.1)].
Assuming that the metric onN is induced from aG-invariant form, then the equation obtained
from the variational problem is equivalent to the conditionτ(ϕ) = 0, whereτ is the tension of
the mapϕ

τ(ϕ) = Trγ(5dϕ), (1.5.1)

where γ is the pseudo-metric ofN, and 5 is the connection on the bundle of forms
Λ 1(DDD,ϕ−1TN), induced from the (trivial) Levi-Civita connection of the Riemannian flat

manifoldDDD and the Levi-Civita connection
N5 of N.

As the manifoldDDD is of real dimension 2, the tensionτ(ϕ) is a multiple of the induced

covariant derivative(ϕ−1 N5)(∂/∂ z̄)ϕ∗(∂/∂z), and its vanishing represents the holomorphicity
condition for the sectionϕ∗(∂/∂z) of the induced bundle(ϕ−1TN, pr1, DDD), ([34], [12], [7]).
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Hence the harmonicity of the mapϕ can be rewritten in terms of
N5

N5ϕ∗(∂/∂ z̄)ϕ∗
(

∂
∂z

)
= 0, (1.5.2)

or briefly
N5 ′′∂ϕ = 0.

REMARK . In general, if
N5 is not the Levi-Civita, but an arbitrarily given affine connec-

tion, then (1.5.1) characterizesaffine harmonic maps([28, Definition 2.1, p. 407]) and (1.5.2)

characterizes
N5-harmonic maps. In our case, where the range of the harmonic map is a general

symmetric space with two-dimensional contractive domain, the two definitions mentioned just

above are equivalent. Moreover, for the Levi Civita connection
N5 , the two definitions (1.5.1)

and (1.5.2) both provide the classical harmonic mapsϕ : DDD→N, i.e. the extremals of the energy
functional

E(ϕ) =
∫

N∗
|dϕ|2dvol1, (1.5.3)

whereN∗ ⊂ N is a compact subdomain ofN. Moreover,τ(ϕ) = 0 is exactly the Euler-Lagrange

equation of the energy functionalE(ϕ). Since on general symmetric spaces
can5 = N5 (see 1.6-f

below), the
can5 -harmonic maps coincide with the (classical) harmonic maps, the minimizers of

(1.5.3) ([28, Proposition 2.3, p. 408]).

1.6.
On the general symmetric spaceN = G/K, the connection

N5 has a specific form, which
permits the reformulation of (1.5.2) in terms of the Maurer-Cartan formα associated toF .

The following steps lead to an explicit expression for
N5 :

a) The left translation onG provides by left shifts ofppp a horizontal distribution, which is
right K-invariant and hence provides a connection on theK-principal bundle(G,π,N = G/K),
which induces on the associated bundle(TN,π,N)≡ ([ppp], π̃,N) aG-invariant canonical connec-

tion
can5 of the general symmetric spaceN.
K. Nomizu ([36]) has shown that anyAd(K)-invariant bilinear formγ : mmm×mmm→mmm induces

via

γ(η ,ξ ) = (5ξ̄ η̄)ê, for all ξ ,η ∈mmm, (1.6.1)

where τ̄ = d/dt |t=0 (exp t [Ad1τ]).1̂, for all τ ∈ ppp, a linear connection5 on ([ppp],π,N) ∼=
(TN,π,N). In general, the torsion of such a connection is ([28, p. 405])

T(ξ ,η)≡5ξ η−5η ξ − [ξ ,η ] = γ(ξ ,η)− γ(η ,ξ )−πppp([ξ ,η ]). (1.6.2)

In particular, forγ ≡ 0 in (1.6.1) one obtains exactly
can5 ([28, Proposition 1.4, p. 404]), called

alsothe canonical affine connection of the second kind ofN. The torsion of
can5 is given by

c
T ê(ξ ,η) =−πppp([ξ ,η ]), for all ξ ,η ∈ [ppp]ê≡ ppp⊂ 1.
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Note thatT ≡ 0⇔ [ppp, ppp]⊂ kkk.
b) The connection associated via (1.6.1) to theAd(K)-invariant bilinear form

γ(ξ ,η) =
1
2

πppp([ξ ,η ]), for all ξ ,η ∈ ppp

is calledthe canonical affine connection of the first kind ofN. Using (1.6.2), it is easy to see that

this connection is torsionless. Moreover, by [12] it coincides with the connection
N5 .

c) If
can5 is torsion-free, it coincides with

N5 if and only if

γê(ξ ,πppp[η ,µ]) = γê(πppp[ξ ,η ],µ) for all ξ ,η ,µ ∈ [ppp]ê≡ ppp⊂ 1.

This relation is obviously fulfilled if[ppp, ppp]⊂ kkk.
d) The two connections

can5 and
N5 are described by the relations

β (can5XY)= Xβ (Y)− [β (X),β (Y)], (1.6.3)

β ( N5XY)= Xβ (Y)− [β (X),β (Y)]+
1
2

π̃([β (X),β (Y)]), (1.6.4)

for all X,Y ∈ Γ (TN), whereπ̃ is the projectionπ̃ : N×1→ N×kkk ppp.
e) The canonical connection

can5 coincides with the connection
d5 = π[ppp] ◦ ∼5 if and only if

[ppp, ppp]⊂ kkk, where
∼5 ≡ d is the trivial connection (≡ flat differentiation).

f ) As a consequence, in view of part c), if the relations (1.3.7) are satisfied, then
N5 ≡ d5 .

Hence, in this case, the Levi-Civita connection
N5 on N is given by the relationβ0 ◦ N5 = π[ppp]◦∼5 ◦β , which is expressed explicitly by the equation

β0(
N5X(Y)) = π[ppp](

∼5X(β (Y))) for all X,Y ∈ TN, (1.6.5)

whereπ[ppp] is the canonical projection along the fibers of[kkk] = G×K kkk, induced onN×1 via

π[ppp] : N×1→ [ppp], π[ppp](1,ξ ) = (1,ξppp) for all (1,ξ ) ∈ N×1, ξppp = πppp Ad1(ξ ).

1.7.
Combining the previous results with (1.3.7), we insertX = ∂/∂ z̄, andY = ∂/∂z into (1.6.5),

and obtain the harmonicity condition (1.5.2) rewritten in the form:

N5ϕ∗(∂/∂ z̄)ϕ∗
(

∂
∂z

)
= 0 ⇔ π[ppp]

(
∼5 (∂/∂ z̄)

(
βϕ∗

(
∂
∂z

)))
= 0.

Settingβ ′ = β ◦∂ϕ = βϕ∗(∂/∂z), this is equivalent with

π[ppp](∂̄ β ′) = 0.

Then, using (1.4.4), the condition above becomes succesively

π[ppp](∂̄AdFα ′
ppp) = 0 ⇔ π[ppp](∂̄ (Fα ′

pppF−1)) = 0⇔
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π[ppp](F ∂̄α ′
pppF−1 + ∂̄F ∧α ′

pppF−1−Fα ′
ppp∧F−1.F−1∂̄F.F−1) = 0⇔

π[ppp]{F(∂̄α ′
ppp +[F−1∂̄F ∧α ′

ppp])F
−1}= 0⇔

π[ppp] ◦AdF(∂̄α ′
ppp +[F−1∂̄F ∧α ′

ppp]) = 0⇔

πpppAdF−1AdF(∂̄α ′
ppp +[(α ′′

ppp +α ′′
kkk )∧α ′

ppp]) = 0⇔

∂̄α ′
ppp +[αkkk∧α ′

ppp] = 0. (1.7.1)

Thus we obtain exactly (1.3.10), whence the conclusion in Proposition 1.4.

REMARK . In (1.7.1) we used besides the splittings

αkkk = α ′
kkk +α ′′

kkk ∈Λ 1(DDD,kkk) = Λ (1,0)(DDD,kkk)⊕Λ (0,1)(DDD,kkk),

F−1∂̄F = α ′′
kkk +α ′′

ppp ∈Λ (0,1)(DDD,1) = Λ (0,1)(DDD,kkk)⊕Λ (0,1)(DDD, ppp),

also the relation[α ′
kkk ∧ α ′

ppp] = 0 and [α ′′
ppp ∧ α ′

ppp] ∈ Λ 2(DDD,Ker(πppp)), which is a consequence of
(1.3.7). The result above was obtained in [28, Proposition 3.1, p. 409] and leads to

N5 ′′∂ϕ = 0⇔ can5 ′′∂ϕ = 0⇔ 5̃′′∂ϕ = 0⇔ ∂̄α ′
ppp +[αkkk∧α ′

ppp] = 0.

2. Loop groups.

In the last chapter, we have seen that introducing a parameterλ ∈ S1 reduces the number of
equations to one and thus changes the discussion of harmonic maps to the investigation of PDE’s
with parameter. In this chapter we will first discuss loop groups and then apply the results to
harmonic maps.

2.1.
As before we consider a connected real Lie groupG. We assume thatG is faithfully repre-

sented by matrices inM (n,RRR). OnM (n,CCC) we consider the norm

|A|= max
j

(
n

∑
i=1
|Ai j |

)
. (2.1.1)

Then

|AB| ≤ |A| · |B| and|I |= 1. (2.1.2)

Next we consider the Wiener algebra

A =
{

f : S1 →CCC

∣∣∣∣ f = ∑
k∈ZZZ

fkλ k, ∑
k∈ZZZ

| fk|< ∞
}

. (2.1.3)

This is a Banach algebra and so is

M (n,A ) =
{

A : S1 →M (n,CCC)
∣∣∣∣ A = ∑

k∈ZZZ

Akλ k, ∑
k∈ZZZ

|Ak|< ∞
}

. (2.1.4)
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Similarly

Λ1CCC = {A : S1 → 1CCC ⊂M (n,CCC) | Ai j ∈A } (2.1.5)

is a Banach Lie algebra with closed subalgebras

Λ+1CCC =
{

A∈Λ1CCC

∣∣∣∣ A = ∑
k∈ZZZ

Akλ k, Ak = 0 if k < 0

}
(2.1.6)

Λ−1CCC =
{

A∈Λ1CCC

∣∣∣∣ A = ∑
k∈ZZZ

Akλ k, Ak = 0 if k > 0

}
. (2.1.7)

Clearly,

Λ+1CCC +Λ−1CCC = Λ1CCC (2.1.8)

Λ+1CCC∩Λ−1CCC = 1CCC. (2.1.9)

On the group level one can proceed similarly.
For this we note, that according to [30, Chapter VII], one can always define forG a “univer-

sal complexification”GCCC. In this paper, we will assume thatGCCC has a faithful linear representa-
tion, extending the faithful representation ofG.

Next, by a classical result for the Wiener algebra we have

A∈M (n,A ) is invertible⇔ detA 6= 0 or all λ ∈ S1. (2.1.10)

We can thus define

GL(n,A ) = {A∈M (n,A ) | detA 6= 0 for all λ ∈ S1}. (2.1.11)

Then we have

GL(n,A ) is a Banach Lie group with Lie algebraM (n,A ). (2.1.12)

Analogously to the Lie algebra level we set

ΛGCCC= {A∈GL(n,A ) | A(λ ) ∈GCCC for all λ ∈ S1}, (2.1.13)

Λ+GCCC=
{

A∈GL(n,CCC)
∣∣∣∣ A = ∑

k∈ZZZ

λkA
k, Ak = 0 if k < 0

}
(2.1.14)

Λ−GCCC=
{

A∈GL(n,CCC)
∣∣∣∣ A = ∑

k∈ZZZ

λkA
k, Ak = 0 if k > 0

}
. (2.1.15)

ThenΛGCCC is a Banach Lie subgroup ofGL(n,A ) with Lie algebraΛ1CCC. Similarly, Λ+GCCC and
Λ−GCCC are Banach Lie subgroups ofΛGCCC with Lie algebrasΛ+1CCC andΛ−1CCC respectively.

In view of (1.3.4), we can expect that our discussion will require restrictions with regard to
the distribution of powers ofλ in the coefficients of the matrices occurring in our investigation.
It seems that this restriction is exactly incorporated by using twisted algebras. For this we extend
the automorphismσ of G to ΛGCCC:

(σA)(λ ) = σ(A(−λ )). (2.1.16)
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Thenσ is an automorphism ofΛGCCC and we set

ΛGCCC
σ = {A∈ΛGCCC | σA = A}. (2.1.17)

ThenΛGCCC
σ is a Banach Lie group. On the Lie algebra level we obtain

Λ1CCC
σ = {A∈Λ1CCC | dσA = A}. (2.1.18)

Expanding hereA = ∑k∈ZZZAkλ k we see

A∈Λ1CCC
σ ⇔ dσA2k = A2k and dσA2k+1 =−A2k+1. (2.1.19)

Thus, settingkkk = {A ∈ 1;dσA = A} and ppp = {A ∈ 1;dσA = −A}, we see that for every
A∈Λ1CCC

σ we haveA2k ∈ kkk andA2k+1 ∈ ppp.
Analogously one defines the Banach Lie groupsΛ±GCCC

σ with associated Lie algebrasΛ±1CCC
σ .

NOTE. An extended framingF : DDD×S1→G is analytic inλ ∈CCC∗ and thereforeF(z, z̄, · )∈
ΛGCCC

σ . SinceF even takes values inG for all z,λ ∈ S1, it is natural to consider also the Banach
Lie group

ΛGσ = {A∈ΛGCCC
σ | A(λ ) ∈G for all λ ∈ S1}; (2.1.20)

the corresponding Lie algebra will be denoted byΛ1σ .
For our purposes two results are of importance

THEOREM (Birkhoff decomposition). EveryA∈ΛGCCC
σ can be written in the form

A = A−WA+,

whereA− ∈Λ−GCCC
σ , A+ ∈Λ+GCCC

σ andW is a homomorphism ofS1 into a maximal toral subgroup
of GCCC.

A proof of this result can be found in [3, Section 4.5]. The second important result is

THEOREM (Iwasawa decomposition,[3, Theorem 6.5, p. 604]). Every A ∈ ΛGCCC
σ can be

written in the form

A = L ·W ·B+,

whereL ∈ΛGσ andB+ ∈Λ+GCCC
σ andW is as in[3].

2.2. Factorization of generalized loop groups.
In many instances it turns out that the choice ofλ ∈ S1 is too narrow to facilitate discussion

of geometric objects sufficiently well. One therefore uses sometimes generalized loop groups
and the corresponding generalized Birkhoff and Iwasawa decompositions. The necessity for this
was already recognized in [21] and later generalized in [10]. We present here briefly the main
features of this generalization.

ForG andK as above we have the (classical, finite-dimensional) Iwasawa decompositions

KCCC = K ·B, GCCC = G· B̃,
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whereB is a Borel subgroup ofKCCC andB̃ is a Borel subgroup ofGCCC.
We fix ε ∈ (0,1) and set

Cε = {z∈CCC| |z|= ε} ⊂CCC∪{∞}= C̄CC,

Cε = Cε ∪C1/ε ,

E =
{

λ ∈ C̄CC| |λ | ∈
(

ε,
1
ε

)}
, I = C̄CC\Ē.

Then it is natural to consider the following loop groups and loop algebras (see, e.g., [10])





Λ εG = {1 : Cε →GCCC| 1(λ ) = 1(1/λ̄ ),λ ∈Cε}
Λ ε

EG = {1 ∈Λ εG| 1 extends holomorphically toE}
Λ ε

I ,B̃
G = {1 ∈Λ εG| 1 extends holomorphically toI and1(0) ∈ B̃}





Λ εGσ = {1 ∈Λ εG| σ1(λ ) = 1(−λ )}
Λ ε

EGσ = {1 ∈Λ εGσ | 1 extends holomorphically toE}
Λ ε

I ,B̃
Gσ = {1 ∈Λ εGσ | 1 extends holomorphically toI and1(0) ∈ B̃}





Lie(Λ εG) = Λ ε1= {ξ : Cε → 1CCC| ξ (λ ) = ξ (1/λ ), for all λ ∈Cε}
Lie(Λ εGσ ) = Λ ε1σ = {ξ ∈Λ ε1| σξ (λ ) = ξ (−λ )}
Lie(Λ ε

EGσ ) = Λ ε
E1σ = {ξ ∈Λ ε1σ | ξ extends holomorphically toE}

Lie(Λ ε
I ,B̃

Gσ ) = Λ ε
I ,B̃
1σ = {ξ ∈Λ ε1σ | ξ extends holomorphically toI andξ (0) ∈ b̃bb},

whereb̃bb = Lie(B̃). With these notations we have the Iwasawa loop group decomposition ([5],
[10]) Λ εG∼Λ ε

EG·Λ ε
I ,B̃

G and [28, Corollary 5.4, p. 415])

Λ εGσ ∼Λ ε
EGσ ·Λ ε

I ,B̃Gσ , (2.2.1)

where the intersection of the right factors is{e}. Moreover, one can show that in (2.2.1) one can
replace the right side, up to a real analytic diffeomorphism, by the product of the corresponding
groups. The symbol “∼” expresses the fact that the right side is not necessarily equal to the left
side, but does contain at least an open neighbourhood of the identity element. A characterization
of when the right side is open and dense would be of great interest.

2.3. Actions of loop groups.
From (2.2.1) we obtain the following group actions [5], [13], [21], [28]:
a) The groupΛ ε

I ,B̃
Gσ acts onΛ ε

EGσ via

1]h = (1 ·h)E,
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where1 ∈Λ ε
I ,B̃

Gσ andh∈Λ ε
EGσ and the right side is the first factor of1 ·h in its decomposition

(2.2.1). Note that this group action is not globally defined, since in (2.2.1) there is (in general)
no equality.

b) If F̃ is an extended framing then1 ∈Λ ε
I ,B̃

Gσ acts onF̃ via

(1]F̃)(p) = 1](F̃(p)), wherep∈ DDD. (2.3.1)

It is easy to see ([28, Proposition 6.1, p. 417]) that1]F̃ is again an extended framing. However,
due to the non-global nature of the group action used, the framing1]F̃ may have singularities at
pointsp, whereF̃ does not have any singularity.

c) The action (2.3.1) induces canonically an action ofΛ ε
I ,B̃

Gσ on Λ ε
EGσ /K ([28]). This

extends via (2.3.1) to an action ofΛ ε
I ,B̃

Gσ on allS1-families of harmonic maps.

3. Generalized Weierstrass representation of general harmonic maps.

3.1.
Following the procedure of [19] we want to construct a “holomorphic potential” and a “nor-

malized potential” (called originally “meromorphic potential” in [19]) for each harmonic map.
First we note that the proof of [19, Appendix] generalizes immediately to our setting and yields

THEOREM. LetF = F(z, z̄,λ ) be the extended frame of some harmonic map,z∈DDD, λ ∈S1.
Then there exists someV+ : DDD→Λ+GCCC

σ such that

C(z,λ ) = F(z, z̄,λ )V+(z, z̄,λ ) (3.1.1)

is holomorphic onDDD \T1, whereT1 is the discrete subset ofDDD, and the generalized Iwasawa
decomposition needs some middle term.

For the rest of this paper wenormalize the extended framesof harmonic maps so that they satisfy
F(z0, z̄0,λ ) = I at some fixed base pointz0 ∈ DDD.

DEFINITION. Any mapC as in (3.1.1) will be called aholomorphic extended frame. More-
over, the Maurer-Cartan form of any holomorphic extended frame

η = C−1dC (3.1.2)

will be called aholomorphic potentialfor the harmonic mapϕ (or for the extended frameF). As
usual one verifies

LEMMA . Every holomorphic potentialη is of the form

η = λ−1η−1 +λ 0η0 +λ 1η1 + . . . (3.1.3)

whereη j is a holomorphic(1,0)-form onDDD.

We note that the integrability condition is trivially satisfied for any holomorphic(1,0)-form on
DDD. Thus, we have

PROPOSITION. Assumeη is a holomorphic(1,0)-form onDDD with values inΛ1CCC
σ which is

of the form(3.1.3). Then the equation
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C−1dC= η , C(z0,λ ) = I (3.1.4)

is globally solvable onDDD. Moreover, decomposingC via Iwasawa splitting

C = FV+ ; F ∈ΛGσ , V+ ∈Λ+GCCC
σ , (3.1.5)

we obtain an extended frame of some harmonic mapϕ : DDD\S→G/K, where

S= {z∈ DDD |C(z, · ) 6∈ΛGσ ·Λ+GCCC
σ}.

REMARK . SinceC(z0,λ ) = I for all λ ∈ S1, we know thatDDD\S does contain an open
neighbourhood ofz0.

3.2.
As in [19] the results of Section 3.1 are used to construct normalized potentials. First we

note

LEMMA . We retain the notations and the assumptions of Theorem3.1. If C = C−C+ with
C− ∈ Λ−GCCC

σ , C+ ∈ Λ+GCCC
σ andC− = I + O(λ−1) on some open subsetU ⊂ DDD\S, thenC− is

holomorphic onU and

C−1
− dC− = λ−1ξ−1dz (3.2.1)

for some holomorphic mapξ−1 onU.

PROOF. By our assumptionsC is a holomorphic map fromU to the open setΛ−GCCC
σ ·

Λ+GCCC
σ . Since the splitting map

Λ−GCCC
σ ·Λ+GCCC

σ →Λ−GCCC
σ ×Λ+GCCC

σ

is also complex analytic, the mapsC− andC+ are holomorphic. ThereforeC−1
− dC− is a holo-

morphic1-form. The usual argument shows that it is of the formλ−1ξ−1dz. The main question
is for whichz∈ DDD\Sone can splitC = C−C+ analytically, and how the (additional) singular set
Ŝ looks like; letU = (DDD\S)\Ŝ. To address this issue we follow the argument of [19]. ¤

THEOREM. We retain the notations and the assumptions of Theorem3.1. Then for every
holomorphic extended frameC : DDD\S→ ΛGσ there is a holomorphic functionτDDD\S : DDD\S→CCC

suchC can be splitC = C−C+ analytically exactly on the open set on whichτDDD\S 6= 0. ThusŜ is
discrete inDDD\S.

Moreover, considered as functions onDDD\S, C− andC+ are meromorphic. In particular, the
normalized potentialξ = C−1

− dC− is a meromorphic differential(1,0)- form onDDD\S.

PROOF. Following the analogous argument of [19] we consider a representatioňπ of
ΛGL(n,A ) in the group of automorphisms of an infinite dimensional Grassmannian like mani-
fold Gr. Considering the dual determinant bundle and a holomorphic (highest weight) sectionτ
we setτM (z) = τ(H(z)p0), wherep0 denotes the canonical base point ofGr relative toτ. Then
H splits analytically exactly at all pointsz, whereτM (z) 6= 0. Pulling back the line bundledet∗

on Gr to M via M → Gr, z→ H(z)ṗ0, we obtain a holomorphic line bundleL∗ on M with
holomorphic sectionτL induced fromτM as defined above. SinceM is Stein,L∗ is trivial, and
τM can be considered as a complex valued function onM . ¤
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DEFINITION. The differential(1,0)-form

ξ = C−1
− dC− (3.2.2)

is calledthe normalized potentialfor the harmonic mapϕ (or theextended frame associated to
ϕ).

REMARK . We reiterate that every normalized potentialξ is of the formξ = λ−1ξ−1dz
whereξ−1 is meromorphic on some open subsetU = (DDD\S)\Ŝ.

3.3.
The main feature of the procedure developed in [19] is that every harmonic map can be

constructed from some holomorphic or normalized potential. We recall that the integrability
condition is trivially satisfied for the potentials under consideration.

THEOREM A. Let η = λ−1η−1 + λ 0η0 + λ 1η1 + . . . be a holomorphic(1,0)-form with
values inpCCC defined on a simply connected subsetL ⊂CCC. LetC be the solution onL to the
ODE dC= Cη , C(z0,λ ) = I for all λ ∈ S1. ThenC is the extended holomorphic frame of some
harmonic mapϕ : L \T →G/K. More precisely, splittingC = FV+ on some open subsetL \T,
we obtain the extended frameF of the harmonic mapϕ : L \T →G/K, given byϕ = F modK.

PROOF. It is easy to see that the Maurer-Cartan form ofF has the form (1.3.4). The rest
is straightforward. ¤

THEOREM B. Let ξ = λ−1ξ−1dz be a meromorphic(1,0)-form on L̂ ⊂ CCC and assume
that there exists a globally meromorphic solutionC to the ODEdC = Cξ , C(z0,λ ) = I for all
λ ∈ S1. ThenC is the extended holomorphic frame of some harmonic mapϕ : L̂\T̂ → G/K.
More precisely, splittingC = FV+ on some open subsetL̂\T̂, we obtain the extended frameF of
the harmonic mapϕ : L̂\T̂ →G/K, given byϕ = F modK.

PROOF. First we remove the points from̂L whereC has a pole. Then proceed as in the
proof of Theorem A. ¤

Finally, we would like to address the question to what extent the harmonic maps are uniquely
determined by the associated analytical potentials. To avoid lengthy technical assumptions we
state only a local result:

THEOREM C. Let ϕ : DDD→ G/K be harmonic and fix a base pointz0 ∈ DDD. Then the nor-
malized potentialξ associated withϕ is holomorphic in a neighborhood ofz0 and it is uniquely
determined byϕ. Moreover, given a normalized potentialξ which is holomorphic nearz0, then
Theorem B constructs a unique associated family of harmonic maps defined in some neighbor-
hood ofz0.

PROOF. Similar to [19]. ¤

REMARK . Theorem C above shows that harmonic maps and normalized potentials are
essentially in a 1-1 relation.
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4. Finite type harmonic maps.

4.1.
Among the harmonic maps investigated in the literature thoseof finite typeplay a particu-

larly prominent role. We follow here primarily the approach of [11], [10].
Ford ∈ 2NNN+1 we set

Λd =
{ d

∑
n=−d

ξnλ n ∈Λ1σ

∣∣∣∣ ξd 6= 0

}
. (4.1.1)

Note, if ξ ∈ Λd, thenξd−1 ∈ kkkCCC, sinced is odd. DecomposingkkkCCC in the formkkkCCC = nnn+ hhh+ n̄nn
with bbb = hhh+nnn being a Borel subalgebra, we can project anyτ ∈ kkkCCC ontobbb (see [11, (2.5)])

r(τ) = τnnn +
1
2

τhhh. (4.1.2)

Using this notation we obtain

THEOREM. For eachd∈ 2NNN+1 andξ∗ ∈Λd, there exists an open ballU of O∈RRR2 where

∂ξ
∂z

= [ξ ,λ−1ξd + r(ξd−1)], ξ (z0) = ξ∗ (4.1.3)

is integrable, forξ = ∑d
n=−d ξnλ n. Moreover, in this case, theΛ1σ -valued1-form given by

α = (λ−1ξd + r(ξd−1))dz+(λξ−d + r(ξd−1))dz̄ (4.1.4)

satisfies the Maurer-Cartan equations(1.3.8). In addition, the extended frameF defined by

F−1dF = α, F(z0,λ ) = I

onU induces the harmonic mapϕ = F modK onU.

PROOF. The proof can be taken almost verbatim from [11, Chapter 2, Theorem 2.5].
However, instead of the Killing form we take the non-degenerate invariant bilinear formκ which
we have assumed to exist. At this point we also need to restrict to open ballsU aroundO, since
the argument for the completeness given in [11] doesn’t apply in our case. ¤

DEFINITION. Harmonic maps obtained by this construction outlined in the last Theorem
will be calledof finite type.

We will see in the next section that harmonic maps of finite type have particularly simple holo-
morphic potentials.

4.2.
Consider the potential

η = λ d−1ξ∗dz, (4.2.1)

whereξ∗ ∈Λd.
Then the holomorphic extended frameC defined bydC= Cη , C(z0,λ ) = I , is of the form

C(z,λ ) = exp(zλ d−1ξ∗). (4.2.2)
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Consider the Iwasawa splitting (locally aroundz0)

C = F̂V̂+. (4.2.3)

For the purposes of this section we will use the freedom in choosing the coefficientV0 in V+ at
λ 0 and requireV0 ∈ B, whereKCCC = KB is the (classical) Iwasawa decomposition ofKCCC. At any
rate, by the general theorŷF defines an associate family of harmonic maps.

DEFINITION. Maps obtained from potentials of the form (4.2.1) are calledof Symes finite
type.

The main result of this section is

THEOREM. a) Every map of finite type is of Symes finite type.
b) Every map of Symes finite type is of finite type.

PROOF. a) Letφ : D→G/K be of finite type andξ∗ as in the last Theorem. LetF denote
the extended framing ofφ . On the other hand, by the arguments at the beginning of this section,
and starting fromη = λ d−1ξ∗dz, using (4.2.2) and (4.2.3) we obtain some frameF̂ . Then

ξ̂ = F̂−1ξ∗F̂ ∈Λd, (4.2.4)

which follows fromξ̂ = F̂−1ξ∗F̂ = V̂+ξ∗V̂−1
+ and the fact thatξ∗ is in Λd.

It is straightforward to verify

∂zξ̂ = [ξ̂ , F̂−1∂zF̂ ], ξ̂ (z0,λ ) = ξ∗. (4.2.5)

Next we use the fact that under our assumptions we have

η∗dz= λ d−1ξ∗dz= C−1dC= dCC−1. (4.2.6)

Inserting the unique decomposition (4.2.3) into the right side yields

η∗dz= dF̂F̂−1 + F̂dV̂+V̂−1
+ F̂−1, (4.2.7)

from which we derive

η̂dz= λ d−1ξ̂dz= F̂−1dF̂−dV̂+V̂−1
+ . (4.2.8)

Therefore, α = F̂−1dF̂ is the projection ofη̂dz along Λ+1σ
CCC. In particular, we obtain

λ−1η̂−1dz= α ′
p = λ−1ξ̂−d andη̂0dz= ξ̂−d+1dz= αk− (dV̂+V̂−1

+ )0, whenceαk = (ξ̂−d+1dz)k,
the projection ofξ̂−d+1dz onto kkk alongLieB. But it is straightforward to verify (see e.g. [20,
Section 2.3]) that

(ξ̂−d+1dz)k = r(ξ̂−d+1)dz+ r(ξ̂−d+1)dz. (4.2.9)

Hence

F̂−1dF̂ = (λ−1ξ̂−d + r(ξ̂−d+1))dz+(λ ξ̂d + r(ξ−d+1))dz̄ (4.2.10)

and we haveξ̂ (0) = ξ∗. The uniqueness of the solution with values inΛd to the differential
equation (4.1.3) now showsξ = ξ̂ andF−1dF = F̂−1dF̂ . ThusF = AF̂ with some matrixA
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independent ofz. Evaluating at the base pointz0 yieldsA= I . This shows that the harmonic map
(of Symes finite type) derived fromη = λ d−1ξ∗ coincides with the given associated harmonic
map of finite type derived in 4.1.

b) This was actually part of the argument in the proof of a). ¤

5. The Lie group case.

5.1.
As an application of the theory presented in the paper we would like to consider harmonic

maps into Lie groups, which were discussed in a somewhat different setting via loop groups in
[41], [4].

In the context of this paper we consider a real Lie groupG as a symmetric space

G∼ (G×G)/∆ , (5.1.1)

where

∆ = {(1,1) |1 ∈G}. (5.1.2)

The canonical projectionπ is given by

π : G×G→G, (1,h)→ 1−1h. (5.1.3)

Thus our approach requires to consider the loop group with values in(G×G)CCC = GCCC×GCCC.
Similar to [21] we set

H = G×G (5.1.4)

and

ΛH CCC = ΛGCCC×ΛGCCC. (5.1.5)

Analogously we set

ΛH = ΛG×ΛG. (5.1.6)

For our approach we also need some groupΛ+H CCC. It is natural to consider pairs(1(λ ),h(λ ))
of functionsλ ∈ S1, which have holomorphic extensions to the interior of the unit disk

Λ+H CCC = Λ+GCCC×Λ+GCCC, (5.1.7)

and analogously

Λ−H CCC = Λ−GCCC×Λ−GCCC. (5.1.8)

Finally, we mention that the involutionσ( f ,1) = (1, f ) of ΛH has the fixpoint group∆ and
thus defines the symmetric spaceG. Therefore, by our theory, we need to twistΛH CCC by σ and
obtain the twisted groupsΛH CCC

σ , Λ±H CCC
σ andΛHσ .

Note that for( f ,1) ∈ΛH CCC the twisting condition is

f (λ ) = 1(−λ ). (5.1.9)

While this makes the second component in our group basically superfluous, we will nevertheless
continue to useΛH CCC

σ , since we want to illustrate the general theory with this example.
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5.2.
The rest of this example follows closely [14, Section 9]. We consider a harmonic map

ϕ : DDD→G and lift it to an extended framing

F̃ : DDD→G×G, F̃ = (e,ϕ). (5.2.1)

For the Maurer-Cartan form we obtain

α̃ = F̃−1dF̃ = (0,ϕ−1dϕ). (5.2.2)

Abbreviatingα = ϕ−1dϕ we need to decomposẽα = (0,α) in the formα̃ = α̃kkk + α̃ppp, wherekkk,
ppp⊂ hhh = 1×1 are defined byσ :

kkk = Lie(∆) = {(A,A) | A∈ 1}, (5.2.3)

ppp = {(A,−A) | A∈ 1}. (5.2.4)

Hence

α̃kkk =
1
2
(α,α), α̃ppp =

1
2
(−α,α). (5.2.5)

Next we need to introduce the loop parameterλ . Decomposingα ′
ppp+α ′′

ppp = αppp into the(1,0)-part
α ′

ppp and the(0,1)-partα ′′
ppp we define

α̃λ = λ−1α̃ ′
ppp + α̃kkk +λα̃ ′′

ppp, (5.2.6)

which yields by a straightforward computation

α̃λ =
(

1
2
(1−λ−1)α ′

ppp +
1
2
(1−λ )α ′′

ppp ,
1
2
(1+λ−1)α ′

ppp +
1
2
(1+λ )α ′′

ppp

)
. (5.2.7)

At this point it is useful to recall ([4, Proposition 4.2])

THEOREM. A smooth mapϕ : DDD→G is harmonic if and only if the1-form

αλ =
1
2
(1+λ−1)α ′

ppp +
1
2
(1+λ )α ′′

ppp (5.2.8)

is integrable for allλ ∈ S1.

REMARK . 1. ForG = U(n) this is a classical result (see e.g. [41]).
2. The Theorem also holds, of course, if one replacesλ by−λ . Thus (5.2.8) is equivalent

with α̃λ = (α−λ ,αλ ) being integrable.

Sinceαλ is integrable, we can solve

F−1dF = αλ . (5.2.9)

For G = U(n) this is Uhlenbeck’s “extended framing”. In our setting, an extended framing
associated with̃αλ is given by

F (z, z̄,λ ) = (F(z, z̄,−λ ),F(z, z̄,λ )). (5.2.10)
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REMARK . Note that we usually normalize framings in a way, such that at some base point
z∗ ∈CCC we haveϕ(z∗) = I andF(z∗, z̄∗,λ ) = I , for all λ ∈ S1. Then alsoF(z∗, z̄∗,−λ ) = I , for all
λ ∈S1. But a glance at (5.2.7) shows thatF(z, z̄,−1) =const., whenceF(z, z̄,−1) = I . Sinceϕ(z)
andF(z, z̄,1) satisfy the same differential equation with same initial condition,ϕ(z) = F(z, z̄,1)
follows. Incidentally we have shown that the framingF is “based atλ =−1”, i.e., F(z, z̄,−1) = I .
Since our extended framingF is not based at anyλ ∈ S1, we do not use “based loop groups”,
opposite to [41] or [4].

As a consequence, in the discussion above, the associated familyϕλ of harmonic maps
containingϕ±1 is given by

ϕλ (z, z̄) = F (z, z̄,λ ) mod∆ = F(z, z̄,−λ )−1F(z, z̄,λ ). (5.2.11)

We would like to point out that Uhlenbeck’s extended framingF(z, z̄,λ ) yields a harmonic map
into G only for λ =±1, while our setting produces naturally anS1-family of harmonic maps into
G.

5.3.
In Section 3.1 we have introduced holomorphic potentials and normalized potentials. The

general theory states that the extended framingF ∈ ΛHσ can be multiplied by someV+ ∈
Λ+H CCC

σ such that

C (z,λ ) = F (z, z̄,λ )V+(z, z̄,λ ) (5.3.1)

is “holomorphic” inz. For the present discussion we thus obtain

C1(z,λ ) = F (z, z̄,λ )V+(z, z̄,λ ), (5.3.2)

whereC1 denotes the first component ofC . The second component is determined by (5.1.8).
Hence, all holomorphic potentials are of the form

η̃ = (η(z,λ )dz,η(z,−λ )dz), (5.3.3)

where

η = λ−1η−1 +λ 0η0 +λη1 + . . . (5.3.4)

where all the matrix functionsηk are holomorphic inz. Analogously, normalized potentials are
of the form

ξ̃ = (ξ ,−ξ ), (5.3.5)

ξ = λ−1ξ−1, ξ−1 meromorphic. (5.3.6)

5.4.
For the discussion of maps of finite type, we consider “Λd”, i.e., those elements in

Lie(ΛHσ ), which only involve finitely many powers ofλ . Then these elements need to be
shifted byλ d−1. In our setting we thus obtain

THEOREM. Harmonic mapsϕ : DDD → G of finite type are exactly those maps which are
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obtained from potentials of the type

η̃ = (λ d−1µ(λ )dz,(−λ )d−1µ(−λ )dz) = λ d−1(µ(λ ),µ(−λ ))dz, (5.4.1)

whereµ ∈Λd, i.e.,µ = ∑−d≤ j≤d µ jλ j , d odd,µd 6= 0.

5.5.
Finally, we would like to mention some explicit examples. Comparing [4, 4.2.1] to (5.2.8)

we see that our framingF is of the form (5.2.10), whereF is the framing considered in [4]. In
view of (5.3.3) and (5.3.5) it thus suffices to consider one component. Therefore the potentials
used in this section can be read off directly from the potentials used in [4]. In particular

1. For the nilpotent group

G =

{(
1 a
0 1

)∣∣∣∣∣ a∈ RRR

}
, (5.5.1)

one gets the potentialξ = (A(λ ),A(−λ )), whereA(λ ) = ((1−λ−1)/2)

(
0 a
0 0

)
dzanda is

a meromorphic function.
2. For the Heisenberg group of upper triangular unipotent matrices

G =








0 a b
0 0 c
0 0 0




∣∣∣∣∣∣∣
a,b,c∈ RRR





, (5.5.2)

the potential isξ = (A(λ ),A(−λ )), whereA(λ ) = ((1−λ−1)/2)




0 ∂za ∂zc−a∂zb
0 0 ∂zb
0 0 0


dz

anda,b,c : DDD→ RRRare meromorphic functions.
3. For the special linear Lie group

G = SL(2,RRR) =

{(
a b
c d

)∣∣∣∣∣ a,b,c,d ∈ RRR, ad−bc= 1

}
, (5.5.3)

the potential isξ̃ = ((1−λ−1)/2,(1+λ−1)/2)ξdz, for ξ given in [4, (5.3.8)].
In all three cases one obtains the normalized potential in the sense of Section 3.2 by gauging

away the coefficient atλ 0.

6. More examples.

6.1. CMC surfaces.
The immersions of constant mean curvature (CMC) surfaces can be characterized [38] by

the harmonicity of the Gauss mapϕ : DDD→ G/K = SO(3)/SO(2) ≡ SU(2)/SU(1). HereGCCC =
SL(2,CCC) andK = SU(1) is the subgroup of diagonal elements inG = SU(2). Thenormalized
potentialshave the form [15, (3.2.1); Theorem 3.13]

ξ = λ−1

(
0 f

E/ f 0

)
dz, (6.1.1)
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where f has only poles of even order ([15, Corollary 2.3]) and does not vanish identically. The
solution to1−1

− d1− = ξ can be decomposed in the form (Iwasawa splitting)

1−(z,λ ) = F(z,λ )1−1
+ (z,λ )

and we can assume thatF ∈ Λσ SU(2) and1+ ∈ Λ+
σ SL(2,CCC) are smooth inz. Then the Sym-

Bobenko formula ([15, (1.1.4)], [16, (2.2.11)]) provides the associated family of immersions,
which consists of CMC surfaces without branch points,ϕ : S1×DDD→ su(2)≡ so(3)≡ RRR3.

Theholomorphic potentialsof the form ([19, Section 4])

η = λ−1

(
0 f
1 0

)
dz, (6.1.2)

with f and1 holomorphic, provide CMC surfaces with umbilic points at the zeros of1 and branch
points at the zeros off . E.g., we have:

a) for f = 1,1= 0, the punctured sphereS2\{one point};
b) for f = 1,1= 1, the right circular cylinder;
c) for f = 1,1= czm (c∈CCC∗,m≥ 0), B. Smyth’s CMC surface with an umbilic of orderm

at the originz= 0 [17, Proposition 4.1]. This is nondegenerate only form= 0 and|c| 6= 1 ([17,
Proposition 4.4]).

d) for f = 1,1 = (z− z1) · . . . · (z− zn), B. Smyth’s CMC surface withn umbilic points at
zk, k = 1, . . . ,n.

Similarly, one can obtain surfaces with branch points; e.g, the potential

ξ = λ−1

(
0 z−z0

1 0

)
dz

yields a CMC surface with one branch point atz= z0.

6.2. Willmore surfaces.
The DPW method was applied for a description of the Willmore surfaces in terms of poten-

tials [26] by F. Helein. The Willmore surfacesSare the minimizers of the Willmore functional

W(S) =
∫

S
H2dσ =

1
4

∫

S
(k1−k2)2dσ +4π(1−1),

where the variation is made within the setS of surfacesS immersed inRRR3, which are oriented
and without boundary. Moreover,H denotes the mean curvature,k1 andk2 the principal curva-
tures,1 the genus anddσ the area element ofS∈S .

Willmore surfaces are characterized by the equation∆H +2H(H2−K) = 0. The only CMC
Willmore surfaces areS2 and the minimal surfaces.

In the DPW approach one associates to a conformal Willmore immersion a frame inRRR4,1

which encodes the tangent plane of the surface and the conformal Gauss map ([26], [1]). Outside
the umbilic set, this frameF : U ⊂ DDD→ G = SO(4,1) incorporates the conformal transform of
the surface. The immersion is Willmore if and only if the loopified Maurer-Cartan form (1.3.4) of
F is integrable; DPW works for (1) the noncompact subgroupK = SO(3,1)⊂ SO(4,1), and (2)
for K = SO(3)×SO(1,1). ThusS is Willmore if (1) the induced map̂F : U →G/K is harmonic,
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or respectively (2) ifF̂ is “roughly harmonic”, i.e. it provides a harmonic map by aK-right
gauge shift ofF̂ . The second case has the peculiarity thatα ′

ppp is not necessarily holomorphic;
still, this alternative is constructive and the meromorphic potentials can be explicitly described
[26, Section 4.2, Theorem 9, p. 38].

6.3. Minimal surfaces.
These, regarded as special cases of CMC surfaces, are characterized as well by the holo-

morphy of the Gauss map. The associated meromorphic potentials have the form [18, Thorem
3.1, p. 5]

ξ = λ−1

(
0 0
1 0

)
dz, (6.3.1)

a particular form of (6.1.2). Then the classical Weierstrass representation produces directly from
1 and the coefficients of the extended frameF obtained fromC = FV+ the minimal surface [18,
Section 4].

6.4. The tangent group case.
Given a connected real Lie groupG with an involutionσ , let K = (Fix σ)0 ⊂ G. We set

G̃= TG, K̃ = TK and consider the homogeneous spaceG̃/K̃ = TG/TK∼ T(G/K) [6]. We note
that forσ̃ = (σ ,σ∗,e), we haveK̃ = (Fix σ)0⊂ 1̃. ThenG̃= TG∼Gn1, where1= Lie(G). Let
kkk = Lie(K) and set̃kkk = {(A,a) | A,a∈ kkk} ∼ kkk× kkk. Let 1 = kkk⊕ ppp be the Cartan decomposition
relative toσ and p̃pp = {(A,a) | A,a∈ kkk} ∼ ppp× ppp. Then1̃= k̃kk⊕ p̃pp is the induced decomposition
on the tangent group level. Consider the group operation onG̃ given by

(1,X)◦ (h,Y) = (1h,X +Ad1Y), where(1,X),(h,Y) ∈Gn1∼ TG. (6.4.1)

Then the Lie bracket onTG∼ 1n1 reads

[(a,A),(b,B)]≡
[(

A a
0 0

)
,

(
B b
0 0

)]
=

(
[A,B] [A,b]− [B,a]

0 0

)
. (6.4.2)

For a harmonic functionϕ : DDD→ G̃/K̃, the corresponding liftF : DDD→ G̃ induces a normalized
potential of the formξ = λ−1ξ−1dz, with ξ−1 : DDD→ p̃ppCCC = pppCCCn pppCCC.

Conversely, let anyξ = λ−1ξ−1dz, with ξ−1 : DDD→ p̃ppCCC = pppCCCn pppCCC be given. We can assume
that for this potential the differential equationdC= Cξ has a meromorphic solutionC : DDD→ G̃CCC

whereξ is of the formξ = λ−1(ξ (1),ξ (2))dzandC = (1,X), whence

C−1dC= (1,X)−1d(1,X) = (1−1d1,(−Ad1X +Ad1−1X′)dz).

For the solutionC = (1,X) to this differential equation we perform an Iwasawa splitting

(1,X) = (1r ,Xr)◦ (1+,X+) ∈ΛG̃·Λ+G̃CCC,

which is equivalent to
{
1= 1r1+

X = Xr +Ad1r X+.
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Note that the first equation is the usual Iwasawa splitting equation for1 ∈ΛGCCC and yields1r and
1+. Rewriting the second equation we obtain

(Ad1r )
−1X = (Ad1r )

−1Xr +X+.

Since the first summand is real, we can findX+ andXr as follows: first, decompose(Ad1r )
−1X =

Yr +Y+; second, setX+ =Y+ andXr = X−Ad1r X+; then1r ,1+,Xr ,X+ are the components of the
Iwasawa splitting of(1,X). By the general theory (Proposition 3.1),(1r ,Xr)∈ΛG̃ is the extended
framing of some harmonic map. In particular, the Maurer-Cartan formαλ = λα ′̃

ppp+αk̃kk +λα ′′̃
ppp of

(1r ,Xr) is integrable. Moreover,ϕ = (1r ,Xr) mod ˜K is an associate framing of a harmonic map
from DDD to T(G/K).

EXAMPLE . For G = SU(2),σ = Ad σ3 we obtain (see [15]): K = SU(1) ={(
z 0
0 z−1

)∣∣∣∣∣z∈CCC∗
}

= (Fix σ)0. Then TG = SU(2)n su(2),TK = SU(1)n su(1) and

TG/TK = T(SU(2)/SU(1)) = TS2. Our costruction then produces the harmonic mapsϕ : DDD→
TS2 [2].
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