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Abstract. We describe a localization theory for Maslov classes associated with two La-
grangian subbundles in a real symplectic vector bundle and give a definition of the residue of the
Maslov classes. We also compute explicitly the residue of the first Maslov class in the case that
the non-transversal set of the two Lagrangian subbundles have codimension 1.

1. Introduction.

The Maslov classes is a fundamental invariant in the symplectic geometry. From the geo-
metrical point of view, an important fact is that the Maslov classes is an invariant for a pair of
Lagrangian subbundles in a symplectic vector bundle and is an obstruction to the transversality
of the pair. I. Vaisman formulated the Maslov classes as the secondary characteristic classes
determined from a pair of good connections and expressed it by differential forms. We call them
the Chern-Maslov classes. He also described the vanishing of the Chern-Maslov classes for a
pair of two transversal Lagrangian subbundles in the level of differential forms and defined the
residue of the Chern-Maslov classes at the non-transversal loci of the pair by working with the
theory of compactly supported differential forms. (sép.[

The main aim of this paper is to formulate the general residue formula which relates the
integration of the Chern-Maslov classes and the sum of its local residues. We also compute
the precise residues of the Maslov classes for some important cases. For doing this, we give
an analogous definition of the residue of the Chern-Maslov classes by applying the localization
theory of characteristic classes developed mainly by D. Lehmann and T. Suwa. To be a little
more precise, we describe the Maslov classes irCibeh-de Rham cohomology and describe
the residues as the dual classes of the localized Maslov classes under the Alexander duality.

In section 2, we recall th€ech-de Rham cohomology theory and its integration theory. We
give the description of the duality in the case of 1 cocycles precisely. In section 3, we recall the
theory of Maslov classes in the de Rham cohomology. We define the Chern-Maslov classes of
the Cech-de Rham cohomology in section 4. For doing this, we describe “the difference form”
of two Chern-Maslov forms, which come from two distinct complex structures. In section 5,
we describe the localization theory for the Chern-Maslov classes and give a formulation of the
residue of the classes in terms@&ch-de Rham cohomology theory. In section 6, we compute
precisely the residue of the Maslov class, which is the first Chern-Maslov class. We also give the
residue formula for the case where the non-transversal loci of a pair of Lagrangian subbundles
are possibly singular. We note that the possibility of having this kind of formula is mentioned
in [7]. In the final section, we give an application of our formula for some basic and important
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examples.

We would like to thank Professor T. Suwa for his useful advice and comments. We also
would like to express our gratitude to J. P. Brasselet, G. Ishikawa, T. Ohmoto and K. Ono for
stimulating discussions and helpful comments.

2. Preliminaries.

We list [4] as a general reference for this section. The integration theory oG elch-
de Rham cohomology is developed B],[[3]. For the Chern-Weil theory, we refer ta][ [4],
[9]. For computations of residues, we refer &. [

2.1. Cech-de Rham cohomology.

Let M be a smooth oriented manifold of dimension % = {Uy }qci @n open covering
of M, wherel is a countable ordered set, anﬁ(Uao...ap) the space of all complex valued
o- forms defined oWg,...q, = Uay M-+ NUq,. We setCP(7 ,AY) = MNao.... ap)el (P Aq(UO,O...o,p)
for 1(°) = {(ao,...,ap) € IP"ag < --- < ap}, then an element in CP(% ,A%) can be ex-
pressed by a sc{bao...ap}, whereog,..a, € Aq(Uao...ap). We define the€€ech-de Rham complex
(A*(%),D) by

@Ar = D (®p+a=rCP(% ,AY))
r
and the differentiaD : AP(% ) — AP*1(%) by
p )
(Do—)go..‘ap = Z)(—l)lo—ao...di...ap + (_1) pdoao...ap.
i=

We call the cohomology of this complex ttgech-de Rham cohomology and we denote the
r-th cohomology byH' (A*(%)). The restriction mag' (M) — C°(% ,A") C A’ (%) induces an
isomorphismHLz(M)SHT (A (%)).

We define the cup produet: A" (%) x AS(% ) — A S(% ) by

(0—1) ag- ap*ZO Uao ai A Tajeap;

foro e AN (%), 1 € A5(%). This map induceBl" (A* (%)) x H3(A* (%)) — H"TS(A*(%)).
If we assume tha¥l is compact, by choosing a “system of honey comb céRg’} adapted
to 7, we can define the integratigh: H™(A* (%)) — C by

. m
g = / aa 't .
'/M DZO ((Gowwzap)elp Rag--ap ’ p)

Let Sbe a compact subset M admitting a regular neighborhoadl. We use here one of
the properties of a regular neighborhood tBas deformation retract off). We take an open
coveringZ = {Up,U1} of M asUp = M\ S Uy = a regular neighborhood @& If we define
a subcompleXA® (% ,Up) of A*(% ) as the kernel of the projection ma#g (%) — A*(Up), we
haveH' (A*(% ,Up)) ~ H"(M,M\ SC). The bilinear map/ o —: AX(% ,Up) x A™¥(U,;) — C
induces the Alexander duality,
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H¥(M,M\ §,C) ~ H¥(A®(% ,Up))=H™ ¥(U1;C)" ~ Hy k(S C).

2.2. Duality for special case.

We compute the case thiat= 1 andS has singularities in the above duality. This results is
used in the section 6.

Let M be anm dimensional smooth manifold arfda compact subset iM. We sup-
pose that the manifoldM and S are stratified by the stratdg = M\ S 21,...,%q, which
satisfy dimg>j =m—iforg<m ie. M=3U%5U---UZy S= 31U ---UX;. We set
Uo = M\ S U; =“a sufficiently small tubular neighborhood &” (1 <i < ). We consider
an open coveringZ = {Up,Uq,--- ,Uq} of M and %’ = {Uy,--- ,Ug} of U = uﬁzlui, which
may be assumed to be a regular neighborhoo8 ofn elementu of AY(%) is expressed by
M= (Ho, M1, , Hg, Ho1, Ho2, "+ » Hg—1q,0, -+, 0).

The Alexander dualityH(A®*(%,Up))~Hm_1(U) is induced from the bilinear map:
AL (% ,Ug) x A™Y(%/") — C given by

q
! (IJ’ T) B /M “ = z <O<Go<z<ap<q/Rao'--ap (IJ N T)aomap>

p=0

for p = (0,p1, -, Hg, Ho1, Ho2, - , Hg—1g,0,-++,0) € AY%,Up) and T =(T1,T2,- -, Tg,
T12, 713, - 7T(q—1)qv T123,T124 -, T(q—2)(q—1)qa S T123..q) € Am_l(@//), where{Ra} isa system
of honey comb cells adapted %#3.

We assume that each submanif&lg,...q, for 0 < | < g intersect transversal with the each
stratumsj, i.e. dimr(2i NRy,..q;) = M—i—1. Since the bilinear map is well defined on cohomol-
ogy classes, we denote the induced bilinear map alda b\ (A*(% ,Up)) x H™ (A (%)) —

C. For two cocyclesu andt, we setlp = 3 o<go<...<ap<q jﬁao_”ap(u — T)ag--ap, then above
integration is described by(u, 1) = Zg:olp- We compute this integration inductively. Let
m:U; — 21 be a projection. Sinc&); and X; have the same homotopy type, we have
HM™1(Uj) ~ H™1(5). Thus we can writery = 1°&; + doy, T2 = day, ..., Tqg = day, where

& € A™1(5p) with dé; = 0,0 € A™2(U;). Sincep is 1-cocycle, we have-digya,a, = 0=
Haya, — Haga, + Hagay - After doing simple computations, we have

/ Hayg /\paoal

1<ap<a;<q” Ragay
- z / “C(()Gl A palaz + / IJCIO A TGQC{]_C{Z
R‘70‘71‘12 RaOalaZ

0<ap<a1<02<q

|o+|1+|2:/ Ill/\n*flJF/ Ho1 A TT" &1 +
Ry Ro1

1<apg<ai<o2<q
wherepg,q, = Way, — Way — Taga; - IN geNeral, we set
+1 0 %
pc{o.“gp = (71)p Z (71) (‘)Go~“dv“'ap + (71)prgo..,c{p.
v=0

Then we have

()P 1 (-1 &1gydyemay, I OO =1,

dPaear . =
Pacay:-as {o, if ag £ 1.



24 T. 1zAwA and K. NAKAJIMA

Since thgm— p) dimensional manifolR, 4, .., retracts to thém— p— 1) dimensional manifold
21NRuq,.a, by the projectiont, we have the following commutative diagram

T
R]_alu.ap — UlmUal...ap
| |
|
Z]_ n R]_gl...ap — Z]_ r]Ual..‘c(p7

wherel,Tare inclusions. Sincéélal...av...ap is (m— p)-form on Riay-ap, We havedi™pig,...ap =
0. Since the isomorphistA™ P~(Ryoq,...ap) ~ H™ P~1(Z4, N Ragay.-ap) holds, we can write
P1ay--ap = T §1ay-ap + dWig-ap, ONRigy-a, @NdPagay -ap, = dWagay--ap ON Ragay --ap, Where
&1ay--ap € AMP(Z1 N R1g,..ap) With dE1g,...qp, = 0 @aNd Wagay-ap € H™ P 2(Rugayarp)- Fi-
nally we obtain

/Muvr:/ IJl/\n*El‘f'/ Hoi A TT° &y

/ MAT 10— Y / Hor AT &1,
2<a1<q Riag 2<0p<q” Rota,

+- M1 A ﬁflz...q+(—1)Q+l/ Hoi A Tl)kflz...q.

Ri2..q Ri2..q

Now applying the projection formula (For more detail, séedp. 57-60]), we have
/uvr—/ (T8)«pl1 — (OT8)«Ho1) €1

/ ((Tay )« M1 — (OThay )« Mo1) €10y
2§o{1§q leﬂs

bt / (Mq) b1 — (OTH.q) s Ho1)E12.-g,
R]_zmqﬁs

whereri : R — R NS dm =1 : Ro — RoNSand (7)., (d1). are integrations along the
fiber. Here we note that functiofisr ). 1 — (070« Ho1, (Tay )« M1 — (O Thay )« Mot, -+ 5 (Th...q)« M1
—(070...q)« Moz are locally constant.

In the Alexander duality, the clagg] € HY(M,M\ S,C) corresponds t¢X] € Hy_1(SC),

such that
/ q
H—T= / Tao--a
M DZO 0§00<Z<apﬁq Rag--apX o
Ela1+"'+(*1)q_l/ é12..q,

Ri12..gNX

Y /
RiNX 2<ti<q Rlalﬁx

for any T € A™1(%') with DT = 0. We assume that the third stratum is an empty set, i.e.
5, =@. Ifwe let{Vi} be connected componentsXf, we haveHm_1(S,C) = @{_; Hm-1(V;;C).

We can write the cycléX] = ¥;ki[Vi] for k € C. Summarizing the above argument, we have
(T0) 1 — (010)+ Ho1 = ki onVi N Ry. Similarly we have(Ttiq, )« U1 — (0Thq, )« Ho1 = —ki onViN
Ria,, -+, and(mh...q)« H1 — (OTh...q)« Ho1 = (-1)% 1k onV;n Ri..q- These results imply that for
determining the coefficierk;, we only have to compute the corresponding integratim).. (i1
—(0m). o1 = ki locally at the generic poirp € Vi N Ry.
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3. Chern-Maslov classes in de Rham cohomology.

Let (E — M, w) be a symplectic vector bundle of real raPkwith symplectic formw and
L’,L” two Lagrangian subbundles. By taking a positive amdompatible complex structute
on E, E becomes a complex vector bundle of complex rankVe denote it by a paifE,J).
In the above, positive meangx,Jx) > 0 and w-compatible meana(Jx, Jy) = w(x,y) for any
x,y € E. We note that such a complex structure always exists, so we always take a complex
structure as positive and-compatible. Using the complex structulewe define a Riemannian
metricg on E by g(x,y) = w(x,Jy), wherex,y € E. Now we letE’ = {v—/—1Jv|v € E} be
the /—1-eigenspace of in E®@C. Then we can easily prove th&t is isomorphic taE,J) as a
complex vector bundle. So in the following, we do all computation'in

DEFINITION 1. LetL be a Lagrangian subbundle Bf We say that a connectid# on E’
is anL-orthogonal unitary connection, W is a natural extension of a metric connectionLon

An L-orthogonal unitary connection is locally expressed as follows. {egt--- ,en} be
a g-orthonormal frame of, then{ey,---,ey,Jde,- - ,J&} is ag-orthonormal frame oE. If
we setg = (g —+/—1Jq)/v2fori=1,---,n, the set{e1,---, &} is an unitary frame of’.
If we take a metric connectiol on L, the connection matri¥ of V associated to the frame
{e1,--- ,en} is skew-symmetric. LeV be a natural extension & to E’ which is defined by
Vs = (Vg —/—1JVe)/+/2. The connection matrix associated to the unitary frgme. - - , &}
becomes the same matiix

Since the connection matrix is skew-symmetric, we see that the Chern forms of odd de-
gree vanish, i.ec® (V) = 0. We letV' and V" beL’ andL”-orthogonal unitary connections
respectively. Since we hawac® 4V, V") = ¢ L(V") — ¢ L(V') = 0, the (4h — 3)-form
¢?-1(V', V") define a cohomology class. We citg pr [4, pp. 69-70] for the definition af?"~*
for two or three connections.

DEFINITION 2. The (4h— 3)-form ¢?"1(V', V") is called theh-th Chern-Maslov form
and the corresponding class

HN(EL L") = [V, V")) € HEE3(M.C)
is called theh-th Chern-Maslov class.

PropPoOsSITION3([7]). If the two Lagrangian subbundles are transversal,Ee= L' L"),
then by taking the complex structuteso thatL” = JL’, the Chern-Maslov form vanish.

PROOF. Let{ey, --,en} be ag-orthonormal frame ot’ and{fy,---, f,} ag-orthonor-
mal frame ofL”. If we choose a complex structudease — fi and fj — —g, the associated
unitary frames ofE’ are given bye/ = (fi —/~13f)/v2 and ¢/ = (g — v/—1Ja)/Vv2. We
denote byd’ the connection matrix df’-orthogonal unitary connection associated to the frames
{€1,---,&} and 8” the connection matrix oL”-orthogonal unitary connection associated to
the frames{e,---, &7}, i.e. Vg = Z; 16J’| g, Ve = 3, 8{(€l’. Since the transition matrix
frome’ = (g7, -- sn) tog’ = (sl, &) is rln, wherely is an identity matrix, the second
equation becomeg”’g = y'_; 6jfe]. Let ¥ be a linear combinatiot??’ + (1—t)V” of V' and
V", Since bothg’ and6” are skew-symmetric for the same framiethe connection matrig of
¥ for the frameg’ is also skew-symmetric. So we hao®1(V', V") = e (V) =0. O



26 T. 1zAwA and K. NAKAJIMA

Let ¥ and V' be twoL’-orthogonal unitary connections f&, and v’ and 7’ two L"-

orthogonal unitary connections f&'. After simple computations, we hae@"%(V', V/) =0
andc®1(v”, V") = 0. So now we have the following transgression formula.

ProrPosITION4. If all connections are defined above, then we have
2h 1(V V ) 2h 1(V/ V//) {CZh 1( V// 5/)_02h71(v/ 5/ V”)}.

This proposition implies that the Chern-Maslov classes does not depend on the choice of a
pair of L', L”-orthogonal unitary connections Bf.

4. Chern-Maslov classes in th€ech-de Rham cohomology.

As discussed in section 3, we compute the Chern-Maslov classes in terms of a fixed com-
plex structure. But the Chern-Maslov classes depends only on the pair of Lagrangian subbundles.
So if we take another complex structure and compute the Chern-Maslov classes, then those de-
termine the same cohomology classes, which means the difference of two forms are exact. In
this section, we establish a transgression formula for two Chern-Maslov forms in terms of two
distinct complex structures. For doing this we have to compare two palr§ Iof-orthogonal
unitary connections defined on two complex vector bundles. So we consider a deformation of
two complex structures and by using the integration along the deformation parameter we give a
direct expression of the “difference form” of two Chern-Maslov forms.

Here we give some remarks on basic facts about property of the complex structure.

PROPOSITION5([7]). Lety be a Riemannian metric o, then there is a positive and
w-compatible complex structudeon E canonically associated wit

PROOF. We construct a complex structure as follows.

Since® := w(x,e) € E* for x € E is linear functionals, we have an unique bundle map
a: E — E which satisfiego(x,y) = y(ax y) by using the Riesz representation theorem. Since the
bundle mag satisfies the conditiop(a®x, y) = y(x, a%y), a° is diagonalizable and all eigenvalues
are real. Since? also satisfies that(a®x,x) = —y(ax,ax) < 0, all eigenvalues are negative. We
denote the eigenvalues ef by —A2,---,—A2  We define a bundle map : E — E by the
diagonal matrix dia@\s,---,Azn) for same eigenspace af. Since the bundle mag? and p
have the same eigenspace, the bundle piapositive and self-adjoint. Now we define a bundle
mapJ:E — E by J=ap L. Since it satisfiemp ! = p~la, a? = —p?, the mapJ satisfies
J? = —id, w(Ix Jy) = w(x,y) andw(x,Ix) > 0. O

REMARK 6. Let Jp andJ; be two complex structures. We define two metggsandg,
by go(X,y) = w(x,Joy) andgy(X,y) = w(x,J1y). We also define a linear combination of metrics
by § = (1—t)go+tgy fort € [0,1]. Then the complex structucewhich obtains from the above
algorithm sat|sf|es]|t 0= J07J|t 1=J1.

REMARK 7. LetJp andJ; be two complex structures. We define two metggsandg,
by the same way in the above remark. We choose a bump fungtidi — R which satisfies
X|M\J =0andy|y = 1for some open séf C M and a relatively compact sub3étin U. If we
define a new metrig by g = (1— X)go+ Xg1, the complex structuré which obtains from the
above algorithm satisfiely, g = Jo, Jv = J1.
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Now we compute a transgression formula for pairs of connectionsJoLand J; be two
complex structures of, V;, (V) aL’ (L”)-orthogonal unitary connection a(e, Jp), and v}
(V7) a L’ (L")-orthogonal unitary connection of,J;) respectively. We make a homotopy
deformation of complex structurdg andJ; as follows.

First, we put Riemannian metrics ag(X,y) = w(x,Joy),g1(X,y) = w(x,J1y) and consider
the linear combination of metricg= (1—t)gy +tg,. Then it follows from the remark 6 that
we have the corresponding complex structilief E x | satisfyingJji—o = Jo,J|t—1 = J1. The
complex vector bundléE x | — M x |, w,J) is the trivial extension oE — M toM x |, we also
havel’ x | andL” x | as Lagrangian subbundles®Bfx |. We take arL’ x |,L” x |-orthogonal
unitary connection®’(7),D"(1). D'(0) is anL’-orthogonal unitary connection dft,J) and
D’(1) is anL’-orthogonal unitary connection affe,J;), but there is no guarantee that(0),
D'(1) coincides the original connecndﬂ) V), respectively. Thus we take linear combinations
Vo= (1-t)Vy+tD'(0) andV; = (1—s)V; + sD/(1). We make all of notation fot” in the
same manner. By applying the projection formulac®-1(D'(1),D"(T)), @~1(7;,Vp) and
th*l(Vl, 5’1/) (For more detail, seed| pp. 57—60]), we have the following three equations;

¢A1(D'(1),D"(1)) - @ }(D'(0),D"(0)) = md}(D'(1),D"(1)) +dm.c®L(D'(1),D" (1))
1(D'(0),D"(0)) — A Y(Vh, V§) = md 1 (Vy, Vo) +dm.c?1(Vg, Vg)
Y(D'(1),D"(2)) - (VY V) = md 4V, Vy) + dr e (Vy, V7).

Summarizing the above arguments, we obtain the transgression formula.

PrROPOSITION8. The transgression formula is given by,
(7Y, V1) — (W5, Vg) = dimoy,
in the above the transgression fomp; is described by
Moy = L. 1(D'(1),D"(1)) + .1 (V, V) — e 1(V, VY),

wherert: M x | — M and the first term ofg; is a fiber integration of the parameter the second
is that oft and the third is that o§.

We describe g4h — 3)-class inCech-de Rham cohomology corresponding to the Maslov
classpuM(E,L’,L") = [¢®Y(V', V)] € HA%3(M;C) in de Rham cohomology.

Let % = {Uo,U1} be an open covering &fl andJp, J; a pair of complex structure defined
on E|y,, E|u, respectively. We denote by the restriction of the global Chern-Maslov form to
Uo, U1, more precisely = (¢2"-1(7', "), 1(V',V"),0) € CO(% ,A*—3) c A*M-3(%).

In the following we will prove that the transgression form in the proposition can be regarded
as the difference form of Chern-Maslov clasiach-de Rham cohomology.

It is easily seen that the local defined complex structlires obtained by the restriction
of a global complex structure. For any pairldfL”-orthogonal unitary connectiorig,, Vi on
E|u, andL’,L”-orthogonal unitary connectiorig;, V7 on E|y,, the Chern-Maslov form can be
expressed by

0 = (A1 (Vp, V), (e, VY), moy) € AN 3(%),



28 T. 1zAwA and K. NAKAJIMA

which should satisfylmy; = ¢2"~1(V;, V) — ¢@~1(V}, V§) so that they define the same coho-
mology clasgo] = [v] € H¥~3(% ). The second condition is the coboundary condition, that is,
there is a4h— 4)-form 1 = (1o, 71, To1) € A*"*(% ) which satisfyDT = v — g, i.e.

(dTo,dTy, —dTo1+ T1 — To)
:(CZh—l(V/’V//)_CZh—l( b,Vg),Cthl(V/,V”)—Cthl( &7V/{)7_m()1>.

For the second condition, we I&t, V" be a pair o’ L"- orthogonal unitary connectlon on
E. We set a pair of global connectloﬁé V'asV' = (1—x)V +xV, V' = (1—x)V' +xV4,
wherexy : M — Ris a bump function which satisfiee = 1 on U;. These are agaih’,L"-
orthogonal unitary connections @&

OnUg, from the transgression formula, we have

/Sl =/ =l

To = ¢ (Dg(1), DG (1)) + e (V, Vo) — me? (7, V),

whereDy(T), Dg (1) is a pair ofL’ x I,L” x I-orthogonal unitary connection, and other connec-
tions are defined as follows;

Vo= (1-1)7p+tD'(0), Vo= (1-)Vg+tD"(0),
V =1-9V +sD(1), V'=1-9V +sD'(1).
OnUy, sinceV’ |y, = V4, 7’|y, = V7, we have

CZh 1(V/ V//) 2h l( VII) 2h l( /1’ Vlll) _ Cthl( VII) -0

On Uy, we settg; = 0, thenmy; = 10 — 11. From the above we can set = 0. Since
the connections and the complex structurelpn are the same one ddy, we can choose the
L' x 1,L” x I-orthogonal unitary connection i x I7J~)|U0X| as

Db(1) = (1= X o pr)D'(1) + X o prD' (1),

Do(1) = (1~ x o pr)D"(1) + X o prD"(1),
where pr: M x I — M is a natural projectionpe is a composite operator of mappings and
D/(1),D"(1) a pair of L’ x I,L” x |-orthogonal unitary connections g x 1,d)|upx1- Thus
we restrict the connections ty; X I, we haveD{(T)|ug,x1 = D'(T),Dg(T)|ug,x1t = D (1), Vp=

Vo, Vo =75,V lugsxt = v; and¥’ ‘U01><| vy.
From the above argument, we conclude the following.

THEOREMO. The Chern-Maslov clags?®'1(7, V") in HA3(M;C) corresponds to the
following Cech-de Rham cohomology class,

(P (Vp, V), ™4V, V), mop)] € H3(A%(2)).
The difference formmg; can be written by
Moy = L. 4(D'(1),D"(1)) + m.?"}(V, V) — .4V, V).

Let § be a Riemannian metric d& x | which satisfiesj(x,y) = w(x,Jy) for x,y € E x I.
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We also lef{€],...,€,} and{€/,...,€,} ag-orthonormal frame of’ x | andL” x | respectively.
We sete’ = {g],....&,} ande” = {g],..., !}, whereg/ = (€ —/—1J€)/v2 andg’ = (¢ —

V—=1Jd")/v/2for 1 <i < n. Let A(T) be a change of frame which satisfigs= £’A(1). Then
the first Chern-Maslov class in ti@@ech-de Rham cohomology is expressed as follows:

COROLLARY 10. The Chern-Maslov clags!(V’, V)] in H3z(M;C) corresponds to the
following Cech-de Rham cohomology class,

[(Cl(vé)a Vg)»cl(vél_a Vﬁ{),n’bl)] € Hl(A.(%))
The difference formy; can be written by

1 d(detA(T))
T om/—1" detA(T)

PrOOF. We seth = 1in theorem 9. Themp; is expressed by

Moy

mo1 = 7.cY(D'(1), D" (1)) + .} (V, V) — m.ct(Vy, V7).

The first term is a fiber integration of the paramatgthe second is that afand the third is that
of s. Sincec!(V,, V) does not have terms involvirdy, it will vanish. By a similar reason, we
also haver.cl(V;, V) =0.

We setD = (1—t)D’(1) +tD"(1), where0 < t < 1. The matrix representatich of D with
respect to the framg’ is

é == (1—t)9éu +t é///,

wheref),, 8/;, is the connection matrix d' (1), D" (1) with respect to the frame’ respectively.

We also denote the connection matrix@{ ) with respect to the frame’ by 6/,. Note thatg;,

and@?, are skew-symmetric. Then the difference form is given by;

c!(D'(1),D"(1)) = m.c'(D)

1 . . s
=T
anm race(d6+ 6 A B)

1
=_ Trace(dt A (-8, + 67,

1
= - Zn\/lel’ace(—Géu + eé,//)
= Zn\]/-lerace(A(T)fldA(-U _i_A(T)—leélA(T))
1 ddetA(T)

" 2my/—1 detA(T) O

5. Localization of Chern-Maslov classes and Residue formula.

LetM be a smooth oriented manifold of dimensimnand(E, w) a symplectic vector bundle
of real rank2n with a symplectic formw. Let Sbe a compact set which has a regular neighbor-
hood inM, andUp = M\ S U; =“regular neighborhood d&’ in M. Then the se? = {Up,U;1}
is an open covering d¥l.
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We assume that the two Lagrangian subbundles are transvetdgl ®hen we can localize
the Chern-Maslov classes by taking the complex struciyiomUg asL” = Jyl, that is;

[(07 CZhil(Vlla V/l/)vnbl)] € H4h73(A.(62/7U0))'

We decompose the s8to connected componen{§, }. By Alexander duality, the Chern-
Maslov class corresponds to the dual homology clag®iHm_(an—3)(Sa;C). So we give the
following definition.

DEFINITION 11.  We call this homology class iRy, (an-3)(Sa;C) the residue of Chern-
Maslov class ors,, and denote it bResph(Sa).

If we further assume thadl is compact, we have the residue formula.

THEOREM12. If M is compact, then we have

Z(IC{)*Re%h(Sj) = IJh — [M] in Hm7(4h73)(M;C)>

a

wherely : Sy — M is the inclusion.
PrROOF. This follows from the commutativity of the diagram;

[(0,c(VY, V1), moy)] € H*3(A®(% ,Ug)) —— Hk *(M;C) > "

>aRegin(Su) € g Hm-(an-3)(S:C) T Hm_(an-3)(M;C) 3 T4 (1a)Regn (Sa).
0

6. The residue formula for the Maslov classes.

6.1. Smooth case.

We letE — M be a symplectic vector bundle of real raZkover a smooth manifold of real
dimensiormwith a symplectic formw, andL’ andL” two Lagrangian subbundles.

We assume that the non-transversal$ef the two Lagrangian subbundles is smooth and
of codimensionl in M. We further assume that the dimension of the sum of two Lagrangian
subbundles for each fiber on the non-transversal st-is1, i.e.,

dimg(L'[x+L"x)=2n—1  xeS

We consider a neighborhoddl of x € S From assumption we can choose a symplectic frame
{e1,...,en, f1,...,fn} for EonU\ S where{e,...,e } is a frame forl’ and{fy,..., f,} for
L”. Since it holdse, # 0, there is an element € E which satisfiesw(e,,v) = 1. The set
{e1,...,en, f1,..., fn_1, v} becomes a symplectic frame BfonU. Then the two symplectic
frames satisfy the relatiofy, = v+ 1/¢e, for some functionp, which satisfiegh = 0 onS. We
setUp = U \ SandU; =a neighborhood 08 On Uy, since the two Lagrangian subbundles are
transversal, we can set the complex structlgrby g — f;, fi — —g for 1 <i <n. OnUy, we
set the complex structuk by g — fi, fi— —g for1<i<n—1ande,— v, vi— —e.

We letyp be a Riemannian metric dgy andy; onU;. We recall that the Euclidean scalar
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producty is defined byy(x,y) = w(x,Jy) for x,y € E, whereJ is a complex structure. Thus the
metric yo which associates to the franfey, ..., e, f1,..., fn_1, v} is expressed by the matrix

1

Infl O _1/¢

Yo=
0

n—

“1/p | M 19241

wherel,,_; denotes the identity matrix of ramk— 1. The description of above matrix means that
there are nonzero elements(@nn), (n,2n), (2n,n), (2n,2n), and diagonals. The metrjg which
associates to the fran{ey, ..., en, f1,..., fn_1, v} is expressed by; = I, wherely, denotes an
identity matrix of rank2n. We define a linear combination of two metrics Py (1—t)yo +tyi.
Since the endomorphisen: E — E was defined by(av,w) = w(v,w) for v,w € E, we have the
diagonal matrix

a? =diag—1,...,-1,-1/B8,-1,...,—1,—-1/B)
—— S———

n—1times n—1times

wheref = 1+t(1-t)/¢2. If we setp=diag(1,...,1,1/\/B,1,...,1,1/1/B), this matrix is a
positive definite. We also define an endomorphikniE — E by p~a. Then we have
'In—l 5
(1-t)/(V/B¢) -(1+(1-1)/¢%)/VB
0
1/vVB ~(1-1)/(\/B¢)

this is a positive and)-compatible complex structure. We k& Riemannian metric associate to
the complex structuré@, we have

)
Il

Infl

In 0
' 1/\/B ~(1-1)/(v/B9)

In
—A-0/(VBS) | T (1+(1-1)/9?) /B

g="py=

Using this metric, the framéey,... e} for L’ x | normalizes to{ey,...,e, 1,v/Dey} and the
frame{fy,..., fa} for L” x 1 to {fy,..., fn_1,4/D/(1+1t/9?)fn}, whereD = \/B. We define

unitary framese’ = {¢1,...,&,} ande” = {¢f,..., &/} for E x| by

Si/ = (Q —\/jlje) /\/é, Ei// = (fi —\/jljfi) /\ﬁ

forl<i<n-1l1land

=2 (VL) el = e (V1.

If we define an unitary matri by ¢” = €’A, we have
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o t/¢ +v—1D
A_dlag(ﬁ,---,ﬁ, tM’—\/le)

n—1times

If we let Anp be a(n, n)-element of the matriX, from the corollary 10, the difference formp;
of the first Chern-Maslov clags® = (0, my, my,) is given by,

1 md(detA)

C2m/—1  detA

1 19Am , 4
2m/—1Jo ot Ann

o . [k+1/2 . (k=1/2 k—1/2
T (Ta” k12T <k+ 1/2) \ k+1/2 )
wherek=\/¢2+1/4,0=¢/|¢|.

Next for computing the forrmy of the classu® = (0,my, mp1), we normalize the frames
{e1,...,en} for L' x I and{fq,..., fy} for L” x | by the metricy;. Since it satisfyy(fy, fn) =
1+1/¢2 we have the frameges,...,en} and {f1,..., f,_1,/1+1/¢2f,}. We also have
the pair of unitary frames’ = {¢;,....€\} and &’ = {¢f,...,&[} for (E,J1), whereg =

(6 —v—-1he) /V2 & = (fi—v—1Lf)) /V2for1<i<n—1landg, = (en— vV-1hi&n) /V2,
g = (fo—v—=1htn) /v/2(1+1/¢2). If we define an unitary matriB by ” = ¢'B, we have

B:diag(ﬁ7--~,ﬁ, M)

Mo1

1/¢-v-1

n—1times
Then we have the form

1 d(detB) 1 d¢

M= on/—1 detB  2m¢2+1

Now we denote by{S,} the connected components of the non-transversal 18ctiBhe
residue of the Chern-Maslov clags'] is corresponding to the cycl, kq[Sy] under the Alexan-
der dualityH'(M,M\ S) ~ @, Hm 1(Sy). Sinceky’s are complex numbers, it is enough to
compute at a poinp € §;. Since the dimension of the normal direction at the ppirg 1, this
is the same situation with the later case (Figliseand we have the same forf, m;, mp1), only
swappingf for 1/¢ in the case of'. We consider a small neighborhoog of pin M. Then the
open setp \ (UpNSy) have two connected components. Using the result of theycasé' in
the later section, we havg = 0 if the sign of¢ is the same on the both connected components
andk, = +1/2if it is not, where the sign depends on the orientatiosqf

6.2. Singular case.

All notations are the same as in the smooth case. Here we suppose that the mdnifold
and the non-transversal sBtare stratified by the stratdy = M\ S 21,..., %, which satisfy
dmgXj=m—iforg<m i.e. M =3UZ1U---UZg S=31U---UZy. We assume that the
third stratum is an empty set, i.&, = @. If we let {Vi} be a connected component 5f. we
haveH(M,M\ SC) ~ Hy_1(S,C) = @; Hm-1(Vi;C). We can write the cycléX] = 5, k V] for
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- /T

Sl

Up

Su={¢=0} $(=1/f)=0
Figure 1. Comparing with the case 8¥.

ki € C. It follows from the preliminaries 2.2 that for determining the constant coefficigq}s
we only have to compute it at any generic pgirg Vi, which means that we have the following
theorem.

THEOREM13. On the isomorphism
r
HY(M,M\ SC) ~ P Hm-1(V;;C),
i=1

the first Chern-Maslov clasg?] in HY(M,M\ SC) is corresponding to the cycl§; ki [Vi] in
@®_; Hm_1(Vi;C), wherek;’s are equal to0 or +1/2, the sign depends on the orientatiorvpf

7. Application.

7.1. Case offR?|g — S.

Let (TR?|g,w) be a symplectic vector bundle ov&t ¢ R? with symplectic formw =
dxA dy, where(x,y) is a global coordinate d®?. We set.’ = d/dx|s andL” = TS!. Then both
of them are two Lagrangian subbundles®n It is obvious that those Lagrangian subbundles
are not transversal only at north and south poleStofWe denote the north pole by, south
pole byq, and letS= {p,q}. Using the angular paramet@rof S', these points are expressed
by 6 = 11/2 and3m/2. If we setUp = St\ SandU; =a neighborhood 08, % = {Up,U;} is an
open covering o', We choose a framey = d/dx,e; = d/dy for TR2|31. Since the rank of
symplectic vector bundle i8, we only compute the first Chern-Maslov cldé8, m;,mp1)] and
its residue.

On Uy, we choose a frame, for L', and1/fey+ e for L”, wheref = —cot6. We define
a complex structurdy by eg — 1/fep+ €1 and1/feyp+ € — —ro. The Riemannian metrig,
with respect to the framéep, e;) becomes

1 —1f
~1/f 141/f2)°
OnU;, we choose a frame, for L', and(ep + fey)/+/1+ f2 for L”. We define a complex

structureJ; by e — e; ande; — —ep. The Riemannian metrig; with respect to the frame
(ep, e1) is the identity matrix. The linear combinatign= (1 —t)gy +tg, is expressed by

1 —(1-t)/f
—(1-t)/f 1+(1-t)/f2)"
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Since the symplectic forrw for the frame(ep, ;) is

(%)

the matrix representation of the complex structiicf TR?|g x | is given by

1 (fE 1-¢
JE\1 —f& )

where& = 1+t(1—t)/f2, and the Riemannian metrcof TR?|q x | is also given by

11 te
\/E —f& 1+&)°
By normalizingey andey + fe; by §, we have the orthonormal frangg = v/Dey andé; =
V/D/(f24t)(ep+ fey) for L' x | andL” x | respectively, wher® = /€. We set unitary frames

by &’ = (& — v/—1J&)/v/2ande” = (& — /—1J€1) /+/2. Atransition functionA which satisfies
g" = €’Ais given by

_t+V=-1oy/f24+t(1-t)

V24t ’

whereo = f/|f| is the sign off. This transition function satisfies the unitary conditish = 1,
thusA € U(1). From the corollary 10, we have

M= — L g 9A_ g/l 2%+t
YTom/m1 A Ao (f21t)/TRrt(l-t)

o 4 [k+1/2 4 (k=1/2 [k—-1/2
=—— [T ~T
2n<a” V=12 2" \k¥12\k+12) )
wherek = /f2+1/4. This in fact has the form,

6/2m, if 0<0<m/2,
Mo1 =

A

-1/2+6/2m, if m/2<6<3m/2,
—-1+6/2m, if 3m/2<6<2m

Next we computem. Sinceey and & := (e + fer)/v/1+ f2 is normalized frame for
L’ andL” respectively, the unitary frames of symplectic vector bundle is giveriby (e
—V—1hey)/V2 and e} = (& —/—141&)/v/2. A transition functionB, which is satisfying
¢" = ¢'B, is given by(1++/—1f)//1+ f2. Thel-form my is expressed as follows,

1 df 1

m=—— = __
YT onter1 2n

The residue of the first Chern-Maslov class has the following form,
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Res,1(p) + Res,1(q) = kp[p] + kq[q],

wherekp, kg are constant. If we take a system of honey comb détis R, } adapted to7z, then
R, consists of two connected components. One of them is a closed neighborhpa@ohdfthe
other is an also closed neighborhoodjofVe denote byR,, andR, those connected components
of Ry. We compute the residuRes,1 (p) by integrating the Chern-Maslov class Bp and we
have

1
Re :/ my — = .
$.4(P) r ™ Jor, 17 2

We also havedRes 1 (q) = 1/2. Finally we see that the residue of the first Chern-Maslov class is
given by:

Res,(p) +Rega(q) = %[p] +5ld.

The Maslov index is defined by integrating the Maslov class on a closed ctrpe J40]. In

the same way we can define the Chern-Maslov index by integrating the Chern-Maslov class on
a closed curve. In this case the Chern-Maslov index can be obtained by adding the local index
1/2, thus we have the indek Since the Maslov class and the first Chern-Maslov clagg

have the relatiom = 2u* ([7, p. 140)), it is proved the Chern-Maslov ind&xs meaningful.

7.2. Caseofy=x".

Let us recall that the residue of the localized Chern-Maslov classes consists only of the local
data of connections around the non-transversal set. So even if the ambient space is not compact,
we can define the “local” index for the compact non-transversal set. In fact in the previous case,
we computed the residue in the neighborhoog @ihdqg. Following examples are the simplest
case wherdl is not compact.

LetM = {(x,y) € R? | y=x"} be a curve irR? and(TR?|y, w) a symplectic vector bundle
over M with symplectic formw = dxA dy. We also lel.’ = d/dx|y andL” = TM. These line
bundles are Lagrangian subbundles®8|y. If we parametrize the curvd by (x,y) = (t,t"),
the line bundle.” is spanned fiberwise by

a 0 n1 0
%t oax +nt a/

The casa=even. If we se@ = Tan(—1/(nt""1)), it satisfynt"~* = —1/tand. Thus we

have the same result as the cas&'i.e.

Res,1(0) = 1/2[0].

The casen=o0dd. We seff (t) = nt"~1. We compute the first Chern-Maslov forat simi-
larly as the case &', then we have

1

1_ —
“ - (Oa ml7nb1) - (07 27_[

1
dTan 'f,—— (Tan 26 ' — Tan &3
an ,2n(anf an &%) |,

where& = \/(k—1/2)/(k+1/2) andk = \/f2+1/4. If we set$ = Tan 1&~1 — Tan 1€3,
we havetang = 1/|f| = 1/f. Since|¢| < 11/2, we havep = Tan*(1/f) = /2 — Tan 1f.
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We use the conventiofian () = 711/2, Tan 1(—w) = —71/2 in above computations. If we
setUp = M\ {0} andU; =a neighborhood 00, % = {Up,U1} is an open covering dfl. We
let {Ro,R1} be a system of honey comb cells adapted4o We have the residue of the first
Chern-Maslov clasg! by

' 1 v 1 n
1 —1 —1
— m — = Tan f+—/ — —Tan ~f ) =0.
./M H /Rl ! ARy o1 21T JoR, 21 JoRr, (2 )
We conclude the residue of the first Chern-Maslov class is given by

1/2[0], if niseven

Re3 (0 =100, i nisodd
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