# Relations between principal functions of $\boldsymbol{p}$-hyponormal operators 

Dedicated to Professor Sin-Ei Takahasi on his sixtieth birthday

By Muneo Chō and Tadasi Huruya

(Received May 10, 2004)
(Revised Aug. 10, 2004)


#### Abstract

Let $T=U|T|$ be a bounded linear operator with the associated polar decomposition on a separable infinite dimensional Hilbert space. For $0<t<1$, let $T_{t}=|T|^{t} U|T|^{1-t}$ and $g_{T}$ and $g_{T_{t}}$ be the principal functions of $T$ and $T_{t}$, respectively. We show that, if $T$ is an invertible semi-hyponormal operator with trace class commutator $[|T|, U]$, then $g_{T}=g_{T_{t}}$ almost everywhere on $\boldsymbol{C}$. As a biproduct we reprove Berger's theorem and index properties of invertible $p$-hyponormal operators.


## 1. Introduction.

An operator below means a bounded linear operator on a separable infinite dimensional Hilbert space $\mathscr{H}$ and $\mathscr{C}_{1}$ stands for the trace class operators on $\mathscr{H}$. The commutator of two operators $A, B$ is denoted by $[A, B]=A B-B A$. In the analysis of an operator $T$ with self-commutator $\left[T^{*}, T\right] \in \mathscr{C}_{1}$, the principal function $g$ of $T$ is one of the most important tools. It is known that the principal function $g$ gives much information about the structure of $T$ (see, for example, [5], [9], [11], [14], [17]). The construction of $g$ depends on the Cartesian decomposition $T=X+i Y$. There exists another approach to the principal function $g_{T}$ related to the polar decomposition $T=U|T|$ (see, for example, [5], [8], [15], [17]). In the theory of operator inequalities, the generalized Aluthge transformations $T_{t}=|T|^{t} U|T|^{1-t}(0<t<1)$ are proved to be very useful. It is a natural problem to consider relations between the functions $g, g_{T}$ and $g_{T_{t}}$. In this article we discuss this problem.

An operator $T$ is called $p$-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ (see [1]). If $p=1$ and $1 / 2$, then $T$ is called hyponormal and semi-hyponormal, respectively. An invertible operator $T$ is said to be $\log$-hyponormal if $\log T^{*} T \geq \log T T^{*}$ (see [2], [16]). If $T$ is hyponormal, then the principal function $g(x, y)$ is obtained from the Cartesian decomposition $T=X+i Y$ (see, for example, [17]). If $T$ is semi-hyponormal, then the principal function $g_{T}\left(e^{i \theta}, r\right)$ is obtained from the polar decomposition $T=U|T|$ (see, for example, [17]). By Löwner-Heinz inequality, if $0<q \leq p \leq 1$ and $T$ is $p$-hyponormal, then $T$ is $q$-hyponormal. We often use the following result: For $0<p \leq 1 / 2$ and $0<t<1$, if $T=U|T|$ is $p$-hyponormal, then $T_{t}=|T|^{t} U|T|^{1-t}$ is $q$-hyponormal, where $q=p+\min \{t, 1-t\}([\mathbf{1 0}, \S 3.4 .1$, Theorem 2]).

Following [17], we introduced the principal functions for $p$-hyponormal operators and loghyponormal operators ([6]). In this paper, we show that, if $T$ is an invertible semi-hyponormal operator with trace class commutator $[|T|, U] \in \mathscr{C}_{1}$, then $g_{T}=g_{T_{t}}$ almost everywhere on $\boldsymbol{C}$. Moreover, we show that, if $T=U|T|$ is hyponormal with unitary $U$, then $g=g_{T}$ almost everywhere

[^0]on $\boldsymbol{C}$. As applications of this result, we extend Berger's theorem in the case of $p$-hyponormal operators. Throughout this paper, $t$ will satisfy $0<t<1$.

## 2. Relations with principal functions associated with polar decompositions.

We denote by $\mathscr{A}$ the linear space of all Laurent polynomials $\mathscr{P}(r, z)$ with polynomial coefficients such that $\mathscr{P}(r, z)=\sum_{k=-N}^{N} p_{k}(r) z^{k}$, where $N$ is a non-negative integer and $p_{k}(r)$ is a polynomial. For $T=U|T|$ with unitary operator $U$, put $\mathscr{P}(|T|, U)=\sum_{k=-N}^{N} p_{k}(|T|) U^{k}$. We denote by $J(\phi, \psi)$ the Jacobian of functions $\phi(r, z), \psi(r, z)$ defined on $\boldsymbol{R} \times \boldsymbol{C}$, that is,

$$
J(\phi, \psi)\left(r, e^{i \theta}\right)=\phi_{r}\left(r, e^{i \theta}\right) \cdot \psi_{z}\left(r, e^{i \theta}\right)-\phi_{z}\left(r, e^{i \theta}\right) \cdot \psi_{r}\left(r, e^{i \theta}\right)
$$

Theorem A ([17, Chapter 7, Theorem 3.3], [8, Theorem 9]). Let an operator $T=U|T|$ be semi-hyponormal with unitary $U$. Assume $[|T|, U] \in \mathscr{C}_{1}$. Then there exists a summable function $g_{T}$ such that, for $\mathscr{P}(r, z), \mathscr{Q}(r, z) \in \mathscr{A}$,

$$
\operatorname{Tr}([\mathscr{P}(|T|, U), \mathscr{Q}(|T|, U)])=\frac{1}{2 \pi} \iint J(\mathscr{P}, \mathscr{Q})\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta
$$

Definition 1. The function $g_{T}$ in Theorem A is called the principal function of $T$. Let $T=U|T|$ be a $p$-hyponormal operator with unitary $U$ such that $\left[|T|^{2 p}, U\right] \in \mathscr{C}_{1}$. Put $S=U|T|^{2 p}$. Then $S$ is semi-hyponormal. By Theorem A, there exists the principal function $g_{S}$ of $S$ and we define the principal function $g_{T}$ of $T$ by

$$
g_{T}\left(e^{i \theta}, r\right)=g_{S}\left(e^{i \theta}, r^{1 /(2 p)}\right)
$$

(see [8, Definition 3]).
We begin with a well-known important property of commutators (see, for example, [17, Chapter 7, 1.2 and 3.1]).

Lemma 1. If operators $A, B, C$ satisfy $[A, C],[B, C] \in \mathscr{C}_{1}$, then we have $[A B, C] \in \mathscr{C}_{1}$.
Let $\|A\|_{1}=\operatorname{Tr}(|A|)$ for $A \in \mathscr{C}_{1}$, that is, $\|A\|_{1}$ is the trace norm of $A$.
THEOREM 2. If a positive invertible operator $A$ and an operator $D$ satisfy $[A, D] \in \mathscr{C}_{1}$, then, for any real number $\alpha$, we have

$$
\left[A^{\alpha}, D\right] \in \mathscr{C}_{1}
$$

Proof. We use the following expansion known as the binomial series: For $z(|z|<1)$,

$$
(1+z)^{\alpha}=\sum_{m=0}^{\infty}\binom{\alpha}{m} z^{m}
$$

where $\binom{\alpha}{m}=(\alpha(\alpha-1) \cdots(\alpha-m+1)) /(m!)$.

Considering $\|\beta A\|<1$ with some positive number $\beta$, we may assume that $\|A\|<1$. Since $A$ is an invertible positive operator and $\|A\|<1$, we have $\|A-I\|<1$ and

$$
\begin{equation*}
A^{\alpha}=(I+(A-I))^{\alpha}=\lim _{n \rightarrow \infty} \sum_{m=0}^{n}\binom{\alpha}{m}(A-I)^{m} . \tag{1}
\end{equation*}
$$

Let $A_{n}=\left[\sum_{m=0}^{n}\binom{\alpha}{m}(A-I)^{m}, D\right]$ for $n=1,2,3, \cdots$. Then $\lim _{n \rightarrow \infty} A_{n}=\left[A^{\alpha}, D\right]$ with respect to the operator norm. By [11, p. 158 (3.3)], for a positive integer $m$, it holds that

$$
\left\|\left[(A-I)^{m}, D\right]\right\|_{1} \leq m\|A-I\|^{m-1}\|[(A-I), D]\|_{1}
$$

so that, for $n$,

$$
\left\|A_{n}\right\|_{1} \leq\left(\sum_{m=1}^{n}\left|\binom{\alpha}{m}\right| m\|A-I\|^{m-1}\right)\|[A, D]\|_{1}
$$

Since $\|A-I\|<1$, (1) converges absolutely and hence

$$
\left(\sum_{m=1}^{\infty}\left|\binom{\alpha}{m}\right| m\|A-I\|^{m-1}\right)<\infty .
$$

Therefore, $\left\{A_{n}\right\}$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{1}$. Let $B$ denote the limit of the sequence $\left\{A_{n}\right\}$ in $\mathscr{C}_{1}$. For any unit vector $\xi \in \mathscr{H}$, we define an operator $C$ on $\mathscr{H}$ by $C \eta=(\eta, \xi) \xi(\eta \in \mathscr{H})$. Let $\left\{e_{j}\right\}$ be a complete orthonormal basis of $\mathscr{H}$ such that $e_{1}=\xi$. Since $\operatorname{Tr}(S C)=\sum_{j=1}^{\infty}\left(S C e_{j}, e_{j}\right)=(S \xi, \xi)$, then

$$
(B \xi, \xi)=\operatorname{Tr}(B C)=\lim _{n \rightarrow \infty} \operatorname{Tr}\left(A_{n} C\right)=\lim _{n \rightarrow \infty}\left(A_{n} \xi, \xi\right)=\left(\left[A^{\alpha}, D\right] \xi, \xi\right)
$$

Since $\xi$ is an arbitrary vector, it follows that

$$
\left[A^{\alpha}, D\right]=B \in \mathscr{C}_{1} .
$$

Theorem 3. Let $T=U|T|$ be an invertible operator. Put $T_{t}=|T|^{t} U|T|^{1-t}$. If $[|T|, U] \in$ $\mathscr{C}_{1}$, then $T_{t}^{*} T_{t}-T_{t} T_{t}^{*} \in \mathscr{C}_{1}$.

Proof. Since $|T|$ is invertible, by Theorem 2 we have, for any $\alpha>0$,

$$
\left[|T|^{\alpha}, U\right] \in \mathscr{C}_{1},
$$

so that

$$
U^{*}|T|^{2 t}-|T|^{2 t} U^{*} \in \mathscr{C}_{1} \text { and } U|T|^{2(1-t)} U^{*}-|T|^{2(1-t)} \in \mathscr{C}_{1}
$$

Therefore,

$$
\begin{aligned}
T_{t}^{*} T_{t}-T_{t} T_{t}^{*} & =\left(|T|^{1-t} U^{*}|T|^{2 t} U|T|^{1-t}-|T|^{2}\right)-\left(|T|^{t} U|T|^{2(1-t)} U^{*}|T|^{t}-|T|^{2}\right) \\
& =|T|^{1-t}\left(U^{*}|T|^{2 t}-|T|^{2 t} U^{*}\right) U|T|^{1-t}-|T|^{t}\left(U|T|^{2(1-t)} U^{*}-|T|^{2(1-t)}\right)|T|^{t} \\
& \in \mathscr{C}_{1}
\end{aligned}
$$

THEOREM 4. Let $T=U|T|$ be an invertible operator and $T_{t}=|T|^{t} U|T|^{1-t}$. For the polar decomposition $T_{t}=V\left|T_{t}\right|$ of $T_{t}$, if $[|T|, U] \in \mathscr{C}_{1}$, then, for every real number $\alpha$,

$$
\left[\left|T_{t}\right|^{\alpha}, V\right] \in \mathscr{C}_{1} .
$$

Proof. Since $T_{t}=V\left|T_{t}\right|$ is the polar decomposition, by Theorem 3 we have

$$
\left|T_{t}\right|^{2}-V\left|T_{t}\right|^{2} V^{*}=T_{t}^{*} T_{t}-T_{t} T_{t}^{*} \in \mathscr{C}_{1}
$$

Since $T$ is invertible, so is $T_{t}$. Hence the operator $\left|T_{t}\right|$ is invertible and $V$ is unitary. Therefore, by the above we have

$$
\left[\left|T_{t}\right|^{2}, V\right]=\left(\left|T_{t}\right|^{2}-V\left|T_{t}\right|^{2} V^{*}\right) V \in \mathscr{C}_{1}
$$

Since $\left|T_{t}\right|$ is an invertible positive operator, by Theorem 2 we obtain, for every real number $\alpha$,

$$
\left[\left|T_{t}\right|^{\alpha}, V\right] \in \mathscr{C}_{1}
$$

THEOREM 5. Let $T=U|T|$ be an invertible operator and $T_{t}=|T|^{t} U|T|^{1-t}$. For the polar decomposition $T_{t}=V\left|T_{t}\right|$ of $T_{t}$, if $[|T|, U] \in \mathscr{C}_{1}$, then, for a positive integer $n$, it holds that

$$
\begin{aligned}
\operatorname{Tr}\left(\left[U^{n}|T|^{n},|T|^{2}\right]\right) & =\operatorname{Tr}\left(\left[V^{n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right), \\
\operatorname{Tr}\left(\left[U^{-n}|T|^{n},|T|^{2}\right]\right) & =\operatorname{Tr}\left(\left[V^{-n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right)
\end{aligned}
$$

and

$$
\operatorname{Tr}\left(\left[U^{*}|T|, U|T|\right]\right)=\operatorname{Tr}\left(\left[V^{*}\left|T_{t}\right|, V\left|T_{t}\right|\right]\right)
$$

Proof. If operators $A, B, C, D$ and $E$ satisfy $[A B C D, E] \in \mathscr{C}_{1},[A C B D, E] \in \mathscr{C}_{1}$ and $[B, C] \in$ $\mathscr{C}_{1}$, then we have

$$
\begin{equation*}
\operatorname{Tr}([A B C D, E])=\operatorname{Tr}([A C B D, E]) \tag{2}
\end{equation*}
$$

By Theorem 4, we get $\left[\left|T_{t}\right|, V\right] \in \mathscr{C}_{1}$. Then Lemma 1 yields that $\left[\left(V\left|T_{t}\right|\right)^{m} V^{n-m}\left|T_{t}\right|^{n-m}\right.$, $\left.\left|T_{t}\right|^{2}\right] \in \mathscr{C}_{1}$ and $\left[V^{m},\left|T_{t}\right|\right] \in \mathscr{C}_{1}(m=0,1, \cdots, n)$. And by equality (2) it follows that

$$
\begin{aligned}
\operatorname{Tr}\left(\left[V^{n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right) & =\operatorname{Tr}\left(\left[V V^{n-1}\left|T_{t} \| T_{t}\right|^{n-1},\left|T_{t}\right|^{2}\right]\right) \\
& =\operatorname{Tr}\left(\left[V\left|T_{t}\right| V^{n-1}\left|T_{t}\right|^{n-1},\left|T_{t}\right|^{2}\right]\right) \\
& =\operatorname{Tr}\left(\left[T_{t} V^{n-1}\left|T_{t}\right|^{n-1},\left|T_{t}\right|^{2}\right]\right) \\
& \vdots \\
& =\operatorname{Tr}\left(\left[T_{t}^{n},\left|T_{t}\right|^{2}\right]\right) .
\end{aligned}
$$

Since $\left[|T|^{s}, U\right] \in \mathscr{C}_{1}$ for $s>0$, similarly we have

$$
\begin{aligned}
\operatorname{Tr}\left(\left[T_{t}^{n},\left|T_{t}\right|^{2}\right]\right) & =\operatorname{Tr}\left(\left[|T|^{t} U|T| U \cdots U|T|^{1-t},|T|^{1-t}\left(U^{*}|T|^{2 t}\right) U|T|^{1-t}\right]\right) \\
& =\operatorname{Tr}\left(\left[|T|^{t} U|T| U \cdots U|T|^{1-t},|T|^{1-t}\left(|T|^{2 t} U^{*}\right) U|T|^{1-t}\right]\right) \\
& =\operatorname{Tr}\left(\left[\left(|T|^{t} U\right)|T| U \cdots U|T|^{1-t},|T|^{2}\right]\right) \\
& =\operatorname{Tr}\left(\left[\left(U|T|^{t}\right)|T| U \cdots U|T|^{1-t},|T|^{2}\right]\right) \\
& \vdots \\
& =\operatorname{Tr}\left(\left[U|T| U \cdots U|T|^{t}|T|^{1-t},|T|^{2}\right]\right) \\
& =\operatorname{Tr}\left(\left[U^{n}|T|^{n},|T|^{2}\right]\right) .
\end{aligned}
$$

Therefore, we obtain

$$
\operatorname{Tr}\left(\left[U^{n}|T|^{n},|T|^{2}\right]\right)=\operatorname{Tr}\left(\left[V^{n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right) .
$$

We also have

$$
\operatorname{Tr}\left(\left[V^{-n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right)=\operatorname{Tr}\left(\left[\left|T_{t}\right|^{n} V^{-n},\left|T_{t}\right|^{2}\right]\right)=\operatorname{Tr}\left(\left[\left|T_{t}\right|^{2}, V^{n}\left|T_{t}\right|^{n}\right]^{*}\right) .
$$

By the above result, we get

$$
\operatorname{Tr}\left(\left[\left|T_{t}\right|^{2}, V^{n}\left|T_{t}\right|^{n}\right]^{*}\right)=\operatorname{Tr}\left(\left[|T|^{2}, U^{n}|T|^{n}\right]^{*}\right),
$$

so that

$$
\operatorname{Tr}\left(\left[|T|^{2}, U^{n}|T|^{n}\right]^{*}\right)=\operatorname{Tr}\left(\left[U^{-n}|T|^{n},|T|^{2}\right]\right)
$$

Hence, we obtain

$$
\operatorname{Tr}\left(\left[V^{-n}\left|T_{t}\right|^{n},\left|T_{t}\right|^{2}\right]\right)=\operatorname{Tr}\left(\left[U^{-n}|T|^{n},|T|^{2}\right]\right) .
$$

Similarly, we have

$$
\operatorname{Tr}\left(\left[U^{*}|T|, U|T|\right]\right)=\operatorname{Tr}\left(\left[|T| U^{*}, U|T|\right]\right)=\operatorname{Tr}\left(\left[T^{*}, T\right]\right)
$$

and

$$
\begin{aligned}
\operatorname{Tr}\left(\left[V^{*}\left|T_{t}\right|, V\left|T_{t}\right|\right]\right) & =\operatorname{Tr}\left(\left[\left|T_{t}\right| V^{*}, V\left|T_{t}\right|\right]\right)=\operatorname{Tr}\left(\left[T_{t}^{*}, T_{t}\right]\right) \\
& =\operatorname{Tr}\left(\left[|T|^{1-t} U^{*}|T|^{t},|T|^{t} U|T|^{1-t}\right]\right)=\operatorname{Tr}\left(\left[|T| U^{*}, U|T|\right]\right) \\
& =\operatorname{Tr}\left(\left[T^{*}, T\right]\right)
\end{aligned}
$$

Let $T=U|T|$ be an invertible $p$-hyponormal operator such that $[|T|, U] \in \mathscr{C}_{1}$. Let $T_{t}=$ $|T|^{t} U|T|^{1-t}$ and $T_{t}=V\left|T_{t}\right|$ be the polar decomposition. If $0<p \leq 1 / 2$, put $q=p+\min \{t, 1-t\}$; if $1 / 2<p \leq 1$, put $q=1 / 2+\min \{t, 1-t\}$. By $[\mathbf{1 0}, \S 3.4 .1$, Theorem 2$], T_{t}$ is $q$-hyponormal. By Theorem 2 we have $\left[\left|T_{t}\right|^{2 q}, V\right] \in \mathscr{C}_{1}$. Hence, by Definition 1 there exists the principal function $g_{T_{t}}$ of $T_{t}$. If $T_{t}$ is $q$-hyponormal, then $T_{t}$ is $s$-hyponormal $(0<s<q)$. Hence we can consider the principal function of $T_{t}$ with respect to $s$-hyponormality. The trace formula implies the uniqueness of the principal function of $T_{t}=V\left|T_{t}\right|$ (cf. [14, Chapter X, §3]).

Theorem 6. Let $T=U|T|$ be an invertible semi-hyponormal operator such that $[|T|, U] \in \mathscr{C}_{1}$. For $T_{t}=|T|^{t} U|T|^{1-t}$, let $g_{T}$ and $g_{T_{t}}$ be the principal functions of $T$ and $T_{t}$, respectively. Then we have

$$
g_{T}=g_{T_{t}}
$$

almost everywhere on $\boldsymbol{C}$.
Proof. Let $T_{t}=V\left|T_{t}\right|$ be the polar decomposition of $T_{t}$. For a non-zero integer $n$, let $p_{n}(r, z)=r^{2}, q_{n}(r, z)=z^{n} r^{|n|}, p_{0}(r, z)=z^{-1} r$ and $q_{0}(r, z)=z r$. Then by Theorem 5 we have

$$
\operatorname{Tr}\left(\left[p_{n}(|T|, U), q_{n}(|T|, U)\right]\right)=\operatorname{Tr}\left(\left[|T|^{2}, U^{n}|T|^{|n|}\right]\right)=\operatorname{Tr}\left(\left[p_{n}\left(\left|T_{t}\right|, V\right), q_{n}\left(\left|T_{t}\right|, V\right)\right]\right)
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}(|T|, U), q_{0}(|T|, U)\right]\right)=\operatorname{Tr}\left(\left[U^{*}|T|, U|T|\right]\right)=\operatorname{Tr}\left(\left[p_{0}\left(\left|T_{t}\right|, V\right), q_{0}\left(\left|T_{t}\right|, V\right)\right]\right) .
$$

By Theorem A, we have

$$
\operatorname{Tr}\left(\left[p_{n}(|T|, U), q_{n}(|T|, U)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}(|T|, U), q_{0}(|T|, U)\right]\right)=\frac{1}{2 \pi} \iint 2 r e^{-i \theta} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta .
$$

Since $T_{t}$ is invertible, we can choose a positive integer $m$ such that $T_{t}$ is $1 /(2 m)$-hyponormal and $\left[\left|T_{t}\right|^{1 / m}, V\right] \in C$ by Theorem 2. By [8, Theorem 10], we have

$$
\operatorname{Tr}\left(\left[p_{n}\left(\left|T_{t}\right|, V\right), q_{n}\left(\left|T_{t}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}\left(\left|T_{t}\right|, V\right), q_{0}\left(\left|T_{t}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 r e^{-i \theta} e^{i \theta} g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

so that

$$
\iint r^{|n|}\left(e^{i \theta}\right)^{n} r g_{T}\left(e^{i \theta}, r\right) d r d \theta=\iint r^{|n|}\left(e^{i \theta}\right)^{n} r g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

and

$$
\iint r g_{T}\left(e^{i \theta}, r\right) d r d \theta=\iint r g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

Since $n$ is arbitrary, we obtain $g_{T}=g_{T_{t}}$ almost everywhere on $\boldsymbol{C}$.
Next we recall the principal functions for log-hyponormal operators.
Definition 2. Let $T=U|T|$ be log-hyponormal with $\log |T| \geq 0$ such that $[\log |T|, U] \in$ $\mathscr{C}_{1}$. Put $S=U \log |T|$. Then $S$ is semi-hyponormal with unitary $U$. Hence there exists the principal function $g_{S}$ of $S$ and we define the principal function $g_{T}$ of $T$ by

$$
g_{T}\left(e^{i \theta}, r\right)=g_{S}\left(e^{i \theta}, \log r\right)
$$

(see [6, Definition 4]).
It is known that, if $T=U|T|$ is log-hyponormal, then the Aluthge transform $T_{1 / 2}=$ $|T|^{1 / 2} U|T|^{1 / 2}$ is semi-hyponormal (see [16]). Hence there exists the principal function $g_{T_{1 / 2}}$ of $T_{1 / 2}$.

THEOREM 7. Let $T=U|T|$ be a $\log$-hyponormal operator such that $\log |T| \geq 0$ and $[\log |T|, U] \in \mathscr{C}_{1}$. For $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}=V\left|T_{1 / 2}\right|$, let $g_{T}$ and $g_{T_{1 / 2}}$ be the principal functions of $T$ and $T_{1 / 2}$, respectively. Then we have

$$
g_{T}=g_{T_{1 / 2}}
$$

almost everywhere on $\boldsymbol{C}$.
Proof. Since $\|[U,|T|]\|_{1}=\left\|\left[U, e^{\log |T|}\right]\right\|_{1} \leq\|[U, \log |T|]\|_{1} e^{\|\log |T \||}$, we have $[U,|T|] \in$ $\mathscr{C}_{1}$. Hence we have

$$
\begin{aligned}
\left|T_{1 / 2}\right|^{2}-V\left|T_{1 / 2}\right|^{2} V^{*} & =T_{1 / 2}^{*} T_{1 / 2}-T_{1 / 2} T_{1 / 2}^{*}=|T|^{1 / 2} U^{*}|T| U|T|^{1 / 2}-|T|^{1 / 2} U|T| U^{*}|T|^{1 / 2} \\
& =|T|^{1 / 2}\left(U^{*}|T| U-U|T| U^{*}\right)|T|^{1 / 2}=|T|^{1 / 2}\left(U^{*}[|T|, U]+[|T|, U] U^{*}\right)|T|^{1 / 2} \\
& \in \mathscr{C}_{1} .
\end{aligned}
$$

Therefore, by Theorem 2, we have

$$
\left|T_{1 / 2}\right|-V\left|T_{1 / 2}\right| V^{*} \in \mathscr{C}_{1} .
$$

By $\left[\mathbf{1 0}, \S 3.4 .2\right.$, Theorem 2], since $T_{1 / 2}$ is semi-hyponormal, there exists the principal function $g_{T_{1 / 2}}$ of $T_{1 / 2}$. For a non-zero integer $n$, let $p_{n}(r, z)=r^{2}, q_{n}(r, z)=z^{n} r^{|n|}, p_{0}(r, z)=z^{-1} r$ and $q_{0}(r, z)=z r$. By the same argument of the proof of Theorem 5, we obtain, for an integer $m$,

$$
\operatorname{Tr}\left(\left[p_{m}(|T|, U), q_{m}(|T|, U)\right]\right)=\operatorname{Tr}\left(\left[p_{m}\left(\left|T_{1 / 2}\right|, V\right), q_{m}\left(\left|T_{1 / 2}\right|, V\right)\right]\right)
$$

By [6, Theorem 8], we have

$$
\operatorname{Tr}\left(\left[p_{n}(|T|, U), q_{n}(|T|, U)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}(|T|, U), q_{0}(|T|, U)\right]\right)=\frac{1}{2 \pi} \iint 2 r g_{T}\left(e^{i \theta}, r\right) d r d \theta
$$

Since $T_{1 / 2}$ is semi-hyponormal, by Theorem A we have

$$
\operatorname{Tr}\left(\left[p_{n}\left(\left|T_{1 / 2}\right|, V\right), q_{n}\left(\left|T_{1 / 2}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T_{1 / 2}}\left(e^{i \theta}, r\right) d r d \theta
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}\left(\left|T_{1 / 2}\right|, V\right), q_{0}\left(\left|T_{1 / 2}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 r g_{T_{1 / 2}}\left(e^{i \theta}, r\right) d r d \theta
$$

so that

$$
\iint r^{|m|}\left(e^{i \theta}\right)^{m} r g_{T}\left(e^{i \theta}, r\right) d r d \theta=\iint r^{|m|}\left(e^{i \theta}\right)^{m} r g_{T_{1 / 2}}\left(e^{i \theta}, r\right) d r d \theta
$$

for any integer $m$. Since $m$ is arbitrary, this implies $g_{T}=g_{T_{1 / 2}}$ almost everywhere on $\boldsymbol{C}$.
Now we generalize Theorem 6 as follows.
THEOREM 8. Let $T=U|T|$ be an invertible $p$-hyponormal operator such that $[|T|, U] \in$ $\mathscr{C}_{1}$. For $T_{t}=|T|^{t} U|T|^{1-t}$, let $g_{T}$ and $g_{T_{t}}$ be the principal functions of $T$ and $T_{t}$, respectively. Then we have $g_{T}=g_{T_{t}}$ almost everywhere on $\boldsymbol{C}$.

Proof. Let $T_{t}=V\left|T_{t}\right|$ be the polar decomposition of $T_{t}$. For a non-zero integer $n$, let $p_{n}(r, z)=r^{2}, q_{n}(r, z)=z^{n} r^{|n|}, p_{0}(r, z)=z^{-1} r$ and $q_{0}(r, z)=z r$. Then by Theorem 5 we have for any integer $m$,

$$
\operatorname{Tr}\left(\left[p_{m}(|T|, W), q_{m}(|T|, W)\right]\right)=\operatorname{Tr}\left(\left[p_{m}\left(\left|T_{t}\right|, V\right), q_{m}\left(\left|T_{t}\right|, V\right)\right]\right)
$$

By Theorem 2, we have $\left[|T|^{2 p}, U\right] \in \mathscr{C}_{1}$. By $\left[\mathbf{1 0}, \S 3.4\right.$.1. Theorem 2], $T_{t}$ is $q$-hyponormal $(0<$ $q \leq 1$ ). We choose a positive integer $m$ such that $1 / 2 m<q$. Then $T_{t}$ is $1 / 2 m$-hyponormal. By Theorem 4, we have $\left[\left|T_{t}\right|^{1 / m}, V\right] \in \mathscr{C}_{1}$. It follows from [8, Theorem 10] that

$$
\begin{aligned}
& \operatorname{Tr}\left(\left[p_{n}(|T|, W), q_{n}(|T|, W)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta, \\
& \operatorname{Tr}\left(\left[p_{n}\left(\left|T_{t}\right|, V\right), q_{n}\left(\left|T_{t}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 n e^{i(n-1) \theta} r^{|n|+1} e^{i \theta} g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta, \\
& \operatorname{Tr}\left(\left[p_{0}(|T|, W), q_{0}(|T|, W)\right]\right)=\frac{1}{2 \pi} \iint 2 r g_{T}\left(e^{i \theta}, r\right) d r d \theta,
\end{aligned}
$$

and

$$
\operatorname{Tr}\left(\left[p_{0}\left(\left|T_{t}\right|, V\right), q_{0}\left(\left|T_{t}\right|, V\right)\right]\right)=\frac{1}{2 \pi} \iint 2 r g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

Hence, we have, for any integer $m$,

$$
\iint r^{|m|}\left(e^{i \theta}\right)^{m} r g_{T}\left(e^{i \theta}, r\right) d r d \theta=\iint r^{|m|}\left(e^{i \theta}\right)^{m} r g_{T_{t}}\left(e^{i \theta}, r\right) d r d \theta
$$

Since $m$ is arbitrary, we obtain $g_{T}=g_{T_{t}}$ almost everywhere on $\boldsymbol{C}$.

## 3. Relation with principal functions associated with two decompositions.

Next, we show the following theorem (cf. [5, Theorem 7.1]).
Theorem 9. Let $T=X+i Y=U|T|$ be hyponormal with unitary $U$. Suppose that $[|T|, U] \in \mathscr{C}_{1}$. Let $g$ and $g_{T}$ be the principal functions corresponding to the Cartesian and the polar decompositions of $T$, respectively. For $x+i y=r e^{i \theta}$, let $g_{T}(x, y)=g_{T}\left(e^{i \theta}, r\right)$. Then $g=g_{T}$ almost everywhere on $\boldsymbol{C}$.

Proof. Since $[|T|, U] \in \mathscr{C}_{1}$, by Lemma 1 we have $\left[|T|^{2}, U\right] \in \mathscr{C}_{1}$. Hence

$$
T^{*} T-T T^{*}=|T|^{2}-U|T|^{2} U^{*}=\left[|T|^{2}, U\right] U^{*} \in \mathscr{C}_{1} .
$$

Theorem A yields that, for a polynomial $q(x, y)=y$ and an arbitrary polynomial $p(x, y)$,

$$
\begin{aligned}
\operatorname{Tr}([p(X, Y), q(X, Y)]) & =\frac{1}{2 \pi i} \iint_{\sigma(T)} J(p, q) g(x, y) d x d y \\
& =\frac{1}{2 \pi i} \iint_{\sigma(T)} p_{x}(x, y) g(x, y) d x d y \\
& =\frac{1}{2 \pi i} \iint_{\mathrm{M}} p_{x}(r \cos \theta, r \sin \theta) g(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

where $\mathrm{M}=\left\{(r, \theta): r e^{i \theta} \in \sigma(T), 0 \leq \theta<2 \pi\right\}$. On the other hand, we have

$$
\operatorname{Tr}([p(X, Y), q(X, Y)])=\operatorname{Tr}\left(\left[p\left(\frac{U|T|+|T| U^{-1}}{2}, \frac{U|T|-|T| U^{-1}}{2 i}\right), \frac{U|T|-|T| U^{-1}}{2 i}\right]\right)
$$

Let

$$
\tilde{p}(r, z)=p\left(\frac{z r+r z^{-1}}{2}, \frac{z r-r z^{-1}}{2 i}\right) \text { and } \tilde{q}(r, z)=\frac{z r-r z^{-1}}{2 i} .
$$

Then we get

$$
\begin{aligned}
J(\tilde{p}, \tilde{q})= & \left(p_{x} \cdot \frac{z+z^{-1}}{2}+p_{y} \cdot \frac{z-z^{-1}}{2 i}\right)\left(\frac{r}{2 i}\left(1+\frac{1}{z^{2}}\right)\right) \\
& -\frac{r}{2}\left\{p_{x} \cdot\left(1-\frac{1}{z^{2}}\right)+\frac{1}{i} p_{y} \cdot\left(1+\frac{1}{z^{2}}\right)\right\} \frac{z-z^{-1}}{2 i}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
J(\tilde{p}, \tilde{q})\left(r, e^{i \theta}\right) \cdot e^{i \theta} & =\left(p_{x} \cdot \cos \theta+p_{y} \cdot \sin \theta\right)(-i r \cos \theta)-r\left(i p_{x} \cdot \sin \theta-i p_{y} \cdot \cos \theta\right) \sin \theta \\
& =-i r p_{x}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\operatorname{Tr} & \left(\left[p\left(\frac{U|T|+|T| U^{-1}}{2}, \frac{U|T|-|T| U^{-1}}{2 i}\right), \frac{U|T|-|T| U^{-1}}{2 i}\right]\right) \\
& =\frac{1}{2 \pi} \iint_{\mathrm{M}} J(\tilde{p}, \tilde{q})\left(r, e^{i \theta}\right) e^{i \theta} g_{T}\left(e^{i \theta}, r\right) d r d \theta \\
& =\frac{1}{2 \pi} \iint_{\mathrm{M}}-i r p_{x}(r \cos \theta, r \sin \theta) g_{T}\left(e^{i \theta}, r\right) d r d \theta
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{1}{2 \pi i} \iint_{\mathrm{M}} p_{x}(r \cos \theta, r \sin \theta) g(r \cos \theta, r \sin \theta) r d r d \theta \\
& \quad=\frac{1}{2 \pi} \iint_{\mathrm{M}}-i r p_{x}(r \cos \theta, r \sin \theta) g_{T}\left(e^{i \theta}, r\right) d r d \theta
\end{aligned}
$$

Since $p$ is arbitrary, we obtain

$$
r g_{T}\left(e^{i \theta}, r\right)=r g(r \cos \theta, r \sin \theta) \quad \text { a.e. }
$$

Hence, $g_{T}=g$ almost everywhere on $\boldsymbol{C}$.

Though the results above can be generalized to operators with trace-class self-commutator, we confine ourselves to deal only with the $p$-hyponormal case (cf. [5]).

## 4. Application: Berger's Theorem and index.

In this section, we apply previous results to Berger's Theorem [3] and an index property [11]. First we show the following:

Lemma 10. Let operators $S=V|S|$ and $T=U|T|$ be invertible. Assume that $|S|-\left|S^{*}\right|$, $|T|-\left|T^{*}\right| \in \mathscr{C}_{1}$ and there exists a trace class operator $A$ such that $S A=A T$ and $\operatorname{ker}(A)=$ $\operatorname{ker}\left(A^{*}\right)=\{0\}$. Then, for $S_{1 / 2}=|S|^{1 / 2} V|S|^{1 / 2}$ and $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}$, there exists $B \in \mathscr{C}_{1}$ such that $S_{1 / 2} B=B T_{1 / 2}$ and $\operatorname{ker}(B)=\operatorname{ker}\left(B^{*}\right)=\{0\}$.

Proof. Let $B=|S|^{1 / 2} A|T|^{-1 / 2}$. Then it is clear that $B \in \mathscr{C}_{1}$ and $\operatorname{ker}(B)=\operatorname{ker}\left(B^{*}\right)=\{0\}$. Since $S_{1 / 2}=|S|^{1 / 2} V|S|^{1 / 2}$ and $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}$, we have

$$
\begin{aligned}
S_{1 / 2} B & =S_{1 / 2}|S|^{1 / 2} A|T|^{-1 / 2}=|S|^{1 / 2} S A|T|^{-1 / 2}=|S|^{1 / 2} A T|T|^{-1 / 2} \\
& =|S|^{1 / 2} A|T|^{-1 / 2} T_{1 / 2}=B T_{1 / 2} .
\end{aligned}
$$

Theorem 11. Let $S$ and $T$ be invertible semi-hyponormal operators. Assume that $|S|-$ $\left|S^{*}\right|,|T|-\left|T^{*}\right| \in \mathscr{C}_{1}$ and there exists a trace class operator $A$ such that $S A=A T$ and $\operatorname{ker}(A)=$ $\operatorname{ker}\left(A^{*}\right)=\{0\}$. Then $g_{S} \leq g_{T}$ almost everywhere on $\boldsymbol{C}$.

Proof. Let $g$ and $h$ be the principal functions of $S_{1 / 2}$ and $T_{1 / 2}$ related to the Cartesian decompositions of $S_{1 / 2}$ and $T_{1 / 2}$, respectively. Since $S_{1 / 2}$ and $T_{1 / 2}$ are invertible hyponormal operators with trace class self-commutators, by Lemma 10 and Theorem 2 of [3] (or Theorem X.4.3 of [14]), we have $g \leq h$ almost everywhere on $\boldsymbol{C}$. Moreover, Theorem 9 implies

$$
g=g_{S_{1 / 2}} \quad \text { and } \quad h=g_{T_{1 / 2}} \quad \text { almost everywhere on } \boldsymbol{C} .
$$

And Theorem 6 implies $g_{S}=g_{S_{1 / 2}}$ and $g_{T}=g_{T_{1 / 2}}$ almost everywhere on $\boldsymbol{C}$, so that, $g_{S} \leq g_{T}$ almost everywhere on $\boldsymbol{C}$.

Corollary 12. Let $S$ and $T$ be invertible p-hyponormal or log-hyponormal operators. Assume that $|S|-\left|S^{*}\right|,|T|-\left|T^{*}\right| \in \mathscr{C}_{1}$ and there exists a trace class operator $A$ such that $S A=A T$ and $\operatorname{ker}(A)=\operatorname{ker}\left(A^{*}\right)=\{0\}$. Then $g_{S} \leq g_{T}$ almost everywhere on $\boldsymbol{C}$.

Proof. Since $S_{1 / 2}$ and $T_{1 / 2}$ are invertible semi-hyponormal operators, by Theorem 11 we have $g_{S_{1 / 2}} \leq g_{T_{1 / 2}}$ almost everywhere on $\boldsymbol{C}$. Moreover, Theorems 7 or 8 imply $g_{S_{1 / 2}}=g_{S}$ and $g_{T_{1 / 2}}=g_{T}$ almost everywhere on $\boldsymbol{C}$.

THEOREM 13. Let $T=U|T|$ be an invertible cyclic p-hyponormal operator. Assume $[|T|, U] \in \mathscr{C}_{1}$. Then

$$
g_{T} \leq 1 \quad \text { almost everywhere on } \boldsymbol{C} .
$$

Proof. If $T=U|T|$ has a cyclic vector, then $T_{1 / 2}$ also has a cyclic vector by Lemma 3 of [7]. Hence, let $p \geq 1 / 2$. Since then $T_{1 / 2}$ is a cyclic hyponormal operator, by Corollary 4.4 of [14] we have $g_{T_{1 / 2}} \leq 1$. By Theorem 8, it follows that $g_{T} \leq 1$. Similarly, the theorem holds for $0 \leq p \leq 1 / 2$.

Let $\boldsymbol{\operatorname { R a t }}(\sigma)$ be the set of all rational functions with poles off $\sigma$.
Definition 3. The rational multiplicity of $T \in B(\mathscr{H})$ is the smallest cardinal number $m$ with the property which there exists a set $\left\{x_{n}\right\}_{n=1}^{m}$ of $m$-vectors in $\mathscr{H}$ such that

$$
\bigvee\left\{f(T) x_{i} ; f \in \boldsymbol{\operatorname { R a t }}(\sigma(T)), 1 \leq i \leq m\right\}=\mathscr{H} .
$$

THEOREM 14. Let $T=U|T|$ be an invertible cyclic p-hyponormal operator with finite rational cyclic multiplicity m. Assume $[|T|, U] \in \mathscr{C}_{1}$. Then

$$
g_{T} \leq m \quad \text { almost everywhere on } \boldsymbol{C} .
$$

Proof. Let $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}=V\left|T_{1 / 2}\right|$ (the polar decomposition of $T_{1 / 2}$ ). Since, by Theorem 4, we have $\left[\left|T_{1 / 2}\right|, V\right] \in \mathscr{C}_{1}$, first we show that $T_{1 / 2}$ has an operator with finite rational cyclic multiplicity $m$. It is easy to see that $p\left(T_{1 / 2}\right)|T|^{1 / 2}=|T|^{1 / 2} p(T)$ for every polynomial $p$ and $\sigma(T)=\sigma\left(T_{1 / 2}\right)$. If $\left\{x_{1}, \cdots, x_{m}\right\}$ is a system of vectors such that $\bigvee\left\{f(T) x_{i} ; f \in\right.$ $\boldsymbol{\operatorname { R a t }}(\sigma(T)), 1 \leq i \leq m\}=\mathscr{H}$, then $\left\{|T|^{1 / 2} x_{1}, \cdots,|T|^{1 / 2} x_{m}\right\}$ is a system of vectors such that $\bigvee\left\{f\left(T_{1 / 2}\right)|T|^{1 / 2} x_{i} ; f \in \boldsymbol{\operatorname { R a t }}\left(\sigma\left(T_{1 / 2}\right)\right), 1 \leq i \leq m\right\}=\mathscr{H}$. Hence, the operator $T_{1 / 2}$ has a finite rational cyclic multiplicity $m$. If $p \geq 1 / 2$, then $T_{1 / 2}$ is a hyponormal operator with finite rational cyclic multiplicity $m$. Hence by Theorem 8 and Proposition 4.6 of [14] we have $g_{T}=g_{T_{1 / 2}} \leq m$ almost everywhere on $\boldsymbol{C}$. Similarly, the theorem holds for $0<p \leq 1 / 2$.

Finally, we show index properties. Let $\sigma_{e}(T)$ be the essential spectrum of $T$ and $\operatorname{ind}(T)$ the index of $T$; i.e.,

$$
\operatorname{ind}(T)=\operatorname{dim} \operatorname{ker}(T)-\operatorname{dim} \operatorname{ker}\left(T^{*}\right)
$$

Then it is known the following result. Let $T$ be a pure hyponormal operator and $g(z)$ be the principal function of $T$. Then it holds that, for $z \notin \sigma_{e}(T)$,

$$
g(z)=-\operatorname{ind}(T-z)
$$

[11, Theorem] (see also [4, Theorem 4]).
An operator $T$ is called pure if it has no nontrivial reducing subspace on which it is normal. Then we need the following

Lemma B (Lemma 4 of [7]). For an operator $T=U|T|$, let $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}$. Assume that $T$ is an invertible p-hyponormal operator. If $T$ is pure, then $T_{1 / 2}$ is also pure.

THEOREM 15. Let $T=U|T|$ be a pure invertible semi-hyponormal operator. If $0 \neq z \notin$ $\sigma_{e}(T)$, then $g_{T}\left(e^{i \theta}, r\right)=-\operatorname{ind}(T-z)$, where $z=r e^{i \theta}$.

Proof. Let $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}$. Then, by Lemma B, $T_{1 / 2}$ is a pure invertible hyponormal operator. Since $\sigma_{e}\left(T_{1 / 2}\right)=\sigma_{e}(T)$ by Theorem 1.5 of [12], we have $z \notin \sigma_{e}\left(T_{1 / 2}\right)$. Hence

$$
g_{T_{1 / 2}}(z)=-\operatorname{ind}\left(T_{1 / 2}-z\right)
$$

Theorem 1.10 of [13] implies that

$$
\operatorname{ind}\left(T_{1 / 2}-z\right)=\operatorname{ind}(T-z)
$$

By Theorem 6, we have $g_{T}=g_{T_{1 / 2}}$. Therefore, we obtain that $g_{T}\left(e^{i \theta}, r\right)=-\operatorname{ind}(T-z)$.
Corollary 16. Let $T=U|T|$ be a pure invertible p-hyponormal operator $(0<p<$ $1 / 2)$. If $0 \neq z \notin \sigma_{e}(T)$, then $g_{T}\left(e^{i \theta}, r\right)=-\operatorname{ind}(T-z)$, where $z=r e^{i \theta}$.

Proof. By Lemma B, $T_{1 / 2}=|T|^{1 / 2} U|T|^{1 / 2}$ is a pure invertible semi-hyponormal operator. Hence a similar argument of the proof of Theorem 15 gives a proof of Corollary 16.

## References

[1] A. Aluthge, On $p$-hyponormal operators for $0<p<1$, Integral Equations Operator Theory, 13 (1990), $307-315$.
[2] A. Aluthge and D. Wang, w-hyponormal operators II, Integral Equations Operator Theory, 37 (2000), 324-331.
[3] C. A. Berger, Intertwined operators and the Pincus principal function, Integral Equations Operator Theory, 4 (1981), 1-9.
[ 4 ] R. W. Carey and J. D. Pincus, An invariant for certain operator algebras, Proc. Natl. Acad. Sci. USA, 71 (1974), 1952-1956.
[5] R. W. Carey and J. D. Pincus, Mosaics, principal functions, and mean motion in von-Neumann algebras, Acta Math., 138 (1977), 153-218.
[6] M. Chō and T. Huruya, Mosaic and trace formulae of log-hyponormal operators, J. Math. Soc. Japan, 55 (2003), 255-268.
[7] M. Chō and T. Huruya, Aluthge transformations and invariant subspaces of p-hyponormal operators, Hokkaido Math. J., 32 (2003), 445-450.
[8] M. Chō and T. Huruya, Trace formulae of p-hyponormal operators, Studia Math., 161 (2004), 1-18.
[9] K. F. Clancey, Seminormal operators, Lecture Notes in Math., No. 742, Berlin-Heidelberg-New York, 1979.
[10] T. Furuta, Invitation to linear operators, Taylor \& Francis Inc., London and New York, 2001.
[11] J. W. Helton and R. Howe, Integral operators, commutator traces, index and homology, Proceedings of a conference on operator theory, Lecture Notes in Math., No. 345, Berlin-Heidelberg-New York, 1973.
[12] I. B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory, 37 (2000), 437-448.
[13] I. B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory, 40 (2001), 52-60.
[14] M. Martin and M. Putinar, Lectures on hyponormal operators, Birkhäuser Verlag, Basel, 1989.
[15] J. D. Pincus and D. Xia, Mosaic and principal function of hyponormal and semi-hyponormal operators, Integral Equations Operator Theory, 4 (1981), 134-150.
[16] K. Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory, 34 (1999), 364-372.
[17] D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.

Muneo Chō
Department of Mathematics
Kanagawa University
Yokohama 221-8686
Japan
E-mail: chiyom01@kanagawa-u.ac.jp

## Tadasi Huruya

Faculty of Education and Human Sciences
Niigata University
Niigata 950-2181
Japan
E-mail: huruya@ed.niigata-u.ac.jp


[^0]:    2000 Mathematics Subject Classification. 47B20, 47A10.
    Key Words and Phrases. Hilbert space, trace, principal function.
    This research is partially supported by Grant-in-Aid Scientific Research (No. 14540190), from Japan Society for the Promotion of Science.

