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Abstract. We introduce a graphical method, called the chart description, to describe the
monodromy representation of a genus one Lefschetz fibration. Using this method, we give a new
and purely combinatorial proof of the classification theorem of genus one Lefschetz fibrations.

1. Introduction.

Let M andB be compact, connected, and oriented (not necessarily closed)C∞-manifolds of
dimensions4 and2, respectively.

DEFINITION 1. A C∞-map f : M → B is agenus one Lefschetz fibrationif the following
conditions are satisfied:

(a) ∂M = f−1(∂B);
(b) there is a finite set of pointsy1, . . . ,yn (n≥ 1), called thecritical values of f, in IntB(=

B−∂B) such thatf | f−1(B−{y1, . . . ,yn}) : f−1(B−{y1, . . . ,yn})→ B−{y1, . . . ,yn} is a
C∞-fiber bundle with fiber the2-torusT2;

(c) for eachi (1≤ i ≤ n), there exists a single pointpi ∈ f−1(yi) such that
(1) (d f)p : Tp(M)→ Tf (p)(B) is onto for anyp∈ f−1(yi)−{pi},
(2) aboutpi (resp.yi), there exist local complex coordinatesz1,z2 with z1(pi) = z2(pi) =

0 (resp. local complex coordinateξ with ξ (yi) = 0), so that f is locally written as
ξ = f (z1,z2) = z1z2 or z1z2;

(d) for eachi (1≤ i ≤ n), H2( f−1(yi);ZZZ)∼= ZZZ.

Throughout this paper, by a Lefschetz fibration, we always mean a genus one Lefschetz
fibration.

We call a fiberf−1(y) asingular fiberif y∈ {y1, . . . ,yn}, otherwise ageneral fiber. We call
M thetotal space, B thebase space, and f theprojection.

A singular fiber is either a smoothly immersed2-sphere inM with a single transverse self-
intersection of sign+1 or −1. Such a fiber is said to beof typeI+1 or I−1 , respectively (cf. [9],
[10]).

DEFINITION 2. A chiral Lefschetz fibrationis a Lefschetz fibration whose singular fibers
are all of typeI+1 .
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REMARK 3. A Lefschetz fibration (cf. [3]) is called an achiral Lefschetz fibration in [16]
and in [2] or a differentiable Lefschetz fibration in [19]. A chiral Lefschetz fibration is called a
Lefschetz fibration in [17] (cf. [15]) or a symplectic Lefschetz fibration in [19].

DEFINITION 4. Lefschetz fibrationsf : M → B and f ′ : M′→ B′ areisomorphicif there
exist orientation preserving diffeomorphismsH : M→M′ andh : B→B′ such thatf ′ ◦H = h◦ f .

Let

s1 =

[
1 0
1 1

]
and s2 =

[
1 −1
0 1

]

be elements ofSL(2,ZZZ). ThenSL(2,ZZZ) has a group presentation

〈s1,s2 |s1s2s1(s2s1s2)−1,(s1s2)6〉.

(This presentation is obtained from the presentation given in Problem 1.4.24 in p. 47 of [11] by
the substitutions1 = yx−1,s2 = xy−2.)

The following is the deformation theorem due to Moishezon [17] (which is also called
“normalizing theorem of local monodromies” [15]).

THEOREM 5 ([17]). Let 11,12, . . . ,1n be elements of SL(2,ZZZ) which are conjugates of s1

with 1112 · · ·1n = 1. Then by successive application of elementary transformations, the n-tuple
(11,12, . . . ,1n) can be transformed to an n-tuple(h1,h2, . . . ,hn) with hi = s1 for odd i and hi = s2

for even i, and n must be a multiple of12.

Hereelementary transformationsmean the transformations

(x1, . . . ,x j−1,x j ,x j+1,x j+2, . . . ,xn)

7→ (x1, . . . ,x j−1,x j+1,x
−1
j+1x jx j+1,x j+2, . . . ,xn), and

(x1, . . . ,x j−1,x j ,x j+1,x j+2, . . . ,xn)

7→ (x1, . . . ,x j−1,x jx j+1x−1
j ,x j ,x j+2, . . . ,xn)

for j = 1, . . . ,n−1 (cf. [15], [17]).
This theorem implies the classification theorem of chiral Lefschetz fibrations over the2-

sphere.

THEOREM 6 ([7], [17]). Let f : M → B and f′ : M′ → B′ be chiral Lefschetz fibrations
such that B and B′ are diffeomorphic to the2-sphere S2. They are isomorphic if and only if they
have the same number of critical values.

This result was generalized by the second named author to the case where the base spaceB
is a surface of any genus.

THEOREM 7 ([15]). Let f : M → B and f′ : M′ → B′ be chiral Lefschetz fibrations over
closed base spaces. They are isomorphic if and only if1(B) = 1(B′) and they have the same
number of critical values.
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For a Lefschetz fibrationf : M → B, we denote byn+( f ) the number of singular fibers
of type I+1 and byn−( f ) the number of singular fibers of typeI−1 . (Note that f : M → B is a
chiral Lefschetz fibration if and only ifn−( f ) = 0.) The sumn+( f )+n−( f ) is the number of the
critical values off .

THEOREM 8 (cf. [14], [15]). Let f : M → B and f′ : M′→ B′ be Lefschetz fibrations over
closed base spaces. Suppose that n+( f )−n−( f ) 6= 0. They are isomorphic if and only if1(B) =
1(B′), n+( f ) = n+( f ′) and n−( f ) = n−( f ′).

This theorem was proved in [14] for the case whereB is a2-sphere, and in [15] (p. 563) for
the general case (see below).

It is known (cf. [3], [13]) that the Euler numbere(M) and the signatureσ(M) of M are
related to the numbersn+( f ) andn−( f ) by

e(M) = n+( f )+n−( f ) and σ(M) =−2
3
(n+( f )−n−( f )).

Thus the above theorem implies that whenM andM′ are total spaces of Lefschetz fibrations
over closed surfacesB andB′ respectively,M andM′ are diffeomorphic provided1(B) = 1(B′),
e(M) = e(M′) andσ(M) = σ(M′) 6= 0. This is the statement given in p. 563 of [15].

These results were proved by considering the natural projectionSL(2,ZZZ)→ PSL(2,ZZZ) and
establishing a theorem similar to the deformation theorem (Theorem 5) in terms ofPSL(2,ZZZ).

We introduce a graphical method, called the chart description method, to describe a mon-
odromy representation of a Lefschetz fibration over a surfaceB. The idea can be applied to
Lefschetz fibrations of any fiber genus. We concentrate on the fiber genus one case in this paper,
and the higher genus case will be discussed elsewhere. Using the chart description method, we
have a new and purely combinatorial proof of the above classification theorems.

This paper is organized as follows. In§ 2, we recall the notion of monodromy representa-
tions of Lefschetz fibrations. In§ 3, chart description of a Lefschetz fibration is defined and it
is proved that any Lefschetz fibration can be described by a chart (Theorem 15). In§ 4, some
results on chart descriptions are given which are used later. The main theorem (Theorem 21) is
stated and proved in§ 5. It gives a certain kind of ‘normal form’ of a chart description. In§ 6,
we prove the classification theorem by use of Theorem 21.

2. Monodromy representation.

Let f : M → B be a Lefschetz fibration and letSf = {y1, . . . ,yn} be the set of critical values.
Take a pointy0 ∈ Int(B)−Sf and fix a diffeomorphismι from the general fiberf−1(y0) to the2-
torusT2 = S1×S1. We identify the (orientation preserving) mapping class groupMC( f−1(y0))
of the general fiberf−1(y0) with the mapping class groupMC(T2) of T2 = S1×S1 by the
diffeomorphismι , and the latter group is identified withSL(2,ZZZ) by sending the positive Dehn
twists alongS1×{∗} and{∗}×S1 to s1 ands2, respectively.

Since f | f−1(B−Sf ) : f−1(B−Sf )→ B−Sf is aC∞-fiber bundle with fiber the2-torusT2,
we have a monodromy representation

ρ f : π1(B−Sf ,y0)→MC( f−1(y0))∼= MC(T2)
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as a fiber bundle. Combining the isomorphismMC(T2) ∼= SL(2,ZZZ), we have a monodromy
representation

ρ f : π1(B−Sf ,y0)→ SL(2,ZZZ).

Such a representation depends on the choice ofy0 and the diffeomorphismι , but it is uniquely
determined up to inner automorphisms ofMC(T2) or of SL(2,ZZZ).

Two monodromy representationsρ f : π1(B−Sf ,y0)→MC(T2) andρ f ′ : π1(B′−Sf ′ ,y0
′)→

MC(T2) are said to beequivalentif there exist an element1 ∈MC(T2) and an orientation pre-
serving homeomorphismh : (B,Sf ,y0)→ (B′,Sf ′ ,y0

′) such that

conj(1)◦ρ f = ρ f ′ ◦h#,

whereconj(1) is the inner automorphism ofMC(T2) by 1 andh# : π1(B−Sf ,y0) → π1(B′−
Sf ′ ,y0

′) is the isomorphism induced byh.

THEOREM 9 ([17], [16]). Let f : M→B and f′ : M′→B′ be Lefschetz fibrations such that
n+( f )−n−( f ) 6= 0 or B has non-empty boundary. Then they are isomorphic if and only if their
monodromy representations are equivalent.

Theorem 9 is assumed when we prove Theorem 8 in§ 6. (Our idea is to use chart de-
scriptions in order to normalize monodromy representations, and we prove that under the hy-
pothesis of Theorem 8,f and f ′ have equivalent monodromy representations if1(B) = 1(B′),
n+( f ) = n+( f ′) andn−( f ) = n−( f ′).) The proof of Theorem 9 [17] was based on the surjec-
tivity of ρ f , and our argument in this paper also gives an alternative proof of the surjectivity (cf.
Theorem 26).

For a while, we assume that the base spaceB is a closed surface.
Let D be a2-disk in B such thaty0 ∈ ∂D andSf ⊂ Int(D).
Let α1, . . . ,αn be mutually disjoint simple paths inD except at the common starting point

y0 ∈ ∂D such that they appear in this order aroundy0 and that their terminal points are the points
of Sf . We call such a system of paths,α1, . . . ,αn, a Hurwitz path systemor a system of good
ordered paths(cf. [17]). We denote byai (1≤ i ≤ n) the element ofπ1(D−Sf ,y0) represented
by a loop starting aty0, going alongαi toward the endpoint (sayyi) of αi , turning aroundyi in
the positive direction and going back toy0 alongαi . Thenπ1(D−Sf ,y0) is freely generated by
the elementsa1, . . . ,an. The systema1, . . . ,an is called theHurwitz generator systemor the
system of good ordered generatorsof π1(D−Sf ,y0) associated withα1, . . . ,αn. Note that

a1 · · ·an = [∂D]

in π1(D−Sf ,y0) and inπ1(B−Sf ,y0), where∂D is a loop along the boundary∂D of the oriented
2-diskD.

WhenB is a closed surface of positive genus1, let β1,β2, . . . ,β21 be simple closed paths
in B which are mutually disjoint except at the common base pointy0 such that (1) we obtain a
2-disk D′ by cuttingB along these paths, (2) the2-disk D is contained in this2-disk D′, and (3)
we have
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[∂D] = [b1,b2] · · · [b21−1,b21]

in π1(B−Sf ,y0), wherebi (1≤ i ≤ 21) is the homotopy class ofβi and [a,b] stands for the
commutatoraba−1b−1 of a andb. For example, see Figure 1, wheren = 3 and1= 2.

Figure 1. Hurwitz system.

A monodromy representationρ f : π1(B−Sf ,y0)→ SL(2,ZZZ) is completely determined by
the valuesρ f (a1), . . . ,ρ f (an) andρ f (b1), . . . ,ρ f (b21).

If the terminal point ofαi is a critical value of typeI+1 (or I−1 , resp.), thenρ f (ai) is a
conjugate ofs1 (or of s−1

1 , resp.). Thus a monodromy representationρ f : π1(B−Sf ,y0) →
SL(2,ZZZ) satisfies the following conditions:

(1) For eachi (1≤ i ≤ n), ρ f (ai) is a conjugate ofs1 or of s−1
1 .

(2) ρ f (a1) · · ·ρ f (an) = [ρ f (b1),ρ f (b2)] · · · [ρ f (b21−1),ρ f (b21)].

Conversely, any homomorphismπ1(B−Sf ,y0)→ SL(2,ZZZ) satisfying these conditions is a
monodromy representation of a Lefschetz fibration.

When we consider a Lefschetz fibration over a2-sphere (i.e.,1 = 0), then the right-hand
side of the equation in the second condition above is the identity element ofSL(2,ZZZ).

3. Chart description.

DEFINITION 10. A chart in B is a finite graphΓ in B (possibly being empty or having
hoopsthat are closed edges without vertices) whose edges are labeled with1 or 2 and oriented
so that the following conditions are satisfied:

(1) The degree of each vertex is equal to1, 6 or 12.
(2) For a degree-6 vertex3, the six incident edges are labeled alternately with1 and2; and

three consecutive edges are oriented inward and the other three are oriented outward (see
Figure 2 where{i, j}= {1,2}).

(3) For a degree-12 vertex3, the twelve incident edges are labeled alternately with1 and2;
and all edges are oriented inward or all edges are oriented outward (see Figure 2 where
{i, j}= {1,2}).

(4) Γ ∩∂B =∅.

For a chartΓ , we denote byVert(Γ ) the set of all the vertices ofΓ , and bySΓ the subset of
Vert(Γ ) consisting of the vertices of degree1.

An edge of a chart which is incident to a vertex3 is anincoming edge of3 (or anoutgoing
edgeof 3, resp.) if it is oriented toward3 (or away from3, resp.).
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Figure 2. vertices of a chart.

A vertex of a chart (of degree1 or 12) is negative(or positive, resp.) if all edges incident
to the vertex are incoming edges (or outgoing edges, resp.). Since a degree-6 vertex has three
incoming edges and three outgoing edges, we have the obvious equation:

#{positive degree-1 vertices}−#{negative degree-1 vertices}
= 12(#{negative degree-12vertices}−#{positive degree-12vertices}) .

Among the six edges incident to a degree-6 vertex3 of a chart, three consecutive edges are
incoming edges and the other three are outgoing edges. Amiddle edge of3means the middle one
of the three incoming edges or the middle one of the three outgoing edges. Anon-middle edge
of 3 means an edge incident to3 that is not a middle edge.

Let Γ be a chart inB. A pathη : [0,1]→ B is said to bein general position with respect to
Γ if η([0,1])∩Γ is empty or consists of some points ofΓ −Vert(Γ ) where the pathη intersects
edges ofΓ transversely. To each intersection ofη andΓ , assign a lettersε

i wherei is the label of
the intersecting edge ofΓ andε = +1 (or ε =−1, resp.) ifη intersects the edge from right to left
(or from left to right, resp.) with respect to the orientation of the edge. (Our convention for the
signε follows that of [5], which is opposite to that in Chapter 18 of [6].) The intersection word
of η with respect toΓ means a word obtained by reading the letters assigned to the intersections
alongη . This word will be denoted bywΓ (η) (cf. [6]). Regardings1 ands2 as the matrices
given in the introduction, we assume thatwΓ (η) represents an element ofSL(2,ZZZ).

DEFINITION 11. Let Γ be a chart inB missing a pointy0 of B, and letSΓ be the set of
degree-1 vertices ofΓ . Themonodromy representation associated withΓ is a homomorphism

ρΓ : π1(B−SΓ ,y0)→ SL(2,ZZZ)

defined as follows: For an elementx∈ π1(B−SΓ ,y0), take a representative path

η : [0,1]→ B−SΓ

so thatη is in general position with respect toΓ . We defineρΓ (x) to be the element ofSL(2,ZZZ)
represented by the intersection wordwΓ (η).

LEMMA 12. The homomorphismρΓ : π1(B−SΓ ,y0)→ SL(2,ZZZ) is well-defined.

PROOF. Let η andη ′ be representatives of the same elementx. If a homotopy connecting
η andη ′ misses all of the vertices ofΓ , thenwΓ (η) andwΓ (η ′) represent the same element
in the free group〈s1,s2〉. If the homotopy passes through vertices of degree6 or 12, then the
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words differ by an element in the normal subgroup generated bysisjsis
−1
j s−1

i s−1
j and(sisj)6 for

{i, j}= {1,2}. ThuswΓ (η) andwΓ (η ′) represent the same element ofSL(2,ZZZ). ¤

DEFINITION 13. A Lefschetz fibration described by a chartΓ is a Lefschetz fibration
f : M → B with Sf = SΓ whose monodromy representation is equal toρΓ : π1(B−SΓ ,y0) →
SL(2,ZZZ), up to inner automorphisms ofSL(2,ZZZ).

Since we assume that a Lefschetz fibration has at least one critical value, we also assume
that a chartΓ has at least one degree-1 vertex.

REMARK 14. Let Γ be a chart inB, and lety0 andy0
′ be points ofB−Γ . Take a path

η connecting these two points which is in general position with respect toΓ . Then the two
monodromy representationsρΓ : π1(B−SΓ ,y0)→SL(2,ZZZ) andρΓ

′ : π1(B−SΓ ,y0
′)→SL(2,ZZZ)

associated with the chartΓ with base pointsy0 andy0
′ respectively are related by the following

commutative diagram (whereconj(1)(h) = 1−1h1):

π1(B−SΓ ,y0)
ρΓ−−−−→ SL(2,ZZZ)yη#

yconj(wΓ (η))

π1(B−SΓ ,y0
′)

ρΓ
′

−−−−→SL(2,ZZZ).

THEOREM 15. Any Lefschetz fibration f: M→B over a closed surface B can be described
by a chartΓ .

PROOF. Take a regular valuey0 ∈ B− Sf and consider a monodromy representation
ρ f : π1(B− Sf ,y0) → SL(2,ZZZ) of the Lefschetz fibration by identifying the mapping class
groupMC( f−1(y0)) with MC(T2) ∼= SL(2,ZZZ). Let α1, . . . ,αn andβ1, . . . ,β21 be simple paths
and simple closed paths, respectively, inB as in § 2, wheren is the number of critical val-
ues of f and1 is the genus of the base spaceB, and leta1, . . . ,an,b1, . . . ,b21 be the elements
of π1(B−Sf ,y0) associated with them (cf.§ 2). We decompose a regular neighborhood of
(∪n

i=1αi)∪ (∪21
j=1β j) in B into n+ 1 disks andn+ 21 bands as follows: Recall that, for each

i (1≤ i ≤ n), the terminal point ofαi is a critical value, sayyi . Let N(yi) be a small regu-
lar neighborhood ofyi in B for i (0≤ i ≤ n). Let N′(αi) (1≤ i ≤ n) be a regular neighbor-
hood ofαi ∩ (B−∪n

k=0IntN(yk)) in B−∪n
k=0IntN(yk), and letN′(β j) (1≤ j ≤ 21) be a regular

neighborhood ofβ j ∩ (B−∪n
k=0IntN(yk)) in B−∪n

k=0IntN(yk). Then the union ofn+ 1 disks
N(y0), . . . ,N(yn) andn+21 bandsN′(α1), . . . ,N′(αn), N′(β1), . . . ,N′(β21) is a regular neighbor-
hood of(∪n

i=1αi)∪ (∪21
j=1β j) in B.

We construct a desired chartΓ piece by piece. DefineΓ ∩N(y0) to be empty. For eachi
(1≤ i ≤ n), the monodromyρ f (ai) is a conjugate ofs1 or s−1

1 . Take a word expression ofρ f (ai),
saywis

εi
1 w−1

i , wherewi is a word in{s1,s
−1
1 ,s2,s

−1
2 } andεi ∈ {−1,1}. DefineΓ ∩N(yi) to be

a radial arc inN(yi) connecting the centeryi and a point of∂N(yi) missingN′(αi) whose label
is 1 and it is oriented inward (or outward, resp.) ifεi is −1 (or 1, resp.). DefineΓ ∩N′(αi) to
be a union of some proper arcs inN′(αi) missingN(y0) andN(yi) such that they are labeled and
oriented so that the intersection word ofαi (restricted toN′(αi)) is equal to the wordwi . See
Figure 3, wherewi = s−1

1 s2s2 andεi = 1.
For eachj (1≤ j ≤ 21), we defineΓ ∩N′(β j) to be the union of some proper arcs inN′(β j)

missingN(y0) which are labeled and oriented such that the intersection word ofβ j (restricted to
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Figure 3.

N′(β j)) is a word representing the monodromyρ f (b j).
We have constructedΓ on the neighborhoodN((∪n

i=1αi) ∪ (∪21
j=1β j)) of (∪n

i=1αi) ∪
(∪21

j=1β j). The edges ofΓ (which have been constructed onN((∪n
i=1αi)∪ (∪21

j=1β j))) inter-

sect∂N((∪n
i=1αi)∪ (∪21

j=1β j)) transversely. So we can consider the intersection word of the

closed path∂N((∪n
i=1αi)∪ (∪21

j=1β j)) with respect toΓ . By the construction, this word repre-

sentsρ f (a1) · · ·ρ f (an)([ρ f (b1),ρ f (b2)] · · · [ρ f (b21−1),ρ f (b21)])−1 in SL(2,ZZZ), which is the iden-
tity element ofSL(2,ZZZ). SinceSL(2,ZZZ) has a group presentation

〈s1,s2 |s1s2s1(s2s1s2)−1,(s1s2)6〉,

there exists a finite sequence of words in{s1,s
−1
1 ,s2,s

−1
2 } starting from the intersection word of

the closed path∂N((∪n
i=1αi)∪(∪21

j=1β j)) with respect toΓ and terminating with the empty word
such that each word is related to the previous one by one of the following transformations;

• insertion ofsis
−1
i or s−1

i si for i ∈ {1,2},
• deletion ofsis

−1
i or s−1

i si for i ∈ {1,2},
• insertion ofs1s2s1(s2s1s2)−1 or s2s1s2(s1s2s1)−1,
• insertion of(s1s2)6 or (s1s2)−6.

(Note that deletion ofs1s2s1(s2s1s2)−1 is obtained from insertion ofs2s1s2(s1s2s1)−1 and dele-
tion of sis

−1
i ands−1

i si . Deletion ofs2s1s2(s1s2s1)−1, (s1s2)6 or (s1s2)−6 is also obtained from
the transformations above.) Therefore, by the same argument as in p. 147 of [5] or in Chap-
ter 18 of [6], we can extend the chartΓ constructed onN((∪n

i=1αi)∪ (∪21
j=1β j)) to a chart in

a slightly bigger neighborhoodN′((∪n
i=1αi)∪ (∪21

j=1β j)) of (∪n
i=1αi)∪ (∪21

j=1β j) in B such that

Γ ∩ ∂N′((∪n
i=1αi)∪ (∪21

j=1β j)) =∅. This is a desired chartΓ in B, since by construction, we
haveρΓ (ai) = ρ f (ai) andρΓ (b j) = ρ f (b j) for i (1≤ i ≤ n) and j (1≤ j ≤ 21). ¤

4. Moves on charts.

In the previous section, we have seen that any Lefschetz fibration is described by a chart.
Such a chart description is not unique. Here we introduce some moves on charts which do not
change the isomorphism class of the Lefschetz fibration. These moves play an important role in
our proof of the classification theorem.

LEMMA 16. Let Γ andΓ ′ be charts in B. Suppose that there exists a2-disk E in B such
thatΓ andΓ ′ are identical outside of E and thatΓ andΓ ′ have no degree-1 vertices in E. Then
Lefschetz fibrations described byΓ andΓ ′ have the same monodromy representation.
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PROOF. Take a pointy0 in B−E missingΓ andΓ ′ and consider the monodromy represen-
tationsρΓ : π1(B−S,y0)→ SL(2,ZZZ) andρΓ ′ : π1(B−S,y0)→ SL(2,ZZZ), whereS= {y1, . . . ,yn}
is the set of degree-1 vertices ofΓ , which is equal to that ofΓ ′. ThenρΓ = ρΓ ′ . This is seen
as follows: Letα1, . . . ,αn andβ1, . . . ,β21 be paths and closed paths, respectively, inB as before.
We may assume these paths to be disjoint fromE. ThenρΓ (ai) = ρΓ ′(ai) andρΓ (b j) = ρ f (b j)
for i (1≤ i ≤ n) and j (1≤ j ≤ 21). ThusρΓ = ρΓ ′ . ¤

DEFINITION 17. When two chartsΓ andΓ ′ are in the situation of Lemma 16, we say that
Γ is obtained fromΓ ′ by aCI-movein E. A CI-move illustrated in Figure 4 is called achannel
change.

Typical CI-moves are illustrated in Figure 5.

Figure 4. channel change.

Figure 5. some CI-moves.

LEMMA 18. Let Γ andΓ ′ be charts in B. Suppose that there exists a2-disk E in B such
that Γ andΓ ′ are identical outside of E and thatΓ andΓ ′ differ by one of Figure6 in E. Then
Lefschetz fibrations described byΓ andΓ ′ have the same monodromy representation up to an
equivalence.

PROOF. By an isotopic deformation inE, we may assume that the degree-1 vertex ofΓ in
E and that ofΓ ′ are located in the same position ofE so that the set of degree-1 vertices ofΓ is
equal to that ofΓ ′, sayS. Take a pointy0 in B−E missingΓ andΓ ′ and consider the monodromy
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Figure 6. CII-moves.

representationsρΓ : π1(B−S,y0)→ SL(2,ZZZ) andρΓ ′ : π1(B−S,y0)→ SL(2,ZZZ). Then we see
thatρΓ = ρΓ ′ by a similar argument as in the proof of the previous lemma. ¤

DEFINITION 19. When two chartsΓ andΓ ′ are in the situation of Lemma 18, we say that
Γ is obtained fromΓ ′ by aCII-movein E.

Note that, for a CII-move, the edge connecting the degree-1 vertex and the degree-6 vertex
in E is a non-middle edge of the degree-6 vertex.

By a C-move, we mean a CI-move, a CII-move or an isotopic deformation inB. Two
charts are said to beC-move equivalentif they are related by a finite sequence of C-moves.
By Lemmas 16 and 18, such charts describe Lefschetz fibrations with the same monodromy
representation up to an equivalence. (By Theorem 21 (and the proof of Theorem 8), we see
that the converse is also true under a certain condition; namely, two chartsΓ andΓ ′ describing
Lefschetz fibrations with equivalent monodromy representations are C-move equivalent provided
thatn+(Γ ) = n+(Γ ′), n−(Γ ) = n−(Γ ′) andn+(Γ )−n−(Γ ) 6= 0, wheren+ andn− stand for the
numbers of positive and negative, respectively, degree-1 vertices of the chart.)

Note that CII-moves in this paper are called CIII-moves in [5] and [6].
Figure 7 is an example of a sequence ofC-moves: The first move is a CI-move and the last

two are CII-moves.

Figure 7. label change of a free edge.

5. The main theorem.

DEFINITION 20. A (d1,d2)-type edge(or a (d1,d2)-edge) of a chartΓ is an edge ofΓ
whose endpoints are vertices of degreesd1 andd2, whered1,d2 ∈ {1,6,12} with d1 ≤ d2.

A free edgeof Γ is the union of a(1,1)-type edge and its endpoints.
An oval nestof Γ is the union of a free edge and some (or no) concentric hoops surrounding

the free edge such that it is contained in a2-disk, sayE, in B and the remainder ofΓ is outside
E (cf. [6]).

A nucleonof Γ is the union of a degree-12 vertex, twelve degree-1 vertices and twelve
(1,12)-type edges connecting these vertices.
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A nucleon ispositive(or negative, resp.) if the twelve degree-1 vertices are positive (or
negative, resp.).

THEOREM 21. Any chartΓ in B can be transformed, by C-moves, to a chartΓ0∪Γ1 in B
satisfying the following conditions:

(1) There is a2-disk, say E, in B such thatΓ0 is inside E andΓ1 is outside E.
(2) Γ0 consists of oval nests and nucleons.
(3) The nucleons ofΓ0 are all positive or all negative.
(4) Γ1 does not have degree-1 vertices or degree-12vertices.

Furthermore, ifΓ0 has at least one nucleon, then applying C-moves, we can arrange so that
all oval nests inΓ0 are free edges with label1 and thatΓ1 is empty.

We devote this section to proving this theorem.

LEMMA 22. Any chart can be transformed by C-moves to a chart without(1,6)-type
edges.

The basic idea of this lemma and its proof is the same as that of Proposition 21 and
Lemma 24 in [5]. The proof gives an algorithm to reduce the number of the(1,6)-type edges
from an arbitrary chart with(1,6)-type edges. This process will be referred to as thereduction
process of(1,6)-type edges.

PROOF. (Step 1) Suppose that there exists a(1,6)-type edge which is a non-middle edge
of the degree-6 vertex. Apply a CII-move and eliminate the degree-6 vertex. Then one of the
following occurs.

• The number of(1,6)-type edges decreases. So does the number of degree-6 vertices.
• The number of(1,6)-type edges is unchanged, but the number of degree-6 vertices de-

creases.

Thus the total number of(1,6)-type edges and degree-6 vertices decreases.
(Step 2 (1)) Suppose that there exists a(1,6)-type edge which is a middle edge of the

degree-6 vertex. We denote the(1,6)-type edge bye, the degree-1 vertex by30 and the degree-6
vertex by31. We only consider the case wheree is an outgoing edge of31, since the other case
wheree is an incoming edge of31 is treated in the same way.

Let K be the region ofB−Γ whose closureCl(K) in B contains30, 31 ande. Let K be a
‘completion’ of K; namely,K is a compact oriented surface with a mapι : K → B such that the
restrictionι |Int(K) : Int(K)→ K is an orientation preserving homeomorphism. By aboundary
loop of K we mean a loop inB that is the image underι of a boundary loop of the completion
of K. Here we assume that the orientation of a boundary loop is equal to the orientation induced
from K.

Let f1, f2, . . . , fm be a sequence of edges ofΓ with signs (in the exponential notation) such
that the edges appear in this order when we walk along the unique boundary loop ofK starting
from 30 and that the sign of an edge is positive if the orientation of the edge is the same as the
orientation of the boundary loop; otherwise the sign is negative. For example, see Figure 8,
whereK is an open disk oriented counterclockwise in the picture. For thisK, the lengthm is
equal to11and the sequencef1, . . . , fm is
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e−1
1 ,e+1

2 ,e+1
3 ,e−1

4 ,e+1
4 ,e−1

5 ,e+1
5 ,e−1

6 ,e+1
7 ,e−1

8 ,e+1
1 .

For such a sequencef1, . . . , fm, we consider a sequencew( f1), . . . ,w( fm) of elements ofSL(2,ZZZ)
defined byw( fk) = sε

i for k (1≤ k≤m) wherei ∈ {1,2} is the label of the edgefk andε is the
sign of fk. For the above example,w( f1), . . . ,w( fm) is

s−1
1 ,s+1

2 ,s+1
1 ,s−1

2 ,s+1
2 ,s−1

1 ,s+1
1 ,s−1

2 ,s+1
1 ,s−1

2 ,s+1
1 .

Figure 8. boundary loop ofK.

Let i be the label ofe and let j be the complementary label with{i, j} = {1,2}. Since we
are assuming thate is an outgoing edge of31, we havew( f1) = s−1

i andw( fm) = s+1
i .

(Case 1) Suppose that there is a consecutive pairfk and fk+1 in the sequencef1, . . . , fm for
somek such thatw( fk) = s+1

j andw( fk+1) = s+1
i . In this case, the vertex between the edgesfk and

fk+1 must be a degree-6 vertex, andfk and fk+1 are non-middle edges of this vertex (see Figure
9). Move the vertexv0 and the edgee toward the edgefk+1 in K by an isotopic deformation,
and apply a channel change between the edgeseand fk+1 as in Figure 9. In the result, the vertex
30 is incident to a(1,6)-type edge which is a non-middle edge of a degree-6 vertex. Go back to
Step 1.

Figure 9. reduction of(1,6)-type edge, 1.

(Case 2) Suppose that there is a consecutive pairfk and fk+1 in the sequencef1, . . . , fm
for somek such thatw( fk) = s−1

i andw( fk+1) = s−1
j . In this case, the vertex between the edges

fk and fk+1 must be a degree-6 vertex, andfk and fk+1 are non-middle edges of this vertex (see
Figure 10). Move the vertexv0 and the edgee toward the edgefk in K by an isotopic deformation,
and apply a channel change between the edgese and fk as in Figure 10. In the result, the vertex
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30 is incident to a(1,6)-type edge which is a non-middle edge of a degree-6 vertex. Go back to
Step 1.

Figure 10. reduction of(1,6)-type edge, 2.

(Step 2 (2)) By Step 2 (1), we may assume that

(*) there is no consecutive pairfk and fk+1 in the sequencef1, . . . , fm such that
(w( fk),w( fk+1)) = (s+1

j ,s+1
i ) or (s−1

i ,s−1
j ).

Suppose that there is no edge inf1, . . . , fm except f1 and fm incident to a degree-1 vertex;
i.e., suppose that all vertices (except30) incident to the edgesf1, . . . , fm are vertices of degree6
or 12. In this case, for each consecutive pairfk and fk+1, the labels offk and fk+1 are distinct.
Sincew( f1) = s−1

i and since we assume the condition (*), the sequencew( f1), . . . ,w( fm) must
be of the form

s−1
i ,s+1

j ,s−1
i ,s+1

j , . . . .

This contradicts thatw( fm) = s+1
i .

Therefore there must be an edge inf1, . . . , fm exceptf1 and fm incident to a degree-1 vertex.
Let fk be the first one among such edges. Note thatfk and fk+1 are the same edge with opposite
signs. Note also that,w( fk′) = s−1

i for any odd integerk′ with 1≤ k′ ≤ k, andw( fk′) = s+1
j for

any even integerk′ with 2≤ k′ ≤ k. Therefore, according ask is even or odd, there are two cases
as follows:

(1) (w( fk−1),w( fk),w( fk+1)) = (s−1
i ,s+1

j ,s−1
j ), or

(2) (w( fk−1),w( fk),w( fk+1)) = (s+1
j ,s−1

i ,s+1
i ).

Let 3 be the vertex incident tofk−1 and fk, which is of degree6 or 12.
(Case 1) For the case (1) withk≥ 3, move30 and the edgee toward the edgefk−1 in K

by an isotopic deformation and apply a channel change between the edgese and fk−1. Let f ′k−1
denote the new edge incident to3 obtained by this move. If3 is a degree-12 vertex, then this
move reduces the number of the(1,6)-type edges. If3 is a degree-6 vertex, thenf ′k−1 or fk is a
non-middle edge of3, and these edges are(1,6)-type edges. Thus we can go back to Step 1.

For the case (1) withk = 2, note thatf2 and f3 are the same edge (with the opposite signs)
that is a(1,6)-type edge and is a non-middle edge of a degree-6 vertex. Go back to Step 1.

(Case 2) For the case (2), movev0 and the edgee toward the edgefk in K by an isotopic
deformation and apply a channel change between the edgeseand fk. Then we obtain a free edge
and reduce the number of the(1,6)-type edges.

By repetition of this procedure, we can eliminate the(1,6)-type edges from a chart. ¤

LEMMA 23. Let Γ = Γ0∪Γ1 be a chart in B such thatΓ0 is contained in a2-disk E in B
and thatΓ1 is outside E. Up to C-moves, we can moveΓ0 into an arbitrary region of B−Γ1 by
addingΓ0 some hoops surrounding it.
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PROOF. By an isotopic deformation and a single channel change as in Figure 11, we can
moveΓ0 to the next region ofB−Γ1. This yields a single hoop surroundingΓ0. By this process,
we see the result. ¤

Figure 11. passing process.

LEMMA 24. (1) We can move an oval nest of a chart into any region by adding additional
hoops.

(2) We can move a nucleon of a chart into any region.

PROOF. The assertion (1) is a direct consequence of Lemma 23 (cf. Lemma 19 of [5]). For
(2), by Lemma 23, we can move a nucleon by adding some hoops. Applying a channel change
between the innermost hoop surrounding the nucleon and an edge of the nucleon with the same
label, we can remove the innermost hoop. Repeat this, until all hoops are removed. ¤

LEMMA 25. The local replacement illustrated in Figure12 is a CI-move, where the vertex
is a degree-12vertex and the shaded box means a subchart with four degree-6 vertices illustrated
in Figure13.

PROOF. It is obvious by the definition of a CI-move. ¤

Figure 12.

PROOF OFTHEOREM 21. By moves in Lemma 25 (Figure 12) and a CI-move illustrated
in (3) of Figure 5, we can remove any pair of a positive degree-12 vertex and a negative one.
Thus, the chart is transformed to a chart such that there exist no degree-12 vertices or such that
the degree-12vertices are all positive or all negative.

First we consider the case where there exist no degree-12 vertices inΓ . By the reduction
process of(1,6)-edges in Lemma 22, remove all(1,6)-type edges from the chart. This process
does not yield degree-12vertices. Thus every degree-1 vertex is connected with another degree-1
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Figure 13.

vertex by a free edge. LetE be a2-disk in B which is disjoint from the chart. By Lemma 24(1),
we move all free edges intoE and they become oval nests inE, that form a desired chartΓ0. The
remainder has neither degree-1 vertices nor degree-12vertices, which is a desired chartΓ1.

We consider the case where all degree-12 vertices are negative and there exists at least one
degree-12 vertex. (The case where all degree-12 vertices are positive is treated similarly.) By
the reduction process of(1,6)-edges in Lemma 22, remove all(1,6)-type edges from the chart.
Since there exist no positive degree-12vertices, all negative degree-1 vertices are connected with
positive degree-1 vertices by(1,1)-type edges to form free edges. LetE be a2-disk inB which is
disjoint from the chart. Move the free edges into a2-diskE as oval nests. There exist no negative
degree-1 vertices outsideE. By the equation

#{positive degree-1 vertices}−#{negative degree-1 vertices}
= 12(#{negative degree-12vertices}−#{positive degree-12vertices}) ,

we see that the number of (positive) degree-1 vertices outside ofE is 12 times the number of
(negative) degree-12 vertices. Therefore all (positive) degree-1 vertices outsideE and all (neg-
ative) degree-12 vertices are connected by(1,12)-type edges and form nucleons. Move these
nucleons intoE by Lemma 24(2). The remainder has neither degree-1 vertices nor degree-12
vertices. This completes the proof of the first assertion of the theorem.

Now we prove the second assertion. Consider thatΓ = Γ0∪Γ1 is as in the first assertion and
suppose thatΓ0 has at least one nucleon. By C-moves illustrated in Figure 7, we may assume that
all free edges in the oval nests have label1. For an oval nest with some hoops, apply a channel
change between the outermost hoop of the oval nest and an edge of a nucleon with the same
label. Then the outermost hoop is removed. Repeat this, and we can remove all hoops from the
oval nests. NowΓ0 consists of free edges with label1 and nucleons.

We prove that the chartΓ1 lying outsideE can be transformed to the empty set by induction
on the number of degree-6 vertices ofΓ1.

If the number of degree-6 vertices ofΓ1 is 0, thenΓ1 has no vertices and hence it consists
of hoops. Move a nucleon ofΓ0 from E toward a hoop ofΓ1. By a channel change between the
hoop and an edge of the nucleon with the same label, we can remove the hoop fromΓ1. Continue
this, until all hoops are removed and thenΓ1 is empty. Move the nucleon back intoE.

Now we suppose that there exists at least one degree-6 vertex ofΓ1. Let 3 be a degree-6
vertex ofΓ1 and lete be a non-middle incoming edge of3 (or a non-middle outgoing edge of3,
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resp.) when the nucleons are positive (or negative, resp.). By Lemma 24(2), we move a nucleon
of Γ0 from E toward the edgee and apply a channel change between the edgee and an edge
of the nucleon with the same label. Then the edgee and the edge of the nucleon change into
a (1,6)-edge and a(6,12)-type edge. By a CII-move, we remove the degree-6 vertex3. Then
apply the reduction process of(1,6)-type edges in Lemma 22 to this chart inB−E. Since this
process does not increase the number of degree-6 vertices and since there exist a single degree-12
vertex and12 degree-1 vertices in this chart, after the reduction process of(1,6)-type edges, we
obtain a nucleon again inB−E, and the remainder inB−E is a chart which has fewer degree-6
vertices thanΓ1. Move the nucleon back intoE. By induction hypothesis, we see thatΓ1 can be
transformed to the empty set. ¤

6. The classification theorem.

Using Theorem 21, we show the results on classification of Lefschetz fibrations stated in
§ 1.

Theorems 6 and 7 are special cases of Theorem 8. We prove Theorem 8 by use of chart
description.

PROOF OFTHEOREM 8. The only if part is trivial. We prove the if part. Suppose that
1(B) = 1(B′), n+( f ) = n+( f ′), n−( f ) = n−( f ′) and thatn+( f )−n−( f ) 6= 0. Consider charts
Γ in B andΓ ′ in B′ describing the Lefschetz fibrationsf and f ′. By Theorem 21,Γ andΓ ′

are transformed toΓ0∪Γ1 andΓ ′
0∪Γ ′

1 as in the first assertion of Theorem 21, respectively.
Sincen+( f )− n−( f ) 6= 0, there must be some nucleons inΓ0. Thus, by the second assertion
of Theorem 21, we may assume thatΓ0 consists of free edges with label1 and nucleons andΓ1

is empty. The number of free edges ismin{n+( f ),n−( f )}. The number of degree-1 vertices
appearing in the nucleons isn+( f )+ n−( f )−2min{n+( f ),n−( f )} (= |n+( f )−n−( f )|). The
number of nucleons is this number divided by12. The nucleons inΓ0 are all positive ifn+( f )−
n−( f ) > 0, or all negative ifn+( f )−n−( f ) < 0. We assume thatΓ is a chart of this form. This
situation is the same forΓ ′. Then there exits an orientation preserving diffeomorphism fromB
to B′ which mapsΓ to Γ ′, and by Theorem 9, we see thatf and f ′ are isomorphic. ¤

The following theorem was treated in [14], which is a generalization of Theorem 5. Using
the chart description method, we have a remarkably quick proof to this.

THEOREM 26. Let11,12, . . . ,1n be elements of SL(2,ZZZ) which are conjugates of s1 or s−1
1

with 1112 · · ·1n = 1. Let n+ (or n−, resp.) be the number of1k (1≤ k≤ n) such that1k is a
conjugate of s1 (or s−1

1 , resp.). So n+ +n− = n.
(1) Suppose that n+ 6= n−. Then n+−n− is a multiple of12, say n+−n− = 12εm for ε ∈

{+1,−1} and for a positive integer m. By successive application of elementary transformations,
the n-tuple(11,12, . . . ,1n) can be transformed to an n-tuple(h1,h2, . . . ,hn) with

hk =





sε
1 for odd k with1≤ k≤ 12m,

sε
2 for even k with1≤ k≤ 12m,

s1 for odd k with12m< k≤ n,

s−1
1 for even k with12m< k≤ n.
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(2) Suppose that n+ = n−. By successive application of elementary transformations, the
n-tuple(11,12, . . . ,1n) can be transformed to an n-tuple

(w1,w
−1
1 ,w2,w

−1
2 , . . . ,wn+ ,w−1

n+ )

for some elements w1, . . . ,wn+ which are conjugates of s1.

PROOF. Let B be a2-disk and letS= {y1, . . . ,yn} be a set ofn interior points ofB. Take
a pointy0 of ∂B and consider a Hurwitz path system,α1, . . . ,αn, connectingy0 and the points of
{y1, . . . ,yn}, and consider the associated generator system,a1, . . . ,an, of π1(B−S,y0).

By the argument of the proof of Theorem 15, there exists a chartΓ in B such that the
monodromy representationρΓ : π1(B−S,y0)→ SL(2,ZZZ) satisfiesρΓ (ak) = 1k for k (1≤ k≤ n).
Note thatΓ hasn+ positive degree-1 vertices andn− negative degree-1 vertices.

We note that whenΓ is transformed to a chartΓ ′ by C-moves and isotopic defor-
mations in B, the monodromy representationsρΓ and ρΓ ′ are equivalent in the sense of
[6] (p. 127) and then-tuple (11,12, . . . ,1n) = (ρΓ (a1),ρΓ (a2), . . . ,ρΓ (an)) is transformed to
(ρΓ ′(a1),ρΓ ′(a2), . . . ,ρΓ ′(an)) by successive application of elementary transformations (cf. [17],
p. 127 of [6]).

Now, transform the chartΓ to a chartΓ ′ = Γ0∪Γ1 as in the first assertion of Theorem 21.
Applying a CI-move, we may assume thatΓ1 =∅. Then|n+−n−| is the number of the degree-1
vertices appearing in the nucleons ofΓ0. Thusn+−n− = 12εm, whereε = +1 (or−1, resp.) if
the nucleons ofΓ0 are positive (or negative, resp.) andm is the number of the nucleons.

(1) Suppose thatn+ 6= n−. Thenm 6= 0, and there exists at least one nucleon inΓ0. By
the second assertion of Theorem 21, we may assume that all oval nests ofΓ0 are free edges with
label 1. By an isotopic deformation inB, we can move the chartΓ ′ so that the monodromy
representationρΓ ′ : π1(B−S,y0)→ SL(2,ZZZ) satisfies

ρΓ ′(ak) =





sε
1 for oddk with 1≤ k≤ 12m,

sε
2 for evenk with 1≤ k≤ 12m,

s1 for oddk with 12m< k≤ n,

s−1
1 for evenk with 12m< k≤ n.

Therefore we have the first assertion.
(2) Suppose thatn+ = n−. Then there exist no nucleons inΓ0, andΓ0 consists of oval

nests. The number of oval nests is equal ton+. By C-moves illustrated in Figure 7, we may
assume that all free edges in the oval nests have label1. By an isotopic deformation inB, we
can moveΓ ′ so that the monodromy representationρΓ ′ : π1(B−S,y0)→ SL(2,ZZZ) satisfies that
(ρΓ ′(a1),ρΓ ′(a2), . . . ,ρΓ ′(an−1),ρΓ ′(an)) is

(w1,w
−1
1 ,w2,w

−1
2 , . . . ,wn+ ,w−1

n+ )

for some elementsw1, . . . ,wn+ which are conjugates ofs1. ¤

REMARK 27. Our main theorem (Theorem 21), or Theorem 26, can be used in order to
describe and simplify the monodromy representations of Lefschetz fibrationsf with n+( f )−
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n−( f ) = 0. In this case, we have the same number of singular fibers of typeI+1 and of typeI−1 .
We can make them in pairs with trivial surrounding monodromy consisting of aI+1 singular fiber
and aI−1 type singular fiber. Such a pair corresponds to a free edge in the chart description. It
can be deformed to make a “twin” type singular fiber ([14]). Then the classification is reduced to
that of torus fibrations with twin singular fibers. The classification problem of diffeomorphism
types of the total spaces of such fibrations is treated in [4] when the base space is a sphere, or in
[20] when the1st Betti number of the total space is odd.

Some interesting topics are also found in [1], [8], [12] and [18].
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