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Abstract. Let L = ∑d
i=1 Xi(z)∂zi be a holomorphic vector field degenerating atz= 0 such

that Jacobi matrix((∂Xi/∂zj )(0)) has zero eigenvalues. ConsiderLu = F(z,u) and letũ(z) be a
formal power series solution. We study the Borel summability of ˜u(z), which implies the existence
of a genuine solutionu(z) such thatu(z) ∼ ũ(z) asz→ 0 in some sectorial region. Further we
treat singular equations appearing in finding normal forms of singular vector fields and study to
simplify L by transformations with Borel summable functions.

0. Introduction.

Let L = ∑d
i=1Xi(z)∂zi be a holomorphic vector field in a neighborhood of the origin inCCCd

and which is singular at the origin, that is,Xi(0) = 0 for all 1≤ i ≤ d. Let F(z,u) be a holo-
morphic function in a neighborhood of(z,u) = (0,0) ∈ CCCd+1. Let us considerLu = F(z,u),
which is a singular first order semilinear partial differential equation. LetΣ = {z;X1(z) =
· · · = Xd(z) = 0} and

(
(∂Xi/∂zj)(z)

)
be the Jacobi matrix of(X1(z),X2(z), · · · ,Xd(z)). Sup-

pose thatΣ is a submanifold with codimΣ = d1. Setd0 = rank
(
(∂Xi/∂zj)(0)

)
and let{λi}d0

i=1
be nonzero eigenvalues of

(
(∂Xi/∂zj)(0)

)
. SinceL is singular, Cauchy Kowalevsky’s Theorem

is not available. The existence of holomorphic solutions of equations of this type was studied
under the conditiond0 = d1 and Poincaŕe’s condition on{λi}d0

i=1 (see [8], [9] and [12]). How-
ever there are formal series solutions in many other cases. In general we can not expect the
convergence of these formal solutions. Gevrey type estimates of coefficients of formal so-
lutions were obtained in [18]. One of our aims is to give an analytical meaning of formal
solutions. In the present paper we studyL with d1 = d0 + 1. Let ũ(z) ∈ CCC[[z]] be a formal
solution. For our aims firstly we simplifyL by holomorphic local coordinates transforma-
tions. We show in this paper under some additional conditions that we can find a holomorphic
local coordinates system(x(z),y(z), t(z)) ∈CCCd0×CCCd−d1×CCC, x(0) = y(0) = t(0) = 0, such that
Σ = {x1(z) = · · ·= xd0(z) = t(z) = 0} and a solutionu(x,y, t) which is holomorphic in

{(x,y); |x|< r, |y|< r}×{0 < | t|< r0, |argt−θ |< π/2γ +δ} (0.1)

for someθ andδ > 0, whereγ > 0 is a constant determined byL. Further it holds thatu(x,y, t)
has an asymptotic expansionu(x,y, t) ∼ ∑∞

n=0un(x,y)tn as t → 0 in this sectorial region with
remainder estimate of Gevrey type
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∣∣∣∣u(x,y, t)−
N−1

∑
n=0

un(x,y)tn

∣∣∣∣≤ ABNΓ
(

N
γ

+1

)
| t|N (0.2)

andu(x(z),y(z), t(z)) = ũ(z) as a formal series (Theorem 1.5).
As a special but important case, singular semilinear equations appear in finding normal

forms of singular vector fields (see [1], [8]), which are more profoundly studied than general
ones. It is well known that if all the eigenvalues of

(
(∂Xi/∂zj)(0)

)
are non zero and distinct, then

the formal solutions (formal transformations to normal forms) are convergent under Poincaré’s
condition, more generally, Siegel’s one [16] or Bruno’s one [7]. Furthermore we assumed0 =
d−1 andd1 = d, so zero is a simple eigenvalue of

(
(∂Xi/∂zj)(0)

)
. The other aim of this paper

is to simplifyL, by using not only holomorphic functions in a full neighborhood of the origin but
also holomorphic functions with asymptotic expansion in a sectorial region, so we find a normal
form of L (Theorems 1.7 and 1.8).

There are several definitions and notions concerning formal series and functions with
asymptotic series. The theory of the multi-summability of formal series has recently developed
(see [2], [3]) and is important in the theory of functions with asymptotic series. Borel summa-
bility is a special case of multi-summability, that is, it is one-summability. It is shown in [4], [5]
and [6] that formal power series solutions of ordinary differential equations are multi-summable,
which also means the existence of genuine solutions in some strict sense. As for partial differen-
tial equations, the relation between formal solutions and genuine solutions were studied in [13]
and [14], but the multi-summability of formal solutions was not investigated. So the sector where
the asymptotic expansion is valid is not wide and there are many genuine solutions with the same
asymptotic expansion. There are few results about multi-summability of formal solutions of
partial differential equations. Borel summability of formal solutions of Cauchy problem of heat
equation was studied in [11], and it is shown in [15] that formal solutions are multi-summable for
some class of partial differential equations. We adopt in this paper the notion of Borel summa-
bility and study formal solutions of singular first order semilinear equations. We note that (0.1)
and (0.2) mean thatu(x,y, t) is Borel summable with respect tot.

The contents of this paper is the following:

1. Notations, definitions and main results.
2. Singular first order partial differential equations on sectorial regions.
3. Coordinates transformations by holomorphic functions.
4. Normal forms of some singular vector fields by transformations with holomorphic func-

tions on a sectorial region.
5. Borel and Laplace transforms, convolution and majorant functions.
6. Proofs of Theorems 2.3 and 2.4.
7. Existence of solutions of singular differential equations.

We study in Section 2 the existence of solutions of some first order semilinear partial differential
equation on a sectorial region and give Theorems 2.3 and 2.4 which are tools to show main
results. Their proofs need the theory of Borel transform and Laplace transform of holomorphic
functions on sectorial regions and majorant functions. Hence they are given in section 6. In
Sections 3 and 4 we start discussions by assuming Theorems 2.3 and 2.4. In Section 3 we
transformL to the operator studied in Section 2 by holomorphic coordinates transformations and
show one of the main results (Theorem 1.5). In Section 4 we further transformL by holomorphic
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functions on a sectorial region (Borel summable functions) and show the other main results
(Theorems 1.7 and 1.8). We prepare in Section 5 for proving the theorems in Section 2, that
is, we give briefly the properties of Borel transform, Laplace transform and majorant functions.
We devote Section 6 to the proofs of Theorems 2.3 and 2.4. We use in Sections 2, 3 and 4 the
results about existence of solutions of some singular semilinear ordinary or partial differential
equations, so we summarize them in Section 7.

1. Notations, definitions and main results.

In this section we give notations and definitions.NNN = {0,1,2, · · ·} is the set of all nonnega-
tive integers. For open setsV andU , V b U means thatV is compact andV ⊂U . Firstly let us
introduce spaces of formal series and those of holomorphic functions on sectorial regions related
to formal series. We denote byO(Ω) the set of all holomorphic functions on a regionΩ . Let
t ∈CCC. Forθ ∈ RRRandr,δ > 0 setS(θ ,δ , r) = {0 < | t|< r; |argt−θ |< δ}, S(θ ,δ ) = S(θ ,δ ,∞)
andS{0}(θ ,δ ) = {t ∈ S(θ ,δ );0 < | t| < ρ(argt)}, whereρ(·) > 0 is some positive continuous
function on(θ −δ ,θ +δ ), which is called a sectorial neighborhood oft = 0 in S(θ ,δ ).

Let x = (x1,x2, · · · ,xn) ∈ CCCn and |x| = max{|xi |;1 ≤ i ≤ n}. For a multi-indexα =
(α1, · · · ,αn)∈NNNn, |α|= ∑n

i=1 αi andxα = xα1
1 xα2

2 · · ·xαn
n . A seriesf̃ (x) = ∑α∈NNNn fαxα , fα ∈CCC, is

called a formal power series inx. The set of all such formal power series is denoted byCCC[[x]]. The
totality of all convergent power series inx, that is, all holomorphic functions in a neighborhood
of x = 0, is denoted byCCC{x}. LetU ⊂CCCn be an open polydisk centered at the origin and the set
of all such polydisks is denoted byU0. The set of all formal series power series in one variablet
with coefficients inO(U), f̃ (x, t) = ∑∞

m=0 fm(x)tm ( fm(x) ∈O(U)), is denoted byO(U)[[t]].

DEFINITION 1.1. Let f̃ (x, t) = ∑∞
m=0 fm(x)tm∈O(U)[[t]]. We say thatf̃ (x, t) has Gevrey

orders in t, if for anyV b U there are positive constantsA andB such that

sup
x∈V

| fm(x)| ≤ ABmΓ (sm+1). (1.1)

The set of all such formal series is denoted byO(U)[[t]]s.

Let us introduce spaces of holomorphic functions on sectorial regions with asymptotic ex-
pansion. For the details of this topic we refer to [2] and [3].

DEFINITION 1.2. Let γ > 0 andU be an open polydisk centered atx = 0. Let f (x, t)
be a holomorphic function onU ×S(θ ,δ , r) with asymptotic expansionf (x, t) ∼ ∑∞

m=0 fm(x)tm

( fm(x) ∈ O(U)) in the following sense. For anyV b U there exist constantsA andB such that
for anyN ∈ NNN

sup
x∈V

∣∣∣∣ f (x, t)−
N−1

∑
m=0

fm(x)tm

∣∣∣∣≤ ABNΓ
(

N
γ

+1

)
| t|N (1.2)

holds inS(θ ,δ , r). The set of all such holomorphic functions is denoted byA {γ}(U×S(θ ,δ , r)).

Set
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CCC{x}[[t]]s := ∪
U∈U0

O(U)[[t]]s, (1.3)

O(U){t}γ,θ := ∪δ>π/2γ ∪r>0 A {γ}(U×S(θ ,δ , r)), (1.4)

CCC{x}{t}γ,θ := ∪
U∈U0

O(U){t}γ,θ . (1.5)

For each f (x, t) ∈ CCC{x}{t}γ,θ the coefficients{ fm(x)}m∈NNN of the asymptotic expansion are
uniquely determined and we can define a homomorphismJ : CCC{x}{t}γ,θ ⇒CCC{x}[[t]]1/γ by

(J f )(x, t) :=
+∞

∑
m=0

fm(x)tm∈CCC{x}[[t]]1/γ . (1.6)

Since δ > π/(2γ), J is not surjective but injective. Therefore, we can identifyf̃ (x, t) =
(J f )(x, t) ∈ J(CCC{x}{t}γ,θ )⊂CCC{x}[[t]]1/γ with f (x, t) = (J−1 f̃ )(x, t) ∈CCC{x}{t}γ,θ .

DEFINITION 1.3. Let f̃ (x, t) ∈CCC{x}[[t]]1/γ . If there existsf (x, t) ∈CCC{x}{t}γ,θ such that
f̃ = J f , then we say that̃f (x, t) is γ-Borel summable in the directionθ and f (x, t) is γ-Borel
sum of f̃ (x, t). We also say thatf (x, t) ∈CCC{x}{t}γ,θ is γ-Borel summable in the directionθ .

Next we give conditions on vector fields. Letz = (z1, · · · ,zd) ∈ CCCd, ∂zi = ∂/(∂zi), ∂z =
(∂z1, · · · ,∂zd) andL = L(z,∂z) be a holomorphic vector field in a neighborhoodW of the origin,

L(z,∂z) =
d

∑
i=1

Xi(z)∂zi . (1.7)

L is singular atz= 0, that is,Xi(0) = 0 for all 1≤ i ≤ d. Set

Σ = {z∈W;Xi(z) = 0 for i = 1,2, · · · ,d} (1.8)

and denote the Jacobi matrix of(X1(z),X2(z), · · · ,Xd(z)) by
(
(∂Xi/∂zj)(z)

)
. We introduce con-

ditions C.1 and C.2 onL.

C.1 Σ is a complex submanifold with codimensiond1.
C.2 The Jordan canonical form of

(
(∂Xi/∂zj)(0)

)
is




λ1 0 · · · . . . · · · 0 · · · · · · 0
µ1 λ2 0 . . . · · · 0 · · · · · · 0
0 µ2 λ3 · · · · · · 0 · · · · · · 0
...

...
...

...
...

...
...

...
... 0

0 · · · · · · 0 µd0−1 λd0 0 · · · 0
0 · · · · · · · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 · · · · · · · · · · · · · · · · · · 0 0




.
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Hereλi 6= 0 for 1≤ i ≤ d0 and µi = 0 or 1 and the convex hull of the set ofd0 points
{λ1, · · · ,λd0} in the complex plane does not contain the origin.

The rank of
(
(∂Xi/∂zj)(0)

)
is d0 andd0 ≤ d1. Setd2 = d−d1. Suppose thatL satisfies condi-

tions C.1 and C.2. Furthermore assumed0 < d1. We introduce other conditions. In order to do so
we give some definitions and notations aboutCCC{z}. Forϕi(z)∈CCC{z} (i = 1, · · · , p) we denote by
I (ϕ1,ϕ2, · · · ,ϕp) the ideal generated by them inCCC{z}. We denote byI (Σ) the ideal consisting
of elements inCCC{z} vanishing onΣ . LetΣ = {z∈W; ζi(z) = 0, 1≤ i ≤ d1}, whereζi(0) = 0 and
{ζi(z)}1≤i≤d1 are functionally independent. ThenI (Σ) = I (ζ1,ζ2, · · · ,ζd1) andXi(z)∈I (Σ).
It follows from C.2 that there are{Xi j (z)}d0

j=1 which are functionally independent at
z= 0. We may assume{Xj(z)}d0

j=1 are functionally independent. We can takeψi(z)∈I (Σ) (1≤
i ≤ d1− d0) such thatI (Σ) = I (X1, · · · ,Xd0,ψ1, · · · ,ψd1−d0). Hence f (z) ∈ I (Σ) is of the

form f (z) = ∑d0
j=11 j(z)Xj(z)+∑d1−d0

k=1 hk(z)ψk(z). For f (z)∈I (Σ) the notationf (z)≡O(|ψ|p)
modI (X1, · · · ,Xd0) means

f (z) =
d0

∑
j=1
1 j(z)Xj(z)+ ∑

α∈NNNd1−d0
|α|=p

hα(z)ψ(z)α , ψ(z)α =
d1−d0

∏
k=1

ψk(z)αk.

Define

p(i) := sup{p∈ NNN;Xi(z)≡O(|ψ|p) modI (X1, · · · ,Xd0)} (1.9)

and setp(i) = ∞ for Xi(z) ∈I (X1, · · · ,Xd0). The exponentσ is defined by

σ = min
1≤i≤d

p(i). (1.10)

The exponentσ was introduced, called multiplicity and denoted byδ in [18], where it is shown
that it depends on neither the choice of{Xi j (z)}d0

j=1 nor coordinates systems. Ifd1 = d0 +1, by
denotingψ1(z) by ψ(z), we haveI (Σ) = I (X1, · · · ,Xd0,ψ) and for1≤ i ≤ d

Xi(z) =
d0

∑
j=1
1i, j(z)Xj(z)+hi(z)ψ(z)σ . (1.11)

LEMMA 1.4. AssumeC.1, C.2and d1 = d0 + 1. Then there are holomorphic func-
tions φ(z) ∈ I (Σ) and ρ(z) in a neighborhood ofz = 0 such that dim{(grad φ)(0),
(gradX1)(0), · · · ,(gradXd)(0)}= d0 +1 and

Lφ(z) = ρ(z)φ(z)σ . (1.12)

The proof of Lemma 1.4 is given in Section 3. Letϕ(z) ∈I (Σ) and (z) be holomorphic
in a neighborhood ofz= 0 satisfying
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dim{(gradϕ)(0),(gradX1)(0), · · · ,(gradXd)(0)}= d0 +1,

Lϕ(z) = (z)ϕ(z)σ .

Furthermore supposeσ ≥ 2. Then we shall show in Section 3 that there is a holomorphic function
k(z) with k(0) 6= 0 such that (z)|Σ = (k(z)ρ(z))|Σ holds (Lemma 3.7). Now we introduce
condition C.3 in whichρ(z) is that in Lemma 1.4.

C.3（a） d1 = d0 +1, σ ≥ 2.
（b） ρ(0) 6= 0.

It follows from the above remark thatρ(0) 6= 0 does not depend on the choice ofφ(z).
Now let us proceed to study the equation

Lu(z) = F(z,u(z)), (1.13)

whereF(z,u) is holomorphic in a neighborhood of(z,u) = (0,0) andF(0,0) = 0. In many cases
there exist formal power series solutions of (1.13), so there is a problem. Do formal solutions
have analytical interpretations? The following theorem is an answer to this problem.

THEOREM 1.5. AssumeC.1, C.2, C.3and for allm= (m1, · · · ,md0) ∈ NNNd0

d0

∑
i=1

miλi − ∂F
∂u

(0,0) 6= 0. (1.14)

Then there exists a unique formal solutionũ(z) ∈CCC[[z]] of (1.13). Moreover there exist a holo-
morphic local coordinates system(x(z),y(z), t(z))∈CCCd0×CCCd−d0−1×CCC (x(0) = y(0) = t(0) = 0)
in a neighborhoodΩ of the origin such thatΣ ∩Ω = {x1(z) = · · · = xd0(z) = t(z) = 0}
and u(x,y, t) ∈ CCC{x,y}{t}σ−1,θ for someθ , which is a genuine solution of(1.13) such that
ũ(z) = u(x(z),y(z), t(z)) holds inCCC[[z]].

We show in Section 3 that under the assumptions of Theorem 1.5L can be represented in
the form

L =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai(x,y, t))∂xi +
d2

∑
j=1

B j(x,y, t)∂y j + tγ+1C(x,y, t)∂t , (1.15)

whereσ = γ +1, λi 6= 0, µi = 1 or 0, and the coefficients are holomorphic in a neighborhood of
the origin and satisfy as(x,y, t)→ (0,0,0)





Ai(0,y, t) = O(| t|γ+1), Ai(x,y, t) = O
(
(|x|+ |y|+ | t|)2

)
,

B j(0,y, t) = O(| t|γ+1), B j(x,y, t) = O
(
(|x|+ |y|+ | t|)2

)
,

C(0,0,0) 6= 0.

(1.16)
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We remark thatρ(0) 6= 0 in C.3-(b) meansC(0,0,0) 6= 0. It follows from C.2 and (1.14) that
there is a positive constantK0 such that for allm= (m1, · · · ,md0) ∈ NNNd0

∣∣∣∣
d0

∑
i=1

miλi − ∂F
∂u

(0,0)
∣∣∣∣≥ K0(|m|+1). (1.17)

The other aim of this paper is to find normal form of some singular vector fields by trans-
formations with asymptotic developable functions. LetL(z,∂ ) = ∑d

i=1Xi(z)∂zi be a holomorphic
vector field which is singular at the origin. It is assumed to satisfy the following conditions C.1’
and C.2’, which are more strict than C.1 and C.2.

C.1’ Σ = {0}.
C.2’ The Jordan canonical form of

(
(∂Xi/∂zj)(0)

)
is diagonal




λ1 0 · · · . . . · · · 0 0
0 λ2 0 . . . · · · 0 0
0 0 λ3 · · · · · · 0 0
...

...
...

...
...

...
...

...
... 0 0

0 · · · · · · 0 0 λd−1 0
0 · · · · · · · · · 0 0 0




.

Hereλi 6= 0 for 1≤ i ≤ d−1 and distinct, and the convex hull of the set of(d−1) points
{λ1, · · · ,λd−1} in the complex plane does not contain the origin.

By C.1’ and C.2’ it holds thatdimΣ = 0, d = d1 = d0 + 1 and
(
(∂Xi/∂zj)(0)

)
has one zero

eigenvalue. ForL satisfying C.1’ and C.2’ we have

LEMMA 1.6. Suppose thatC.1’ andC.2’ hold. Letρ(z) be that in Lemma1.4. Thenσ ≥ 2
andρ(0) 6= 0 hold.

The proof of Lemma 1.6 is given in Section 4.

THEOREM 1.7. AssumeC.1’, C.2’ and

d−1

∑
i=1

miλi −λk 6= 0 (1.18)

for all m = (m1, · · · ,md−1) ∈ NNNd−1 with |m| ≥ 2 and all 1 ≤ k ≤ d− 1. Then there exist a
holomorphic local coordinates system(x(z), t(z))∈CCCd0×CCC (x(0) = t(0) = 0) in a neighborhood
Ω of the origin, and functionsζi(x, t)∈CCC{x}{t}σ−1,θ (1≤ i≤ d−1) andη(x, t)∈CCC{x}{t}σ−1,θ
for someθ such that





ζ1(0,0) = · · ·= ζd−1(0,0) = 0, η(x,0) = 0,
(

∂ζi

∂x j
(0,0)

)
= (δi, j),

∂η
∂ t

(0,0) 6= 0,
(1.19)
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and by transformationζi = ζi(x, t) (1≤ i ≤ d−1), η = η(x, t), L is represented in the form

d−1

∑
i=1

λi(η)ζi
∂

∂ζi
+ησ c(η)

∂
∂η

, (1.20)

where{λi(η)}d−1
i=1 andc(η) are polynomials inη with degree≤ σ −1, λi(0) = λi andc(0) = 1.

If we admit multiplications of nonvanishing functions to vector fields in the process to find
normal forms of vector fields, we have

THEOREM 1.8. Suppose that the same assumptions as those in Theorem1.7 hold. Then
there exist a holomorphic functionh(z) with h(0) 6= 0 and a holomorphic local coordinates sys-
tem (x(z), t(z)) ∈ CCCd0 ×CCC (x(0) = t(0) = 0) in a neighborhoodΩ of the origin such that the
following holds.

SetLh = h(z)L. Then there existζi(x, t) ∈CCC{x}{t}σ−1,θ (1≤ i ≤ d−1) for someθ such
that

ζ1(0,0) = · · ·= ζd−1(0,0) = 0,

(
∂ζi

∂x j
(0,0)

)
= (δi, j), (1.21)

and by transformationζi = ζi(x, t) (1≤ i ≤ d−1), η = t, Lh is represented in the form

d−1

∑
i=1

λi(η)ζi
∂

∂ζi
+ησ ∂

∂η
, (1.22)

where{λi(η)}d−1
i=1 are polynomials inη with degree≤ σ −1 andλi(0) = λi .

We give a simple example

L := L(x, t,∂x,∂t) = (λx+x2 +xt+ t2)
∂
∂x

+ tγ+1 ∂
∂ t

, (1.23)

whereγ is a positive integer andλ > 0. We haveσ = γ +1. Let us try to simplifyL. Let θ be a
real constant such that0 < |θ |< π/γ.

First consider

tγ+1ϕ ′(t) = λϕ(t)+ϕ(t)2 + tϕ(t)+ t2. (1.24)

We have a solutionϕ(t) ∈CCC{t}γ,θ with ϕ(t) ∼ ∑∞
n=2cntn (c2 = −1/λ ) (Proposition 7.3 or see

[6]). By w = x−ϕ(t), t = t, L is transformed to

L(w, t,∂w,∂t) =
(
(λ + t +2ϕ(t))w+w2)∂w + tγ+1∂t . (1.25)

Setλ (t) = λ + t +2∑γ
n=2cntn andA(t) = λ + t +2ϕ(t)−λ (t). Thenλ (t) is a polynomial int

with degree≤ γ, A(t) ∈CCC{t}γ,θ with A(t)∼ 2∑∞
n=γ+1cntn and
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L(w, t,∂w,∂t) =
(
(λ (t)+A(t))w+w2)∂w + tγ+1∂t .

Next consider

L(w, t,∂w,∂t)φ(w, t) = λ (t)φ(w, t). (1.26)

The existence of a solution of (1.26) can be shown as follows. SinceA(t) = O(tγ+1), there is
ψ∗(t) ∈CCC{t}γ,θ with ψ∗(0) = 0 satisfying

tγ+1ψ ′
∗(t)+A(t)ψ∗(t)+A(t) = 0

(Proposition 7.3 or see [6]). Setφ(w, t) = w+ψ∗(t)w+ψ(w, t). Then (1.26) becomes

L(w, t,∂w,∂t)ψ(w, t) = λ (t)ψ(w, t)− (1+ψ∗(t))w2. (1.27)

We can find a formal solutioñψ(w, t) = ∑∞
n=0 ψn(w)tn ∈ O(U)[[t]]1/γ of (1.27) for a neigh-

borhoodU of w = 0 such thatψn(w) = O(|w|2) for all n. It follows from Theorem 2.4 in
Section 2 thatψ̃(w, t) is γ-Borel summable. Hence theγ-Borel sumψ(w, t) ∈ CCC{w}{t}γ,θ of
ψ̃(w, t) is a solution of (1.27). Thusφ(w, t) = w+ ψ∗(t)w+ ψ(w, t) is a solution of (1.26). By
ζ (x, t) = φ(x−ϕ(t), t), η(x, t) = t, L is transformed toL = λ (η)ζ (∂/∂ζ )+ηγ+1(∂/∂η).

2. Singular first order partial differential equations on sectorial regions.

In this section we study some singular partial differential equation on a sectorial region and
give the existence of solutions with asymptotic expansion, Theorems 2.3 and 2.4, which are main
results in this section. Their proofs need Borel and Laplace transforms and many estimates, and
are slightly long. Hence they are given in Section 6. We prove Theorem 1.5 in Section 3 by
transformingL to the operator studied in this section.

Let (x,y, t) ∈ CCCd0 ×CCCd2 ×CCC, U = {(x,y) ∈ CCCd0+d2; |x| < R, |y| < R}, γ be a positive
integer andS := S(θ0,π/2γ + ε0, r) = {0 < | t| < r; |argt − θ0| < π/2γ + ε0}(ε0 > 0). Let
P := P(x,y, t,∂x,∂y,∂t) be a first order linear partial differential operator with holomorphic coef-
ficients inU×S,

P(x,y, t,∂x,∂y,∂t) =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai(x,y, t))∂xi +
d2

∑
j=1

B j(x,y, t)∂y j + tγ+1C(x,y, t)∂t ,

(2.1)

whereλi 6= 0, µi = 1 or 0. As for the coefficients we assumeAi(x,y, t), B j(x,y, t), C(x,y, t) ∈
O(U){t}γ,θ0 and they satisfy the following conditions as(x,y, t)→ (0,0,0) in S





Ai(0,y, t) = O(| t|γ+1), Ai(x,y, t) = O
(
(|x|+ |y|+ | t|)2

)
,

B j(0,y, t) = O(| t|γ+1), B j(x,y, t) = O
(
(|x|+ |y|+ | t|)2

)
,

C(0,0,0) 6= 0

(2.2)
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(see (1.15) and (1.16)). HereAi(0,y, t) = O(| t|γ+1) means∂ j
t Ai(0,y,0) = 0 for 0 ≤ j ≤

γ and Ai(x,y, t) = O
(
(|x| + |y| + | t|)2

)
meansAi(0,0,0) = ∂x j Ai(0,0,0) = ∂ykAi(0,0,0) =

∂tAi(0,0,0) = 0 (1 ≤ j ≤ d0, 1 ≤ k ≤ d2), and similar notations will be often used. It also
holds that the convex hull of{λ1. · · · ,λd0} in the complex plane does not contain the origin,
hence, there is a constantC > 0 such that

∣∣∣∣
d0

∑
i=1

miλi

∣∣∣∣≥C|m| for all m= (m1, · · · ,md0) ∈ NNNd0. (2.3)

Let U0 = {u ∈ CCC; |u| < R0} and F(x,y, t,u) ∈ O(U × S× U0) ∩ O(U × U0){t}γ,θ0 with
F(0,0,0,0) = 0. So

F(x,y, t,u) =
∞

∑
n=0

Fn(x,y, t)un, F0(0,0,0) = 0, (2.4)

whereFn(x,y, t) ∈O(U){t}γ,θ0. Now let us study a semi linear equation

Pu= F(x,y, t,u) (2.5)

under the above assumptions and show the existence of a solutionu(x,y, t) ∈ O(V){t}γ,θ0

of (2.5) with u(0,0,0) = 0 for some open polydiskV about the origin. Sinceu(x,y, t) ∈
O(V){t}γ,θ0 ⊂ CCC[[x,y, t]], we give remarks on the existence of a formal solutionũ(x,y, t) =
∑(p,q,r)∈NNNd0×NNNd2×NNN up,q,rxpyqtr with u0,0,0 = 0. As for the existence we refer to [18].

PROPOSITION2.1 ([18]). Suppose that

d0

∑
i=1

miλi −F1(0,0,0) 6= 0 (2.6)

holds for all m = (m1, · · · ,md0) ∈ NNNd0. Then there is a unique formal solutioñu(x,y, t) =
∑(m,n)∈NNNd0×NNN um,n(y)xmtn of (2.5) such that{um,n(y)}(m,n)∈NNNd0×NNN are holomorphic in a neigh-

borhood ofy = 0, u0,0(0) = 0 and

|um,n(y)| ≤ AB|m|+n
(

n
γ

)
! (2.7)

holds for some constantsA andB.

The estimate (2.7) is obtained in [18] under the condition that coefficients are holomorphic
in a full neighborhood of the origin. Though the coefficients of (2.5) are inO(U){t}γ,θ , we
can get (2.7) by a slightly modified method. Let us remember only the existence of a unique
formal solutionũ(x,y, t). SinceP has a simpler form than that studied in [18], we can find a
formal solution of the formũ(x,y, t) = ∑∞

n=0un(x,y)tn such that{un(x,y)}n∈NNN are holomorphic
in a neighborhood of(x,y) = (0,0). We give how to determineu0(x,y) for the later discussions.
SetAi,0(x,y) = Ai(x,y,0), B j,0(x,y) = B j(x,y,0) and
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P0(x,y,∂x,∂y) =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai,0(x,y))∂xi +
d2

∑
j=1

B j,0(x,y)∂y j ,

which does not depend ont and∂t . Thenu0 := u0(x,y) satisfies

(
P0(x,y,∂x,∂y)−F1(x,y,0)

)
u0 = F0(x,y,0)+

∞

∑
k=2

Fk(x,y,0)uk
0. (2.8)

From (2.2) we have

Ai,0(0,y) = B j,0(0,y) = 0, Ai,0(x,y),B j,0(x,y) = O((|x|+ |y|)2). (2.9)

The coefficients ofP0(x,y,∂x,∂y) vanish on{x = 0}. By (2.6), (2.9) andF0(0,0,0) = 0 it
follows from Proposition 7.1 that there exists a unique holomorphic solutionu0(x,y) with
u0(0,0) = 0 (see also [8]). By considering3(x,y, t) = u(x,y, t)−u0(x,y) as an unknown, we have
P(x,y, t,∂x,∂y,∂t)3= G(x,y, t,3), whereG(x,y, t,3) = F(x,y, t,3+u0)−P(x,y, t,∂x,∂y,∂t)u0 and
G(x,y,0,0) = F(x,y,0,u0)−P0(x,y,∂x,∂y)u0 = 0. By denoting3(x,y, t) (G(x,y, t,u)) by u(x,y, t)
(resp. F(x,y, t,u)) again, from the beginning we may assume in (2.4)

F(x,y,0,0)(= F0(x,y,0)) = 0. (2.10)

Before showing the existence of a solutionu(x,y, t) ∈ C (V){t}γ,θ0 of (2.1), we give

LEMMA 2.2. Suppose that∑d0
i=1miλi −F1(0,0,0) 6= 0 holds for allm= (m1, · · · ,md0) ∈

NNNd0. Then there existθ andδ ,K0 > 0 such that forξ with |argξ −θ |< δ

∣∣∣∣
d0

∑
k=1

mkλk + γC(0,0,0)ξ γ −F1(0,0,0)
∣∣∣∣≥ K0(|m|+ |ξ |γ +1) (2.11)

holds for allm∈ NNNd0.

PROOF. Setc0 = C(0,0,0). Since the convex hull of{λi}d−1
i=1 does not contain the origin,

there existsθ ′ such thatℜλke−iθ ′ > 0 for all k. We may assumeθ ′ = 0. So there areθ± such that
−π/2< θ− < θ+ < π/2 andθ− < argλk < θ+ for all k. Let0< ε0 < π−(θ+−θ−)/2. Suppose
thatϕ satisfiesθ+−π + ε0 < γϕ + argc0 < θ−+ π − ε0. Then(d0 + 1) pointsλ1, · · · ,λd0 and
c0eiγϕ are contained in a half plane divided by a line through the origin, so there is a constant
Cε0 > 0 such that

∣∣∣∣
d0

∑
k=1

mkλk + γc0rγeiγϕ
∣∣∣∣≥Cε0(|m|+ rγ)

holds for r ≥ 0 and all m = (m1, · · · ,md0) ∈ NNNd0. Hence there existC,R0 > 0 such that for
|m|+ rγ ≥ R0
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∣∣∣∣
d0

∑
k=1

mkλk + γc0rγeiγϕ −F1(0,0,0)
∣∣∣∣≥C(|m|+ rγ +1).

Suppose|m| ≤ R0 and consider(r,ϕ) satisfying

d0

∑
k=1

mkλk + γc0rγeiγϕ −F1(0,0,0) = 0, (2.12)

wherer ≥ 0 andθ+− π + ε0 < γϕ + argc0 < θ− + π − ε0. However we haver 6= 0 from the
assumption. Hence there are at most finite{(r i ,ϕi)}1≤i≤` satisfying (2.12) for somem∈ NNNd0

with |m| ≤ R0. Now let θ with θ+−π + ε0 < γθ + argc0 < θ− + π − ε0 such thatθ 6= ϕi for
all 1≤ i ≤ `. Then there existsδ > 0 such that (2.11) holds forξ with |argξ −θ | < δ and all
m= (m1, · · · ,md0) ∈ NNNd0. ¤

We have the following existence of a solution of (2.5) on a sectorial region.

THEOREM 2.3. Suppose that there are constantsδ0,K0 > 0 such that forξ with |argξ −
θ0|< δ0 and allm= (m1, · · · ,md0) ∈ NNNd0

∣∣∣∣
d0

∑
i=1

miλi + γC(0,0,0)ξ γ −F1(0,0,0)
∣∣∣∣≥ K0(|m|+ |ξ |γ +1). (2.13)

Then there exists uniquelyu(x,y, t) ∈ O(V){t}γ,θ0 with u(0,0,0) = 0 for a polydiskV about
(x,y) = (0,0) such thatPu= F(x,y, t,u).

If ∑d0
i=1miλi −F1(0,0,0) 6= 0 for all m = (m1, · · · ,md0) ∈ NNNd0, then by Lemma 2.2 there

existsθ0 satisfying the assumption of Theorem 2.3. The existence of a solutionu(x,y, t) ∈
O(V){t}γ,θ0 means the existence of a formal solutionũ(x,y, t) ∈ O(V)[[t]]1/γ with ũ(x,y, t) =
u(x,y, t) as a formal series. We give a modification of Theorem 2.3, which can be used to show
Theorem 1.7. We further assume the equation (2.5) contains neither∂y nor variablesy, sod2 = 0
andd0 = d−1, andP is of the form

P(x, t,∂x,∂t) =
d−1

∑
i=1

(λixi +Ai(x, t))∂xi + tγ+1C(x, t)∂t , (2.14)

whereλi 6= 0, C(0,0) 6= 0 and

Ai(0, t) = 0, Ai(x, t) = O((|x|+ | t|)2) for: 1≤ i ≤ d−1. (2.15)

The coefficients of∂xi of P vanish on{x = 0}. Let F(x, t,u) ∈O(U×U0){t}γ,θ0 satisfying

F(x, t,0) = O(|x|N) for someN ∈ NNN−{0}. (2.16)

Let us consider under the above assumptions



Borel summability of formal solutions of singular partial differential equations 427

Pu= F(x, t,u). (2.17)

THEOREM 2.4. Suppose that there are constantsδ0,K0 > 0 such that forξ with |argξ −
θ0|< δ0 and allm= (m1, · · · ,md0) ∈ NNNd0 with |m| ≥ N

∣∣∣∣
d0

∑
i=1

miλi + γC(0,0)ξ γ − ∂F
∂u

(0,0,0)
∣∣∣∣≥ K0(|m|+ |ξ |γ +1). (2.18)

Then there exists uniquely a solutionu(x, t) ∈ O(V){t}γ,θ0 of Pu = F(x, t,u) with u(x, t) =
O(|x|N) for a polydiskV aboutx = 0.

We can find a formal solutioñu(x, t) = ∑∞
n=0un(x)tn of (2.17) with un(x) = O(|x|N). As

remarked after Proposition 2.1, by considering3(x, t) = u(x, t)−u0(x) as an unknown, we may
further assume in (2.16)

F(x,0,0) = 0. (2.19)

As stated in Introduction, the proofs of Theorems of 2.3 and 2.4 are given in Section 6. We show
in Section 3 Theorem 1.5 by using Theorem 2.3, and in Section 4 Theorems 1.7 and 1.8 by using
Theorem 2.4.

3. Coordinates transformations by holomorphic functions.

Let L = ∑d
i=1Xi(z)∂zi be a singular vector field satisfying C.1, C.2 andd1 = d0 + 1. In

this section firstly we show that there exists a holomorphic local coordinates system(x,y, t) =
(x1(z), · · · ,xd0(z),y1(z), · · · ,yd2(z), t(z)), whered2 = d−d1, such thatL is represented in the form
(3.9) in Proposition 3.5 (see also (1.15) and (2.1)). Holomorphic coordinates transformations
used here are the same as those in [18] except for the last one, which appears in Proposition 3.5
and makesL much simpler than the form transformed in [18]. Secondly we give the proof of
Lemma 1.4 and a remark about condition C.3-(b) (Lemma 3.7). Finally we show that Theorem
1.5 follows from Theorem 2.3.

Let us show how to change coordinates step by step. By a nonsingular linear transformation
we have

LEMMA 3.1. We can find a holomorphic coordinates systemz= (z1, · · · ,zd) such thatL
is of the form

L =
d0

∑
i=1

(λizi + µi−1zi−1 +ai(z))∂zi +
d

∑
i=d0+1

ai(z)∂zi , (3.1)

with ai(

d1=d0+1︷ ︸︸ ︷
0, · · · ,0,zd1+1, · · · ,zd) = 0 andai(z) = O(|z|2) for i = 1, · · · ,d.

The proof is not difficult. We assumeL is of the form in Lemma 3.1. Setz′ = (z1,z2, · · · ,zd0)
andz′′ = (zd1+1, · · · ,zd), soz= (z′,zd1,z

′′). The next transformation is constructed by using a
holomorphic solution of some singular nonlinear partial differential equation.
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LEMMA 3.2. There exist holomorphic functionsφ(z′,z′′) and r(z) in a neighborhood of
the origin such thatφ(0,z′′) = 0, r(0) = 0 andL(z,∂z)(zd1−φ(z′,z′′)) = r(z)(zd1−φ(z′,z′′)).

PROOF. Let us consider

d0

∑
i=1

(λizi + µi−1zi−1 +ai(z′,φ ,z′′))∂zi φ(z′,z′′)

+
d

∑
j=d1+1

ai(z′,φ ,z′′)∂zj φ(z′,z′′) = ad1(z
′,φ ,z′′). (3.2)

We noteai(z′,φ ,z′′)|z′=φ=0 = 0 and ai(z′,φ ,z′′) = O((|z′|+ |z′′|+ |φ |)2). So it follows from
Proposition 7.2 that there exists a unique holomorphic solutionφ(z′,z′′) of (3.2) withφ(0,z′′)= 0.
Then

L(z,∂z)(zd1−φ(z′,z′′))

= ad1(z)−
d0

∑
i=1

(λizi + µi−1zi−1 +ai(z))∂zi φ(z′,z′′)−
d

∑
j=d1+1

a j(z)∂zj φ(z′,z′′)

= ad1(z)−ad1(z
′,φ ,z′′)+

d0

∑
i=1

(ai(z′,φ ,z′′)−ai(z))∂zi φ(z′,z′′)

+
d

∑
j=d1+1

(a j(z′,φ ,z′′)−a j(z))∂zj φ(z′,z′′),

which vanishes on{zd1 = φ(z′,z′′)}. Hence there existsr(z) such thatL(z,∂z)(zd1−φ(z′,z′′)) =
r(z)(zd1−φ(z′,z′′)) andr(0) = 0 by ai(z) = O(|z|2). ¤

LEMMA 3.3. There exists a holomorphic local coordinates system(z′,z′′,τ)∈CCCd0×CCCd2×
CCC in a small polydiskD about the origin such thatΣ ∩D = {z′ = τ = 0} and

L =
d0

∑
i=1

(λizi + µi−1zi−1 +a′i(z
′,z′′,τ))∂zi +

d2

∑
j=1

b′j(z
′,z′′,τ)∂zd1+ j +c′(z′,z′′,τ)∂τ , (3.3)

where

a′i(0,z′′,0) = 0, a′i(z
′,z′′,τ) = O((|z′|+ |z′′|+ |τ|)2),

b′j(0,z′′,0) = 0, b′j(z
′,z′′,τ) = O((|z′|+ |z′′|+ |τ|)2), (3.4)

c′(z′,z′′,0) = 0, c′(z′,z′′,τ) = O((|z′|+ |z′′|+ |τ|)2).

PROOF. Setzi = zi for i 6= d1, andτ = zd1−φ(z′,z′′), whereφ(z′,z′′) is that in Lemma 3.2.
ThenL is transformed to
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L =
d0

∑
i=1

(
λizi + µi−1zi−1 +ai(z′,τ +φ(z′,z′′),z′′)

)
∂zi

+
d2

∑
j=1

ad1+ j(z′,τ +φ(z′,z′′),z′′)∂zd1+ j +(Lτ)∂τ .

We havea′i(z
′,z′′,τ) = ai(z′,τ + φ(z′,z′′),z′′), b′j(z

′,z′′,τ) = ad1+ j(z′,τ + φ(z′,z′′),z′′) and from
Lemma 3.2c′(z′,z′′,τ) = Lτ = r(z′,τ +φ(z′,z′′),z′′)τ, which satisfy (3.4). ¤

Here we give a remark on the coefficientsb′j(z
′,z′′,τ) (1≤ j ≤ d2) andc′(z′,z′′,τ) in (3.3). It fol-

lows from the definition ofσ (see (1.11)) that there are holomorphic functions{c j,i(z′,z′′,τ);1≤
i ≤ d0,0≤ j ≤ d0} such that

b′j(z
′,z′′,τ) =

d0

∑
i=1

c j,i(z′,z′′,τ)(λizi + µi−1zi−1 +a′i(z
′,z′′,τ))+O(|τ|σ )

c′(z′,z′′,τ) =
d0

∑
i=1

c0,i(z′,z′′,τ)(λizi + µi−1zi−1 +a′i(z
′,z′′,τ))+O(|τ|σ ). (3.5)

We assumeL is an operator of the form (3.3) satisfying (3.4) and (3.5).

LEMMA 3.4. There exists a holomorphic local coordinates system(x,y,τ) ∈CCCd0×CCCd2×
CCC in a small polydiskD about the origin such thatΣ ∩D = {x = τ = 0} and

L =
d0

∑
i=1

(λixi + µi−1xi−1 +A′i(x,y,τ))∂xi +
d2

∑
j=1

B′j(x,y,τ)∂y j + τC′(x,y,τ)∂τ , (3.6)

where the coefficients satisfy

A′i(0,y,τ) = O(|τ|σ ), A′i(x,y,τ) = O((|x|+ |y|+ |τ|)2),

B′j(0,y,τ) = O(|τ|σ ), B′j(x,y,τ) = O((|x|+ |y|+ |τ|)2), (3.7)

C′(0,y,τ) = O(|τ|σ−1), C′(x,y,τ) = O(|x|+ |y|+ |τ|).

PROOF. Let us return to (3.3). Setxi = λizi + µi−1zi−1 +a′i(z
′,z′′,τ) for 1≤ i ≤ d0, y j =

zd1+ j for 1 ≤ j ≤ d2 and τ = τ. Thenzi = zi(x,y,τ) with zi(0,y,0) = 0 for 1 ≤ i ≤ d0 and

L = ∑d0
i=1(Lxi)∂xi +∑d2

j=1B′j(x,y,τ)∂y j + τC′(x,y,τ)∂τ , whereB′j(x,y,τ) = b′j(z
′(x,y,τ),y,τ) and

C′(x,y,τ) = c(z′(x,y,τ),y,τ)/τ. Then it follows from (3.4) and (3.5) that

B′j(0,y,τ) = O(|τ|σ ), B′j(x,y,τ) = O((|x|+ |y|+ |τ|)2),

C′(0,y,τ) = O(|τ|σ−1), C′(x,y,τ) = O(|x|+ |y|+ |τ|). (3.8)

SetA′i(x,y,τ) = (La′i). ThenLxi = λixi + µi−1xi−1 +A′i(x,y,τ) and we have
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A′i(x,y,τ) =
( d0

∑
i=1

xi∂zi +
d2

∑
j=1

B′j(x,y,τ)∂zd1+ j + τC′(x,y,τ)∂τ

)
a′i(z

′,z′′,τ),

A′i(x,y,τ) = O((|x|+ |y|+ |τ|)2) andA′i(0,y,τ) = O(|τ|σ ) by (3.8). Hence we have (3.6) and
(3.7). ¤

In [18] formal solutions are studied, after transformingL to the form in Lemma 3.4. In our
discussions we further employ a new change of coordinates which transformsL much simpler.
We assumeL is of the form (3.6) with (3.7).

PROPOSITION3.5. There exists a holomorphic local coordinates system(x,y, t) ∈CCCd0×
CCCd2×CCC in a small polydiskD about the origin such thatΣ ∩D = {x = t = 0} and

L =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai(x,y, t))∂xi +
d2

∑
j=1

B j(x,y, t)∂y j + tσC(x,y, t)∂t , (3.9)

where the coefficients satisfy

Ai(0,y, t) = O(| t|σ ), Ai(x,y, t) = O((|x|+ |y|+ | t|)2),

B j(0,y, t) = O(| t|σ ), B j(x,y, t) = O((|x|+ |y|+ | t|)2). (3.10)

Proposition 3.5 implies that there exists a holomorphic local coordinates system(x,y, t) such
that the coefficient of∂t vanishes with orderσ with respect tot.

PROOF. Let us return to (3.6). SetA′i,0(x,y,τ) = A′i(x,y,τ)−A′i(0,y,τ), B′j,0(x,y,τ) =
B′j(x,y,τ)−B′j(0,y,τ) andC′0(x,y,τ) = C′(x,y,τ)−C′(0,y,τ). Then by (3.7)

A′i,0(x,y,τ), B′j,0(x,y,τ) = O(|x|(|x|+ |y|+ |τ|))
C′0(x,y,τ) = O(|x|). (3.11)

DefineL0 by

L0 =
d0

∑
i=1

(λixi + µi−1xi−1 +A′i,0(x,y,τ))∂xi +
d2

∑
j=1

B′j,0(x,y,τ)∂y j + τC′0(x,y,τ)∂τ .

By (3.11) all the coefficients ofL0 vanish on{x= 0} andA′i,0(x,y,τ),B′j,0(x,y,τ) andτC′0(x,y,τ)
vanish with order 2 at the origin. Consider

L0(τ(1+T(x,y,τ))) = 0. (3.12)

ThenT := T(x,y,τ) satisfies

L0T +C′0(x,y,τ)T +C′0(x,y,τ) = 0,
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whereC′0(x,y,τ) = O(|x|) by (3.11). It follows from Proposition 7.1 that there is a holomorphic
solutionT(x,y,τ) with T(0,y,τ) = 0 in neighborhood of the origin. Setx = x, y = y and t =
τ(1+T(x,y,τ)). Then we haveτ = τ(x,y, t) with τ(x,y,0) = 0 andτ(0,y, t) = t, and

L =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai(x,y, t))∂xi +
d2

∑
j=1

B j(x,y, t)∂y j +C∗(x,y, t)∂t ,

whereAi(x,y, t) = A′i(x,y,τ)|τ=τ(x,y,t) andB j(x,y, t) = B′j(x,y,τ)|τ=τ(x,y,t). By (3.7)Ai(0,y, t) =
A′i(0,y,τ(0,y, t)) = O(| t|σ ) andB j(0,y, t) = O(| t|σ ). We haveC∗(x,y, t) = L(τ(1+T(x,y,τ))) =
L(τ(1 + T(x,y,τ))) − L0(τ(1 + T(x,y,τ))) =

(
∑d0

i=1A′i(0,y,τ)∂xi + ∑d2
j=1B′j(0,y,τ)∂y j +

τC′(0,y,τ)∂τ
)
τ(1+T(x,y,τ)) = O(|τ|σ ) by (3.7). HenceC∗(x,y, t) = tσC(x,y, t) andL is of the

form (3.9) with (3.10). ¤

Now we assume thatL is of the form (3.9) with (3.10). Let us give the proof of Lemma 1.4.
Before the proof of Lemma 1.4 we have

LEMMA 3.6. SetXi = λixi + µi−1xi−1 + Ai(x,y, t) for 1≤ i ≤ d0, Xd0+ j = B j(x,y, t) for
1≤ j ≤ d2, Xd = tσC(x,y, t). Then

Lt = tσC(x,y, t), (3.13)

LXi(x,y, t)≡O(| t|2σ−1) modI (X1, · · · ,Xd0). (3.14)

PROOF. SetX′ = (X1, · · · ,Xd0) andI (X′) = I (X1, · · · ,Xd0). (3.13) is obvious. It follows
from Ai(x,y, t) = (Ai(x,y, t)−Ai(0,y, t))+Ai(0,y, t) and (3.10) thatxi ≡O(| t|σ ) modI (X′) and

Ai(x,y, t),∂ykAi(x,y, t)≡O(| t|σ ),∂tAi(x,y, t)≡O(tσ−1) modI (X′).

In the same way we also have

B j(x,y, t),∂ykB j(x,y, t)≡O(| t|σ ),∂tB j(x,y, t)≡O(tσ−1) modI (X′).

We have

LXk ≡
d2

∑
j=1

B j(x,y, t)∂y j Xk + tσC(x,y, t)∂tXk modI (X′).

So for1≤ k≤ d0

LXk ≡
d2

∑
j=1

B j(x,y, t)∂y j Ak(x,y, t)+ tσC(x,y, t)∂tAk(x,y, t)

≡O(| t|2σ )+O(| t|2σ−1)≡O(| t|2σ−1) modI (X′).

We also haveLXk ≡O(| t|2σ−1) modI (X′) for d0 < k≤ d. ¤
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PROOF OFLEMMA 1.4. By settingφ(x,y, t) = t and ρ(x,y, t) = C(x,y, t), Lemma 1.4
follows from (3.13). ¤

We give a remark about condition C.3-(b). In the next lemma{Xi}d
i=1 are those in Lemma

3.6,X′ = (X1, · · · ,Xd0) andρ(x,y, t) := C(x,y, t) is defined above.

LEMMA 3.7. Further assumeσ ≥ 2. Letϕ(x,y, t) ∈I (Σ) and (x,y, t) be holomorphic
functions in a neighborhood of the origin such that





dim{(gradϕ)(0),(gradX1)(0), · · · ,(gradXd)(0)}= d0 +1,

Lϕ(x,y, t) = (x,y, t)ϕ(x,y, t)σ .
(3.15)

Then there is a holomorphic functionk(x,y, t) in a neighborhood of the origin such that
k(0,0,0) 6= 0 and (0,y,0) = k(0,y,0)ρ(0,y,0).

PROOF. There are holomorphic functions{c j(x,y, t)}d1
j=1 with cd1(0,0,0) 6= 0 such

that ϕ(x,y, t) = ∑d0
j=1c j(x,y, t)Xj(x,y, t) + cd1(x,y, t)t. We haveϕσ (x,y, t) ≡ cd1(x,y, t)

σ tσ

modI (X′). The coefficients ofL belong toI (X′, tσ ). By (3.14) andσ ≥ 2 we have
LXj(x,y, t)≡O(| t|σ+1) modI (X′), so

Lϕ(x,y, t) =
d0

∑
j=1

Xj(x,y, t)Lc j(x,y, t)+
d0

∑
j=1

c j(x,y, t)LXj(x,y, t)

+ tLcd1(x,y, t)+cd1(x,y, t)Lt

≡cd1(x,y, t)ρ(x,y, t)tσ +O(| t|σ+1) modI (X′).

We have from (3.15)

Lϕ(x,y, t) = (x,y, t)ϕ(x,y, t)σ ≡ (x,y, t)(cd1(x,y, t)t)
σ

≡ cd1(x,y, t)ρ(x,y, t)tσ +O(tσ+1) modI (X′). (3.16)

AssumeX1(x,y, t) = · · · = Xd0(x,y, t) = 0. Thenxi = xi(X′,y, t) (1≤ i ≤ d0) with xi(0,y, t) =
O(| t|σ ). Setk(x,y, t) = cd1(x,y, t)

1−σ . Then by (3.16)

(x(0,y, t),y, t) = cd1(x(0,y, t),y, t)1−σ ρ(x(0,y, t),y, t)+O(| t|),

hence (0,y,0) = k(0,y,0)ρ(0,y,0) andk(0,0,0) 6= 0. ¤

PROOF OFTHEOREM 1.5. Let L be an operator satisfying the conditions C.1, C.2 and C.3
and (1.14). Setσ = γ + 1≥ 2. Then it follows from Proposition 3.5 andρ(0) = C(0,0,0) 6= 0
that L is represented in the form (2.1) with (2.2) by a suitable holomorphic local coordinates
system(x,y, t). By (1.14) and Lemma 2.2 the equationLu= F(x,y, t,u) satisfies the assumptions
in Theorem 2.3. Therefore Theorem 1.5 follows from it. ¤
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4. Normal forms of some singular vector fields by transformations with holomorphic
functions on a sectorial region.

In this section we considerL satisfying conditions C.1’ and C.2’. The assumptions imply
d2 = 0, d1 = d = d0 +1. Firstly we give the proof of Lemma 1.6.

PROOF OFLEMMA 1.6. It follows from Proposition 3.5 that there exists a holomorphic
local coordinates system(x, t) ∈CCCd−1×CCC such that

L =
d−1

∑
i=1

(λixi +Ai(x, t))∂xi + tσC(x, t)∂t , (4.1)

where Ai(x, t) = O((|x| + | t|)2),Ai(0, t) = O(| t|σ ). Set Xi = λixi + Ai(x, t) (1 ≤ i ≤ d −
1) and Xd = tσC(x, t). Then xi ≡ O(| t|σ ) modI (X1, · · · ,Xd−1), so C(x, t) = C(0, t) +
∑d−1

i=1 xiCi(x, t) ≡ C(0, t) + O(| t|σ ) modI (X1, · · · ,Xd−1). Hence tσC(x, t) ≡ tσ (C(0,0) +
O(| t|)) modI (X1, · · · ,Xd−1), andC(0,0) 6= 0 by the definition ofσ (see (1.9) and (1.10)).
From C.2’ we haveσ ≥ 2. By settingϕ(t) = t andρ(x, t) = C(x, t), the assertions hold. ¤

Now we further transformL satisfying C.1’ and C.2’ in order to obtain a normal form of
L.

PROPOSITION4.1. There exists a holomorphic local coordinates system(x, t)∈CCCd−1×CCC
in a small polydiskD about the origin such thatΣ ∩D = {x = t = 0} and

L =
d−1

∑
i=1

(
a0

i (t)+
d−1

∑
j=1

a1
i, j(t)x j +a2

i (x, t)
)

∂xi + tσ c(x, t)∂t , (4.2)

where

a0
i (t) = O(| t|σ ), a1

i, j(t) = λi(t)δi, j +O(| t|σ ),

a2
i (x, t) = O(|x|2), c(0,0) = 1, (4.3)

andλi(t) is a polynomial with degree≤ σ −1 andλi(0) = λi .

PROOF. L is of the form (4.1) with

Ai(x, t) = O((|x|+ | t|)2), Ai(0, t) = O(| t|σ ), C(0,0) 6= 0. (4.4)

By replacingC(0,0)1/(σ−1)t by t, we may assumeC(0,0) = 1. We haveAi(x, t) = Ai(0, t) +
∑d−1

j=1 A1
i, j(t)x j +A2

i (x, t) with A1
i, j(0) = 0, A2

i (x, t) = O(|x|2). Set(d−1)×(d−1) matrixA′(t) =
(A′i, j(t))1≤i, j≤d−1, A′i, j(t) = λiδi, j + A1

i, j(t). Sinceλi ’s are non zero and distinct andA1
i, j(0) =

0, there is a nonsingular matrixS(t) = (Si, j(t)) with holomorphic elements att = 0 such that
S(t)A′(t)S−1(t) = diagonal (Λ1(t), · · · ,Λd−1(t)) with Λi(0) = λi . Consider the transformation
x̃p = ∑d−1

i=1 Sp,i(t)xi , τ = t. ThenL = ∑d−1
p=1(Lx̃p)∂x̃p +(Lτ)∂τ , where
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Lx̃p =
d−1

∑
i=1

Sp,i(t)Ai(0, t)+
d−1

∑
i, j=1

Sp,i(t)A′i, j(t)x j +
d−1

∑
i=1

Sp,i(t)A2
i (x, t)+ tσC(x, t)∂t x̃p

=
d−1

∑
i=1

Sp,i(t)Ai(0, t)+
(
Λp(t)x̃p + tσC(x, t)∂t x̃p

)
+

d−1

∑
i=1

Sp,i(t)A2
i (x, t).

Set a0
p(t) = ∑d−1

i=1 Sp,i(t)Ai(0, t), ∑d−1
j=1 a1

p, j(t)x̃ j = Λp(t)x̃p + tσC(0, t)∂t x̃p and a2
p(x̃, t) =

tσ (C(x, t)−C(0, t))∂t x̃p+∑d−1
i=1 Sp,i(t)A2

i (x, t)|x=S−1(t)x̃. Thena0
p(t) = O(| t|σ ) by (4.4), a1

p, j(t) =
λp(t)δp, j +O(| t|σ ) anda2

p(x̃, t) = O(|x̃|2). By settingc(x̃, t) = C(S−1(t)x̃, t) and denoting̃x by x
again,L is of the form (4.2) with (4.3). ¤

ThusL satisfying C.1’ and C.2’ is transformed to (4.2) with (4.3) by holomorphic trans-
formations in a full neighborhood of the origin, hence, we restart by assumingL is represented
in the form (4.2) with (4.3). From now on we transformL by coordinates transformations with
holomorphic functions on a sectorial region, that is, functions inCCC{x}{t}σ−1,θ , and obtain a nor-
mal form ofL, which implies Theorems 1.7 and 1.8. In constructing transformations we need the
existence of solutions with asymptotic expansion of singular differential equations on sectorial
region (Theorem 2.4 and Proposition 7.3). It follows from C.1’, C.2’ and (1.18) that there is a
constantC > 0 such that

∣∣∣∣
d−1

∑
i=1

miλi

∣∣∣∣≥C(|m|+1) for |m| ≥ 1, (4.5)

∣∣∣∣
d−1

∑
i=1

miλi −λk

∣∣∣∣≥C(|m|+1) for |m| ≥ 2. (4.6)

From (4.5), (4.6) andc(0,0) = 1 we have in the same way as Lemma 2.2

LEMMA 4.2. There areθ andδ ,K0 > 0 such that forξ with |argξ −θ |< δ

∣∣∣∣
d0

∑
i=1

miλi + γξ γ
∣∣∣∣≥ K0(|m|+ |ξ |γ +1) for |m| ≥ 1, (4.7)

∣∣∣∣
d0

∑
i=1

miλi −λk + γξ γ
∣∣∣∣≥ K0(|m|+ |ξ |γ +1) for |m| ≥ 2. (4.8)

We assume in the following of this section thatθ satisfies (4.7) and (4.8). Let us proceed to
find transformations. For this purpose we introduce conditions(Θ0) and(Θ1) on θ ,

(Θ0) (σ −1)θ 6≡ argλi mod 2π for all 1≤ i ≤ d−1,
(Θ1) (σ −1)θ 6≡ arg(λ j −λk) mod 2π for all 1≤ j,k≤ d−1 with j 6= k.

We remark that there are manyθ satisfying (4.7), (4.8),(Θ0) and(Θ1). Now consider a system
of ordinary differential equations derived from (4.2)

tσ c(Ψ(t), t)
dψi(t)

dt
= a0

i (t)+
d−1

∑
j=1

a1
i, j(t)ψ j(t)+a2

i (Ψ(t), t) (1≤ i ≤ d−1), (4.9)
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whereΨ(t) = (ψ1(t), · · · ,ψd−1(t)).

LEMMA 4.3. Suppose thatθ satisfies(Θ0). Then there exists a solutionΨ(t) =
(ψ1(t), · · · ,ψd−1(t)) of (4.9) such thatψi(t) ∈ CCC{t}σ−1,θ and ψi(t) = O(| t|σ ) for all 1≤ i ≤
d−1.

PROOF. We write (4.9) in another form. SetL1/c = c(x, t)−1L. Then byc(x, t)−1 =
1+O(|x|+ | t|) we have

L1/c =
d−1

∑
i=1

(
r0
i (t)+

d−1

∑
j=1

r1
i, j(t)x j + r2

i (x, t)
)

∂xi + tσ ∂t , (4.10)

where

r0
i (t) = O(| t|σ ), r1

i, j(t) = µi(t)δi, j +O(| t|σ ), r2
i (x, t) = O(|x|2), (4.11)

andµi(t) is a polynomial int with µi(0) = λi . Setγ = σ −1 and consider

tγ+1 dψi(t)
dt

= r0
i (t)+

d−1

∑
j=1

r1
i, j(t)ψ j(t)+ r2

i (Ψ(t), t) (1≤ i ≤ d−1). (4.12)

The system (4.9) is equivalent to (4.12). By(Θ0) and Proposition 7.3 there exists a solution
Ψ(t) ∈ (CCC{t}σ−1,θ )d−1 with ψi(t) = O(| t|σ ). ¤

LEMMA 4.4. Suppose thatθ satisfies(Θ0). Let Ψ(t) = (ψ1(t), · · · ,ψd−1(t)), ψi(t) ∈
CCC{t}σ−1,θ , be a solution of(4.9) whose existence is assured by Lemma4.3. By transformation
wi = xi −ψi(t) (1≤ i ≤ d−1) andt = t, L is transformed to

L =
d−1

∑
i=1

(
λi(t)wi +

d−1

∑
j=1

A1
i, j(t)w j +A2

i (w, t)
)

∂wi + tσC(w, t)∂t , (4.13)

whereA1
i, j(t),A

2
i (w, t),C(w, t) ∈CCC{w}{t}σ−1,θ satisfying

A1
i, j(t) = O(| t|σ ), A2

i (w, t) = O(|w|2), C(0,0) = 1. (4.14)

PROOF. We have

Lwi =a0
i (t)+

d−1

∑
j=1

a1
i, j(t)(w j +ψ j(t))+a2

i (w+Ψ(t), t)− tσ c(w+Ψ(t), t)ψ ′
i (t)

=
d−1

∑
j=1

a1
i, j(t)w j +1i(w, t),

where1i(w, t) = a2
i (w+Ψ(t), t)−a2

i (Ψ(t), t)+ tσ (
c(Ψ(t), t)− c(w+Ψ(t), t)

)
ψ ′

i (t). It follows
from 1i(0, t) = 0, a2

i (w, t) = O(|w|2) andψi(t) = O(| t|σ ) that
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1i(w, t) =
d−1

∑
j=1

∂w j1i(0, t)w j +12
i (w, t),

where∂w j1i(0, t) = O(| t|σ ) and 12
i (w, t) = O(|w|2). So there existA1

i, j(t) = O(| t|σ ) (1 ≤ i,

j ≤ d−1) such thata1
i, j(t)+ ∂w j1i(0, t) = λi(t)δi, j + A1

i, j(t). By settingA2
i (w, t) = 12

i (w, t) and
C(w, t) = c(w+Ψ(t), t) we have (4.13). ¤

Now let us assume thatL is of the form (4.13) with (4.14). Define a polynomialC0(t) with
degree≤ σ −1 by

C0(t) =
σ−1

∑
n=0

1
n!

(
d
dt

)n

C(0, t)|t=0t
n (4.15)

and setC1(t) = C(0, t)−C0(t) = O(| t|σ ). Consider

L
(
tφ(w, t)

)
= (tφ(w, t))σC0(tφ(w, t)). (4.16)

We apply Theorem 2.4 to construct a solution of (4.16) in next lemma.

LEMMA 4.5. There exists a solutionφ(w, t) ∈CCC{w}{t}σ−1,θ of (4.16)with φ(0,0) = 1.

PROOF. First consider

C(0, t)(tφ0(t))′ = φ0(t)σC0(tφ0), φ0(0) = 1.

Setφ0(t) = 1+ϕ(t). Thenϕ(0) = 0 and

C(0, t)(tϕ(t))′ = (1+ϕ(t))σC0(t + tϕ(t))−C(0, t).

SetG(t,u) =C(0, t)−1
(
(1+u)σC0(t + tu)−C0(t)

)
and1(t) =−C(0, t)−1C1(t) = O(| t|σ ). Then

(tϕ(t))′ = G(t,ϕ) + 1(t). By G(t,0) = 0 andGu(0,0) = σ we haveG(t,u) = σu+ G2(t,u),
whereG2(t,u) = O(|u|(| t|+ |u|)). Henceϕ(t) satisfies(tϕ(t))′−σϕ(t) = 1(t) + G2(t,ϕ(t)).
Setϕ(t) = tσ−1ψ(t). Then

ψ(t)′ = t−σ1(t)+ t−σ G2(t, tσ−1ψ(t)). (4.17)

Since1(t) = O(| t|σ ) andG2(t, tσ−1u) = O(| t|σ ), there exists a solutionψ(t) ∈ CCC{t}σ−1,θ of
(4.17) withψ(0) = 0 (see Proposition 7.3). Henceφ0(t) = 1+ϕ(t) = 1+ tσ−1ψ(t) ∈CCC{t}σ−1,θ
exists. Let us proceed to solve (4.16). Setφ1(w, t) = φ(w, t)−φ0(t). Then

L(tφ1(w, t)) = L(tφ(w, t))−L(tφ0(t))

= tσ (φ0(t)+φ1(w, t))σC0
(
tφ0(t)+ tφ1(w, t)

)− tσC(w, t)(tφ0(t))′

= tσ (φ0(t)+φ1(w, t))σC0
(
tφ0(t)+ tφ1(w, t)

)− (tφ0(t))σC(w, t)C(0, t)−1C0(tφ0(t)).
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Set

H(w, t,u) = tσ−1
((

φ0(t)+u
)σ

C0(tφ0(t)+ tu)

−φ0(t)σC(w, t)C(0, t)−1C0(tφ0(t))−C(w, t)u
)
.

Then we have

Lφ1 = H(w, t,φ1(t)), (4.18)

whereH(w, t,0) = O(|w|) and∂uH(0,0,0) = 0 hold. We assumeθ satisfies (4.7), so the equation
(4.18) satisfies assumptions in Theorem 2.4 withN = 1. Hence there is a solutionφ1(w, t) ∈
CCC{w}{t}σ−1,θ with φ1(w, t) = O(|w|) of (4.18). Thusφ(w, t) = φ0(t)+ φ1(w, t) is a solution of
(4.16). ¤

LEMMA 4.6. Let φ(w, t) ∈CCC{w}{t}σ−1,θ be that in Lemma4.5. By transformationτ =
tφ(w, t), wi = wi (1≤ i ≤ d−1), L is transformed to

L =
d−1

∑
i=1

(
Λi(τ)wi +

d−1

∑
j=1

A1
i, j(τ)w j +A2

i (w,τ)
)

∂wi + τσC(τ)∂τ , (4.19)

whereΛi(τ) (1≤ i ≤ d−1) andC(τ) are polynomials inτ with degree≤ σ −1 with Λ(0) = λi

andC(0) = 1, andA1
i, j(τ) ∈CCC{τ}σ−1,θ , A2

i (w,τ) ∈CCC{w}{τ}σ−1,θ with

A1
i, j(τ) = O(|τ|σ ), A2

i (w,τ) = O(|w|2). (4.20)

PROOF. Let t = ϕ(w,τ) ∈CCC{w}{τ}σ−1,θ , be the inverse function ofτ = tφ(w, t). Then
ϕ(w,τ) = τ(1+ O(|w|+ |τ|)). Recall that we assumeL is the form (4.13) with (4.14). Since
Lτ = τσC0(τ), L is transformed to

L =
d−1

∑
i=1

(
λi(ϕ(w,τ))wi +

d−1

∑
j=1

A1
i, j(ϕ(w,τ))w j +A2

i (w,ϕ(w,τ))
)

∂wi + τσC0(τ)∂τ .

Note the coefficient of∂wi . Set Λi(τ) = ∑σ−1
h=0 (d/dτ)hλi(ϕ(0,τ))|τ=0τh/h! and A′i, j(τ) =

(λi(ϕ(0,τ)) − Λi(t))δi, j + A1
i, j(ϕ(0,τ)). Then A′i, j(τ) = O(|τ|σ ) holds. SetA′′i (w,τ) =(

λi(ϕ(w,τ))− λi(ϕ(0,τ))
)
wi + ∑d−1

j=1

(
A1

i, j(ϕ(w,τ))− A1
i, j(ϕ(0,τ))

)
w j + A2

i (w,ϕ(w,τ)). We

denote againA′i, j(τ) (A′′i (w,τ),C0(τ)) by A1
i, j(τ) (resp. A2

i (w,τ), C(τ)). Then they satisfy
(4.20). ¤

We assumeL is of the form (4.19) with (4.20). Moreover let us consider a singular partial
differential equation for each fixedk∈ {1,2, · · · ,d−1}

Lφk(w,τ) = Λk(τ)φk(w,τ). (4.21)
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We apply again Theorem 2.4 to find a solution of (4.7) in next lemma.

LEMMA 4.7. Suppose thatθ satisfies(Θ1). Then there exists a solutionφk(w,τ) ∈
CCC{w}{τ}σ−1,θ of (4.21)with φk(w,τ) = wk +O(|w|(|w|+ |τ|)).

PROOF. Setφk(w,τ) = wk +ψk(w,τ). Thenψk(w,τ) satisfies

d−1

∑
i=1

(
Λi(τ)wi +

d−1

∑
j=1

A1
i, j(τ)w j +A2

i (w,τ)
)

∂ψk

∂wi
+ τσC(τ)

∂ψk

∂τ

= Λk(τ)ψk−
d−1

∑
j=1

A1
k, j(τ)w j −A2

k(w,τ). (4.22)

Let us consider an auxiliary equation to solve (4.22)

d−1

∑
i=1

(
Λi(τ)wi +

d−1

∑
j=1

A1
i, j(τ)w j

)
∂ψ1

k

∂wi
+ τσC(τ)

∂ψ1
k

∂τ
= Λk(τ)ψ1

k −
d−1

∑
j=1

A1
k, j(τ)w j . (4.23)

We show there exists a solutionψ1
k (w,τ) = ∑d−1

j=1 ψ1
k, j(τ)w j of (4.23). We have

d−1

∑
i=1

(
Λi(τ)wi +

d−1

∑
j=1

A1
i, j(τ)w j

)
ψ1

k,i +
d−1

∑
j=1

τσC(τ)
dψ1

k, j

dτ
w j =

d−1

∑
j=1

(
Λk(τ)ψ1

k, j(τ)−A1
k, j(τ)

)
w j ,

hence, a system of linear differential equations of unknowns{ψ1
k, j(τ)}d−1

j=1

τσC(τ)
dψ1

k, j(τ)

dτ
= (Λk(τ)−Λ j(τ))ψ1

k, j(τ)−
d−1

∑
i=1

A1
i, j(τ)ψ1

k,i(τ)−A1
k, j(τ). (4.24)

If j 6= k, thenΛ j(0)−Λk(0) = λ j −λk 6= 0. If j = k, then

τσC(τ)
dψ1

k,k(τ)

dτ
=−

d−1

∑
i=1

A1
i,k(τ)ψ1

k,i(τ)−A1
k,k(τ). (4.25)

The right hand side of (4.25) vanishes atτ = 0 with orderσ , hence by dividing byτσ it becomes
of normal type with respect to(d/dτ). It follows from (Θ1) and Proposition 7.3 that there exist
{ψ1

k, j(τ)}d−1
j=1 ∈CCC{τ}σ−1,θ with ψ1

k, j(0) = 0 satisfying (4.24), soψ1
k (w,τ) = ∑d−1

j=1 ψ1
k, j(τ)w j =

O(|w||τ|) is a solution of (4.23). Setψ2
k (x,τ) = ψk(x,τ)−ψ1

k (x,τ). By (4.22) and (4.23)

d−1

∑
i=1

(
Λi(τ)wi +

d−1

∑
j=1

A1
i, j(τ)w j +A2

i (w,τ)
)

∂ψ2
k

∂wi
+ τσC(τ)

∂ψ2
k

∂τ

= Λk(τ)ψ2
k −A2

k(w,τ)−
d−1

∑
i=1

A2
i (w,τ)

∂ψ1
k

∂wi
, (4.26)
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whereA2
k(w,τ)−∑d−1

i=1 A2
i (w,τ)(∂ψ1

k/∂wi) = O(|w|2). We assumeθ satisfies (4.8), so the equa-
tion (4.26) satisfies assumptions in Theorem 2.4 withN = 2. Hence there existsψ2

k (w,τ) ∈
CCC{w}{τ}σ−1,θ with ψ2

k (w,τ) = O(|w|2). Thusφk(x,τ) = wk +ψ1
k (x,τ)+ ψ2

k (x,τ) is a solution
of (4.21). ¤

PROOF OFTHEOREM 1.7. We can chooseθ so that (4.7), (4.8),(Θ0) and (Θ1) hold.
Consider transformationζk = φk(w,τ) (1≤ k≤ d−1), η = τ, where{φk(w,τ)}d−1

k=1 are those in
Lemma 4.7. ThenL is transformed to

L =
d−1

∑
i=1

(Lφi)
∂

∂ζi
+ησC(η)

∂
∂η

=
d−1

∑
i=1

Λi(η)ζi
∂

∂ζi
+ησC(η)

∂
∂η

.

By settingλi(η) = Λi(η) andc(η) = C(η), which are polynomials inη with degree≤ σ −1
we have (1.19). It follows from the process of transformations in the above Lemmas that (1.20)
holds. ¤

PROOF OFTHEOREM 1.8. Let us return to the proof of Lemma 4.3. Seth(x, t) = 1/c(x, t).
ThenLh = h(x, t)L is of the form (4.10), so the coefficient of∂t becomestσ . By repeating the
above process, but without Lemmas 4.5 and 4.6, we have (1.21) and (1.22). ¤

5. Borel and Laplace transforms, convolution and majorant functions.

One of the aims of this section is to study Laplace transform, Borel transform and convolu-
tion for holomorphic functions on some sectorial regions. We refer for the details of these topics
and the proofs of some Lemmas to [2] and [3]. The other is to introduce majorant functions. The
solutionu(x,y, t) in Theorems 2.3 or 2.4 is constructed by Laplace integral

u(x,y, t) =
∫ ∞eiθ0

0
exp

(
−

(
ξ
t

)γ )
û(x,y,ξ )dξ γ (5.1)

in Section 6, where we use the results in this section.
Let U be a neighborhood of the origin inCCCn and we denote byx = (x1, · · · ,xn) its co-

ordinates. Givenθ andδ > 0, setS∗(θ ,δ ) := {ξ 6= 0;|argξ −θ | < δ} andS∗{0}(θ ,δ ) := {ξ ∈
S∗(θ ,δ );0< |ξ |< ρ(argξ )}, whereρ(·) is some positive continuous function on(θ−δ ,θ +δ ).
Let γ > 0 be a constant. Letφ(x,ξ ) ∈O(U×S∗(θ ,δ )) satisfying for(x,ξ ) ∈U×S∗(θ ,δ )

|φ(x,ξ )| ≤ Aexp(c|ξ |γ) for |ξ | ≥ 1,

|φ(x,ξ )| ≤ A|ξ |ε−γ (ε > 0) for 0 < |ξ |< 1. (5.2)

Then we can defineγ-Laplace transform(Lγ,θ φ)(x, t) by

(Lγ,θ φ)(x, t) =
∫ ∞eiθ

0
exp

(
−

(
ξ
t

)γ )
φ(x,ξ )dξ γ . (5.3)
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(Lγ,θ φ)(x, t) is holomorphic inU ×S{0}(θ ,π/2γ + δ ), whereS{0}(θ ,π/2γ + δ ) is a sectorial
region in t-space defined in Section 1. Letψ(x, t) be holomorphic inU ×S{0}(θ ,π/2γ + δ )
and |ψ(x, t)| ≤C| t|ε for someε > 0. Let ξ 6= 0 with |argξ − θ | < δ . Let C be a contour in
S{0}(θ ,π/2γ + δ ) from 0exp(i(θ ′+argξ )) to 0exp(i(−θ ′+argξ )) with π/2γ < θ ′ < π/2γ +
min{θ +δ −argξ , argξ −θ +δ ,π/2γ}. Then we defineγ-Borel transform(Bγ,θ ψ)(x,ξ ) by

(Bγ,θ ψ)(x,ξ ) =
1

2π i

∫

C
exp

((
ξ
t

)γ )
ψ(x, t)dt−γ . (5.4)

Let φi(x,ξ ) ∈ O(U ×S∗{0}(θ ,δ )) (i = 1,2) satisfying |φi(x,ξ )| ≤ C|ξ |ε−γ (ε > 0). Then γ-
convolution ofφ1(x,ξ ) andφ2(x,ξ ) is defined by

(φ1∗γ φ2)(x,ξ ) =
∫ ξ

0
φ1(x,(ξ γ−ηγ)1/γ)φ2(x,η)dηγ ξ ∈ S∗{0}(θ ,δ ). (5.5)

The following relations hold.

LEMMA 5.1. Suppose thatφi(x,ξ ) ∈ O(U ×S∗(θ ,δ )) (i = 0,1,2) satisfy the estimates
(5.2). Then

Bγ,θ Lγ,θ φ0 = φ0, (5.6)

(Lγ,θ φ1)(Lγ,θ φ2) = Lγ,θ (φ1∗γ φ2). (5.7)

We have a characterization off (x, t) ∈O(U){t}γ,θ by its γ-Borel transform(Bγ,θ f )(x,ξ ).

PROPOSITION5.2. Suppose thatf (x, t) ∈ O(U){t}γ,θ and its asymptotic expansion is

∑∞
m=k fm(x)tm with k ≥ 1. Then for anyV b U there is a positive constant̂ξ0 > 0 such that

(Bγ,θ f )(x,ξ ) is holomorphic in{0 < |ξ |< ξ̂0} and

(Bγ,θ f )(x,ξ ) =
∞

∑
m=k

fm(x)
Γ (m/γ)

ξ m−γ (5.8)

holds. Moreover it is holomorphically extensible toS∗(θ ,δ ) for someδ > 0 such that

|(Bγ,θ f )(x,ξ )| ≤C|ξ |k−γ exp(c|ξ |γ) (5.9)

in V× ({0 < |ξ |< ξ̂0}∪S∗(θ ,δ )) and

f (x, t) =
∫ ∞eiθ

0
exp

(
−

(
ξ
t

)γ )
(Bγ,θ f )(x,ξ )dξ γ . (5.10)

Next let us study majorant functions. For formal power series ofnvariablesA(x) = ∑α Aαxα

andB(x) = ∑α Bαxα , A(x)¿ B(x) means|Aα | ≤ Bα for all α ∈ NNNn. A(x)À 0 meansAα ≥ 0
for all α ∈ NNNn. Let θ(X) be a power series of one variableX defined by
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θ(X) = c
+∞

∑
k=0

Xk

(k+1)2 c > 0, (5.11)

which is used in [10] and [17]. By θ(X)θ(X) = c2 ∑∞
k=0(∑l+m=k 1/((l +1)2(m+1)2))Xk ¿

c2C∑∞
k=0Xk/(k+1)2 for someC > 0, we choosec > 0 so thatθ(X)θ(X)¿ θ(X) and fix it. Set

Φ(r;X) = θ(X/r) for r > 0 and we denote(d/dX)sΦ(r;X) = r−sθ (s)(X/r) by Φ (s)(r;X).

LEMMA 5.3. Let0 < r < R≤ 1. The following estimates hold.

(s+1)Φ (s)(r;X)¿ 4Φ (s+1)(r;X),

Φ (s′)(r;X)Φ (s′′)(r;X)¿Φ (s′+s′′)(r;X), (5.12)

Φ (s)(R;X)¿ (r/R)sΦ (s)(r;X).

PROOF. Since θ (s+1)(X) = ∑∞
k=0((k+s+1)(k+s) · · ·(k+1)/(k+s+2)2)Xk and

(k+s+1)3/(k+s+2)2 ≥ (s+1)/4, we have(s+ 1)θ (s)(X) ¿ 4θ (s+1)(X) and the first esti-
mate. By differentiatingΦ(r;X)Φ(r;X) ¿ Φ(r;X) (s′ + s′′)-times, we have the second. By
θ (s)(X/R)¿ θ (s)(X/r) for 0 < r < R, we haveΦ (s)(R;X) = R−sθ (s)(X/R)¿ R−sθ (s)(X/r)¿
(r/R)sr−sθ (s)(X/r) = (r/R)sΦ (s)(r;X). ¤

PROPOSITION5.4. (1) Let i andn be positive integers. Then

∑
n1,n2··· ,ni∈NNN
n1+n2+···+ni=n

Φ (n1)(r;X)Φ (n2)(r;X) · · ·Φ (ni)(r;X)
n1!n2! · · ·ni !

¿ Φ (n)(r;X)
n!

. (5.13)

(2) LetN be a positive integer andm∈ NNNN. Then

∑
p,q∈NNNN

p+q=m

Φ (|p|+s′)(r;X)Φ (|q|+s′′)(r;X)
p!q!

¿ Φ (|m|+s′+s′′)(r;X)
m!

. (5.14)

PROOF. By differentiating

i︷ ︸︸ ︷
Φ(r;X) · · ·Φ(r;X) ¿ Φ(r;X) n-times, we have (5.13). We

show (5.14). ForN = 1 we have from (5.13)

∑
p1,q1∈NNN
p1+q1=m1

Φ (p1)(r;X)Φ (q1)(r;X)
p1!q1!

¿ Φ (p1+q1)(r;X)
m1!

and by differentiating(s′+s′′)-times we have

∑
p1,q1∈NNN
p1+q1=m1

Φ (p1+s′)(r;X)Φ (q1+s′′)(r;X)
p1!q1!

¿ Φ (m1+s′+s′′)(r;X)
m1!

.
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Assume

∑
p′,q′∈NNNN−1

p′+q′=m′

Φ (|p′|+s′)(r;X)Φ (|q′|+s′′)(r;X)
p′!q′!

¿ Φ (|m′|+s′+s′′)(r;X)
m′!

.

Then, by differentiatingmN-times, we have (5.14). ¤

LEMMA 5.5. Letx = (x1, · · · ,xn) ∈CCCn. Letϕi(ξ ,x), i = 1,2, be holomorphic functions in
x in a neighborhood ofx = 0 and continuous inξ on argξ = θ . Put X = ∑n

i=1xi . Suppose that
there areΨi(X)À 0, si > 0 andγ > 0 such that

ϕi(ξ ,x)¿ Aiec|ξ |γ |ξ |si−γ

Γ (si/γ)
Ψi(X). (5.15)

Then forξ with argξ = θ

ϕ1(ξ ,x)∗
γ

ϕ2(ξ ,x)¿ A1A2ec|ξ |γ |ξ |s1+s2−γ

Γ ((s1 +s2)/γ)
Ψ1(X)Ψ2(X). (5.16)

PROOF. We have

ϕ1(ξ ,x)∗
γ

ϕ2(ξ ,x) =
∫ |ξ |eiθ

0
ϕ1((ξ γ −ηγ)1/γ ,x)ϕ2(η ,x)dηγ

=
∫ |ξ |

0
ϕ1((|ξ |γ − rγ)1/γeiθ ,x)ϕ2(reiθ ,x)eiγθ drγ

¿ A1A2ec|ξ |γ

Γ (s1/γ)Γ (s2/γ)

(∫ |ξ |

0
(|ξ |γ − rγ)s1/γ−1rs2−γdrγ

)
Ψ1(X)Ψ2(X)

¿ A1A2ec|ξ |γ |ξ |s1+s2−γ

Γ ((s1 +s2)/γ)
Ψ1(X)Ψ2(X).

¤

LEMMA 5.6. Let(x,y)∈CCCd0×CCCd2 and f (x,y) = ∑m∈NNNd0 fm(y)xm be a holomorphic func-

tion in a neighborhood of(x,y) = (0,0). SetX = ∑d0
i=1xi andY = ∑d2

i=1yi . Then the following
estimates hold.
(1) If f (x,y)¿CΦ (s)(R;X +Y), then fm(y)¿CΦ (s+|m|)(R;Y)/m!.
(2) If f (x,y)¿CXΦ (s+1)(R;X +Y), then fm(y)¿C|m|Φ (s+|m|)(R;Y)/m!.

PROOF. The first assertion follows from∂ m
x f (0,y)¿CΦ (s+|m|)(R;Y). The second follows

from ∂ m
x f (0,y)¿C|m|Φ (s+|m|)(R;Y). ¤

6. Proofs of Theorems 2.3 and 2.4.

The proofs of Theorems 2.3 and 2.4 are almost the same. So we give the proof of Theorem
2.3 in detail. We sum up shortly the assumptions of Theorem 2.3. SetU = {(x,y) ∈ CCCd0 ×
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CCCd2; |x| < R, |y| < R} andU0 = {u∈CCC; |u| < R0}. P = P(x,y, t,∂x,∂y,∂t) is a vector field with
coefficients inO(U){t}γ,θ0,

P =
d0

∑
i=1

(λixi + µi−1xi−1 +Ai(x,y, t))∂xi +
d1

∑
j=1

B j(x,y, t)∂y j + tγ+1C(x,y, t)∂t , (6.1)

whereγ is a positive integer and the coefficients satisfy (see (2.2))





Ai(0,y, t) = O(|t|γ+1), Ai(x,y, t) = O
(
(|x|+ |y|+ |t|)2

)

B j(0,y, t) = O(|t|γ+1), B j(x,y, t) = O
(
(|x|+ |y|+ |t|)2

)

C(0,0,0) 6= 0.

(6.2)

It follows from (6.2) that the coefficientsAi(x,y, t),B j(x,y, t) andC(x,y, t) can be represented in
the following form





Ai(x,y, t) = ai(x,y)+ai,0(y, t)+ai,1(x,y, t),

B j(x,y, t) = b j(x,y)+b j,0(y, t)+b j,1(x,y, t),

C(x,y, t) = c0(x,y)+c1(x,y, t),

(6.3)

where





ai(0,y) = 0, ai(x,y) = O
(
(|x|+ |y|)2

)
,

b j(0,y) = 0, b j(x,y) = O
(
(|x|+ |y|)2

)
,

ai,0(y, t) = O(|t|γ+1), ai,1(0,y, t) = ai,1(x,y,0) = 0,

b j,0(y, t) = O(|t|γ+1), b j,1(0,y, t) = bi,1(x,y,0) = 0,

c0(0,0) 6= 0, c1(x,y,0) = 0.

(6.4)

As for Ai(x,y, t), by settingai(x,y) = Ai(x,y,0), ai,0(y, t) = Ai(0,y, t) andai,1(x,y, t) = Ai(x,y, t)−
ai(x,y)−ai,0(y, t), we haveAi(x,y, t) = ai(x,y)+ ai,0(y, t)+ ai,2(x,y, t) with (6.4). Thus we as-
sumeP is of the form

P(x,y, t,∂x,∂y,∂t) =
d0

∑
i=1

(λixi + µi−1xi−1 +ai(x,y)+ai,0(y, t)+ai,1(x,y, t))∂xi

+
d2

∑
j=1

(b j(x,y)+b j,0(y, t)+b j,1(x,y, t))∂y j + tγ+1(c0(x,y)+c1(x,y, t))∂t

(6.5)

and the coefficients satisfy (6.4). As for the nonlinear term,F(x,y, t,u) ∈O(U×U0){t}γ,θ0 with
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F(x,y,0,0) = 0 (see (2.10)), hence





F(x,y, t,u) =
+∞

∑
i=0

Fi(x,y, t)ui , F0(x,y,0) = 0,

Fi(x,y, t) ∈O(U){t}γ,θ0.

(6.6)

An important assumption is (2.13), that is, forξ with |argξ −θ0|< δ0

∣∣∣∣
d0

∑
i=1

miλi + γc0(0,0)ξ γ −F1(0,0,0)
∣∣∣∣≥ K0(|m|+ |ξ |γ +1) (6.7)

holds for allm= (m1, · · · ,md0) ∈ NNNd0.
Our aim is to construct a solutionu(x,y, t) of Pu = F(x,y, t,u) by Laplace integral (see

(5.1)). We denote bŷ1(x,y,ξ ) γ-Borel transform of1(x,y, t) with respect tot, so 1(x,y, t) =∫ ∞eiθ0

0 exp(−(ξ/t)γ)1̂(x,y,ξ )dξ γ . Now let us proceed to find the equation thatû(x,y,ξ ) satisfies.
The coefficients ofP belong toO(U){t}γ,θ0, so we can represent them byγ-Laplace transform.

By shrinkingU if necessary, it follows from Proposition 5.2 that there is a constantξ̂0 > 0 such
thatγ-Borel transforms of the coefficients are holomorphic in(x,y,ξ ) ∈U×Ξ ∗

0 ,

Ξ ∗
0 = {0 < |ξ |< ξ̂0}∪S∗(θ0,δ0), (6.8)

and by (6.4) there are constantsC0 andc0 such that





|âi,0(y,ξ )|, |b̂ j,0(y,ξ )| ≤C0|ξ |exp(c0|ξ |γ),
|âi,1(x,y,ξ )|, |b̂ j,1(x,y,ξ )| ≤C0|x||ξ |1−γ exp(c0|ξ |γ),
|ĉ1(x,y,ξ )| ≤C0|ξ |1−γ exp(c0|ξ |γ)

(6.9)

(see (5.9)), hence there is a constantc0 > 0 such that





âi,0(y,ξ ), b̂ j,0(y,ξ )¿C0|ξ |exp(c0|ξ |γ)Φ(R;Y),

âi,1(x,y,ξ ), b̂ j,1(x,y,ξ )¿C0|ξ |1−γ exp(c0|ξ |γ)XΦ(R;X +Y),

ĉ1(x,y,ξ )¿C0|ξ |1−γ exp(c0|ξ |γ)Φ(R;X +Y),

(6.10)

where the majorant functionΦ(R;X) is that defined in Section 5 andX = ∑d0
i=1xi , Y = ∑d2

i=1yi

andR> 0 is some constant. Let us applyγ-Borel transform to the equationPu= F(x,y, t,u). Set

Fi,0(x,y) = Fi(x,y,0), Fi,1(x,y, t) = Fi(x,y, t)−Fi(x,y,0) (6.11)

(see (6.6)) and define
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P(x,y,ξ ,∂x,∂y) =
d0

∑
i=1

(λixi + µi−1xi−1 +ai(x,y))∂xi

+
d2

∑
j=1

b j(x,y)∂y j + γc0(x,y)ξ γ −F1,0(x,y), (6.12)

Q(x,y,ξ ,∂x,∂y) =
d0

∑
i=1

(
âi,0(y,ξ )+ âi,1(x,y,ξ )

)∗
γ
(∂xi · )

+
d2

∑
j=1

(
b̂ j,0(y,ξ )+ b̂ j,1(x,y,ξ )

)∗
γ
(∂y j · )+ ĉ1(x,y,ξ )∗

γ
(γξ γ · ). (6.13)

P(x,y,ξ ,∂x,∂y) is a singular linear partial differential operator with a parameterξ and
Q(x,y,ξ ,∂x,∂y) is a linear partial differential convolution operator. LetF (x,y,ξ ,3) be a nonlin-
ear convolution operator defined by

F (x,y,ξ ,3) =
∞

∑
i=2

Fi,0(x,y)(
i︷ ︸︸ ︷

3∗
γ
3∗

γ
· · · ∗

γ
3)+

∞

∑
i=1

F̂i,1(x,y,ξ )∗
γ

i︷ ︸︸ ︷
3∗

γ
3∗

γ
· · · ∗

γ
3. (6.14)

Puttingu = (Lγ,θ0û)(x,y, t), we have

(P−F1,0(x,y))u = Lγ,θ0

(
P(x,y,ξ ,∂x,∂y)û+Q(x,y,ξ ,∂x,∂y)û

)
,

F(x,y,u)−F1,0(x,y)u = Lγ,θ0

(
F̂0(x,y,ξ )+F (x,y,ξ , û)

)
.

Soû satisfies

P(x,y,ξ ,∂x,∂y)û+Q(x,y,ξ ,∂x,∂y)û = F̂0(x,y,ξ )+F (x,y,ξ , û). (6.15)

Hence we have

P(x,y,ξ ,∂x,∂y)3+Q(x,y,ξ ,∂x,∂y)3= F̂0(x,y,ξ )+F (ξ ,x,y,3), (6.16)

which is the equation to be solved. We shall show the existence of a solution3(x,y,ξ ) of (6.16)
and get its estimate. The coefficients of (6.16) are holomorphic in(x,y,ξ ) ∈ U ×Ξ ∗

0 and the
estimates (6.9) and (6.10) hold. Set

h(x,y,ξ ) = γc0(x,y)ξ γ −F1,0(x,y). (6.17)

Then it follows from (6.7) that for a small neighborhoodU there is a constantK > 0 such that
for (0,y,ξ ) ∈U×Ξ ∗

0 andm∈ NNNd0

( d0

∑
i=1

miλi +h(0,y,ξ )
)−1

¿ KΦ(R;Y)
(1+ |ξ |)γ + |m| (6.18)
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holds. Under the above assumptions, we have

THEOREM 6.1. There exists a solution3(x,y,ξ ) of (6.16) which is holomorphic in
(x,y,ξ ) ∈ V ×Ξ ∗

0 , whereV = {(x,y); |x| < r, |y| < r} for somer > 0, and has the following
properties.
(1) ξ−1+γ3(x,y,ξ ) is holomorphic inV×Ξ ∗

0 .
(2) There exist positive constantsC andc such that

|3(x,y,ξ )| ≤C|ξ |1−γ exp(c|ξ |γ) for (x,y,ξ ) ∈V×Ξ ∗
0 . (6.19)

After completing the proof of Theorem 6.1, we show Theorem 2.3. The proof of Theorem
6.1 consists of several steps, so we give lemmas and propositions. We use in the following
discussions Lemmas 5.3, 5.5 and 5.6 and Proposition 5.4. Seth1(x,y,ξ ) = h(x,y,ξ )−h(0,y,ξ )
and

P0(x,y,ξ ,∂x) =
d0

∑
i=1

(λixi + µi−1xi−1)∂xi +h(0,y,ξ )

P1(x,y,∂x,∂y) = h1(x,y,ξ )+
d0

∑
i=1

ai(x,y)∂xi +
d2

∑
j=1

b j(x,y)∂y j . (6.20)

Then P(x,y,ξ ,∂x,∂y) = P0(x,y,ξ ,∂x) + P1(x,y,∂x,∂y). Here we give a remark on the

constants{µi}d0−1
i=1 . Set wi = cixi ,c > 0, for 1 ≤ i ≤ d0. Then P0(x,y,ξ ,∂x) = (λiwi +

cµi−1wi−1)∂wi +h(0,y,ξ ), soµi changes tocµi . Hence, by choosing smallc > 0, µi becomes as
small as possible.

LEMMA 6.2. Let f (x,y,ξ ) (ξ ∈ Ξ ∗
0) be a holomorphic function satisfyingf (x,y,ξ ) ¿

M(|ξ |)Φ (s)(r;X +Y) or f (x,y,ξ )¿M(|ξ |)XΦ (s+1)(r;X +Y). Then there is a unique holomor-
phic solution3(x,y,ξ ) of

P0(x,y,ξ ,∂x)3(x,y,ξ ) = f (x,y,ξ ) (6.21)

with the following estimate. There are constantsr0 andC0 such that for0< r ≤ r0 if f (x,y,ξ )¿
M(|ξ |)Φ (s)(r;X +Y),

3(x,y,ξ )¿ C0M(|ξ |)
(1+ |ξ |)γ Φ (s)(r;X +Y) (6.22)

and if f (x,y,ξ )¿M(|ξ |)XΦ (s+1)(r;X +Y),

3(x,y,ξ )¿C0M(|ξ |)Φ (s)(r;X +Y). (6.23)

PROOF. SetP0,0(x,y,ξ ,∂x) = ∑d0
i=1 λixi∂xi +h(0,y,ξ ) and first consider

P0,0(x,y,ξ ,∂x)3(x,y,ξ ) = f (x,y,ξ ). (6.24)
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Let 3(x,y,ξ ) = ∑m∈NNNd0 3m(y,ξ )xm and f (x,y,ξ ) = ∑m∈NNNd0 fm(y,ξ )xm. Then

( d0

∑
i=1

miλi +h(0,y,ξ )
)
3m(y,ξ ) = fm(y,ξ ).

Hence we can uniquely determine3m(y,ξ ). Let us estimate them. Assumef (x,y,ξ ) ¿
M(|ξ |)Φ (s)(r;X +Y). Then there is a constantC such that3m(y,ξ ) ¿ CM(|ξ |)(1+ |ξ |)−γ

Φ (s+|m|)(r;Y)/m! by (6.18) and Lemma 5.6. Hence3(x,y,ξ ) ¿ CM(|ξ |)(1 + |ξ |)−γ Φ (s)

(r;X + Y). Next assume f (x,y,ξ ) ¿ M(|ξ |)XΦ (s+1)(r;X + Y). Then fm(y,ξ ) ¿
M(|ξ |)|m|Φ (s+|m|)(r;Y)/m! by Lemma 5.6, hence,3m(y,ξ ) ¿ CM(|ξ |)Φ (s+|m|)(r;Y)/m! for
someC > 0 and we have3(x,y,ξ )¿CM(|ξ |)Φ (s)(r;X +Y).

Now let us solve (6.21). Consider

P0,0(x,y,ξ ,∂x)30(x,y,ξ ) = f (x,y,ξ )

P0,0(x,y,ξ ,∂x)3n(x,y,ξ )+
( d0

∑
i=1

µi−1xi−1∂xi

)
3n−1(x,y,ξ ) = 0, (6.25)

where we may assume thatC(∑d0
i=2 µi−1) < 1/2 by the above remark. We can determine

successively3n(x,y,ξ ). Let us show the convergence. Supposef (x,y,ξ ) ¿ M(|ξ |)Φ (s)

(r;X + Y). Then 30(x,y,ξ ) ¿ CM(|ξ |)(1 + |ξ |)−γ Φ (s)(r;X + Y). Assume3n−1(x,y,ξ ) ¿
C2−n+1M(|ξ |)(1+ |ξ |)−γ Φ (s)(r;X +Y). Then

( d0

∑
i=1

µi−1xi−1∂xi

)
3n−1(x,y,ξ )¿ 2−nM(|ξ |)

(1+ |ξ |)γ XΦ (s+1)(r;X +Y)

and we have3n(x,y,ξ )¿C2−nM(|ξ |)(1+ |ξ |)−γ Φ (s)(r;X +Y) and3(x,y,ξ ) = ∑∞
n=0 3

n(x,y,ξ )
¿ 2CM(|ξ |)(1+ |ξ |)−γ Φ (s)(r;X +Y). In the other casef (x,y,ξ )¿M(|ξ |)XΦ (s+1)(r;X +Y)
we can show the existence of a solution3(x,y,ξ ) with (6.23) in the same way. ¤

LEMMA 6.3. Let 3(x,y,ξ ) (ξ ∈ Ξ ∗
0) be a holomorphic function with3(x,y,ξ ) ¿

M1(|ξ |)Φ (s)(r;X +Y). Then for anyε > 0 there isr1 > 0 such that for0 < r ≤ r1

P1(x,y,∂x,∂y)3(x,y,ξ )¿ εM1(|ξ |)
(
(1+ |ξ |)γ Φ (s)(r;X +Y)+XΦ (s+1)(r;X +Y)

)
.

(6.26)

PROOF. It follows from (6.4) andh1(0,y,ξ ) = 0 that for anyε > 0 there isR> 0 such
that ai(x,y),b j(x,y) ¿ (ε/(d0 +d2))XΦ(R;X +Y), andh1(x,y,ξ ) ¿ ε(1+ |ξ |)γ Φ(R;X +Y).
So for0 < r ≤ r1 < R

d0

∑
i=1

ai(x,y)∂xi 3(x,y,ξ )+
d2

∑
j=1

b j(x,y)∂y j 3(x,y,ξ )¿ εM1(|ξ |)XΦ (s+1)(r;X +Y)

h1(x,y,ξ )3(x,y,ξ )¿ ε(1+ |ξ |)γM1(|ξ |)Φ (s)(r;X +Y),
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hence, we have (6.26). ¤

Thus we have the solvability ofP(x,y,ξ ,∂x,∂y)3(x,y,ξ ) = f (x,y,ξ ).

PROPOSITION6.4. Let f (x,y,ξ ) (ξ ∈ Ξ ∗
0) be a holomorphic function withf (x,y,ξ )¿

M(|ξ |)Φ (s)(r;X +Y) or f (x,y,ξ )¿M(|ξ |)XΦ (s+1)(r;X +Y). Then there is a constantr0 > 0
such that for0 < r ≤ r0 there exists a unique holomorphic solution3(x,y,ξ ) of

P(x,y,ξ ,∂x,∂y)3(x,y,ξ ) = f (x,y,ξ ). (6.27)

Furthermore there exists a constantC such that iff (x,y,ξ )¿M(|ξ |)Φ (s)(r;X +Y),

3(x,y,ξ )¿ CM(|ξ |)
(1+ |ξ |)γ Φ (s)(r;X +Y) (6.28)

and if f (x,y,ξ )¿M(|ξ |)XΦ (s+1)(r;X +Y),

3(x,y,ξ )¿CM(|ξ |)Φ (s)(r;X +Y). (6.29)

PROOF. Let us show the existence of a solution by iteration. We define3n(x,y,ξ ) (n =
0,1, · · ·) as follows:

P0(x,y,ξ ,∂x)30(x,y,ξ ) = f (x,y,ξ ),

P0(x,y,ξ ,∂x)3n(x,y,ξ )+P1(x,y,∂x,∂y)3n−1(x,y,ξ ,x,y) = 0.

We can determine successively3n(x,y,ξ ) by Lemma 6.2. Let us show the convergence
of ∑∞

n=0 3
n(x,y,ξ ). Assume f (x,y,ξ ) ¿ M(|ξ |)Φ (s)(r;X + Y). Then by Lemma 6.2

30(x,y,ξ ) ¿ C0M(ξ )(1+ |ξ |)−γ Φ (s)(r;X +Y). Assume3n−1(x,y,ξ ) ¿ C02−n+1M(|ξ |)(1+
|ξ |)−γ Φ (s)(r;X +Y). Then we have by Lemma 6.3

P1(x,y,∂x,∂y)3(x,y,ξ )¿C02−n+1εM(|ξ |)
× (

Φ (s)(r;X +Y)+(1+ |ξ |)−γXΦ (s+1)(r;X +Y)
)
.

By Lemma 6.23n(x,y,ξ ) ¿ 2C2
0ε2−n+1M(|ξ |)(1+ |ξ |)−γ Φ (s)(r;X +Y). Now chooseε so

small such that0 < C0ε < 1/4. Then2C2
0ε2−n+1 ≤C02−n and3n(x,y,ξ )¿C02−nM(|ξ |)(1+

|ξ |)−γ Φ (s)(r;X +Y). So3(x,y,ξ ) = ∑∞
n=0 3

n(x,y,ξ ) converges and (6.28) holds. Iff (x,y,ξ )¿
M(|ξ |)XΦ (s+1)(r;X+Y), we also have3n(x,y,ξ )¿C02−nM(|ξ |)Φ (s)(r;X+Y) in the same way
as above. Iff (x,y,ξ )≡ 0, there existsM1(|ξ |) such that3(x,y,ξ )¿C02−nM1(|ξ |)Φ (s)(r;X+Y)
holds for anyn, from which the uniqueness follows. ¤

Now let us proceed to construct a solution of (6.16). Define3n = 3n(x,y,ξ ) (n∈ NNN) inductively,
30 = 0 and by
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P(x,y,ξ ,∂x,∂y)31 = F̂0(x,y,ξ ),
P(x,y,ξ ,∂x,∂y)3n +Q(x,y,ξ ,∂x,∂y)3n−1

=
∞

∑
i=2

Fi,0(x,y)
(

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)

+
∞

∑
i=1

F̂i,1(x,y,ξ )∗
γ

(
∑

(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)
. (6.30)

Since30 = 0, we have in (6.30)

∞

∑
i=2

Fi,0(x,y)
(

∑
(n1,··· ,ni)∈NNNi

n1+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)
=

n

∑
i=2

Fi,0(x,y)
(

∑
(n1,··· ,ni)∈NNNi

n1+···+ni=n

· · ·
)

,

∞

∑
i=1

F̂i,1(x,y,ξ )∗
γ

(
∑

(n1,··· ,ni)∈NNNi

n1+···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)
=

n−1

∑
i=1

F̂i,1(x,y,ξ )∗
γ

(
∑

(n1,··· ,ni)∈NNNi

n1+···+ni=n−1

· · ·
)

.

(6.31)

Let us show the existence of3n(x,y,ξ ) (n≥ 1) with estimate

3n(x,y,ξ )¿ ABn−1|ξ |n−γec0|ξ |γ

Γ (n/γ)n!
Φ (n)(r;X +Y), (6.32)

which is holomorphic inΞ ∗
0 andξ−1+γ3n(x,y,ξ ) is holomorphic atξ = 0. We note thatξ is

a holomorphic parameter in (6.16). In the following estimates0 < r < R≤ 1 andr andR are
small, if necessary. It follows fromF0(x,y,0) = 0 and Proposition 5.2 thatξ−1+γ F̂0(x,y,ξ ) is
holomorphic atξ = 0 and

F̂0(x,y,ξ )¿ C0|ξ |1−γec0|ξ |γ

Γ (1/γ)
Φ (1)(R;X +Y). (6.33)

By Proposition 6.4 there exists31(x,y,ξ ) with (6.32) such that31(x,y,ξ ) = ∑∞
i=1 31,i(x,y)ξ i−γ in

a neighborhood ofξ = 0. Assume that there exist3p(x,y,ξ ) (1≤ p≤ n− 1) with the above
properties. Set

I0
n−1(x,y,ξ ) :=

n

∑
i=2

Fi,0(x,y)
(

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)

I1
n−1(x,y,ξ ) :=

n−1

∑
i=1

F̂i,1(x,y,ξ )∗
γ

(
∑

(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)
.
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Then P(x,y,ξ ,∂x,∂y)3n + Q(x,y,ξ ,∂x,∂y)3n−1 = I0
n−1(x,y,ξ ) + I1

n−1(x,y,ξ ) by (6.30) and
(6.31). Let us estimate{I i

n−1(x,y,ξ )}i=0,1 andQ(x,y,ξ ,∂x,∂y)3n−1 for n≥ 2.

LEMMA 6.5. For some constantC1 > 0 the following estimates hold:

I0
n−1(x,y,ξ ), I1

n−1(x,y,ξ )¿ C1ABn−2|ξ |n−γec0|ξ |γ

Γ (n/γ)n!
Φ (n)(r;X +Y). (6.34)

PROOF. We estimateI0
n−1(x,y,ξ ). By (5.13) in Proposition 5.4 and Lemma 5.5 we have

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni ¿

AiBn−i |ξ |n−γec0|ξ |γ

Γ (n/γ)n!
Φ (n)(r;X +Y).

Hence fromFi,0(x,y)¿ Bi−1
1 Φ(R;X +Y) for i ≥ 2 we have

n

∑
i=2

Fi,0(x,y)
(

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)

¿
( n

∑
i=2

AiBn−iBi−1
1

) |ξ |n−γec0|ξ |γ

Γ (n/γ)n!
Φ (n)(r;X +Y).

ChooseB with B≥ 2AB1. Then∑n
i=2AiBn−iBi−1

1 ≤ A2B1Bn−2 ∑n−2
i=0 (AB1/B)i ≤ 2A2B1Bn−2. So

by choosingC1 ≥ 2AB1, (6.34) holds. The estimate forI1
n−1(x,y,ξ ) is obtained in the same way.

By (5.13) in Proposition 5.4

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni ¿

AiBn−1−i |ξ |n−1−γec0|ξ |γ

Γ ((n−1)/γ)(n−1)!
Φ (n−1)(r;X +Y)

holds and byFi,1(x,y,0) = 0 we haveF̂i,1(x,y,ξ )¿ (
(Bi

1|ξ |1−γec0|ξ |γ )/Γ (1/γ)
)
Φ(R;X +Y) for

i ≥ 1. Hence by (5.12)

n−1

∑
i=1

F̂i,1(x,y,ξ )∗
γ

(
∑

(n1,n2,··· ,ni)∈NNNi

n1+n2···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)

¿C′
(n−1

∑
i=1

AiBn−1−iBi
1

) |ξ |n−γec0|ξ |γ

Γ (n/γ)n!
Φ (n)(r;X +Y)

holds. ForB with B≥ 2AB1, ∑n−1
i=1 AiBn−1−iBi

1≤ AB1Bn−2 ∑n−2
i=0 (AB1/B)i ≤ 2AB1Bn−2 holds, so

(6.34) holds withC1 ≥ 2C′B1. ¤
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Set

I2
n−1(x,y,ξ ) :=−

( d0

∑
i=1

âi,0(y,ξ )∗
γ

∂xi 3n−1 +
d2

∑
i=1

b̂i,0(y,ξ )∗
γ

∂yi 3n−1

)
,

I3
n−1(x,y,ξ ) :=−

( d0

∑
i=1

âi,1(x,y,ξ )∗
γ

∂xi 3n−1 +
d2

∑
i=1

b̂i,1(x,y,ξ )∗
γ

∂yi 3n−1

)
,

I4
n−1(x,y,ξ ) :=− ĉ1(x,y,ξ )∗

γ
(γξ γ3n−1). (6.35)

Then−Q(x,y,ξ ,∂x,∂y)3n−1 = ∑4
i=2 I i

n−1(x,y,ξ ) and we have

LEMMA 6.6. For some constantC2 > 0 the following estimates hold:

I2
n−1(x,y,ξ )¿C2ABn−2

n!
|ξ |nec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y), (6.36)

I3
n−1(x,y,ξ )¿C2ABn−2

(n−1)!
|ξ |n−γec0|ξ |γ

Γ (n/γ)
XΦ (n)(r;X +Y), (6.37)

I4
n−1(x,y,ξ )¿C2ABn−2

n!
|ξ |nec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y). (6.38)

We use bounds (6.10) to obtain the above estimates.

PROOF OF(6.36). We show the estimate ofâi,0(y,ξ )∗
γ

∂xi 3n−1 and can estimate other terms

in the same way. Bŷai,0(y,ξ )¿C0|ξ |ec0|ξ |γ Φ(R;Y) we have

âi,0(y,ξ )∗
γ

∂xi 3n−1

¿ C′ABn−2

(n−1)!

( |ξ |ec0|ξ |γ

Γ ((γ +1)/γ)
∗
γ

|ξ |n−1−γec0|ξ |γ

Γ ((n−1)/γ)

)
Φ(R;Y)Φ (n)(r;X +Y)

¿ C′ABn−2

(n−1)!
|ξ |nec0|ξ |γ

Γ ((n/γ)+1)
Φ (n)(r;X +Y)¿ C2ABn−2

n!
|ξ |nec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y).

PROOF OF(6.37). We estimatêai,1(x,y,ξ ) ∗
γ

∂xi 3n−1 and other terms are estimated in the

same way. Bŷai,1(x,y,ξ )¿C0|ξ |1−γec0|ξ |γ XΦ(R;X +Y) we have

âi,1(x,y,ξ )∗
γ

∂xi 3n−1

¿ C′ABn−2

(n−1)!

( |ξ |1−γec0|ξ |γ

Γ (1/γ)
∗
γ

|ξ |n−1−γec0|ξ |γ

Γ ((n−1)/γ)

)
XΦ(R;X +Y)Φ (n)(r;X +Y)

¿ C2ABn−2

(n−1)!
|ξ |n−γec0|ξ |γ

Γ (n/γ)
XΦ (n)(r;X +Y).
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PROOF OF(6.38). By ĉ1(x,y,ξ )¿C0|ξ |1−γec0|ξ |γ Φ(R;X +Y) we have

ĉ1(x,y,ξ )∗
γ
(γξ γ3n−1)

¿ C′ABn−2

(n−1)!

( |ξ |1−γec0|ξ |γ

Γ (1/γ)
∗
γ

|ξ |n−1ec0|ξ |γ

Γ ((n−1)/γ)

)
Φ(R;X +Y)Φ (n−1)(r;X +Y)

¿ C′ABn−2

(n−1)!
Γ (((n−1)/γ)+1)

Γ ((n−1)/γ)
|ξ |nec0|ξ |γ

Γ ((n/γ)+1)
Φ (n−1)(r;X +Y)

¿ C′′ABn−2

(n−1)!
|ξ |nec0|ξ |γ

Γ (n/γ)
Φ (n−1)(r;X +Y)¿ C2ABn−2

n!
|ξ |nec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y).

¤

EXISTENCE OF A SOLUTION3n(x,y,ξ ) OF (6.30).
We haveP(x,y,ξ ,∂x,∂y)3n = ∑4

i=0 I i
n−1(x,y,ξ ). In order to solve it, consider

P(ξ ,x,y,∂x,∂y)3 i
n(ξ ,x,y) = I i

n−1(ξ ,x,y). (6.39)

For i = 0,1,2,4 it follows from Proposition 6.4 and Lemmas 6.5 and 6.6 that there exists
3 i
n(ξ ,x,y) with

3 i
n(ξ ,x,y)¿ C′ABn−2

n!
|ξ |n−γec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y). (6.40)

For i = 3 by Proposition 6.4 and Lemma 6.6 that there exists33
n(x,y,ξ ) with

33
n(x,y,ξ )¿C′ABn−2

(n−1)!
|ξ |n−γec0|ξ |γ

Γ (n/γ)
Φ (n−1)(r;X +Y)

¿C′ABn−2

n!
|ξ |n−γec0|ξ |γ

Γ (n/γ)
Φ (n)(r;X +Y). (6.41)

Thus3n(x,y,ξ ) = ∑4
i=0 3

i
n(x,y,ξ ) is a solution of (6.30) and holomorphic inΞ ∗

0 with (6.32) and
ξ−1+γ3n(ξ ,x,y) is holomorphic atξ = 0.

EXISTENCE OF A SOLUTION3(x,y,ξ ) OF (6.16).
Set V = {(x,y);∑d0

i=1 |xi |+ ∑d1
i=1 |yi | ≤ r/2}. Then there exists a constantC1 such that

|Φ (n)(r;X +Y)| ≤Cn+1
1 n! for (x,y) ∈V, hence, for some constantc > c0

∞

∑
n=1

|3n(x,y,ξ )| ≤
∞

∑
n=1

A′(BC1)n−1|ξ |n−γec0|ξ |γ

Γ (n/γ)
≤C|ξ |1−γ exp(c|ξ |γ),

which means the convergence of3(x,y,ξ ) = ∑∞
n=0 3n(x,y,ξ ) in V ×Ξ ∗

0 and ξ−1+γ3(ξ ,x,y) is
holomorphic atξ = 0. We also have by Lemma 6.5
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∞

∑
n=2

|I0
n−1(x,y,ξ )|,

∞

∑
n=2

|I1
n−1(x,y,ξ )|

≤
∞

∑
n=2

A′(BC1)n−2|ξ |n−γec0|ξ |γ

Γ (n/γ)
≤C|ξ |2−γ exp(c|ξ |γ). (6.42)

We show3(x,y,ξ ) satisfies (6.16). Set3N(x,y,ξ ) = ∑N
n=1 3n(x,y,ξ ). Then we have from (6.30)

P(x,y,ξ ,∂x,∂y)3N +Q(x,y,ξ ,∂x,∂y)3N−1 = F̂0(x,y,ξ )+
N

∑
n=2

(I0
n−1(x,y,ξ )+ I1

n−1(x,y,ξ )).

(6.43)

On the other hand from (6.14)

F (x,y,ξ ,3) =
∞

∑
i=2

Fi,0(x,y)
(

i︷ ︸︸ ︷
∞

∑
n=1

3n∗γ
∞

∑
n=1

3n∗γ · · · ∗γ
∞

∑
n=1

3n

)

+
∞

∑
i=1

F̂i,1(x,y,ξ )∗
γ

i︷ ︸︸ ︷
∞

∑
n=1

3n∗γ
∞

∑
n=1

3n∗γ · · · ∗γ
∞

∑
n=1

3n.

It follows from (6.31) and (6.42) that

∞

∑
i=2

Fi,0(x,y)
(

i︷ ︸︸ ︷
∞

∑
n1=1

3n1 ∗γ
∞

∑
n2=1

3n2 ∗γ · · · ∗γ
∞

∑
ni=1

3ni

)

=
∞

∑
i=2

Fi,0(x,y)
( ∞

∑
n=i

(
∑

(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

))

=
∞

∑
n=2

( n

∑
i=2

Fi,0(x,y)
(

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

))

=
+∞

∑
n=2

(I0
n−1(x,y,ξ ))

and

∞

∑
i=1

F̂i,1(x,y,ξ )∗
γ

i︷ ︸︸ ︷
∞

∑
n=1

3n∗γ
∞

∑
n=1

3n∗γ · · · ∗γ
∞

∑
n=1

3n =
+∞

∑
n=2

I1
n−1(x,y,ξ ).

Hence by lettingN→+∞ in (6.43),

P(x,y,ξ ,∂x,∂y)3+Q(x,y,ξ ,∂x,∂y)3= F̂0(x,y,ξ )+F (x,y,ξ ,3).
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Thus the proof of Theorem 6.1 is completed.

PROOF OFTHEOREM 2.3. Let 3(x,y,ξ ) be a solution of (6.16) assured by Theorem 6.1.
Define

u(x,y, t) =
∫ ∞eiθ0

0
exp

(
−

(
ξ
t

)γ )
3(x,y,ξ )dξ γ .

Then it follows from Proposition 5.2 thatu(x,y, t) ∈O(V){t}γ,θ0. Since3(x,y,ξ ) satisfies (6.16),
u(x,y, t) is a solution ofPu= F(x,y, t,u). ¤

We give a comment about uniqueness of solutions of (6.16), which is not stated in Theorem
6.1. The solution ofPu = F(x,y, t,u) is unique inO(V){t}γ,θ0, so the uniqueness of (6.16)
satisfying (1) and (2) in Theorem 6.1 follows from it.

Let us proceed to show Theorem 2.4. The proof is similar to that of Theorem 2.3. We sum up
shortly the assumptions of Theorem 2.4. SetU = {x∈CCCd0; |x|< R} andU0 = {u∈CCC; |u|< R0}.
P = P(x, t,∂x,∂t) is a vector field with coefficients inO(U){t}γ,θ0 and has the form

P =
d0

∑
i=1

(λixi +Ai(x, t))∂xi + tγ+1C(x, t)∂t , (6.44)

where the coefficients satisfy (see (2.15))

Ai(0, t) = 0, Ai(x, t) = O
(
(|x|+ |t|)2), C(0,0) 6= 0. (6.45)

We have from (6.45)

Ai(x, t) = ai(x)+ai,1(x, t), C(x, t) = c0(x)+c1(x, t) (6.46)

with





ai(x) = O(|x|2), ai,1(0, t) = ai,1(x,0) = 0,

c0(0) 6= 0, c1(x,0) = 0.
(6.47)

Hence we assumeP is of the form

P(x, t,∂x,∂t) =
d0

∑
i=1

(λixi +ai(x)+ai,1(x, t))∂xi + tγ+1(c0(x)+c1(x, t))∂t . (6.48)

As for the nonlinear termF(x, t,u)

F(x, t,u) =
+∞

∑
i=0

Fi(x, t)ui , Fi(x, t) ∈O(U){t}γ,θ0 (6.49)
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and it follows from the assumptionsF(x,0,0) = 0 andF(x, t,0) = O(|x|N) for someN∈NNN−{0}
(see (2.19) and (2.16)) thatF0(x,0) = 0 and∂ α

x F0(0, t) = 0 for |α| ≤ N−1. Set

P(x,ξ ,∂x) =
d0

∑
i=1

(λixi +ai(x))∂xi + γc0(x)ξ γ −F1(x,0), (6.50)

Q(x,ξ ,∂x) =
d0

∑
i=1

âi,1(x,ξ )∗
γ
(∂xi · )+ ĉ1(x,ξ )∗

γ
(γξ γ · ) (6.51)

and

h(x,ξ ) = γc0(x)ξ γ −F1(x,0). (6.52)

It follows from (2.18) that

∣∣∣∣
d0

∑
i=1

miλi +h(0,ξ )
∣∣∣∣
−1

≤ KΦ(R;0)
(1+ |ξ |)γ + |m| (6.53)

holds forξ ∈ Ξ ∗
0 andm∈ NNNd0 with |m| ≥ N. Set

Fi,0(x) = Fi(x,0), Fi,1(x, t) = Fi(x, t)−Fi(x,0) (6.54)

and letF (x,ξ ,3) be a nonlinear convolution operator defined by

F (x,ξ ,3) =
∞

∑
i=2

Fi,0(x)
( i︷ ︸︸ ︷
3∗

γ
3∗

γ
· · · ∗

γ
3

)
+

∞

∑
i=1

F̂i,1(x,ξ )∗
γ

i︷ ︸︸ ︷
3∗

γ
3∗

γ
· · · ∗

γ
3. (6.55)

Consider

P(x,ξ ,∂x)3+Q(x,ξ ,∂x)3= F̂0(x,ξ )+F (x,ξ ,3). (6.56)

It follows from the assumptions onF0(x, t) that for(x,ξ ) ∈U×Ξ ∗
0

|F̂0(x,ξ )| ≤C|x|N|ξ |1−γ exp(c0|ξ |γ). (6.57)

We have under the above assumptions the following proposition, which corresponds to Proposi-
tion 6.4.

PROPOSITION6.7. Let f (x,ξ ) be a holomorphic function onU×Ξ ∗
0 with ∂ α

x f (0,ξ ) = 0
for |α| ≤ N− 1. Suppose thatf (x,ξ ) satisfies f (x,ξ ) ¿ M(|ξ |)Φ (s)(r;X) or f (x,ξ ) ¿
M(|ξ |)XΦ (s+1)(r;X). Consider

P(x,ξ ,∂x)3(x,ξ ) = f (x,ξ ). (6.58)
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Then there isr0 > 0 such that for0 < r < r0 there exists a unique holomorphic solution3(x,ξ )
of (6.58) satisfying∂ α

x 3(0,ξ ) = 0 for |α| ≤ N− 1 and the following estimates, iff (x,ξ ) ¿
M(|ξ |)Φ (s)(r;X),

3(x,ξ )¿ CM(|ξ |)
(1+ |ξ |)γ Φ (s)(r;X) (6.59)

and if f (x,ξ )¿M(|ξ |)XΦ (s+1)(r;X),

3(x,ξ )¿CM(|ξ |)Φ (s)(r;X). (6.60)

By repeating the arguments similar to the proofs of Lemmas 6.2 and 6.3 and Proposition
6.4, we can show Proposition 6.7. Let us solve (6.56) by the iteration such as (6.30). Define
3n = 3n(x,ξ ) (n∈ NNN) inductively,30 = 0 and by

P(x,ξ ,∂x)31 = F̂0(x,ξ ),
P(x,ξ ,∂x)3n +Q(x,ξ ,∂x)3n−1

=
∞

∑
i=2

Fi,0(x)
(

∑
(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)

+
∞

∑
i=1

F̂i,1(x,ξ )∗
γ

(
∑

(n1,n2,··· ,ni)∈NNNi

n1+n2+···+ni=n−1

i︷ ︸︸ ︷
3n1 ∗γ 3n2 ∗γ · · · ∗γ 3ni

)
. (6.61)

The right hand side of (6.61) andQ(x,ξ ,∂x)3n−1 areO(|x|N). Hence the existence of3n(x,ξ )
with 3n(x,ξ ) = O(|x|N) follows from Proposition 6.7. By estimating{3n(x,ξ )}n∈NNN, we can show
in the same as way as the preceding case that3(x,ξ ) = ∑∞

n=0 3n(x,ξ ) converges and it is a solu-
tion of (6.56). Setu(x, t) = Lγ,θ03. Thenu(x, t) ∈ O(V){t}γ,θ0 is a solution ofPu= F(x,y,u)
satisfyingu(x, t) = O(|x|N) and we have Theorem 2.4.

7. Existence of solutions of singular differential equations.

In this section we give results about the existence of solutions of some singular differential
equations. We have applied them to finding coordinates transformations that simplify singular
vector fields in the preceding sections. As for the topics in this section we refer to [6], [8] and
[18]. The book [8] is concerned with singular partial differential equations in complex variables,
in particular, in which partial differential equations of Fuchsian type and those of Briot-Bouquet
type in higher dimension are investigated and several results about existence of solutions are
given.

Let z= (z1, · · · ,zp, · · · ,zp+q), z′ = (z1, · · · ,zp) andz′′ = (zp+1, · · · ,zp+q). Set

K(z,∂z) =
p

∑
i=1

(λizi + µi−1zi−1 +ci(z))∂zi +
p+q

∑
i=p+1

ci(z)∂zi ,
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whereλi 6= 0, µi = 0 or 1 and{ci(z)}p+q
i=1 are holomorphic in a neighborhood ofz= 0 such that

ci(0,z′′) = 0 for all 1≤ i ≤ p+q andci(z) = O(|z|2) for 1≤ i ≤ p. Let f (z,u) be a holomorphic
function in a neighborhood of(z,u) = (0,0) with f (0,0) = 0. Consider

K(z,∂z)u(z) = f (z,u). (7.1)

PROPOSITION7.1. LetN ∈ NNN such that∂ α ′
z′ f (0,z′′,0) = 0 for |α ′| ≤ N−1. Suppose that

there existsC > 0 such that for allm= (m1, · · · ,mp) ∈ NNNp with |m| ≥ N

∣∣∣∣
p

∑
i=1

miλi − ∂ f
∂u

(0,0)
∣∣∣∣≥C(|m|+1). (7.2)

Then there exists a unique holomorphic solutionu(z) of (7.1)with u(z) = O(|z′|N) in a neighbor-
hood ofz= 0.

For the proof we refer to [8]. Next consider

p

∑
i=1

(λizi + µi−1zi−1 +ai(z,φ))∂zi φ(z)+
p+q

∑
j=p+1

a j(z,φ)∂zj φ(z) = a0(z,φ), (7.3)

whereλi 6= 0, µi =0 or 1.{ai(z,u)}p+q
i=0 are holomorphic in a neighborhood of(z,u) = (0,0) such

thatai(0,z′′,0) = 0 andai(z,u) = O((|z|+ |u|)2) for all 0≤ i ≤ p+q.

PROPOSITION7.2. Suppose that the convex hull of{λi}p
i=1 in the complex plane does not

contain the origin. Then there exists a unique holomorphic solutionφ(z) of (7.3)with φ(0,z′′) =
0 in a neighborhood ofz= 0.

Systems of singular partial differential equations including (7.3) as a special case were
studied in [18] and the existence of solutions was shown. The equation (7.3) is not a system
but a single one, so the proof is simpler than systems. Here we give how to constructφ(z) briefly
and remarks. Setai(z′,z′′,u) = ∑|m|+k≥1ai,m,k(z′′)z′

muk, whereai,m,k(0) = 0 for |m|+k = 1, and

φ(z′,z′′) = ∑|m|≥1 φm(z′′)z′m. Let ei = (0, · · · ,
i
1, · · · ,0) ∈ NNNp. Then

( p

∑
i=1

miλi

)
φm(z′′)+

p

∑
i=2

µi−1(mi +1)φm+ei−ei−1(z
′′)

+
p

∑
i=1

(
∑

m0+m1=m
|m0|=1

ai,m0,0(z
′′)(m1

i +1)φm1+ei
(z′′)

+ ∑
m1+m2=m

ai,0,1(z′′)φm1(z′′)(m2
i +1)φm2+ei

(z′′)
)
−a0,0,1(z′′)φm(z′′)

=−
p

∑
i=1

∑
|m0|+k≥2

(
∑

m0+···+mk+1=m

ai,m0,k(z
′′)(mk+1

i +1)

k+1︷ ︸︸ ︷
φm1(z′′) · · ·φmk(z′′)φmk+1+ei

(z′′)
)
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−
p+q

∑
j=p+1

∑
|m0|+k≥1

(
∑

m0+···+mk+1=m

a j,m0,k(z
′′)

k+1︷ ︸︸ ︷
φm1(z′′) · · ·φmk(z′′)∂zj φmk+1(z′′)

)

+ ∑
k≥2

∑
m0+···+mk=m

a0,m0,k(z
′′)

k︷ ︸︸ ︷
φm1(z′′) · · ·φmk(z′′)

+ ∑
m0 6=0

a0,m0,1(z′′)φm−m0(z′′)+a0,m,0(z′′), (7.4)

wherem= (m1, · · · ,mp), mi = (mi
1, · · · ,mi

p) ∈ NNNp. If |m|= 1, then

λhφeh(z
′′)+ µhφeh+1(z

′′)+
p

∑
i=1

(ai,eh,0(z′′)φei (z
′′)+ai,0,1(z′′)φeh(z

′′)φei (z
′′))

= a0,0,1(z′′)φeh(z
′′)+a0,eh,0(z′′). (7.5)

It follows from the assumption on{λi}p
i=1 that |∑p

i=1 λimi | ≥ C|m| (C > 0) holds for allm∈
NNNp. Sinceai,m,k(0) = 0 for |m|+ k = 1, we can determineφm(z′′) with φm(0) = 0 for |m| = 1
by (7.5) and inductively{φm(z′′)}|m|≥2 by (7.4). We can show the convergence ofφ(z′,z′′) =
∑|m|≥1 φm(z′′)z′m, by estimating{φm(z′′)}|m|≥1. The estimation is done by the majorant functions
in section 5. In [18] the convergence is shown by other majorant functions.

Finally consider a system of ordinary differential equations with unknownsΨ(t) =
(ψ1(t), · · · ,ψn(t))





tγ+1 dψi(t)
dt

= νiψi(t)+Hi(Ψ(t), t)+hi(t) for 1≤ i ≤ n0,

dψi(t)
dt

= Hi(Ψ(t), t)+hi(t) for n0 < i ≤ n,

(7.6)

whereγ is a positive integer,νi 6= 0, Hi(w, t) ∈CCC{w}{t}γ,θ andhi(t) ∈CCC{t}γ,θ . The origint = 0
is irregular singular. The equations such as (7.6) appear in the proofs of Lemmas 4.3, 4.5 and 4.7,
wheren = n0 = d−1 in (4.12),n = 1,n0 = 0 in (4.17) andn = d−1,n0 = d−2 in (4.24). The
main result in [6] is much concerned with the existence of solutions of (7.6) inCCC{t}γ,θ . It was
shown in [6] that formal power series solutions of system of nonlinear ordinary differential equa-
tions were multisummable, which means the existence of solutions with asymptotic expansion in
a wider sectorial region, and (7.6) is a special case studied there. We have from [6]

PROPOSITION7.3. Let p be a positive integer. For1 ≤ i ≤ n0, assumeγθ 6≡ argνi

mod 2π, Hi(w, t) = O(|w|(|w|+ |t|)) and hi(t) = O(|t|p). For n0 < i ≤ n, assumeHi(0, t) = 0
andhi(t) = O(|t|p−1). Then there exists uniquelyΨ(t) = (ψ1(t), · · · ,ψn(t)) ∈ (CCC{t}γ,θ )n satis-
fying (7.6)with ψi(t) = O(|t|p).

Let hi(t) = hi,pt p + O(|t|p+1) for 1≤ i ≤ n0 andhi(t) = hi,p−1t p−1 + O(|t|p) for n0 < i ≤
n. SetΨp = (−h1,p/ν1, · · · ,−hn0,p/νn0,hn0+1,p−1/p, · · · ,hn,p−1/p). It is not difficult under the
assumptions of Proposition 7.3 to show that there exists uniquely formal seriesΨ̃(t)∈ (t pCCC[[t]])n

satisfying (7.6) withΨ̃(t) = Ψpt p + · · · . SetΨ(t) = t p(Φ(t)+Ψp), Φ(t) = (φ1(t), · · · ,φn(t)).
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Then for1≤ i ≤ n0

tγ+1 dψi(t)
dt

= tγ+p+1 dφi(t)
dt

+ ptp+γ(φi(t)−hi,p/νi)

= t p(νiφi(t)−hi,p)+Hi(t pΦ(t)+ t pΨp, t)+hi(t)

and forn0 < i ≤ n

dψi(t)
dt

= t p dφi(t)
dt

+ t p−1(pφi(t)+hi,p−1) = Hi(t pΦ(t)+ t pΨp, t)+hi(t).

Hence





tγ+1 dφi(t)
dt

= νiφi(t)+Gi(Φ , t) for 1≤ i ≤ n0,

t
dφi(t)

dt
=−pφi(t)+Gi(Φ(t), t) for n0 < i ≤ n,

(7.7)

where for1≤ i ≤ n0

Gi(w, t) =−ptγwi +Hi(t p(w+Ψp), t)/t p +(hi(t)−hi,pt
p)/t p + ptγhi,p/νi ,

and forn0 < i ≤ n

Gi(w, t) = Hi(t pw+ t pΨp, t)/t p−1 +(hi(t)−hi,p−1t
p−1)/t p−1.

From the assumptions we haveGi(w,0) = 0 for all i. Thus it follows from Theorem 1 in [6] that
there exists a solutionΦ(t) ∈ (tCCC{t}γ,θ )n of (7.7), henceΨ(t) = t p(Ψp + Φ(t)) is a solution of
(7.6) withΨ(t)∼ Ψ̃(t).
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