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Abstract. We give a method to determine Martin boundaries of product domains for elliptic
equations in skew product form via Widder type uniqueness theorems for parabolic equations. It is
shown that the fiber of the Martin boundary at infinity of the base space degenerates into one point
if any nonnegative solution to the Dirichlet problem for a corresponding parabolic equation with
zero initial and boundary data is identically zero. We apply it in a unified way to several concrete
examples to explicitly determine Martin boundaries for them.

1. Introduction.

This paper is a continuation of [64] and [65], and its aim is to explicitly determine Martin
boundaries for elliptic equations in skew product form via Widder type uniqueness theorems for
parabolic equations.

The Widder type uniqueness theorem for a parabolic equation asserts that its nonnegative
solution with zero initial (and boundary) value must be identically zero; while the Martin repre-
sentation theorem for an elliptic equation says that any positive solution of it is represented by an
integral of the Martin kernel with respect to a finite Borel measure on the Martin boundary. Dur-
ing the last few decades, Widder type and related uniqueness theorems have been investigated to
a satisfactory extent (cf. [9], [15]–[18], [21], [23], [25], [26], [28], [32], [34], [42]–[44], [46],
[48], [57]–[61], [65], [69], [76], [78], [80]), and there has been a significant progress in deter-
mining explicitly Martin boundaries in many important cases (cf. [4]–[7], [10]–[13], [20], [29]–
[31], [36], [38]–[40], [49]–[51], [53]–[56], [63], [64], [66], [72], [73]). Among others, Ishige
and Murata [44] showed that under a general and sharp condition, any nonnegative solution to
the Cauchy problem for a parabolic equation is determined uniquely by its initial value; while
Murata [64] constructed Martin boundaries for a wide class of elliptic equations in skew product
form.

The purpose of this paper is twofold: (1) to determine Martin boundaries for elliptic equa-
tions in skew product form via Widder type uniqueness theorems for parabolic equations on the
basis of general results on Martin boundaries given in [64]; and (2) to apply it, together with re-
sults given in [44] and [65], in a unified way to several concrete examples to explicitly determine
Martin boundaries for them. We are deeply motivated by concrete examples.

We consider positive solutions of an elliptic equation in skew product form

Lu≡ (L1 +W1L2)u = 0 in D = D1×D2 ⊂M = M1×M2. (1.1)
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HereL1 andW1 are an elliptic operator and a positive measurable function on a Riemannian
manifoldM1, respectively,L2 is an elliptic operator on a domainD2 of a Riemannian manifold
M2, D1 andD = D1×D2 are non-compact domains ofM1 and the product Riemannian manifold
M = M1×M2, respectively. We assume that(L,D) is subcritical, i.e. there exists a minimal
positive Green function ofL on D. In order to determine explicitly the Martin boundary∂MD
of D with respect toL, we study uniqueness of nonnegative solutions to the initial and boundary
value problem for a parabolic equation

(∂t +W−1
1 L1)3= 0 in D1× (0,∞), (1.2)

3(x,0) = 0 onD1, (1.3)

3(x, t) = 0 on ∂D1× (0,∞). (1.4)

(It is needless to say that when the boundary∂D1 of D1 in M1 is empty, the condition (1.4)
is redundant, and the problem reduces to the initial value problem.) We shall show from the
uniqueness of nonnegative solutions that the fiber of∂M(D1×D2) at infinity of the base space
D1 reduces into one point.

Now, in order to state our main results, we fix notations and recall several notions and facts.
For i = 1 or 2, letMi be a connected separableni-dimensional smooth manifold with Riemannian
metric of classC0. With N = M1 or M2, TxN andTN denote the tangent space toN atx∈ N and
the tangent bundle, respectively. We denote byEnd(TxN) andEnd(TN) the set of endmorphisms
in TxN and the corresponding bundle, respectively. The inner product onTN is denoted by〈X,Y〉,
whereX,Y ∈ TN; and|X| = 〈X,X〉1/2. The divergence and gradient with respect to the metric
on N are denoted bydiv and

∆

, respectively. LetL1 be an elliptic differential operator onM1 of
the form

L1u =−m−1
1 div(m1A1

∆

u−m1uC1)−〈B1,

∆

u〉+V1u, (1.5)

wherem1 is a positive measurable function onM1 such that

m1 andm−1
1 are bounded on any compact subset ofM1, (1.6)

A1 is a symmetric measurable section onM1 of End(TM1), B1 andC1 are measurable vector
fields onM1, andV1 is a real-valued measurable function onM1. We assume thatL1 is locally
uniformly elliptic onM1, i.e., for any compact setK in M1 there exists a positive constantλ such
that

λ |ξ |2 ≤ 〈(A1)xξ ,ξ 〉 ≤ λ−1|ξ |2, x∈ K, (x,ξ ) ∈ TM1. (1.7)

Denote byν1 the Riemannian measure onM1, and putdµ1 = m1dν1. For1≤ p≤ ∞, denote by
Lp

loc(M1) = Lp
loc(M1,dµ1) the set of complex-valued functions onM1 locally p-th integrable with

respect todµ1. We assume that

|B1|2, |C1|2, V1 ∈ Lp
loc(M1,dµ1), for somep > max

(
n
2
,1

)
. (1.8)
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Heren= n1+n2 is the dimension ofM = M1×M2. LetW1 be a positive measurable function on
M1 such that

W1,W
−1
1 ∈ L∞

loc(M1,dµ1). (1.9)

Let L2 be an elliptic differential operator on a domainD2 ⊂M2 of the form

L2u =−m−1
2 div(m2A2

∆

u−m2uB2)−〈B2,

∆

u〉+V2u, (1.10)

wherem2,A2,B2, andV2 satisfy the conditions (1.6), (1.7) and (1.8) with obvious modifications.
Note theL2 is formally selfadjoint with respect to the measuredµ2. We assume that the general-
ized principal eigenvalueλ0 of L2 onD2 is finite, i.e., withΛ being the set of all real numbersλ
such that the equation(L2−λ )u = 0 in D2 has a positive solution,

λ0 ≡ supΛ >−∞. (1.11)

We denote byL2 the Dirichlet realization ofL2 on D2, i.e., the selfadjoint operator on
L2(D2,dµ2) associated withL2 onD2 (cf. Subsection 2.2 of [64]).

We assume the hypothesis (SMI2) for (L2,D2), which is composed of three conditions (S),
(M), and (I), i.e., semismallness, minimality and intrinsic ultracontractivity for(L2,D2). Let
us state the conditions (S), (M) and (I). We say that the semigroupe−tL2 generated by−L2 is
IU (i.e., intrinsically ultracontractive) whenλ0 is the first eigenvalue ofL2, and there exists a
positive continuous decreasing functionC(t) on (0,∞) such that

p2(x2,y2, t)≤C(t)e−λ0tφ0(x2)φ0(y2), x2,y2 ∈ D2, t > 0, (1.12)

whereφ0 is a normalized positive eigenfunction associated withλ0, p2(x2,y2, t) is the integral
kernel of the semigroupe−tL2. For IU, see [22], [24], [64] and references therein. We assume
the following condition (I).

(I) The semigroupe−tL2 is IU and the functionC(t) in (1.12) satisfies

lim
t→0

t logC(t) = 0. (1.13)

For example, whenD2 is compact this condition is satisfied withC(t) = αt−n2/2 for some positive
constantα (cf. Example 9.2 of [64]). The condition (I) implies that the spectrum ofL2 consists
of discrete eigenvalues with finite multiplicity. Letλ0 < λ1 ≤ λ2 ≤ ·· · be the eigenvalues ofL2

repeated according to multiplicity. Letφ j be an eigenfunction associated withλ j ( j = 0,1,2, . . .)
such that{φ j}∞

j=0 is a complete orthonormal system ofL2(D2,dµ2). It follows from (I) that
φ j/φ0 ∈ L∞(D2) for any j ≥ 1. We assume the following condition (S).

(S) The constant function1 is a semismall perturbation ofL2−λ onD2 for someλ < λ0.
This condition means that for anyε > 0 there exists a compact subsetK of D2 such that

∫

D2\K
1(x0

2,z)1(z,y2)dµ2(z)≤ ε1(x0
2,y2), y2 ∈ D2\K, (1.14)
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wherex0
2 is a reference point inD2, and1 is the Green function ofL2−λ on D2 with respect to

the measuredµ2 (cf. [62]). WhenD2 is compact, the condition (S) is redundant. WhenD2 is
non-compact, we denote byD∗

2 and∂MD2 the Martin compactification and Martin boundary of
D2 with respect toL2−λ , respectively (cf. [14], [49], [64], [73], [79] and references therein). We
recall that for anyη ∈ ∂MD2 there exists a sequence{y j

2} j in D2 such that{y j
2} j has no point of

accumulation inD2 and the sequence{1(·,y j
2)/1(x

0
2,y

j
2)} j of functions onD2 converges locally

uniformly to the Martin kernelh(·,η), which is a positive solution of the equation(L2−λ )u= 0
in D2. We also recall a positive solutionu is said to be minimal if another positive solution
satisfies3 ≤ u, then 3 = cu for some constantc. When D2 is non-compact, we assume the
following condition (M).

(M) For anyη ∈ ∂MD2, the Martin kernelh(·,η) for (L2−λ ,D2) is minimal.
WhenD2 is compact, we putD∗

2 = D2 and∂MD2 =∅ as convention. The condition (S) implies
that for any j = 1,2, . . ., the functionφ j/φ0 has a continuous extension[φ j/φ0] up to the Martin
boundary∂MD2 (cf. Theorem 6.3 of [71] and Theorem 5.12 of [64]). The condition (M) together
with (I) and (S) implies that the family{[φ j/φ0]; j = 0,1,2, · · ·} separates finite Borel measures
on D∗

2 (cf. Proposition 9.7 of [64]). Throughout the present paper we assume the hypothesis
(SMI2):

(SMI2) The conditions (S), (M) and (I) are satisfied for(L2,D2).
For example, (SMI2) holds whenD2 is compact or a relatively compact Lipschitz domain and
L2 is an elliptic operator on the whole spaceM2 (cf. Examples 9.2 and 9.3 of [64]). HereD2 is
said to be a Lipschitz domain ofM2 when for any boundary pointz∈ ∂D2, the domainD2 in a
coordinate neighborhood ofz is the upper side of a Lipschitz continuous graph.

Let D1 be a non-compact domain ofM1. We assume that eitherD1 = M1 or D1 is a Lipschitz
domain ofM1. Consider (weak) solutions of the Dirichlet problem (1.2), (1.3) and (1.4). The
boundary condition (1.4) means that for anyψ ∈C∞

0 (M1) andT > 0,

ψ3 ∈ L∞((0,T);L2(D1,dµ1))∩L2((0,T);H1
0(D1,dµ1)),

whereH1
0(D1,dµ1) is the closure ofC∞

0 (D1) in the Sobolev spaceH1(D1,dµ1) of order1. We
introduce the following condition (U1), i.e., uniqueness for the positive Dirichlet problem for
(∂t +W−1

1 L1,D1).
(U1) Any nonnegative solution of the problem (1.2), (1.3) and (1.4) must be identically

zero.
Let L = L1 +W1L2 andD = D1×D2. We assume that(L,D) is subcritical, i.e., there exists

the (minimal positive) Green functionG of L on D. This implies that(L1 + λ jW1,D1) are also
subcritical for anyj = 0,1, · · · (cf. Theorem 7.4 of [64]). Denote byH j the Green function for
(L1 +λ jW1,D1). Fix a reference pointx0 ∈ D. Denote by

D∗, ∂MD, ∂mD, and K(x,ξ )

the Martin compactification, Martin boundary, minimal Martin boundary, and Martin kernel for
(L,D), respectively. Similarly,

D∗
1, ∂MD1, ∂mD1 and k0(x1,ξ1)
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denote those for(L1 + λ0W1,D1). It is known that the closureD1 of D1 in M1 is continuously
embedded intoD∗

1 and∂D1 ⊂ ∂mD1 (cf. Theorem 2.1 of [55]). We put

Γ1 = ∂MD1\∂D1.

Our main results are the following Theorem 1.1 and new examples such as Theorem 1.3(ii),
Theorem 6.2, Examples 8.1–8.4 to be stated later on. Theorem 1.1 gives a method to determine
Martin boundaries for elliptic equations via Widder type uniqueness theorems for parabolic equa-
tions.

THEOREM 1.1. Assume the conditions(SMI2) and(U1). Then the following(i)–(vi) hold
true:

(i) With d2 being an ideal point outside of D∗2, the Martin boundary∂MD is equal to the
disjoint union ofΓ1×{d2},∂D1×D∗

2, and D1×∂MD2:

∂MD = Γ1×{d2}t∂D1×D∗
2tD1×∂MD2. (1.15)

Furthermore,

∂mD = (Γ1∩∂mD1)×{d2}t∂D1×D∗
2tD1×∂MD2. (1.16)

In particular, ∂mD = ∂MD if and only ifΓ1 ⊂ ∂mD1, i.e.,∂mD1 = ∂MD1.
(ii) For ξ1 ∈ Γ1, a subset U of D∗ is a neighborhood of̃ξ1 = (ξ1,d2) if and only if there

exists a neighborhood U1 of ξ1 in D∗
1 such that

U ⊃ (U1∩Γ1)×{d2}∪ (U1∩D1)×D∗
2. (1.17)

(iii) For ξ ∈ ∂D1×D∗
2∪D1× ∂MD2, a subset U of D∗ is a neighborhood ofξ if and

only if there exist neighborhoods U1 and U2 of ξ1 and ξ2 in D1 and D∗2, respectively, such that
U1×U2 ⊂U.

(iv) For ξ ∈ Γ1×{d2},

K(x,ξ ) = k0(x1,ξ1)φ0(x2)/φ0(x0
2), x∈ D. (1.18)

(v) For ξ ∈ ∂D1×D∗
2,

K(x,ξ ) = k(x,ξ )/k(x0,ξ ), x∈ D, (1.19)

where k(·,ξ ) is a positive solution of(1.1)defined by

k(x,ξ ) =
∞

∑
j=0

k j(x1,ξ1)φ j(x2)[φ j/φ0](ξ2), x∈ D, (1.20)

k j(x1,ξ1) = lim
D13y1→ξ1

H j(x1,y1)/H0(x0
1,y1), j = 0,1,2, · · · . (1.21)
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Here the series on the right hand side of(1.20)converges uniformly on(F×E)×(∂D1×D∗
2) for

any relatively compact domains F⊂D1 and E⊂D2. It also converges in L∞(∂D1×D∗
2;L2(F×

D2)) for any relatively compact domain F in D1. Furthermore, k(x,ξ ) is continuous on D×
(∂D1×D∗

2), and kj(·,ξ1) is a positive solution of(L1 +λ jW1)u = 0 in D1 for any j= 0,1,2, · · · .
(vi) For ξ ∈ D1×∂MD2,

K(x,ξ ) = H(x,ξ )/H(x0,ξ ), x∈ D, (1.22)

where H(·,ξ ) is a positive solution of(1.1)determined by

H(x,ξ ) =
∞

∑
j=0

H j(x1,ξ1)φ j(x2)[φ j/φ0](ξ2), x∈ (D1\{ξ1})×D2. (1.23)

Here the series on the right hand side of(1.23) converges uniformly on any compact subset
of (D1 \ {ξ1})×D2. It also converges in L2(F ×D2) for any relatively compact domain F in
D1\{ξ1}. Furthermore, H is continuous on D× (D1×∂MD2).

Theorem 1.1 says that the uniqueness for a parabolic equation implies that the fiber of
∂M(D1×D2) at infinity of the base spaceD1 reduces into one point. This theorem will be proved
in Section 5. The condition (U1) in Theorem 1.1 implies that forξ1 ∈ Γ1 the limit k j(x1,ξ1) = 0
for any j ≥ 1 (see Lemma 5.3 in Section 5). This means that the perturbationW1 of the operator
L1 +λ0W1 onD1 is big in some sense, since the Green functionH j of L1 +λ jW1 onD1 becomes
smaller as the positive functionW1 becomes bigger. Now, we introduce the following condition
(S1), i.e., semismallness ofW1, which is complementary to the condition (U1).

(S1) W1 is a semismall perturbation ofL1 +λ0W1 onD1.
This condition means that for anyε > 0 there exists a compact subsetK of D1 such that

∫

D1\K
H0(x0

1,z)W1(z)H0(z,y1)dµ1(z)≤ εH0(x0
1,y1), y1 ∈ D1\K,

wherex0
1 is a reference point inD1. By Theorem 3.1 and Remark 3.4 to be stated in Section 3,

both the conditions (S1) and (U1) do not hold together. Interestingly, in several important cases,
either (S1) or (U1) holds.

When (S1) holds, the Martin compactification(D1×D2)∗ of D1×D2 with respect toL is
extremely simple. In this case,(D1×D2)∗ is regular: (D1×D2)∗ = D∗

1×D∗
2. The following

theorem is a special case of Theorem 9.1 of [64] (see Theorem 4.2 in Section 4).

THEOREM 1.2. Assume the conditions(SMI2) and(S1). Then the following(i)–(iii) hold
true.

(i) The Martin compactification D∗ of D with respect to L is homeomorphic to D∗1×D∗
2. In

particular,

∂MD = Γ1×D∗
2t∂D1×D∗

2tD1×∂MD2. (1.24)

Furthermore,

∂mD = (Γ1∩∂mD1)×D∗
2t∂D1×D∗

2tD1×∂MD2. (1.25)



Uniqueness theorems for parabolic equations and Martin boundaries 393

In particular, ∂mD = ∂MD if and only ifΓ1 ⊂ ∂mD1, i.e.,∂mD1 = ∂MD1.
(ii) The assertion(v) of Theorem1.1 holds with∂D1 replaced byΓ1∪ ∂D1. In particular,

the Martin kernel K(x,ξ ) for ξ ∈ (Γ1∪∂D1)×D∗
2 is given by(1.19).

(iii) The assertion(vi) of Theorem1.1holds.

This theorem says that “smallness” ofW1 implies the regularity of(D1×D2)∗ , while The-
orem 1.1 says that “bigness” ofW1 implies the degeneration of the fiber at infinity.

Here, as an application of Theorems 1.1 and 1.2, we give a simple example concerning
positive harmonic functions on horn-shaped domains inRRRN+1,N ≥ 2. Further examples will be
given in Section 8.

THEOREM 1.3. Let α andβ be Lipschitz continuous functions on[1,∞) such thatα > β
and(α(r)−β (r))/r is decreasing. Let

D1 = {(r,s) ∈ RRR2; α(r) > s> β (r), 1 < r < ∞}.

Let D2 be a Lipschitz domain in the unit sphere SN−1 of RRRN or the whole space SN−1, where
N≥ 2. Let L=−∆ on RRRN+1 and

D = {(z,s) ∈ RRRN×RRR1;α(|z|) > s> β (|z|), |z|> 1,z/|z| ∈ D2}.

(i) Suppose that

∫ ∞

1
(α(r)−β (r))r−2dr < ∞. (1.26)

Then D∗ is homeomorphic to D∗1×D2, where D∗1 = D1∪{∞} is the closure of D1 in the one-
point compactification of RRR2. Furthermore,∂MD = ∂mD = ∂MD1×D2∪D1×∂D2 and∂MD1 =
∂mD1 = ∂D1∪{∞}.

(ii) Suppose that

∫ ∞

1
(α(r)−β (r))r−2dr = ∞. (1.27)

Then D∗ is homeomorphic to(D1×D2)t{(∞,d2)}, where a fundamental neighborhood system
of the ideal point(∞,d2) is given by the family

{({(r,s) ∈ D1; ε−1 < r < ∞}×D2)∪{(∞,d2)}}0<ε<1.

Furthermore,∂MD = ∂mD = {(∞,d2)}∪∂D1×D2∪D1×∂D2 and∂MD1 = ∂mD1 = ∂D1∪{∞}.
The assertion (i) of Theorem 1.3 was shown by Aikawa and Murata [4] (see also Theorem

6.3 in Section 6). The assertion (ii) will be proved in Section 6. A special case of this theorem
was shown under more stringent condition by Ioffe and Pinsky [40], and related results were
announced by Maz’ya [50].

The remainder of this paper is organized as follows. Sections 2, 3 and 4 are preliminaries.
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In Section 2, we recall a uniqueness theorem for a parabolic equation in [44], and give a concrete
example related to Theorem 1.3. In Section 3, we recall criteria for non-h-bigness, and observe
that the Widder type uniqueness theorem implies h-bigness. In Section 4, we recall general
results on Martin boundaries for elliptic equations in skew product form given in [64]. We prove
Theorem 1.1 in Section 5. Theorem 1.3(ii) is proved in Section 6. There we also give a theorem
on small perturbation, and generalize the assertion (i) of Theorem 1.3. In Section 7, we give a
generalization of Theorems 1.1 and 1.2. By applying it, we give several concrete examples in
Section 8.

2. Uniqueness theorems for parabolic equations.

In this section we recall for readability a typical uniqueness theorem of Widder type in [44],
and give a simple example related to Theorem 1.3. LetN be a connected separable smooth
manifold with Riemannian metric of classC0. We assume that the Riemannian manifoldN is
complete. LetP be an elliptic operator onN of the form

Pu=−w−1div(wa

∆

u−wuc)−〈b,

∆

u〉+qu, (2.1)

wherew,a,b,c,q satisfy the conditions (1.6), (1.7) and (1.8) with obvious modifications. We
further assume thatP is uniformly elliptic onN, i.e., there exists a positive constantκ such that

κ|ξ |2 ≤ 〈axξ ,ξ 〉 ≤ κ−1|ξ |2, (x,ξ ) ∈ TN. (2.2)

We denote byν the Riemannian measure onN, and putdλ = wdν . Consider the Cauchy problem

Pu = 0 in N× (0,∞), (2.3)

u(x,0) = u0(x) onN, (2.4)

whereP = ∂t +P andu0 ∈ L2
loc(N,dλ ). In order to state a Widder type uniqueness theorem, we

need two conditions. Putq± = max(±q,0). Fix a pointO in N, and letd(x) = dist(O,x) be the
Riemannian distance betweenO andx∈ N. PutB(O,R) = {x∈ N; d(x) < R} for R> 0. Let ρ
be a positive continuous increasing function on[0,∞). Then the condition [RB-ρ] (i.e., relative
boundedness with scale functionρ) to be imposed onb,c,q− is as follows.

[RB-ρ] There exist constantsα1 > 0, 0≤ β1 < 1, 0 < β2 < 1, 0 < β3 < 1 such thatβ1 +
β2 +β3 < 1 and

∫

B(O,R)

[
1

4β2
〈a−1b,b〉+ 1

4β3
〈a−1c,c〉+q−

]
ψ2dλ (2.5)

≤ β1

∫

B(O,R)
〈a ∆

ψ,

∆

ψ〉dλ +α1ρ(R)2
∫

B(O,R)
ψ2dλ

for anyR> 1 andψ ∈C∞
0 (B(O,R)).

The second condition to be imposed onP is the following condition [PHP-ρ], i.e., the
parabolic Harnack principle with scale functionρ.
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[PHP-ρ] There exists a positive constantα2 such that for any

(x, t) ∈ N× (0,∞), 0 < r ≤ 1
ρ(d(x))

,

any nonnegative solutionu of the equation

Pu = 0 in Q = B(x, r)× (t− r2, t + r2) (2.6)

satisfies the inequality

sup
Q−

u≤ α2 inf
Q+

u, (2.7)

where

Q− =B

(
x,

r
2

)
×

(
t− 3

4
r2, t− 1

4
r2

)
,

Q+ =B

(
x,

r
2

)
×

(
t +

1
4

r2, t +
3
4

r2
)

.

For the parabolic Harnack inequality (2.7), see [15], [27], [33], [41], [44], [48], [52], [75], [77]
and references therein. We are now ready to state a Widder type uniqueness theorem, which is a
time independent elliptic operator case of Theorem 2.2 in [44].

THEOREM 2.1. Suppose that the conditions[RB-ρ] and[PHP-ρ] hold withρ satisfying

∫ ∞

1

dr
ρ(r)

= ∞. (2.8)

Then a nonnegative solution u of the Cauchy problem(2.3)and (2.4) is determined uniquely by
the initial data u0.

As for analogous theorems concerning the Dirichlet problem, see Theorem 4.4 of [65] and
references therein.

Here, we give a simple example related to Theorem 1.3.

THEOREM 2.2. Letγ ≥−2. Letα andβ be Lipschitz continuous functions on[1,∞) such
that α > β and(α(r)−β (r))rγ/2 is decreasing. Let

Ω = {(r,s) ∈ RRR2;1 < r < ∞, α(r) > s> β (r)}.

Let P=−r−γ(∂ 2/∂ r2 +∂ 2/∂s2). Consider the Dirichlet problem

(∂t +P)u = 0 in Ω × (0,∞), (2.9)

u(x,0) = u0(x) on Ω , (2.10)

u(x, t) = 0 on ∂Ω × (0,∞), (2.11)
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where u0 satisfiesηu0 ∈ L2(Ω , rγdrds) for anyη ∈C∞
0 ({(r,s) ∈ RRR2; r > 0}). Suppose that

∫ ∞

1
(α(r)−β (r))rγdr = ∞. (2.12)

Then a nonnegative solution of the Dirichlet problem(2.9), (2.10)and (2.11) is determined
uniquely by the initial data u0.

We omit the proof, since the theorem can be shown along the line given in the proof of
Theorem 5.6 of [65].

REMARK 2.3. Actually, the condition (2.12) is also a necessary condition for the Widder
type uniqueness theorem to hold. Indeed, suppose that

∫ ∞

1
(α(r)−β (r))rγdr < ∞.

Apply Theorem 6.1 in Section 6 withν1(r) = r andΦ(t1) = tγ
1. Then we obtain thatrγ is a small

perturbation of−∆ onΩ . Thus Remark 3.5 and Theorem 3.1 in Section 3 show that there exists
a positive solution of (2.9), (2.10) and (2.11) withu0 = 0.

3. h-big perturbations.

In this section we recall a non-uniqueness theorem in [65], and observe that the Widder type
uniqueness theorem implies h-bigness.

Let N be a connected separable smooth manifold with Riemannian metric of classC0. Let
L be an elliptic operator onN of the form

Lu =−m−1div(mA

∆

u−mCu)−〈B,

∆

u〉+Vu, (3.1)

wherem,A,B,C,V satisfy the conditions (1.6), (1.7) and (1.8), with obvious modifications. Let
W be a positive measurable function onN such thatW,W−1 ∈ L∞

loc(N,dλ ),dλ = mdν , whereν
is the Riemannian measure onN. Let Ω be a domain ofN. We consider the Dirichlet problem

(∂t +W−1L)u = 0 in Ω × (0,∞), (3.2)

u(x,0) = 0 on Ω , (3.3)

u(x, t) = 0 on ∂Ω × (0,∞). (3.4)

Suppose that(L,Ω) is subcritical, i.e., there exists the Green functionG of L on Ω . Let h be a
positive solution of the Dirichlet problem

L3= 0 on Ω , (3.5)

3= 0 on ∂Ω . (3.6)

Here, the boundary condition (3.6) means3 ∈ H1
0,loc(Ω). Following [35], we say thatW is h-big
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(on Ω ) when any function3 satisfying

(L+W)3= 0 and 0≤ 3≤ h on Ω (3.7)

must be identically zero. Otherwise,W is said to be non-h-big (onΩ ). Theorem 2.5 of [65]
partially reads as follows.

THEOREM 3.1. The following are equivalent:
(i) W is non-h-big.
(ii) There exist a non-empty domain E⊂ Ω and a positive solution f of the Dirichlet

problem

L f = 0 on E, f = 0 on ∂E

such that0 < f ≤ h on E and

∫

E
GE(x,y)W(y) f (y)dλ (y) < ∞, x∈ E, (3.8)

where GE is the Green function of L on E with respect to the measure dλ .
(iii) There exists a solution u of(3.2), (3.3)and (3.4) such that0 < u(x, t) ≤ h(x) on Ω ×

(0,∞).

We should mention here that the statement of the assertion (ii) is slightly different from
that of the assertion (II) of Theorem 2.5 in [65], but they are equivalent because a nonnegative
solution of an elliptic equation on a connected open set is positive or identically zero.

The following is a direct consequence of Theorem 3.1 but a key observation in proving
Theorem 1.1.

PROPOSITION3.2. Suppose that the Dirichlet problem(3.2), (3.3)and(3.4)has no non-
negative solution which is not identically zero. Then W is h-big for any positive solution h of
(3.5)and(3.6).

REMARK 3.3. When a positive solutionh satisfies an appropriate growth condition at
infinity, a Täcklind type uniqueness theorem (cf. [44], [65]) can be used also as a sufficient
condition of h-bigness.

We conclude this section by remarking facts on semismall perturbations (cf. Section 5 of [64]).

REMARK 3.4. If W is a semismall perturbation ofL on Ω , thenW is non-h-big for any
positive solutionh of (3.5) (cf. Remark 5.9 of [64]).

REMARK 3.5. We say thatW is a small perturbation ofL on Ω when for anyε > 0 there
exists a compact subsetK of Ω such that

∫

Ω\K
G(x,z)W(z)G(z,y)dλ (z)≤ εG(x,y), x,y∈Ω \K.

It is known (cf. [62]) that if W is a small perturbation, then it is a semismall perturbation. Thus,
if W is a small perturbation ofL on Ω , thenW is non-h-big for any positive solutionh of (3.5).
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4. Martin boundaries for elliptic equations in skew product form.

In this section we recall general results in [64], from which Theorem 1 is derived. Consider
the equation (1.1). For(L2,D2), we assume the same conditions as in Section 1; soL2 is the
operator (1.10) onD2 satisfying the hypothesis (SMI2). But, in this section, we treatL1 and
D1 under more general conditions although we use the same notations as in Section 1. LetD1

be a non-compact domain ofM1. Let L1 be an elliptic operator onD1 of the form (1.5), where
m1,A1,B1,C1,V1 satisfy the conditions (1.6), (1.7) and (1.8) withM1 replaced byD1. Let W1

be a positive measurable function onD1 such thatW1,W
−1
1 ∈ L∞

loc(D1,dµ1). Let L = L1 +W1L2

andD = D1×D2. We assume that(L,D) is subcritical. We denote byD∗
1,∂MD1,∂mD1, andk0

the Martin compactification, Martin boundary, minimal Martin boundary, and Martin kernel for
(L1 + λ0W1,D1), respectively. For an open setΩ ⊂ D1, we denote byΩ ∗ the closure ofΩ in
D∗

1; while Ω denotes the closureΩ in the relative topology ofD1. We denote byL∗1 the formal
adjoint operator ofL1 with respect todµ1. For an elliptic operatorP on an open setΩ ⊂ D1, a
subsetF of Ω with F ∩Ω = F , and a familyF of positive solutions ofPu= 0 in Ω , we put
S = (F ,P,Ω ,F). We say that CP (i.e., the comparison principle) holds forS when there exists
a positive constantc such that for anyu and3 in F

c
3(x)
3(y)

≤ u(x)
u(y)

≤ c−1 3(x)
3(y)

, x,y∈ F. (4.1)

We impose on{(L1+λ jW1,D1)}∞
j=0 the following condition (ZCS1), i.e., zero limit, comparison

principle and semismallness.
(ZCS1) There exist subsetsΞ0 andΞ∞ of ∂MD1 such thatΞ0∪Ξ∞ = ∂MD1 and the following

conditions (ZC) and (CS) are satisfied.
(ZC) For anyξ1 ∈ Ξ0, there exist domainsUi (i = 1,2,3,4) of D1 such that

Ui ⊂Ui+1 for i = 1,2,3, ξ1 ∈U∗
1 ∩∂MD1, x0

1 ∈U3\U1, (4.2)

lim
U33y1→ξ1

h1(x1,y1)/h0(x0
1,y1) = 0, x1 ∈U3, (4.3)

whereh1 (resp.h0) is the Green function ofL1 + λ1W1 (resp.L1 + λ0W1) onU4. Furthermore,
CP holds forS andR, where

S = ({H0(·,y1);y1 ∈U1∪ (D1\U3)},L1 +λ0W1,U3\U1,∂U2), (4.4)

R = ({H1(x0
1, ·),h1(x0

1, ·)},L∗1 +λ1W1,U4\{x0
1},∂U3).

(CS) For anyξ1 ∈ Ξ∞, there exist domainsEi (i = 1, · · · ,8) of D1 such that

Ei ⊂ Ei+1 for i = 1, · · · ,7, ξ1 ∈ E∗1 ∩∂MD1, x0
1 ∈ E6\E5, (4.5)

W1 is a semismall perturbation ofL1 +λ0W1 onE8, (4.6)

and CP holds forSi (i = 1,2,3),T j andU j ( j = 0,1, · · ·), where
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Si =({H0(·,y1);y1 ∈ E2i−1∪ (D1\E2i+1)}, L1 +λ0W1,E2i+1\E2i−1,∂E2i), (4.7)

T j =({H j(·,y1);y1 ∈ E6}∪{h j(·,y1);y1 ∈ E6}, L1 +λ jW1,E8\E6,∂E7),

U j =({H j(x0
1, ·),h j(x0

1, ·)}, L∗1 +λ jW1,E8\{x0
1},∂E6), j = 0,1,2, · · · .

Hereh j is the Green function ofL1 +λ jW1 onE8.
This condition (ZCS1) always holds whenD1 is one dimensional (cf. [64]). The semi-

localized condition (4.3) and (4.6) are useful in treating domains having several connected com-
ponents at infinity. Note that CP holds for (4.7), for example, ifE8 \E1 is a compact subset of
D1.

We are now ready to state Theorem 9.1 of [64] except for the case whereD1 is compact.

THEOREM 4.1. Assume the conditions(SMI2) and (ZCS1). Then the following(i)–(iv)
hold true:

(i) With d2 being an ideal point outside of D∗2, the Martin boundary∂MD is equal to the
disjoint union ofΞ0×{d2},Ξ∞×D∗

2 and D1×∂MD2:

∂MD = Ξ0×{d2}tΞ∞×D∗
2tD1×∂MD2. (4.8)

Furthermore,

∂mD = (Ξ0∩∂mD1)×{d2}t (Ξ∞∩∂mD1)×D∗
2tD1×∂MD2. (4.9)

In particular, ∂mD = ∂MD if and only if∂mD1 = ∂MD1.
(ii) The assertions(ii) and(iv) of Theorem1.1hold withΓ replaced byΞ0.
(iii) The assertions(iii) and(v) of Theorem1.1hold with∂D1 replaced byΞ∞.
(iv) The assertion(vi) of Theorem1.1holds.

A special case of this theorem is worth stating.

THEOREM 4.2. Assume(SMI2). Suppose that W1 is a semismall perturbation of L1 +
λ0W1 on D1. Then the Martin compactification D∗ of D with respect to L is homeomorphic to
D∗

1×D∗
2, and all the assertions of Theorem4.1hold withΞ0 =∅ andΞ∞ = ∂MD1.

5. Proof of Theorem 1.1.

In this section we prove Theorem 1.1 by applying Theorem 4.1 in the last section. We use
the notations in Section 1, and assume the conditions (SMI2) and (U1). We start with a lemma
concerning small perturbation and the boundary Harnack principle for elliptic equations. For
definition of small perturbation, see Remark 3.5 in Section 3. As for the boundary Harnack
principle, see [3], [5], [19], [20], [38], [39], [55], [81].

LEMMA 5.1. The condition(CS) of the hypothesis(ZCS1) holds withΞ∞ and E∗1 replaced
by ∂D1 andE1, respectively.

Here and in what follows we abuse notations as follows:E1 and∂E1 in this section mean
the closure and boundary ofE1 in M1, respectively; soE1∩D1 and∂E1∩D1 are equal to the
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symbolsE1 and∂E1 in the hypothesis (ZCS1).

PROOF. Let ξ1 ∈ ∂D1. SinceD1 is a Lipschitz domain, we can choose a local coordinate
system(U,z) such that

z(U ∩D1) = {z= (z′,zN) ∈ RRRN; |z′|< R, 0 < zN− f (z′) < R}, (5.1)

z(U ∩∂D1) = {z∈ RRRN; |z′|< R, zN = f (z′)}, (5.2)

andz(ξ1) = (0,0), whereN = n1,R is a positive number andf is a Lipschitz continuous function
on RRRN−1 with f (0) = 0. We denote the right hand side of (5.1) byE(R). For 0 < r < R/8 with
x0

1 /∈E(5r), choose a Lipschitz curveγ in D1\E(5r) such thatγ(0)= x0
1 andγ(1)= (0, f (0)+6r).

Fors> 0, put

F(s) = {p∈M1; inf
0≤t≤1

dist(p,γ(t)) < s}.

Chooses so small thatF(8s) ⊂ D1 \E(5r). For i = 6,7,8, put Ei = E(ir )∪F(is). Modifying
F(is) if necessary, we may assume thatEi are relatively compact Lipschitz domain ofD1. For
i = 1, · · · ,5, putEi = E(ir ). ThenEi∩D1⊂Ei+1 for i = 1, · · · ,7, ξ1∈E1∩∂D1, andx0

1∈E6\E5.
In the coordinate system(U,z) the operatorL1 +λ0W1 has the form

w(L1 +λ0W1)u =− ∑
1≤i, j≤N

∂i(ai j ∂ ju)− ∑
1≤ j≤N

b j∂ ju+ ∑
1≤ j≤N

∂ j(c ju)+qu, (5.3)

wherew is a positive measurable function withw,w−1 ∈ L∞(E(R)) andai, j ,b j ,c j ,q satisfy the
condition (1.7) and (1.8) with obvious modifications. Thus, re-choosingr andssufficiently small
if necessary, we can show by Theorem 9.1’, Proposition 9.2 and the proof of Corollary 6.1 of [8]
thatW1, which is bounded onE8, is a small perturbation ofL1 +λ0W1 onE8 (see also [1], [62]).
This implies (4.6). Leti = 1,2,3. By the boundary Harnack principle, there exists a positive
constantc such that

c
3(x)
3(y)

≤ u(x)
u(y)

≤ c−1 3(x)
3(y)

, x,y∈ ∂E2i ∩D1, (5.4)

for any positive solutionsu and3 of the equation(L1 +λ0W1)u = 0 in E2i+1\E2i−1 such that

u = 3= 0 on{z∈ RRRN;(2i−1)r < |z′|< (2i +1)r,zn = f (z′)}

(cf. Theorem 1.3 of [55]). (We have abused notations:∂E2i in (5.4) is the boundary ofE2i in M1,
and so∂E2i ∩D1 is the boundary ofE2i in D1 which is equal to∂E2i in (4.7).) Here, let us give
another proof of (5.4). Denote byP the operator on the right hand side of (5.3), and put

Qu=− ∑
1≤i, j≤N

∂i(ai j ∂ ju).
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Choose a relatively compact Lipschitz domainE⊂D1 such thatE∩D1⊂ E2i+1\E2i−1 andE⊃
U ∩D1 for some neighborhoodU of ∂E2i ∩D1. Let u and3 be positive solutions of the equation
Pu= 0 in E such that they are continuous up to the boundary and vanish on{z∈ ∂E;zn = f (z′)}.
Let û be a positive solution of the equationQû = 0 in E with û = u on ∂E. Denote byµx and
νx, x∈ E, the harmonic measures forP andQ, respectively. Then there exists a positive constant
c1 such thatc1µx ≤ νx ≤ c−1

1 µx, x ∈ E (cf. Proposition 8.3 and the comment after Theorem
9.1’ of [8]). Thusc1u(x) ≤ û(x) ≤ c−1

1 u(x), x∈ E. Similarly, c13(x) ≤ 3̂(x) ≤ c−1
1 3(x), x∈ E.

By Theorem 1.4 of [19], there exists a positive constantc2 such that

c2
3̂(x)
3̂(y)

≤ û(x)
û(y)

≤ c−1
2
3̂(x)
3̂(y)

, x,y∈ ∂E2i ∩D1.

This implies (5.4). Now, fory1 ∈ E2i−1∪ (D1 \E2i+1), H0(·,y1) is a positive solution of the
equation(L1+λ0W1)u= 0 in E2i+1\E2i−1 which vanishes on{z∈ ∂ (E2i+1\E2i−1);zN = f (z′)}.
Hence CP holds forSi given by (4.7). Similarly, CP holds forT j andU j given by (4.7). This
completes the proof of the lemma. ¤

The following lemma is essentially Lemma 5.8 of [64]. It is a simple observation, but plays
a crucial role in proving Theorem 1.1.

LEMMA 5.2. Let h(x1) = k0(x1,ξ1) for someξ1∈Γ1 = ∂MD1\∂D1, where k0 is the Martin
kernel for(L1 +λ0W1,D1). If W1 is h-big, then

lim
D13y1→ξ1

H1(x1,y1)/H0(x0
1,y1) = 0, x1 ∈ D1. (5.5)

PROOF. We give a proof, since it is simple. Suppose that (5.5) does not hold. Then there
exists a positive solution3 of the equation(L1 +λ1W1)3= 0 in D1 satisfying0 < 3≤ h. This is a
contradiction, since(λ1−λ0)W1 is also h-big (cf. Propositions 7.16 and 3.7 of [35]). ¤

LEMMA 5.3. Let h(x1) = k0(x1,ξ1) for someξ1 ∈ Γ1. Then(5.5)holds.

PROOF. By the a priori estimates near boundary points,h is a positive solution in
H1

0,loc(D1) of the equation(L1 + λ0W1)h = 0 in D1. It follows from the assumption (U1) that
any nonnegative solution of the problem

(∂t +W−1
1 (L1 +λ0W1))3= 0 in D1× (0,∞),

3(x,0) = 0 onD1,

3(x, t) = 0 on ∂D1× (0,∞)

must be identically zero. Thus, by Proposition 3.2 in Section 3,W1 is h-big. Hence Lemma 5.2
implies (5.5). ¤

We are now ready to complete the proof of Theorem 1.1.

PROOF OFTHEOREM 1.1. We claim that the condition (ZC) of the hypothesis (ZCS1)
holds withΞ0 replaced byΓ1. Choose domainsUi (i = 1, · · · ,4) such thatD1 \U1 is a compact
subset ofD1, U4 = D1, Ui ∩D1 ⊂Ui+1 for i = 1,2,3, andx0

1 ∈U3 \U1. Then (4.2) holds. By
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Lemma 5.3, (4.3) holds. By the Harnack inequality, (CP) holds forS andR given by (4.4).
This proves the claim, which together with Lemma 5.1 implies that the hypothesis (ZCS1) holds
with Ξ0 = Γ1 andΞ∞ = ∂D1. Hence Theorem 4.1 in the last section shows Theorem 1.1.¤

6. Martin boundaries of horn-shaped domains.

In this section we show the assertion (ii) of Theorem 1.3, and generalize the assertion (i) of
Theorem 1.3.

6.1. Small perturbations.
In this subsection we give a theorem on small perturbation, Theorem 6.1. By using it we

also give an improvement of Theorem 4 of [4], Theorem 6.2, from which the assertion (i) of
Theorem 1.3 follows. Theorems 6.1 and 6.2 are of independent interest.

Let Ω be a domain inRRR2 such that(−∆ ,Ω) is subcritical, i.e., there exists the Green function
H of −∆ on Ω (cf. Theorem 8.33 of [37]). Let Φ(t1, · · · , tl ) be a nonnegative Borel measurable
function on(0,∞]l . DefineΨ(t1, · · · , tl ) by

Ψ(t1, · · · , tl ) = sup
4−1<c1,··· ,cl <4

Φ(c1t1, · · · ,cl tl ).

Let ν j ( j = 1, · · · , l) be(0,∞]-valued continuous superharmonic functions onΩ . Put

W(z) = Φ(ν1(z), · · · ,νl (z)).

Then we have the following

THEOREM 6.1. Suppose that

∫

Ω
Ψ(ν1(z), · · · ,νl (z))dz< ∞, (6.1)

where dz is the Lebesgue measure on RRR2. Then W is a small perturbation of−∆ on Ω .

PROOF. Let ∂∞Ω be the boundary ofΩ in the one point compactification ofRRR2. Let
F be the set of points in∂∞Ω which are irregular with respect to the Dirichlet problem for
harmonic functions onΩ . Then there exists a positive superharmonic function3 on Ω such that
limz→x 3(z) = ∞ for all x ∈ F (cf. Lemmas 9.18 and 9.19 of [37]). For an intervalI in (0,∞],
denote byχI the characteristic function ofI . Forδ > 0, put

φδ (z) = χ(0,δ )(H(z,y0))+ χ(δ−1,∞](3(z)),

wherey0 is a point fixed inΩ . Then there exists a positive constantcl depending only onl such
that

1
H(x,y)

∫

Ω
H(x,z)H(z,y)φδ (z)W(z)dz (6.2)

≤ cl

∫

Ω
φ4δ (z)Ψ(ν1(z), · · ·νl (z))dz, x,y∈Ω ,
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(cf. [2], Theorem 1 of [4] and the remark which follows it). Since3(z) < ∞ for a.e. z∈ Ω and
H(z,y0) > 0 for anyz∈Ω , we have

lim
δ→0

φ4δ (z) = 0 for a.e.z∈Ω .

By the Lebesgue dominated convergence theorem, for anyε > 0 there existsδ > 0 such that the
right hand side of (6.2) is less thanε. PutK = {z∈ Ω ;φδ (z) = 0}. Sincelimz→ζ H(z,y0) = 0
for any regular boundary pointζ in ∂∞Ω , φδ (z) ≥ 1 on a neighborhood of∂∞Ω . ThusK is a
relatively compact subset ofΩ . We have

1
H(x,y)

∫

Ω\K
H(x,z)H(z,y)W(z)dz

≤ 1
H(x,y)

∫

Ω
H(x,z)H(z,y)φδ (z)W(z)dz< ε

for anyx,y∈Ω . HenceW is a small perturbation of−∆ on Ω . ¤

The following is an improvement of Theorem 4 of [4].

THEOREM 6.2. Let D1 be a domain in{(r,s) ∈ RRR2; r > 0}. Let D2 be a Lipschitz domain
in SN−1 or the whole space SN−1, where N≥ 2. Let L=−∆ on RRRN+1 and

D = {(z,s) ∈ RRRN×RRR1;(|z|,s) ∈ D1,z/|z| ∈ D2}. (6.3)

Suppose that

∫∫

D1

drds
r2 < ∞. (6.4)

Then the Martin compactification D∗ for (L,D) is homeomorphic to D∗1×D2, where D∗1 is the
Martin compactification for(−∆ ,D1). In particular, ∂MD is homeomorphic to(D1× ∂D2)∪
(∂MD1×D2). Furthermore,

∂mD = (D1×∂D2)∪ (∂mD1×D2).

PROOF. We show the theorem by applying Theorem 4.2. In the polar coordinates ofRRRN,

L =− ∂ 2

∂ r2 −
N−1

r
∂
∂ r
− Λ

r2 −
∂ 2

∂s2 , (6.5)

whereΛ is the Laplace-Beltrami operator on the sphereSN−1. With

L1 =− ∂ 2

∂ r2 −
∂ 2

∂s2 −
N−1

r
∂
∂ r

, W1 =
1
r2 , L2 =−Λ , (6.6)
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we haveL = L1 +W1L2. For (L2,D2), the hypothesis (SMI2) holds withλ0 ≥ 0 (cf. Examples
9.2 and 9.3 of [64]). Let us show thatW1 is a small perturbation ofL1 +λ0W1 onD1. We have

P≡ r−(N−1)/2◦ (L1 +λ0W1)◦ r(N−1)/2 (6.7)

=− ∂ 2

∂ r2 −
∂ 2

∂s2 +[λ0 +
(N−1)(N−3)

4
]

1
r2 .

Apply Theorem 6.1 withΦ(t1) = t−2
1 andν1(z) = z1. Then it follows from (6.4) thatW1 = r−2

is a small perturbation of−∆ on D1. Thus the Green function1 of P on D1 is comparable with
the Green functionH of −∆ on D1, i.e.,c1 ≤ H ≤ c−11 for some positive constantc (cf. [62]).
This together with Theorem 6.1 shows thatW1 is a small perturbation ofP on D1. Denote by
H0(r,s; r̃, s̃) and1(r,s; r̃, s̃) the Green functions ofL1 +λ0W1 andP onD1. Then

1(r,s; r̃, s̃) = (r/r̃)(N−1)/2H0(r,s; r̃, s̃). (6.8)

Thus

1(r,s;z1,z2)1(z1,z2; r̃, s̃)
1(r,s; r̃, s̃)

=
H0(r,s;z1,z2)H0(z1,z2; r̃, s̃)

H0(r,s; r̃, s̃)
.

It follows from this thatW1 is a small perturbation ofL1 +λ0W1 onD1. In view of Theorem 4.2,
it remains to show that the Martin compactificationD∗

1,L1+λ0W1
of D1 with respect toL1 +λ0W1

is homeomorphic to Martin compactificationD∗
1,−∆ of D1 with respect to−∆ . We have

H0(r,s; r̃, s̃)
H0(r0,s0; r̃, s̃)

=
(

r
r0

)(1−N)/2
1(r,s; r̃, s̃)
1(r0,s0; r̃, s̃)

,

where(r0,s0) is a reference point inD1. ThusD∗
1,L1+λ0W1

is homeomorphic toD1,P which is

homeomorphic toD∗
1,−∆ , sincer−2 is a small perturbation of−∆ on D1. HenceD∗

1,L1+λ0W1
is

homeomorphic toD∗
1,−∆ . ¤

In Theorem 4 of [4], it was assumed that every boundary point ofD1 is regular with respect
to the Dirichlet problem. Theorem 6.2 removes this regularity assumption.

The following is a special case of Theorem 6.2 and a generalization of the assertion (i) of
Theorem 1.3.

THEOREM 6.3. Let α and β be continuous functions on[1,∞) such thatα > β . Let
D1 = {(r,s) ∈RRR2;α(r) > s> β (r), 1 < r < ∞}. Let D2,D and L be as in Theorem1.3. Then the
assertion(i) of Theorem1.3 holds.

PROOF. By virtue of Theorem 6.2, it suffices to show thatD∗
1 = D1∪{∞} and∂MD1 =

∂mD1 = ∂D1∪{∞}. But this follows from the Carath́eodory theorem (cf. [74]) which says that
there exists a homeomorphism fromD1∪{∞} onto the closed unit disc which is conformal in
D1. ¤



Uniqueness theorems for parabolic equations and Martin boundaries 405

6.2. Proof of Theorem 1.3 (ii).
In this subsection we show the assertion (ii) of Theorem 1.3 by applying Theorem 1.1.

LEMMA 6.4. Let D1 be as in Theorem1.3. Then the Martin compactification D∗1 of D1

with respect to L1 +λ0W1 (see(6.6)) is homeomorphic toD1∪{∞} which is the closure of D1 in
the one point compactification of RRR2. Furthermore,∂MD1 = ∂mD1 = ∂D1∪{∞}.

PROOF. We give only an outline of the proof. LetF be the set of all positive solutionsu
of (L1 + λ0W1)u = 0 in D1 such thatu = 0 on ∂D1 andu(x0

1) = 1. Then the boundary Harnack
principle and the scaling argument as in the proof of Theorem A of [55] show thatF consists of
one element. It follows from this thatD∗

1 = D1∪{∞} and∂MD1 = ∂mD1. ¤

PROOF OFTHEOREM 1.3 (ii) . Recall that the hypothesis (SMI2) for(L2,D2) holds (cf.
Examples 9.2 and 9.3 of [64]). By Lemma 6.4 and Theorem 1.1, it suffices to show that the
condition (U1) holds. Consider the equation

(∂t +W−1
1 L1)3= 0 in D1× (0,∞)

(see (6.6) and (6.7)). We have

r−(N−1)/2◦ (∂t +W−1
1 L1)◦ r(N−1)/2 = ∂t − r2∆ +(N−1)(N−3)/4.

Thus Theorem 2.2 and the assumption (1.27) show that any nonnegative solution of (1.2), (1.3)
and (1.4) must be identically zero, i.e., (U1) holds. ¤

7. Generalization.

In this section we slightly generalize Theorems 1.1 and 1.2 for giving more concrete exam-
ples.

Let L = L1 +W1L2 and D = D1×D2 be as in Section 1. Assume (SMI2) for(L2,D2).
Suppose that

D1 =
N⋃

j=0

E j , (7.1)

whereN is a natural number,E j ( j = 1, · · · ,N) are Lipschitz domains inM1 or the whole space
M1 such thatE j ∩Ek =∅ for j 6= k, andE0 is a relatively compact Lipschitz domain inM1 or
an empty set. HereE j is the closure ofE j in M1, while E∗j denote the closure ofE j in D∗

1. For
j = 1, · · · ,N, consider the Dirichlet problem

(∂t +W−1
1 L1)3= 0 in E j × (0,∞), (7.2)

3(x,0) = 0 onE j , (7.3)

3(x, t) = 0 on ∂E j × (0,∞). (7.4)

We introduce the following condition.
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(US1) There exists an integerl such that (i)0≤ l ≤ N, (ii) for 1≤ j ≤ l , any nonnegative
solution of (7.2), (7.3) and (7.4) must be identically zero, and (iii) forl < j ≤N,W1 is a semismall
perturbation ofL1 +λ0W1 onE j .

THEOREM 7.1. Assume the conditions(SMI2) and(US1). Put

Ξ0 =
l⋃

j=1

(E∗j ∩∂MD1)\∂D1, Ξ∞ =
N⋃

j=l+1

(E∗j ∩∂MD1)∪∂D1.

Then all the conclusions of Theorem4.1 hold true. Furthermore, E∗j ∩E∗k =∅ for j,k = 1, · · · ,N
with j 6= k.

This theorem can be shown as Theorems 1.1 and 1.2. For proving the last assertion, use
Lemma 1.5 of [64].

8. Examples.

In this section we give several concrete examples as applications of Theorem 7.1.

EXAMPLE 8.1. Let L =−∆ on RRR2+m. Let D2 be a bounded Lipschitz domain inRRRm. Let
D1 be a Lipschitz domain inRRR2 of the form

D1 =
N⋃

j=0

E j ,

whereN is a natural number andE j are Lipschitz domains defined as follows: Forj = 1, · · · ,N,
let f j be a Lipschitz continuous positive function on[1,∞) such that it is decreasing andf j(1) <

1/2; and let

E j = {(r,s) ∈ RRR2; |s− j|< f j(r), r > 1}, j = 1, · · · ,N,

E0 =
N⋃

j=1

{(r,s) ∈ RRR2; |s− j|< f j(r), 1≤ r < 2}∪ (0,1)× (0,N+1).

Let 0≤ l ≤ N be an integer. Suppose that

∫ ∞

1
f j(r)dr = ∞, 1≤ j ≤ l ,

∫ ∞

1
f j(r)dr < ∞, l < j ≤ N.

For j = 1, · · · ,N, let η j be the point at infinity of the one point compactification ofE j ; and set
η j 6= ηk for j 6= k. Put

Ξ0 = {η j ; j = 1, · · · , l}, Ξ∞ = {η j ; j = l +1, · · · ,N}∪∂D1.
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Let D = D1×D2. Then the Martin boundary∂MD for (L,D) is homeomorphic to

Ξ0×{d2}∪Ξ∞×D2∪D1×∂D2.

Furthermore,∂MD = ∂mD. Indeed, by Theorems 2.2 and 6.1, the hypothesis (US1) holds. We
see that∂MD1 = ∂mD1 = ∂D1∪{η j ; j = 1, · · · ,N}. Thus Theorem 7.1 shows the assertion.

EXAMPLE 8.2. Let D = {x∈ RRRn; |x| > 1}. Let V be a locally bounded measurable real-
valued function on[1,∞). Let L = −∆ +V(|x|). Suppose that(L,D) is subcritical. Then it is
known that∂MD = ∂mD⊃ ∂D and the set

Γ = ∂MD\∂D

is homeomorphic to the unit sphereSn−1 or one point.
(i) Suppose that

∫ ∞

1
( sup
1≤s≤r

s2|V(s)|+1)−1/2 dr
r

= ∞. (8.1)

ThenΓ consists of one point.
(ii) Suppose thatr2V(r)+α ≥ 1 on [1,∞) for some positive constantα. Assume that

∫ ∞

1
(r2V(r)+α)−1/2 dr

r
< ∞. (8.2)

ThenΓ is homeomorphic to the unit sphereSn−1.

For results related to (i) and (ii), see [45], [53], [55], [56], [67], [72], and Example 10.1 of
[64].

Let us show the assertion (i) by applying Theorem 7.1. In the polar coordinates ofRRRn,

L =−r1−n ∂
∂ r

(
rn−1 ∂

∂ r

)
+V(r)− Λ

r2 , (8.3)

whereΛ is the Laplace-Beltrami operator on the sphereSn−1. Let D1 = (1,∞), D2 = Sn−1,

L1 =−r1−n(∂/∂ r)(rn−1∂/∂ r)+V(r), W1 = r−2, L2 =−Λ .

Then L = L1 +W1L2 on D = D1×D2. Put E0 = (2,9),E1 = (e2,∞) and E2 = (1,3). Then
D1 = E0∪E1∪E2. We see thatW1 is a small perturbation ofL1 onE2 (cf. Theorem 6.3 of [64]).
Consider the Dirichlet problem (7.2)–(7.4) forj = 1. We claim that any nonnegative solution of
it must be identically zero. Change the variabler to z= logr. Then (7.2) becomes

[
∂
∂ t
− ∂ 2

∂z2 − (n−2)
∂
∂z
−e2zV(ez)

]
3̂= 0 in (2,∞)× (0,∞), (8.4)
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where3̂(z, t) = 3(r, t). Let us show that there exists a positive continuous increasing functionρ
on [0,∞) such that

∫ ∞

1

dR
ρ(R)

= ∞, sup
0≤z≤R

e2z|V(ez)| ≤ ρ(R)2.

ForR≥ 0, put

φ(R) = ( sup
0≤z≤R

e2z|V(ez)|+1)1/2. (8.5)

For any natural numberk, denote byχk the characteristic function of the interval

Ik = {R≥ 0;2k−1 ≤ φ(R) < 2k}.

Putψ = ∑∞
k=12kχk. Then the step functionψ is increasing, and satisfiesφ ≤ ψ ≤ 2φ . By (8.5)

and (8.1),

∑
k∈J

2−k|Ik|=
∫ ∞

0

dR
ψ(R)

= ∞,

where|Ik| is the length ofIk andJ = {k∈NNN; |Ik| 6= 0}. Choose a series of intervals{I ′k}k∈J and a
piecewise linear continuous increasing functionρ on [0,∞) such that

I
′
k ⊂ Ik, ∑

k∈J

2−k|I ′k|= ∞, ρ = ψ on
⋃

k∈J

I
′
k, ρ ≥ ψ on [0,∞).

Thenρ has the desired properties. Now, let3̂ be a nonnegative solution of (8.4) with3̂(z,0) = 0 on
(2,∞) and3̂(2, t) = 0 on (0,∞). Then Theorem 4.4 of [65] together with the scaling argument as
in the proof of Theorem 6.2 of [44] shows that̂3= 0. Thus the claim holds, and so the condition
(US1) is satisfied. Hence Theorem 7.1 shows the assertion (i).

Let us show the assertion (ii). We claim thatW1 is a small perturbation ofL1 +αW1 on D1.
Let f and1 be positive solutions of the equation(L1+αW1) f = 0 in D1 and(L1+(α +1)W1)1=
0 in D1 with f (1) = 1(1) = 0 and f ′(1) = 1′(1) = 1, respectively. Change the variabler to
z= logr, and putf̂ (z) = f (ez) and1̂(z) = 1(ez). Then the equation becomes

Pf̂ ≡
[

d2

dz2 +(n−2)
d
dz
−e2zV(ez)−α

]
f̂ = 0 in (0,∞),

(P−1)1̂= 0 in (0,∞),

with f̂ (0) = 1̂(0) = 0 and f̂ ′(0) = 1̂′(0) = 1. By (8.2),

∫ ∞

0
(e2zV(ez)+α)−1/2dz< ∞.
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Then the same argument as in the proof of Lemma 2 of [58] shows thatlimz→∞ 1̂(z)/ f̂ (z) < ∞.
Thus

lim
r→∞

1(r)
f (r)

< ∞.

We see that the Martin boundary for(L1+αW1,D1) is {1,∞} and the Martin kernelk0(x1,∞) is a
constant multiple off (cf. Appendix of [53]). Thus, by Theorem 6.3 of [64], W1χ(2,∞) is a small
perturbation ofL1 + αW1 on D1. SinceW1χ(1,2] is a small perturbation ofL1 + αW1 on D1, this
implies thatW1 is a small perturbation ofL1 +αW1 on D1, i.e., the claim holds. Thus the Green
functions ofL1 +αW1 on D1 andL1 on D1 are comparable. HenceW1 is a small perturbation of
L1 onD1. Hence Theorem 7.1 (or Theorem 1.2) shows the assertion (ii).

EXAMPLE 8.3. Let D1 be a bounded Lipschitz domain inRRRn, and put δ1(x1) =
dist(x1,∂D1). Let L1 = −δ1(x1)γ ∆1, whereγ is a real number and∆1 is the Laplacian onRRRn.
Let D2 = M2 be a compact manifold. LetL2 = −∆2, where∆2 is the Laplacian onM2. Let
L = L1 +L2 andD = D1×D2. Let ∂MD and∂mD be the Martin boundary and minimal Martin
boundary for(L,D). Then we have the following:

(i) For γ ≥ 2, ∂mD = ∂MD = ∂D1×{d2}.
(ii) For γ < 2, ∂mD = ∂MD = ∂D1×D2.

Let us show the assertions. We see that the Martin compactificationD∗
1 of D1 with respect toL1

is homeomorphic toD1, and∂mD1 = ∂MD1 = ∂D1. Suppose thatγ ≥ 2. Then, by Theorem 7.8
of [44], any nonnegative solution of the Cauchy problem

(∂t +L1)u = 0 in D1× (0,∞), u(x,0) = 0 onD1

must be identically zero. Thus the assumption (U1) of Theorem 1.1 is satisfied withD1 = M1.
Hence the assertion (i) follows from Theorem 1.1. Next, suppose thatγ < 2. Then, by Theorem
9.1 of [8], 1 is a small perturbation ofL1 on D1. Thus the assumption (S1) of Theorem 1.2 is
satisfied. Hence the assertion (ii) follows from Theorem 1.2.

EXAMPLE 8.4. Let D1 = RRRn andL1 =−∆1 +V1, where∆1 is the Laplacian onRRRn andV1

is the function onRRRn such thatV1(z) = 1 for zn > 0 andV1(z) = 2 for zn≤ 0. LetW1(x1) = 〈x1〉γ ,
whereγ is a real number and〈x1〉= (1+ |x1|2)1/2. Let D2 = RRRm and

L2 = 〈x2〉α(−∆2 +1)−β ,

whereα > 2, ∆2 is the Laplacian onRRRm, andβ is a positive constant such thatλ0 = 0, i.e.,0 is
the first eigenvalue of the selfadjoint operatorL2 associated withL2 on D2. Let L = L1 +W1L2

andD = D1×D2. It is known (cf. [54]) that the Martin boundary∂MD1 and the minimal Martin
boundary∂mD1 for (L1,D1) are homeomorphic to the setΣ andσ defined by

σ = {ω ∈ RRRn; |ω|= 1,ωn ≥ 0}∪{ω ∈ RRRn; |ω|=
√

2,ωn ≤−1},
Σ = σ ∪{(ω ′,−θ) ∈ RRRn; |ω ′|= 1,0 < θ < 1},
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respectively, i.e.,∂MD1
∼= Σ and ∂mD1

∼= σ . Furthermore, 1 is a small perturbation of
〈x2〉α(−∆2 + 1) on RRRm (cf. Theorem 5.1 of [64]); the Martin boundary∂MD2 for (〈x2〉α(−∆2

+1),RRRm) is homeomorphic to the unit sphereSm−1 at infinity (cf. [53]), i.e., ∂MD2 = Sm−1∞;
D∗

2 = RRRmtSm−1∞; the hypothesis (SMI2) for(L2,D2) is satisfied (cf. Example 9.4 of [64]); and
D1×∂MD2 ⊂ ∂mD. Put

Γ = ∂MD\ (D1×∂MD2).

Then we have the following:
(i) For γ ≥−1, Γ ∼= Σ andΓ ∩∂mD∼= σ .
(ii) For γ <−1, Γ ∼= Σ ×D∗

2 andΓ ∩∂mD∼= σ ×D∗
2.

Let us show the assertions. Suppose thatγ <−1. ThenW1(x1) = 〈x1〉γ is a small perturbation of
L1 on RRRn (cf. Theorem 5.1 of [64]). Thus Theorem 1.2 shows the assertion (ii). Next, suppose
thatγ ≥−1. Consider the Cauchy problem

(∂t + 〈z〉−γL1)3= 0 in RRRn× (0,∞), 3(z,0) = 0 onRRRn. (8.6)

In order to show that the Cauchy problem (8.6) allows no positive solution, we introduce a
Riemannian metric1 = (1i j ) on RRRn by 1ii = 〈z〉γ and1i j = 0 for i 6= j. ThenM1 = RRRn becomes
a complete Riemannian manifold with this metric1. The associated gradient∇ and divergence
div are written as

∇ = 〈z〉−γ ∇0, div = 〈z〉−nγ/2div0〈z〉nγ/2,

where∇0 anddiv0 are the standard gradient and divergence onRRRn. Putm1(z) = 〈z〉(1−n/2)γ . Then

〈z〉−γL13=−m−1
1 div(m1∇3)+ 〈z〉−γV1(z)3. (8.7)

Forzwith |z|> 1, denote byd(z) the Riemannian distance from0 to z. Thend(z) is comparable
with |z|(γ/2+1). Thus

|〈z〉−γV1(z)| ≤Cd(z)−γ/(γ/2+1) ≤Cd(z)2, |z|> 1,

for some constantC > 0. We see from this that the assumption [PHP-ρ] of Theorem 2.1 is
satisfied withρ(R) = C(R+ 1) for a sufficiently large positive constantC (cf. the proof of
Theorem 6.2 of [44]). By Theorem 2.1, any nonnegative solution of (8.6) must be identically
zero. Thus the assumption (U1) of Theorem 1.1 is satisfied. Hence Theorem 1.1 shows the
assertion (i).
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Appl. IX , Ser. 75 (1996), 273–297.
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