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Abstract. The cohomologyH∗(Γ ,E) of an arithmetic subgroupΓ of a connected reductive
algebraic groupG defined overQQQ can be interpreted in terms of the automorphic spectrum ofΓ .
In this frame there is a sum decomposition of the cohomology into the cuspidal cohomology (i.e.,
classes represented by cuspidal automorphic forms forG) and the so called Eisenstein cohomology.
The present paper deals with the case of a quasi split formG of QQQ-rank two of a unitary group of
degree four. We describe in detail the Eisenstein series which give rise to non-trivial cohomology
classes and the cuspidal automorphic forms for the Levi components of parabolicQQQ-subgroups
to which these classes are attached. Mainly the generic case will be treated,i.e., we essentially
suppose that the coefficient systemE is regular.

Introduction.

Let G be a connected semisimple algebraic group defined over an algebraic number fieldF .
Suppose that theF-rank ofG is greater than zero. LetKRRR be a maximal compact subgroup of the
real Lie groupG(RRR) of real points ofG, and denote byXG(RRR) = G(RRR)/KRRR the associated symmet-
ric space. Let(ν ,E) be an irreducible algebraic representation ofG(RRR) on a finite dimensional
complex vector spaceE.

An arithmetic torsion free subgroupΓ of G(F) acts properly and freely onXG(RRR). The
quotientΓ \XG(RRR) is a non-compact complete Riemannian manifold of finite volume. Our object
of concern is the cohomologyH•(Γ \XG(RRR),E) of this arithmetically defined locally symmet-
ric space, its relationship with the theory of automorphic forms and certain number theoretical
questions embodied in this relation.

The present paper deals with this circle of questions in the case of a quasi split formG of
QQQ-rank two of a unitary group of degree four.

In the case of the groupSL2/F Harder initiated around 1970 a program to identify the
cohomology ofΓ “at infinity”, i.e., those phenomena in the cohomology which are due to the
non compactness of the spaceΓ \XG(RRR). Langlands’ theory of Eisenstein series provided the
methological tools. Harder showed in this case that there exists a sum decomposition of the
cohomology ofΓ

H•(Γ \XG(RRR),E) = H•
cusp(Γ \XG(RRR),E)⊕H•

Eis(Γ \XG(RRR),E)

into the space of classes represented by cuspidal automorphic forms forG and the so called
Eisenstein cohomology.

By now, due to the work of Franke [F], this interpretation of the cohomology ofΓ in terms
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of its automorphic spectrum is possible in the general case of an arithmetic group defined by
congruence conditions in a connected reductive algebraic groupG/F . In this frame there is a
sum decomposition of the cohomology ofΓ

H•(Γ \XG(RRR),E) = H•
cusp(Γ \XG(RRR),E)⊕

⊕

{P}∈C

H•
{P}(Γ \XG(RRR),E)

into the subspace of classes represented by cuspidal automorphic forms forG and the Eisen-
stein cohomology constructed as the space of appropriate residues or derivatives of Eisenstein
series attached to cuspidal automorphic formsπ on the Levi components of proper parabolic
F-subgroups ofG. Thus, there is a sum decomposition where the sum ranges over the setC
of classes of associate proper parabolicF-subgroups. These Eisenstein cohomology classes can
be arranged according to the notion of cuspidal support for the Eisenstein series involved. This
leads to a refined decomposition of each of the subspacesH•

{P}(Γ \XG(RRR),E) indexed by a class
of associate proper parabolic subgroups ofG where the sum ranges over a certain set of classes of
associate irreducible cuspidal automorphic representations of the Levi components of elements
of {P} (cf. [F-S, Theorem 2.3]).

However these results do not give a description of the internal structure of the subspaces
H•
{P}(Γ \XG(RRR),E) or account for the arithmetic nature of the classes therein. Only for a few

groups of smallF-rank e.g., GL2/F , GL3/QQQ or the symplectic groupSp2/QQQ of QQQ-rank two
(cf. [H87], [H93], [S83], [S86], [S95], [Li-S0]), these questions are more closely examined.
These results provide evidence that the occurrence of specific types of Eisenstein cohomology
classes is related to the analytic properties of certain Euler products (or automorphicL-functions).
Moreover, questions in and connections with arithmetical algebraic geometry play an important
role in these investigations.

In the present paper we are concerned with the case of a unitary group of degree four. Let
F/QQQ be an imaginary quadratic extension ofQQQ. Let x 7→ x̄ be the non-trivial automorphism
of F/QQQ of order two. IfV denotes the four dimensional vector spaceF4 endowed with the
nondegenerate Hermitian form〈x,y〉 = xHt ȳ whereH =

( 0 I2
I2 0

)
, then the corresponding special

unitary group

SU(V,H) = {1 ∈ SL(V) | 1Ht 1̄= H}

is a quasi-split semisimple algebraic group defined overQQQ. TheQQQ-rank ofG = SU(V,H) is two.
In this case, the setC of classes of associate parabolicQQQ-subgroups ofG coincides with the set
of conjugacy classes. Thus, the class{G}, the two conjugacy classes{P1}, {P2} of maximal
parabolicQQQ-subgroups and the class{P0} of the minimal parabolicQQQ-subgroups account for the
setC . In the decomposition alluded to above the cuspidal cohomology corresponds to the class
{G}.

As our main results we determine the individual constituents of the subspaces

H•
{Pj}(Γ \XG(RRR),E) ( j = 0,1,2)

of the Eisenstein cohomology. We describe in detail the Eisenstein series which give rise to
non-trivial cohomology classes and the cuspidal automorphic forms for the Levi components to
which these classes are attached. In this paper, the generic case is mainly dealt with,i.e., we
suppose that the highest weight of the representation(ν ,E) is regular. We will pursue the other
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case in a subsequent paper in which, in particular, as one part of the study the contribution of the
residual spectrum (as described in [Konno]) is discussed. This makes an analysis of the analytic
behavior of certain Euler products necessary which naturally come up in the constant terms of
the Eisenstein series in question.

Finally we note as one example: our result in the casej = 2 (cf. Theorem 5.6) suggests that
it might be possible to establish a relation by way of congruences between cuspidal automorphic
forms for congruence subgroups ofSL2/F , F/QQQ an imaginary quadratic extension and forms for
SU(V,H). This would be very much in the spirit of the congruences between a Siegel modular
form and an elliptic modular form recently described by Harder [H03].

We now give an overview of the structure of this paper. In Section 1, we review the descrip-
tion of the cohomology of congruence subgroups in a connected reductiveQQQ-group in terms of
automorphic forms. We then describe the decomposition of the cohomology as alluded to above.
In Section 2, we recall the actual construction of Eisenstein cohomology classes. We make es-
sential use of results in [S83]. In this context, we speak of a cohomology class “at infinity” of
type(π,w) whereπ is a cuspidal automorphic representation of the Levi component ofP andw
ranges over the set of minimal coset representatives for the left cosets of the Weyl group ofP in
the one ofG. These two parameters play a decisive role in the following investigations.

In Section 3, the focus is on the unitary groupSU(V,H). We fix the notation for the root
system, and we describe the Langlands decomposition of the parabolic subgroups. Finally, we
explicitly determine the various restrictions of specific weightsµw (depending on the parameter
w as above) to the Levi Cartan algebras. This is the first step towards determining the points of
evaluation for the Eisenstein series we have to consider.

Section 4 contains the results pertaining to the cohomology “at infinity”. The possible types
(π,w) and their corresponding Archimedean componentsπ∞ are given. Section 5 contains the
complete structural description of the Eisenstein cohomology in the generic case.

In Section 6, for the sake of completeness, we discuss the cuspidal cohomology. It decom-
poses as a finite algebraic sum where the sum ranges over all cuspidal automorphic representa-
tions for which the infinitesimal character of its Archimedean component matches the one of the
representationE∗ contragradient to(ν ,E). Thus we are led to make explicit the classification
in [V-Z ] of the irreducible unitary representation of the real Lie groupG(RRR) with non-vanishing
cohomology. We list these representations (up to equivalence) and determine their cohomology.

NOTATIONS. We use almost the same notations with those in [Li-S2]. We denote byAAA,
AAAf andAAA∞ the ring of adeles, finite adeles and infinite adeles, ofQQQ, respectively.

The algebraic groups considered are linear. IfH is an algebraic group defined over a fieldk,
andk′ is a commutativek-algebra, we denote byH(k′) the group ofk′-valued points ofH except
in §4. In §4, H denotes the group of real-valued pointsH(RRR). The connected component of the
identity of the groupH(RRR) is denoted byH(RRR)◦. The ring ofk′-points ofn by n matrices are
denoted byMatn(k′).

Let G be a connected reductive algebraic group defined overQQQ. Suppose that a minimal
parabolicQQQ-subgroupP0 of G and a Levi decompositionP0 = L0N0 of P0 over QQQ have been
fixed. By definition, astandardparabolicQQQ-subgroup ofG is a parabolicQQQ-subgroupP of G
with P0 ⊂ P. ThenP has a unique Levi decompositionP = LPNP over QQQ such thatLP ⊃ L0.
If A0 = AP0 is the maximalQQQ-split torus in the center ofLP0, then there is a unique Langlands
decompositionP = MPAPNP with MP ⊃M0 andAP ⊂ A0.

The Lie algebras of the group of the real points (e.g.G(RRR), L(RRR), . . .) are expressed by cor-
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responding Euler Fraktur (e.g.g, l, . . .). The complexification of the real Lie algebrag is denoted
by gCCC. We putǎP = X∗(P)⊗RRR, whereX∗(P) denotes the group ofQQQ-rational characters ofP.
We let ǎ0 = ǎP0

. Similarly aP = X∗(P)⊗RRR, a0 = X∗(P0)⊗RRR whereX∗(P) denotes the group of
QQQ-rational cocharacters. By the natural pairing ofǎ0 anda0, one has direct sum decompositions
a0 = aP⊕ aP

0 and ǎ0 = ǎP⊕ ǎP
0 , respectively. LetaQ

P be the intersection ofaP andaQ
0 . Similar

notation is used fořaQ
P . By MP resp.mP, we denote the intersection∩ker(χ) resp.∩ker(dχ) of

the kernels of all rational charactersχ of P. ThenaG
P = aP∩mG. We denote byΦQQQ

P ⊂ X∗(AP)
the set ofQQQ-roots ofAP and by∆ QQQ

P the set of simple roots inΦQQQ
P . Then the open Weyl chamber

in ǎG
P is defined and is denoted by(ǎG

P)+. The set of absolute roots ofH(CCC), the set of its simple
roots and the absolute Weyl group ofH are denoted byΦ(H), ∆(H) andWH respectively.

We choose a maximal compact subgroupK of G(AAA) of the form K = KRRRC with C ⊂
G(AAAf), which we suppose ingoodposition. ThenG has the Iwasawa decompositionG(AAA) =
LP(AAA)NP(AAA)K for a given standard parabolicQQQ-subgroupP of G and the standardheightfunc-
tion HP : G(AAA)→ aP is defined in a usual way.

Let U (g) be the universal enveloping algebra ofg, and letZ (g) be its center. Any element
D in U (g) defines a differential operator on the spaceC∞(AG(RRR)◦\G(AAA)) of smooth complex
valued functions onAG(RRR)◦\G(AAA) by right differentiation with respect to the real component of
1∈G(AAA). This operator is denoted byf 7→D f . It commutes with the action ofG(RRR) given by left
translation. IfD ∈Z (1), this operator also commutes with action ofG(RRR) by right translation.

ACKNOWLEDGMENT. The first named author would like to thank the Department of
Mathematics of the University of Vienna for its hospitality during his stays in 2001 resp. 2002.
Authors’ work is supported in part by FWF Austrian Science Fund, grant number P16762-N04.

1. Cohomology and automorphic forms.

1.1.
Let G be a connected reductive algebraic group defined overQQQ, let AG denote the maximal

QQQ-split torus in the centerZG of G, and letC be an open compact subgroup ofG(AAAf). Then the
double coset space

XC := G(QQQ)AG(RRR)◦\G(AAA)/KRRRC (1)

has only finitely many connected components each of which has the formΓ \G(RRR)◦/KRRR for an
appropriate arithmetic subgroupΓ of G. We fix a finite dimensional algebraic representation
(ν ,E) of G(CCC) in a vector spaceE. Suppose (for the sake of simplicity) thatAG acts onE by a
central characterχE. We may consider the cohomology groups

H•(XC,E) (2)

of XC with coefficients in the local systemE defined by(ν ,E). For example, these cohomology
groups are defined as the cohomology of the de Rham complex ofE-valued currents onXC. By
passing over the open compact subgroupsC ⊂ G(AAAf) one has a direct system of cohomology
groups. The corresponding inductive limit

H•(G,E) = lim−→
C

H•(XC,E) (3)

is defined and carries a natural structure as aπ0(G(QQQ))×G(AAAf)-module.
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1.2.
The cohomology groupsH•(G,E) have an interpretation in relative Lie algebra co-

homology. Let C∞(G(QQQ)AG(RRR)◦\G(AAA)) be the space of smoothKRRR-finite functions on
G(QQQ)AG(RRR)◦\G(AAA); it carries a natural(g,KRRR,G(AAAf))-module structure. There is an isomor-
phism between the(mG,KRRR)-cohomology ofC∞(G(QQQ)AG(RRR)◦\G(AAA))⊗E and the cohomology
of the de Rham complex ofE-valued currents onG(QQQ)AG(RRR)◦\G(AAA)/KRRR which computes the
inductive limitH•(G,E). One has an isomorphism ofG(AAAf)-modules

H•(G,E)' H•(mG,KRRR,C∞(G(QQQ)AG(RRR)◦\G(AAA))⊗E)(χE) (4)

where theG(AAAf)-action on the right hand side is twisted by the characterχE attached to(ν ,E).

1.3.
Without altering the cohomologyH•(G,E), the space

C∞(G(QQQ)AG(RRR)◦\G(AAA))

may be replaced by the subspaceVG of smooth complex valued functions of uniform moderate
growth. By definition, aC∞-function

f : G(QQQ)AG(RRR)◦\G(AAA)→CCC

is in VG if

– f is KRRR-finite
– There exists a constantc > 0, c∈ RRR, such that for all elementsD ∈U (g) there isrD ∈ RRR

with

|D f (1)| ≤ rD||1||c for all 1 ∈G(AAA). (5)

The spaceVG carries in a natural way the structure of a(g,KRRR,G(AAAf))-module.
Let C be the set of classes of associate parabolicQQQ-subgroups ofG. For {P} ∈ C denote

by VG({P}) the space of elements inVG which are negligible alongQ for every parabolicQQQ-
subgroupQ∈ C , Q /∈ {P}, i.e., givenQ = LN for all 1 ∈ G(AAA) the functionl 7→ fQ(l1) (where
fQ denotes the constant term off with respect toQ) is orthogonal to the space of cuspidal
functions onAG(RRR)◦L(QQQ)\L(AAA). The spacesVG({P}), {P} ∈ C , are submodules with respect to
the (g,KRRR,G(AAAf))-module structure. Finally, proved by Langlands [L ] (see also [B-L-S, 2.4]),
the spaceVG has a decomposition as a direct sum of(g,KRRR,G(AAAf))-modules

VG =
⊕

{P}∈C

VG({P}). (6)

The inclusionVG →C∞(G(QQQ)AG(RRR)◦\G(AAA)) induces an isomorphism on the level of(g,KRRR)-
cohomology,i.e., one gets in view of the decomposition

H•(G,E) =
⊕

{P}∈C

H•(mG,KRRR,VG({P})⊗E)(χE). (7)

Let Z (g) be the center of the universal enveloping algebra of the Lie algebrag of G and
let J ⊂Z (g) be the annihilator of the dual representationE∗ in Z (g). The space ofKRRR-finite
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smooth functions of uniform moderate growth inVG which are annihilated by a power ofJ is
denoted byAE. For a given class{P} ∈ C we put

AE,{P} := AE ∩VG({P}). (8)

The spaceAE (resp. the spacesAE,{P}) are(g,KRRR,G(AAAf))-modules. There is a decomposition of
AE as a disjoint sum of(g,KRRR,G(AAAf))-modules

AE =
⊕

{P}∈C

AE,{P}. (9)

The inclusionAE →VG of the spaces of automorphic forms onG (with respect to(ν ,E)) in the
spaceVG of functions of uniform moderate growth induces, by [F, Theorem 18], an isomorphism
on the level of(mG,KRRR)-cohomology. One obtains the decomposition

H•(G,E) =
⊕

{P}∈C

H•(mG,KRRR,AE,{P}⊗E)(χE). (10)

As exhibited in [F-S] there is a refinement

AE =
⊕

{P}∈C

⊕

φ ∈ΦE,{P}

AE,{P},φ (11)

of the decomposition (9) where for a given class{P} in the setC of associate parabolicQQQ-
subgroups ofG the second sum ranges over the setΦE,{P} of classesφ = {φQ}Q∈{P} of associate
irreducible automorphic representations of the Levi components of elements of{P}. One can
give two alternative definitions of the spacesAE,{P},φ one by use of the concept of the constant
term, the other one in terms of Eisenstein series or residues of such. For details we refer to Sec-
tion 2.2, respectively [F-S, Section 1.5]. This decomposition ofAE, along the cuspidal support
implies a corresponding one in cohomology

H•(G,E) =
⊕

{P}∈C

⊕

φ ∈ΦE,{P}

H•(mG,KRRR,AE,{P},φ ⊗E)(χE). (12)

The cuspidal cohomology to be denoted by

H•
cusp(G,E) := H•(mG,KRRR,AE,{G}⊗E)(χE) (13)

is, by definition, the summand indexed by the class{G} ∈ C in this decomposition. The natural
complement to the cuspidal cohomology inH•(G,E) is called the Eisenstein cohomology,i.e.,
one has, by definition,

H•
Eis(G,E) =

⊕

{P}∈C ,
{P}6={G}

⊕

φ ∈ΦE,{P}

H•(mG,KRRR,AE,{P},φ ⊗E)(χE). (14)

2. Construction of Eisenstein cohomology classes.

2.1. Eisenstein series.
Let {P} ∈ C be a class of associate parabolicQQQ-subgroups ofG represented by a standard

parabolicQQQ-subgroupP= LPNP. Let φ = {φQ}Q∈{P} be a class of associate irreducible cuspidal
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automorphic representations of the Levi components of elements of{P}, i.e., by definition, given
Q∈ {P}, φQ is a finite set of irreducible representations ofLQ(AAA) which are unitary modulo the
center, such that for eachπ ∈ φQ the central characterχπ : AQ(AAA) → CCC× is trivial on AQ(QQQ)
and such thatπ occurs in the cuspidal spectrumL2

cusp(LQ(QQQ)\LQ(AAA))χπ (with respect toχπ ).
Moreover, certain compatibility conditions as specified in [F-S, 1.2], have to be satisfied, and we
suppose that for eachπ ∈ φQ its infinitesimal character coincides with the one ofE∗. Recall that
the set of all collectionsφ = {φQ}Q∈{P} constituteΦE,{P} for a given{P} ∈ C .

Consider an irreducible representationπ ∈ φQ for a givenQ∈ {P} and a given collection
φ ∈ΦE,{P}. Let π̃ be the unitary representation

π̃(l) = e−〈dχπ ,HQ(l)〉π(l) l ∈ LQ(AAA) (15)

and letWQ,π̃ be the space of smoothKRRR-finite functions

f : LQ(QQQ)NQ(AAA)AQ(RRR)◦\G(AAA)→CCC (16)

such that for any1 ∈ G(AAA) the function f (l1) of the variablel ∈ LQ(AAA) belongs to the space
L2

cusp,π̃(LQ(QQQ)AQ(RRR)◦\LQ(AAA)) of cuspidal automorphic forms which transform according toπ̃.

For f ∈WQ,π̃ , there is the Eisenstein series depending on the complex parameterλ ∈ ǎG
Q defined

(at least formally) by

E( f ,λ )(1) = EG
Q( f ,λ )(1) = ∑

γ∈Q(QQQ)\G(QQQ)
e〈HQ(γ1),λ+ρQ〉 f (γ1) 1 ∈G(AAA). (17)

If the real part of the complex parameter is sufficiently regular and lies inside the positive Weyl
chamber(ǎG

Q)+ defined byQ the Eisenstein seriesE( f ,λ )(1) converges uniformly in1. The map
λ 7→ E( f ,λ )(1) is holomorphic in the region of absolute convergence and has a meromorphic
continuation to all of̌aG

Q. Its singularities lie along certain root hyperplanes.

2.2. The spacesAEEE,,,{PPP},,,φφφ .
For a given collectionφ = {φQ} ∈ΦE,{P} we considerπ ∈ φQ, Q∈ {P}. Then there exists

a polynomial functionq on ǎG
Q such that for anyf ∈WQ,π̃ the functionq(λ )EG

Q( f ,λ ) is holomor-

phic in a neighborhood ofχπ in ǎG
Q. If we choose Cartesian coordinatesz1(λ ), . . . ,zr(λ ) on ǎG

Q

the functionq(λ )EG
Q( f ,λ ) has a Taylor expansion nearχπ given by

q(λ )EG
Q( f ,λ ) =

∞

∑
i1,...,ir =0

ai1,...,ir ( f )zi(λ −χπ)i1 · · ·zr(λ −χπ)ir . (18)

By definition, the spaceAE,{P},φ is the space of functions generated by theai1,...,ir ( f ) where the
i1, . . . , ir run from zero to infinity and wheref ranges through the spaceWQ,π̃ . Another choice of
the polynomial functionq does not alter the spaceAE,{P},φ . By the functional equations of the
Eisenstein series involved and the compatibility conditions imposed on the elements inφQ it is
also independent of the choices of the representativesQ in {P} resp.π ∈ φQ. Note thatAE,{P},φ
is spanned by all possible residues and derivatives with respect to the parameterλ of Eisenstein
series attached to cuspidal automorphic forms of typeφ at valuesλ in the positive Weyl chamber
defined byQ for which the infinitesimal characterχE∗ of E∗ is matched.
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2.3.
Let Q = LQNQ be a standard parabolicQQQ-subgroup ofG so thatQ∈ {P} for a given choice

of an associate class{P} ∈ C . The symmetric algebraS(ǎG
Q) of ǎG

Q may be viewed as the space

of polynomials onaG
Q and thusaG

Q acts on it by translations. The symmetric algebra may also

be interpreted as the space of differential operators with constant coefficients onaG
Q. For a given

π ∈ φQ the spaceWQ,π̃ ⊗CCC S(ǎG
Q) carries the structure of a(g,KRRR,G(AAAf))-module ([F, p. 218]).

There is an isomorphism of(g,KRRR,G(AAAf))-modules between the spaceWQ,π̃ ⊗CCC S(ǎG
Q) and the

sum ofmπ copies of the induced representation

IndG(AAAf)
Q(AAAf)

Indg,KRRR
g∩ lQ,KRRR∩LQ(RRR)

[
Hπ ⊗CCC S(ǎG

Q)
]

(19)

whereHπ denotes the representation space corresponding toπ ∈ φQ and occurring with multi-
plicity mπ in L2

cusp(LQ(QQQ)\LQ(AAA))χπ . Then the map (as defined in 2.2)

WQ,π̃ ⊗CCC S(ǎG
Q)→AE,{P},φ

f ⊗ ∂ α

∂λ α 7→
[

∂ α

∂λ α
(
q(λ )EG

Q( f ,λ )
)]

(χπ)
(20)

becomes under this identification a homomorphism of(g,KRRR,G(AAAf))-modules. For (20),α de-
notes a multi-index and∂ α/∂λ α denotes the derivative of orderα with respect to a Cartesian
system of coordinates oňaG

Q.
Thus as a first step, in order to understand the cohomological contribution of the spaces

AE,{P},φ in the decomposition

H•(G,E)'
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H•(mG,KRRR,AE,{P},φ ⊗E)(χE) (21)

it is necessary to determine the cohomological spaces

H•(mG,KRRR,WQ,π̃ ⊗S(ǎP
Q)⊗E

)
Q∈ {P}, π ∈ φQ. (22)

The second step regards a careful analysis of the map induced by (20) on the cohomological
level.

2.4. Classes of type(((πππ,,,www))).
Using the interpretation of the(g,KRRR,G(AAAf))-moduleWQ,π̃⊗S(ǎG

Q) as the sum ofmπ copies
of the induced representation

IndG(AAAf)
Q(AAAf)

Indg,KRRR
g∩ lQ,KRRR∩LQ(RRR)

[
Hπ ⊗CCC S(ǎG

Q)
]

(23)

as given in 2.3, the analysis of the cohomology of theWQ,π̃ ⊗S(ǎG
Q) leads to a study of the

cohomology of

H•(mG,KRRR, IndG(AAAf)
Q(AAAf)

Indg,KRRR
g∩ lQ,KRRR∩LQ(RRR)

[
Hπ ⊗CCC S(ǎG

Q)⊗E
])

. (24)

By use of Frobenius reciprocity this space is equal to (cf. [F, p. 256])

IndG(AAAf)
Q(AAAf)

H•(lQ,KRRR ∩ LQ(RRR),Hπ ⊗H•(nQ,E)⊗S(ǎG
Q)

)
. (25)
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ThenQ-cohomology is well understood by the following result of Kostant ([K , 5.1]). Leth be
a Cartan subalgebra ofg contained inlP0. The highest weight of the given irreducible finite
dimensional representation(ν ,E) of G(CCC) is denoted byΛ . Then the Lie algebra cohomology
of nQ with coefficients inE is given as a(lQ,KRRR∩LQ(RRR))-module by the sum

Hq(nQ,E) =
⊕

w∈WQ

`(w)=q

Fµw (26)

where the sum ranges over the elementsw in the set

WQ = {w∈WG | w−1(∆LQ)⊂Φ+} (27)

of minimal coset representatives for the left cosetWQ\WG with length`(w) = q, and whereFµw

denotes the irreducible finite dimensional(lQ,KRRR∩LQ(RRR))-module of highest weight

µw = w(Λ +ρ)−ρ. (28)

The weightsµw are all dominant and distinct.
This result implies a further decomposition of (25) as a sum overWQ. One obtains

⊕

w∈WQ

IndG(AAAf)
Q(AAAf)

H•(lQ,KRRR∩LQ(RRR),Hπ ⊗Fµw⊗S(ǎG
Q)

)
. (29)

This allows us to introduce the notion of a cohomology class of type(π,w), w∈WQ. By
definition, it is a class contained in the summand in (29) indexed byw ∈WQ. Note that the
infinitesimal character of the representation contragradient toFµw is given byχ =−w(Λ +ρ)|b,
b a Cartan subalgebra inmQ so thatb+aQ = h. Thus, for given non-trivial cohomology class of
type(π,w) the infinitesimal characterχπ of the Archimedean component ofπ is

χπ = χ−w(Λ+ρ)|b . (30)

3. The unitary group.

Let F be a quadratic imaginary extension ofQQQ. Letx 7→ x̄ be a nontrivial involution ofF/QQQ.
Let VF be ann-dimensional vector space endowed with non-degenerate hermitian form

〈x,y〉= xHt ȳ.

The groupU(H) (resp.SU(H)) is a unitary group (resp. special unitary group) defined overQQQ,
that is,

U(V,H) = {1 ∈GL(VF) | 1Ht 1̄= H},

SU(V,H) = {1 ∈ SL(VF) | 1Ht 1̄= H}.

Let us assumen = 2m is even. If we takeHm =
( Im

Im

)
, thenSU(Hm) becomes a quasi-split

algebraic group of rankm which we denoteSU(m,m). In the following we letm= 2, i.e., we
consider the algebraicQQQ-groupG = SU(2,2) of rank two.



366 T. HAYATA and J. SCHWERMER

3.1. Roots and parabolic subgroups.
Let

T = {ta,b = diag(a,b,a−1,b−1) ∈G | a,b∈QQQ×}

be aQQQ-split torus and let

e1(ta,b) = a, e2(ta,b) = b.

Put α1 = e1/e2, α2 = e2
2. Then the root systemΦ0 of G becomes{α±1

1 ,α±1
2 ,(α1α2)±1,

(α2
1α2)±1} which is of typeC2. We fix once and for all the simple roots∆ QQQ

0 = {α1,α2}. The

conjugacy classes ofQQQ-parabolic subgroups ofG are parametrized by the subsets of∆ QQQ
0 . Namely

let the subsets beJ0 =∅, J1 = {α2}, J2 = {α1} andJ3 = ∆QQQ
0 and let the standard parabolic sub-

groups to bePj = PJj wherePJ is described as follows: We letSJ = (
⋂

α∈J kerα)◦, and letZ(SJ)
be the centralizer ofSJ. ThenPJ is the semidirect of its unipotent radicalUJ by Z(SJ). Note
that the characters ofT in UJ are exactly the positive roots which contain at least one simple
root not inJ. In particularP0 is a minimal parabolic subgroup andP3 = G itself. The Langlands
decomposition ofPj is denoted byPj = L jNj .

Now letJ =∅. ThenP0 is described as follows.

A0 = T,

L0 = {diag(a,b, ā−1, b̄−1) | a,b∈ F , ab∈QQQ×},
M0 = {diag(a,a−1,a,a−1) ∈ L0 |NF/QQQ(a) = 1},

N0 =








0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 ∗ 0








.

(31)

The case ofJ1 = {α2} is as follows.

A1 = {diag(a,1,a−1,1)},

L1 =








x 0 0 0
0 u11 0 u12

0 0 x̄−1 0
0 u21 0 u22




∣∣∣∣
u = (ui j ) ∈U(1,1),
xx̄−1 ·detu = 1,x∈ F





,

M1 =








x 0 0 0
0 u11 0 u12

0 0 x 0
0 u21 0 u22


 ∈ L1 |NF/QQQ(x) = 1





,

N1 =








0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 0
0 0 ∗ 0








, N1(RRR) is 5-dimensional, non-abelian.

(32)
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The case ofJ2 = {α1} is as follows.

A2 = {diag(a,a,a−1,a−1)},

L2 =

{(
A 0
0 t Ā−1

)
| A∈Mat2(F), det(A) ∈QQQ×

}
,

M2 =

{(
A 0
0 t Ā−1

)
| A∈Mat2(F), det(A) =±1

}
,

N2 =








0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0








, N2(RRR) is 4-dimensional abelian.

(33)

In particular, we have

L0(RRR)' ZZZ/2ZZZ× (RRR>0)⊕2×CCC(1),

L1(RRR)' RRR××CCC(1)×SU(1,1),

L2(RRR)' RRR>0×SL±2 (CCC).

(34)

3.2. The absolute root system and compatible order.
Let h be the Lie algebra ofL0(RRR). Then it is a Cartan algebra containingt. Let

ε j(diag(a1,a2,a3,a4)) = a j . Put

β1 = ε1− ε2, β2 = ε2− ε4, β3 = ε4− ε3.

Then the absolute root systemΦ(gCCC,hCCC) of gCCC with respect tohCCC is given by

Φ(gCCC,hCCC) =±{β1,β2,β3,β1 +β2,β2 +β3,β1 +β2 +β3}.

This is ofA3-type. By definition, a compatible order with respect to∆ QQQ
0 forces the simple roots

of gCCC,hCCC to be

∆ = {β1,β2,β3}.

The compatible simple root∆ also fixes the positive systemΦ+(gCCC,hCCC). The root systemsΦ(Pj)
of the parabolic subgroupsPj(CCC) are then

Φ(P0) = Φ+(gCCC,hCCC), Φ(P1) = Φ(P0)\{β2},
Φ(P2) = {β2,β1 +β2,β2 +β3,β1 +β2 +β3}.

The Weyl groupWG of G(CCC) is generated by the simple reflectionss1,s2,s3 defined by the simple
rootsβ1,β2,β3, respectively. If we identifyWG with the symmetric group of degree 4 by

“a reflection with respect toεi − ε j ” 7→ (i j ) (a mutual permutation),
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thens1,s2,s3 are given by(12),(24),(34) respectively. The Weyl groupWj of L j(CCC) ( j = 0,1,2)
are identified with subgroups ofWG,

W0 = 1,W1 = 〈s2〉,W2 = 〈s1,s3〉.

Let WP be the set of minimal coset representatives ofWP\WG defined in 2.4. A computation
shows

WP0 =WG, WP1 ∩WP2 = {1},

WP1 ={1}∪{s1,s3}∪{s1s3,s1s2,s3s2}∪{s1s3s2,s1s2s3,s3s2s1}
∪{s1s2s3s2,s1s3s2s1}∪{s1s2s3s2s1},

WP2 ={1}∪{s2}∪{s2s1,s2s3}∪{s2s3s1}∪{s2s1s3s2}.

(35)

3.3. Fundamental weights.
Let ω1,ω2,ω3 be the fundamental weights defined by the simple roots∆ , namely

ω1 = 1/4(3ε1− ε2− ε3− ε4) = 1/4(3β1 +2β2 +β3),

ω2 = 1/2(ε1 + ε2− ε3− ε4) = 1/2(β1 +2β2 +β3),

ω3 = 1/4(ε1 + ε2−3ε3 + ε4) = 1/4(β1 +2β2 +3β3).

(36)

In the following, we express the weights by using coordinates

(c1,c2,c3) := c1ω1 +c2ω2 +c3ω3.

It is regular if and only ifc1 > 0, c2 > 0 andc3 > 0. The simple roots are in∆ are given in these
coordinates by

β1 = (2,−1,0), β2 = (−1,2,−1), β3 = (0,−1,2).

Let ρP denote the half sum of the rootsΦ(P) of the parabolic subgroupP(CCC). One obtains in
terms of these coordinates

ρ = ρP0 = (1,1,1), ρP1 = (3/2,0,3/2), ρP2 = (0,2,0).

3.4. The restriction of weights to the Levi Cartan subalgebra.
By the theorem of Kostant, we have an interest on the restriction of weightsµw = w(Λ +

ρ)−ρ for w∈WP to the Cartan subalgebra of the each Levi subalgebra.
Take a Levi Cartan subalgebrab j by b j = m j ∩h such thath = b j + t j . Identify b∗j with its

image inh∗ via the restriction map. Through this identification the root systemΦ(M j) of M j(CCC)
is defined by the following simple roots.

∆(M0) =∅, ∆(M1) = {β2}, ∆(M2) = {β1,β3}.

We take as a fundamental weight of Levi subalgebras in a usual manner.
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ωc = (1/2,0,−1/2) (∈ b∗0,b
∗
1)

ω01 = (1/2,0,1/2) (∈ t∗0)

ω02 = (−1/2,1,−1/2) (∈ t∗0,b
∗
1)

ω21 = (1,−1/2,0) (∈ b∗2)

ω22 = diag(0,0,−1/2,1/2) = (0,−1/2,1) (∈ b∗2)

Then it follows

(c1,c2,c3)|b∗j =





(c1−c3)ωc ( j = 0)

c2ω02+(c1−c3)ωc ( j = 1)

c1ω21+c3ω22 ( j = 2)

(37)

and for the split part

(c1,c2,c3)|t∗j =





(c1 +c2 +c3)ω01+c2ω02 ( j = 0)

(c1 +c2 +c3) ·ρP1/3 ( j = 1)

(c1 +2c2 +c3) ·ρP2/4 ( j = 2).

(38)

The coordinates ofµw(Λ) = w(Λ +ρ)−ρ as well as its restriction to each Cartan subalge-
bra are shown in Table 1, 2 and 3.

4. Cohomology at infinity.

As explained in Section 2, we should determine which cohomology class of type(π,w)
remain non zero in the summand of (29). In this section we compute the cohomology
H•(m j ,KL j ,Hπ ⊗Fµ) whereKL j = KRRR∩L j(RRR) andµ = µw for all standard parabolic subgroups
Pj and for all irreducible cohomological unitary representations(π,Hπ) of M j . For notation,G,
L, M are the groups of real points andGCCC = G(CCC), LCCC = L(CCC), MCCC = M(CCC).

4.1. The minimal parabolicPPP0 ((( jjj === 000))).
Recall thatL0 consists of diagonal elements andM0 has the identification

M0 3 diag(z,ε ·z−1,z,ε ·z−1) 7→ (ε,z) ∈ {±1}×CCC(1)

which is compact. Letχe,n be the unitary character ofM0 defined by

χe,n(ε,z) = εezn (e= 0,1, n∈ ZZZ).

Givenµ ∈ h∗CCC with µ = (µ1,µ2,µ3) as in 3.3, we have an isomorphism

F(µ1,µ2,µ3) ' χµ2,µ1−µ3.

LEMMA 4.2. Let µ = (µ1,µ2,µ3) ∈ h∗CCC be the highest weight of the irreducibleL0,CCC-
moduleFµ . Then

Hq(m0,M0,χe,n⊗Fµ) =

{
CCC q= 0, n = µ3−µ1, e≡ µ2 (mod 2),

0 otherwise.
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Table 1. µw for w∈WP0.

w∈WP0 µw

?·ωc ?·ω01 ?·ω02

1 (c1,c2,c3)
c1−c3, c1 +c2 +c3, c2

s1 (−c1−2,c1 +c2 +1,c3)
−c1−c3−2, c2 +c3−1, c1 +c2 +1

s2 (c1 +c2 +1,−c2−2,c2 +c3 +1)
c1−c3, c1 +c2 +c3, −c2−2

s3 (c1,c2 +c3 +1,−c3−2)
c1 +c3 +2, c1 +c2−1, c2 +c3 +1

s1s3 (−c1−2,c1 +c2 +c3 +2,−c3−2)
−c1 +c3, c2−2, c1 +c2 +c3 +2

s1s2 (−c1−c2−3,c1,c2 +c3 +1)
−c1−2c2−c3−4, c3−2, c1

s2s1 (c2,−c1−c2−3,c1 +c2 +c3 +2)
−c1−c3−2, c2 +c3−1, −c1−c2−3

s3s2 (c1 +c2 +1,c3,−c2−c3−3)
c1 +2c2 +c3 +4, c1−2, c3

s2s3 (c1 +c2 +c3 +2,−c2−c3−3,c2)
c1 +c3 +2, c1 +c2−1, −c2−c3−3

s1s2s1 (−c2−2,−c1−2,c1 +c2 +c3 +2)
−c1−2c2−c3−4, c3−2, −c1−2

s2s3s2 (c1 +c2 +c3 +2,−c3−2,−c2−2)
c1 +2c2 +c3 +4, c1−2, −c3−2

s1s3s2 (−c1−c2−3,c1 +c2 +c3 +2,−c2−c3−3)
−c1 +c3, −c2−4, c1 +c2 +c3 +2

s1s2s3 (−c1−c2−c3−4,c1,c2)
−c1−2c2−c3−4, −c3−4, c1

s3s2s1 (c2,c3,−c1−c2−c3−4)
c1 +2c2 +c3 +4, −c1−4, c3

s2s3s1 (c2 +c3 +1,−c1−c2−c3−4,c1 +c2 +1)
−c1 +c3, c2−2, −c1−c2−c3−4

s1s2s3s2 (−c1−c2−c3−4,c1 +c2 +1,−c2−2)
−c1−c3−2, −c2−c3−5, c1 +c2 +1

s2s3s2s1 (c2 +c3 +1,−c3−2,−c1−c2−3)
c1 +2c2 +c3 +4, −c1−4, −c3−2

s1s3s2s1 (−c2−2,c2 +c3 +1,−c1−c2−c3−4)
c1 +c3 +2, −c1−c2−5, c2 +c3 +1

s2s1s3s2 (c3,−c1−c2−c3−4,c1)
−c1 +c3, −c2−4, −c1−c2−c3−4

s1s2s3s1 (−c2−c3−3,−c1−2,c1 +c2 +1)
−c1−2c2−c3−4, −c3−4, −c1−2

s1s2s3s2s1 (−c2−c3−3,c2,−c1−c2−3)
c1−c3, −c1−c2−c3−6, c2

s2s1s3s2s1 (c3,−c2−c3−3,−c1−2)
c1 +c3 +2, −c1−c2−5, −c2−c3−3

s1s2s1s3s2 (−c3−2,−c1−c2−3,c1)
−c1−c3−2, −c2−c3−5, −c1−c2−3

s1s2s3s2s1s2 (−c3−2,−c2−2,−c1−2)
c1−c3, −c1−c2−c3−6, −c2−2
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Table 2. µw for w∈WP1.

w∈WP1 µw

?·ω02 ?·ωc ?·ρ1

1 (c1,c2,c3)
c2, c1−c3, (c1 +c2 +c3)/3

s1 (−c1−2,c1 +c2 +1,c3)
c1 +c2 +1, −c1−c3−2, (c2 +c3−1)/3

s3 (c1,c2 +c3 +1,−c3−2)
c2 +c3 +1, c1 +c3 +2, (c1 +c2−1)/3

s1s3 (−c1−2,c1 +c2 +c3 +2,−c3−2)
c1 +c2 +c3 +2, −c1 +c3, (c2−2)/3

s1s2 (−c1−c2−3,c1,c2 +c3 +1)
c1, −c1−2c2−c3−4, (c3−2)/3

s3s2 (c1 +c2 +1,c3,−c2−c3−3)
c3, c1 +2c2 +c3 +4, (c1−2)/3

s1s3s2 (−c1−c2−3,c1 +c2 +c3 +2,−c2−c3−3)
c1 +c2 +c3 +2, −c1 +c3, (−c2−4)/3

s1s2s3 (−c1−c2−c3−4,c1,c2)
c1, −c1−2c2−c3−4, (−c3−4)/3

s3s2s1 (c2,c3,−c1−c2−c3−4)
c3, c1 +2c2 +c3 +4, (−c1−4)/3

s1s2s3s2 (−c1−c2−c3−4,c1 +c2 +1,−c2−2)
c1 +c2 +1, −c1−c3−2, (−c2−c3−5)/3

s1s3s2s1 (−c2−2,c2 +c3 +1,−c1−c2−c3−4)
c2 +c3 +1, c1 +c3 +2, (−c1−c2−5)/3

s1s2s3s2s1 (−c2−c3−3,c2,−c1−c2−3)
c2, c1−c3, (−c1−c2−c3−6)/3

Table 3. µw for w∈WP2.

w∈WP2 µw

?·ω21 ?·ω22 ?·ρ2

1 (c1,c2,c3)
c1, c3, (c1 +2c2 +c3)/4

s2 (c1 +c2 +1,−c2−2,c2 +c3 +1)
c1 +c2 +1, c2 +c3 +1, (c1 +c3−2)/4

s2s1 (c2,−c1−c2−3,c1 +c2 +c3 +2)
c2, c1 +c2 +c3 +2, (−c1 +c3−4)/4

s2s3 (c1 +c2 +c3 +2,−c2−c3−3,c2)
c1 +c2 +c3 +2, c2, (c1−c3−4)/4

s2s3s1 (c2 +c3 +1,−c1−c2−c3−4,c1 +c2 +1)
c2 +c3 +1, c1 +c2 +1, (−c1−c3−6)/4

s2s1s3s2 (c3,−c1−c2−c3−4,c1)
c3, c1, (−c1−2c2−c3−8)/4
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4.3. The maximal parabolicPPP1 ((( jjj === 111))).
The groupM1 is identified withM0×SU(1,1) via the map

M1 3




z
ε ·z−1 ·u11 ε ·z−1 ·u12

z
ε ·z−1 ·u21 ε ·z−1 ·u22


 7→ (ε,z,(ui j )) ∈M0×SU(1,1).

The finite dimensional representationFµ restricted toM1 is given by

F(µ1,µ2,µ3) ' χµ2,µ1−µ3⊗symµ2 .

In order to detect the representations ofM1 with non-zero Lie algebra cohomology we proceed as
follows: we takeα∗ =

(
i

i

)∈ Lie(SU(1,1)). ThenRRR·α∗ is the compact Cartan subalgebra. Take
the dual elementα of α∗. Then the absolute root system becomes{±2α}. We fix the positive
system so thatα becomes the fundamental weight. Then the discrete series representationDk of
SU(1,1) is described by its Blattner parameterkα (|k| ≥ 2,k∈ ZZZ), whose infinitesimal character
is given by(|k|−1)α. By conjugation ofSU(1,1)CCC, it is identified with(|k|−1)ω02. Because
the non trivial cohomological unitary representations ofSU(1,1) are nothing but the discrete
series representations, those ofM1 with non-zero cohomology are then

{χe,n⊗Dk,χe,n⊗1 | |k| ≥ 2, k∈ ZZZ, e= 0,1, n∈ ZZZ}.

So we have the lemma.

LEMMA 4.4. Let µ = (µ1,µ2,µ3) ∈ h∗CCC be the highest weight of the irreducibleL1,CCC-
moduleFµ . Then we have

Hq(m1,KL1,χe,n⊗Dk⊗Fµ) =





CCC
q = 1, n = µ3−µ1, |k|= µ2 +2,
ande≡ µ2 (mod 2)

0 otherwise.

Hq (m1,KL1,χe,n⊗ 1⊗Fµ) =

{
CCC q= 0,2, e= µ2 = 0, n = µ3−µ1,

0 otherwise.

4.5. The maximal parabolicPPP2 ((( jjj === 222))).
For the Levi subgroupL2 we consider the identification

L2 = diag(A, t Ā−1) 7→ (A, t Ā−1) ∈ S(GL2(CCC)×GL2(CCC))(' L2,CCC).

ThenM2 can be seen as the subgroup of elements(A, t Ā−1) with detA = ±1. Take the two fold
covering

p: SL2(CCC)×SL2(CCC)×CCC×→ S(GL2(CCC)×GL2(CCC))

by p(11,12,z) = (z·11,z·12). Since a representation of the left-hand side factors throughp only
when the kernel acts trivially, the irreducible finite dimensional representations ofS(GL2(CCC)×
GL2(CCC)) are given by symmetric tensor representations
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τ[u1,u2;u3] := symu1(11)⊗symu2(12)⊗zu3

with conditionu1,u2 ∈ ZZZ≥0,u3 ∈ ZZZ,u1 + u2 + u3 ∈ 2ZZZ. The representations ofM2 are given by
their restriction. For given the highest weightµ = (µ1,µ2,µ3), we have

F(µ1,µ2,µ3) = Fµ1ω21+µ2ω22+(µ1+2µ2+µ3)ρP2/4 ' τ[µ1,µ3;µ1+2µ2+µ3]

asL2,CCC-module.
To describe cohomological representations, we prepare the notation for principal series rep-

resentations ofSL2(CCC)2 (cf. [G-S]). Let Q be the minimal parabolic subgroup ofL2 with its
split torusAQ with Lie algebraaQ = RRRdiag(1,−1,−1,1). The root system ofQ is given by
{±(ω01 + ω02)}. Along the Levi decompositionQ = LQNQ, the principal seriesI(e,n,ν) is
defined by the underlying(gCCC,K)-module of the set ofL2-functions f onM2 satisfying

f (mang) = (χe,n(m)⊗aν+ρQ⊗1) f (1), man∈MQA◦QNQ

with e= 0,1, n∈ ZZZ, ν ∈CCC. Note thatMQ = M0. The only equivalence is the caseI(e1,n1,ν1)'
I(e1,−n1,−ν1).

The computation of the cohomology of the principal series is outlined as follows ([B-W,
III.3.3]). BecauseL2 is of A1×A1-type, the Weyl group ofL2 is isomorphic toZZZ/2ZZZ⊕2 and
contains the elements of length0,1,1 and2. Let KQ be the maximal compact subgroup ofQ.
Let V[u1,u2;u3] be theLQ,CCC-module of highest weight[u1,u2;u3]. In fact, as one-dimensionalMQ-
module we have

V[u1,u2;u3] ' χ(u1+u2−u3)/2,u1−u2
.

If the (m2,KL2)-cohomology for principal series is non-zero, then it holds

Hq(m2,KL2, I(e,n,ν)⊗ τ[u1,u2;u3]) = (χe,n⊗Vu′)
KQ

and one of the following set of conditions is satisfied:

(1) q = 0,1, ν =−u1−u2−2, n =−u1 +u2, u′ = [u1,u2;u3],
(2) q = 1,2, ν = u1−u2, n = u1 +u2 +2, u′ = [−u1−2,u2;u3],
(3) q = 1,2, ν = u2−u1, n =−u1−u2−2, u′ = [u1,−u2−2;u3],
(4) q = 2,3, ν = u1 +u2 +2, n = u1−u2, u′ = [−u1−2,−u2−2;u3].

As a conclusion we have the lemma.

LEMMA 4.6. Given the highest weightµ = (µ1,µ2,µ3) ∈ h∗CCC of the irreducibleL2,CCC mod-
uleFµ we have

(1) If π is one-dimensional,

Hq(m2,KL2,Hπ ⊗Fµ) =





CCC q= 0,3, π = 1, µ1 = µ3 = 0, µ2 ∈ 2ZZZ,

CCC q= 0,3, π = det, µ1 = µ3 = 0, µ2 ∈ 2ZZZ+1,

0 otherwise.

(2) If π = I(e,n,ν), Hq(m2,KL2,Hπ ⊗Fµ) is isomorphic to
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CCC

q = 0,1, ν =−µ1−µ3−2,n =−µ1 + µ3,e≡ µ2 (mod 2)
q = 1,2, ν = µ1−µ3,n = µ1 + µ3 +2,e≡ µ1 + µ2 +1 (mod 2)
q = 1,2, ν = µ3−µ1,n =−(µ1 + µ3 +2),e≡ µ2 + µ3 +1 (mod 2)
q = 2,3, ν = µ1 + µ3 +2,n = µ1−µ3,e≡ µ1 + µ2 + µ3 (mod 2)

0 otherwise.

Furthermore if we assume thatπ is unitary, it follows

LEMMA 4.7. (1) If π is one-dimensional, the conclusion is the same as in Lemma4.6(1).
(2) If π = I(e,n,ν), the equalityµ1 = µ3 is necessary for the non-vanishing of the coho-

mology. Precisely,

H0|3(m2,KL2,Hπ ⊗Fµ) = 0

H1|2(m2,KL2,Hπ ⊗Fµ) =





CCC
ν = 0,n =±(2µ1 +2),µ1 = µ3,
ande≡ µ1 + µ2 +1 (mod 2)

0 otherwise.

This assertion also follows from the use of the Cartan involution ([B-W, II.6.12]). The
Cartan involutionθ2 = θL2 of L2 acts on the fundamental Cartan subalgebra, and so on its dual.
In this caseθ2(ω01) = −ω02, θ2(ω02) = −ω01. Modulo by the Weyl group, it determines an
automorphism on the weight space.

4.8. (((DDDk,,,www)))-type for www∈∈∈WWWP1.
Let Λ = (c1,c2,c3) be the highest weight ofE. AbbreviateHq(m1,KL1,V) to Hq(V) for

simplicity. By Lemma 4.4, one can deduce which type of classes(π,w) contributes to the Eisen-
stein cohomology. In particular, if we takeπ as a discrete seriesDk of M1, the non-zero classes
are listed as follows.

• `(w) = 5 w = s1s2s3s2s1, `(w) = 0 w = 1.

H1(χc2,−c1+c3⊗D±(c2+2)⊗Fµw) = CCC.

• `(w) = 4 w = s1s2s3s2, `(w) = 1 w = s1.

H1(χc1+c2+1,c1+c3+2⊗D±(c1+c2+3)⊗Fµw) = CCC.

• `(w) = 4 w = s1s3s2s1, `(w) = 1 w = s3.

H1(χc2+c3+1,−c1−c3−2⊗D±(c2+c3+3)⊗Fµw) = CCC.

• `(w) = 3 w = s1s3s2, `(w) = 2 w = s1s3.

H1(χc1+c2+c3+2,c1−c3⊗D±(c1+c2+c3+4)⊗Fµw) = CCC.

• `(w) = 3 w = s1s2s3, `(w) = 2 w = s1s2.

H1(χc1,c1+2c2+c3+4⊗D±(c1+2)⊗Fµw) = CCC.

• `(w) = 3 w = s3s2s1, `(w) = 2 w = s3s2.

H1(χc3,−c1−2c2−c3−4⊗D±(c3+2)⊗Fµw) = CCC.
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4.9. (((III(((eee,,,nnn,,,ννν))),,,www)))-type for www∈∈∈WWWP2.
From Lemma 4.7, we find the cohomology classes which will not vanish. We takeπ as

a principal series ofM2. Then the nonzero classes are listed below. For simplicity we write
Hq(V) := Hq(m2,KL2,V).

• `(w) = 4 w = s2s1s3s2, `(w) = 0 w = 1. c = c1 = c3 is the only case

H1|2(I(c+c2 +1,±2(c+1),0)⊗Fµw) = CCC.

• `(w) = 3 w = s2s3s1, `(w) = 1 w = s2. c = c1 = c3 is the only case

H1|2(I(c,±2(c+c2 +1),0)⊗Fµw) = CCC.

• `(w) = 2 w = s2s1 w = s2s3. There is no cohomology of(I(e,n,ν),w)-type which is
nonzero.

We remark the casew ∈WP2 with length2. By Table 3, we haveµw|b∗2 = c2ω21+(c1 + c2 +
c3 +2)ω22 or (c1 +c2 +c3 +2)ω21+c2ω22. In both cases,µ = µw does not satisfy the neces-
sary condition in Lemma 4.7 (2). Thus holds the vanishing of the cohomology classes of type
(I(e,n,ν),w).

5. Eisenstein cohomology — The generic case.

5.1.
The algebraicQQQ-groupG = SU(2,2) hasQQQ-rank two. There are four conjugacy classes of

parabolicQQQ-subgroups ofG. These can be represented by the standard parabolicQQQ-subgroups
as defined in Section 3. Since a maximal parabolicQQQ-subgroup ofG is conjugate to its opposite
the associate class ofP coincides with its conjugacy class. Thus, the associate classes{G}, {P1},
{P2}, {P0} account for the setC . By 1.3, the cohomology spaceH•(G,E) decomposes into the
cuspidal cohomologyH•

cusp(G,E) and the Eisenstein cohomology

H•
Eis(G,E) =

⊕

{P}∈C ,
{P}6={G}

⊕

φ ∈ΦE,{P}

H•(mG,KRRR,AE,{P},φ ⊗E). (14 bis.)

If C⊂G(AAAf) is an open compact subgroup, one gets the cohomology of the space

XC := G(QQQ)AG(RRR)◦\G(AAA)/KRRRC (39)

by taking theC-invariantsH•(G,E)C = H•(XC,E) in H•(G,E) under theG(AAAf)-module struc-
ture. The spaceXC may be viewed as the interior of a compact spaceXC with corners called the
Borel-Serre compactification ([Rohlfs] §1 in the adelic frame work). The inclusionXC→XC is a
homotopy equivalence so that the corresponding cohomology spaces coincide. The boundary of
XC is denoted by∂ (XC). The pair(XC,∂ (XC)) gives rise to a long exact sequence in cohomology

· · · → H•
c (XC,E)

j•→ H•(XC,E) r•→ H•(∂ (XC),E)→ ··· . (40)

The interior cohomology is, by definition, the image of the cohomology with compact supports
under the natural mapj•. It is denoted byH•

! (XC,E). The interior cohomology contains the
cuspidal cohomology,i.e., H•

cusp(XC,E)⊂ H∗
! (XC,E).
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The absolute rank of the real Lie groupsG(RRR) andKRRR coincide, and the dimension of the
corresponding symmetric spaceXG(RRR) = G(RRR)/KRRR is equal

dimXG(RRR) = dimG(RRR)−dimKRRR = 8.

Thus the virtual cohomological dimension of an arithmetic subgroupΓ of G is equal

vcd(Γ ) = dimXG(RRR)− rankQQQ(G) = 6.

The constantq0(G(RRR)), in general defined by

q0(G(RRR)) = 1/2(dimXG(RRR)− (rankG(RRR)− rankKRRR))

turns out to be equal four. Note thatl0(G(RRR)) = rankG(RRR)− rankKRRR = 0. As a consequence of
the general result in [Li-S2, 5.6], we obtain the following.

THEOREM 5.2. Let G = SU(2,2) be the quasi-split special unitary group ofQQQ-rank two
defined in Section 3, and suppose that the highest weight of the given finite dimensional repre-
sentation(ν ,E) of G(CCC) is regular. LetC ⊂ G(AAAf) be an open compact subgroup. Then one
has

H j(XC,E) = 0 ( j < q0(G(RRR)) = 4)

and the restriction map

r j : H j(XC,E)→ H j(∂ (XC),E)

is an isomorphism forj > q0(G(RRR))+ l0(G(RRR)) = 4.

In these degrees (i.e., j = 5,6, note that otherwise the cohomology vanishes above the vir-
tual cohomological dimension) the cohomologyH j(XC,E) is spanned by regular Eisenstein co-
homology classes.

5.3.
Given an associate class{P} ∈C of a proper parabolicQQQ-subgroup ofG, we now determine

the internal structure of the corresponding subspace
⊕

φ ∈ΦE,{P}

H•(mG,KRRR,AE,{P},φ ⊗E) (41)

in the decomposition (14bis.) of the Eisenstein cohomologyH•
Eis(G,E). Let φ = {φQ}Q∈{P} be

a class of associate irreducible cuspidal automorphic representations of the Levi components of
elements in{P}. The actual construction of the elements inAE,{P},φ is given by the map

WQ,π̃ ⊗CCC S(ǎG
Q)→AE,{P},φ (20 bis.)

whereπ ∈ φQ denotes an irreducible cuspidal automorphic representation. By assumption the
highest weightΛ of the representation(ν ,E) (determining the coefficient system in cohomology)
is regular. This implies, by [S94, 4.9] that the highest weight
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µw = w(Λ +ρ)−ρ, w∈WQ

of each of the modulesFµw, w∈WQ, in the decomposition of

Hq(nQ,E) =
⊕

w∈WQ

`(w)=q

Fµw (26 bis.)

as a(lQ,KRRR∩LQ(RRR))-module is regular. Thus, as proved in [S94, Section 2], a non-trivial coho-
mology class in the summand

⊕

w∈WQ

IndG(AAAf)
Q(AAAf)

H•(lQ,KRRR∩LQ(RRR),Hπ ⊗Fµw⊗S(ǎG
Q)

)
(29 bis.)

of type (π,w) indexed byw ∈ WQ corresponds to a cuspidal representationπ ∈ φQ whose
Archimedean component is tempered.

We consider an Eisenstein seriesE( f ,λ ) attached to a non-trivial cohomology class of type
(π,w), π ∈ φQ, w∈WQ, with f ∈WQ,π̃ . As shown in [S83, 3.4, 4.3] the analytic behavior of the
Eisenstein seriesE( f ,λ ) at the point

λw =−w(Λ +ρ)|aQ

is decisive in order to get a non-trivial cohomology class contained inH•(mG,KRRR,AE,{P},φ ⊗E).
The elementλw is real and uniquely determined by(π,w). One has

THEOREM 5.4 ([S83, 4.11]). If the Eisenstein seriesE( f ,λ ) attached to a class of type
(π,w), π ∈ φQ, w ∈WQ with f ∈WQ,π̃ is regular at the pointλw then the Eisenstein series
evaluated atλw gives rise to a non-trivial cohomology class[E( f ,λw)] ∈H•(mG,KRRR,AE,{P},φ ⊗
E).

Such a class is called a regular Eisenstein cohomology class.
As for the case ofSU(2,2) we computeλw for standard parabolic subgroups using (38). See

Table 4, 5 and 6.

THEOREM 5.5. Let{P1} ∈ C be the associate class represented by the standard maximal
parabolicQQQ-subgroupP1 of G. Suppose that the highest weightΛ of the representation(ν ,E) is
regular. Then the summand

⊕

φ ∈ΦE,{P1}

Hq(mG,KRRR,AE,{P1},φ ⊗E) (42)

in the Eisenstein cohomologyH•
Eis(G,E)

(1) is built up in the degreesq = 6,5,4 by regular Eisenstein cohomology classes attached
to classes(π,w), w∈WQ, Q∈ {P1}, l(w) = q−1 andπ a cuspidal automorphic repre-
sentation ofLQ. The Archimedean component ofπ is the formπ∞ = χε,n⊗Dk where the
parameters(ε,n) are uniquely determined by the highest weightµw depending onw. The
discrete series representationDk has parameterk∈ ZZZ uniquely determined up to sign by
µw (cf. §4.8).

(2) vanishes otherwise.
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Table 4. λw = a01ω01+a02ω02 for Λ = (c1,c2,c3), w∈WP0.

w a01 a02

1 −c1−c2−c3−3 −c2−1
s1 −c2−c3−2 −c1−c2−2
s2 −c1−c2−c3−3 c2 +1
s3 −c1−c2−2 −c2−c3−2
s1s3 −c2−1 −c1−c2−c3−3
s1s2 −c3−1 −c1−1
s2s1 −c2−c3−2 c1 +c2 +2
s3s2 −c1−1 −c3−1
s2s3 −c1−c2−2 c2 +c3 +2
s1s2s1 −c3−1 c1 +1
s2s3s2 −c1−1 c3 +1
s1s3s2 c2 +1 −c1−c2−c3−3
s1s2s3 c3 +1 −c1−1
s3s2s1 c1 +1 −c3−1
s2s3s1 −c2−1 c1 +c2 +c3 +3
s1s2s3s2 c2 +c3 +2 −c1−c2−2
s2s3s2s1 c1 +1 c3 +1
s1s3s2s1 c1 +c2 +2 −c2−c3−2
s2s1s3s2 c2 +1 c1 +c2 +c3 +3
s1s2s3s1 c3 +1 c1 +1
s1s2s3s2s1 c1 +c2 +c3 +3 −c2−1
s2s1s3s2s1 c1 +c2 +2 c2 +c3 +2
s1s2s1s3s2 c2 +c3 +2 c1 +c2 +2
s1s2s3s2s1s2 c1 +c2 +c3 +3 c2 +1

Table 5. λw = a1 ·ρ1 for Λ = (c1,c2,c3), w∈WP1.

w a1

1 (−c1−c2−c3−3)/3
s1 (−c2−c3−2)/3
s3 (−c1−c2−2)/3
s1s3 (−c2−1)/3
s1s2 (−c3−1)/3
s3s2 (−c1−1)/3
s1s3s2 (c2 +1)/3
s1s2s3 (c3 +1)/3
s3s2s1 (c1 +1)/3
s1s2s3s2 (c2 +c3 +2)/3
s1s3s2s1 (c1 +c2 +2)/3
s1s2s3s2s1 (c1 +c2 +c3 +3)/3

Table 6. λw = a2 ·ρ2 for Λ = (c1,c2,c3), w∈WP2.

w a2

1 (−c1−2c2−c3−4)/4
s2 (−c1−c3−2)/4
s2s1 (c1−c3)/4
s2s3 (−c1 +c3)/4
s2s3s1 (c1 +c3 +2)/4
s2s1s3s2 (c1 +2c2 +c3 +4)/4
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PROOF. Let Λ be the highest weight of(ν ,E); it is given in coordinates with respect to the
fundamental weightsωi (i = 1,2,3) by (c1,c2,c3). The assumption thatΛ is regular is expressed
by ci ≥ 1 for i = 1,2,3.

The setWP1 of minimal coset representatives for the left cosetsWP1\WG contains twelve
elements altogether. Of interest for us are only the elements

(1) s1s2s3s2s1 of length 5
(2) s1s2s3s2, resp.s1s3s2s1 of length 4
(3) s1s3s2, resp.s1s2s3, resp.s3s2s1 of length 2.

In the first resp. second case the point of evaluationλw for the Eisenstein seriesE( f ,λ ) attached
to the non-trivial cohomology classes of type(π,w), π an irreducible cuspidal representation in
φQ (Q∈ {P1}) whose Archimedean component is tempered is given by

λw = [(c1 +c2 +c3 +3)/3] ·ρQ, `(w) = 5

λw = [(c2 +c3 +2)/3] ·ρQ, `(w) = 4

λw = [(c1 +c2 +2)/3] ·ρQ, `(w) = 4.

SinceΛ is regular, these points lie inside the region of absolute convergence of the Eisenstein
series so thatE( f ,λ ) is holomorphic atλw. Then the class[E( f ,λw)] is a non-trivial cohomology
class inH`(w)+1(mG,KRRR,AE,{P},φ ⊗E) of degreè (w)+1. For a givenw∈WP1 there is only one
possible choice for the Archimedean componentπ∞ = χε,n⊗Dk of the representationπ occurring
in the type(π,w) of the class we started with. The parameters(ε,n) resp. the minimalKQQQ-type
of the discrete series representationDk can be read off from the list given in 4.8.

In the third case of an element of length 3 the pointsλw are given by

λw = [(c2 +1)/3]ρQ, resp.[(c3 +1)/3]ρQ, resp.[(c1 +1)/3]ρQ.

If λw lies inside the region of absolute convergence of the defining series (i.e. if ci > 2 i = 1,2,3)
one gets as above a non-trivial class[E( f ,λw)] in H4(mG,KRRR,AE,{P},φ ⊗E) of degree 4.

If the Eisenstein seriesE( f ,λ ) has a pole atλw one gets by taking the residue a closed form
ResE( f ,λ ) representing a cohomology class inH•(G,E) which is square integrable. Under the
regularity condition such a class is an element in the cuspidal cohomology (cf. [S94, Section 2]).
But a residue of an Eisenstein series cannot represent a cuspidal class. Thus the class represented
by ResE( f ,λ ) is trivial. ¤

THEOREM 5.6. Let{P2} ∈ C be the associate class represented by the standard maximal
parabolicQQQ-subgroupP2 of G. Suppose that the highest weightΛ = (c1,c2,c3) of the represen-
tation (ν ,E) is regular. Then the summand

⊕

φ ∈ΦE,{P2}

Hq(mG,KRRR,AE,{P2},φ ⊗E)

in the Eisenstein cohomologyH•
Eis(G,E)

(1) is built up in the degreesq = 6,5,4 and in the casec1 = c3 by regular Eisenstein coho-
mology classes attached to classes(π,w), w∈WQ, Q∈ {P2}, `(w) = 4 or `(w) = 3, and
π a cuspidal automorphic representationπ of LQ. The Archimedean component ofπ is
of the formπ∞ = I(e,n,ν) where the parameters of the principal series representation is
uniquely determined(up to the sign ofn) by the highest weightµw (cf. §4.9).
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(2) vanishes otherwise.

PROOF. The setWP2 contains six elements altogether. Of interest for us are only the
elements

(1) s2s1s3s2 of length4
(2) s2s3s1 of length3
(3) s2s1, resp.s2s3 of length2.

Note that by 4.9, cohomology classes of type(π,w) can only occur in the cases (1) and
(2) if the highest weightΛ = (c1,c2,c3) satisfies the conditionc1 = c3. For Λ regular, as we
suppose, there are no cohomology classes of type(π,w) with `(w) = 2. Thus, we are reduced to
the first two cases. Then the point of evaluationλw for the Eisenstein seriesE( f ,λ ) attached to a
non-trivial class of type(π,w), π an irreducible cuspidal representation inφQ (Q∈ {P2}) whose
Archimedean component is tempered is given by

λw = [(c1 +2c2 +c3 +4)/4] ·ρQ, `(w) = 4

λw = [(c1 +c3 +2)/4] ·ρQ, `(w) = 3.

Except forc1 = c3 = 1 this point lies inside the region of absolute convergence of the Eisenstein
series so thatE( f ,λ ) is holomorphic atλw. Then[E( f ,λ )] give rise to non-trivial cohomology
classes inH•(mG,KRRR,AE,{P2},φ ⊗E). For a givenw∈WP2 there are only two possible choices
for the Archimedean componentπ∞ = I(ε,n,w) of π occurring in the type(π,w) of the class we
stated with. The corresponding parameters are given in 4.9. ¤

5.7.
In the case of the associate class{P0} represented by the standard minimal parabolicQQQ-

subgroupP0 of G we have to assume some familiarity with the results obtained in [S94].
Given a pairQ0⊂Q of parabolicQQQ-subgroups inG with Q0∈{P0} and a maximal parabolic

QQQ-subgroupQ there is the following relation between the corresponding setsWQ0 resp.WQ of
minimal coset representatives for the left cosetsWQ0\WG resp.WQ\WG ([S94, 4.7]). LetWQ/Q0

be the set of representatives of minimal length for the left cosets ofWQ0 in WQ. For w ∈WQ0

there exist uniquely determined elementswQ/Q0 in WQ/Q0 andwQ in WQ such that

w = wQ/Q0 ·wQ and `(w) = `(wQ/Q0)+ `(wQ). (43)

Under the assumption that the highest weightΛ of (ν ,E) is regular it is shown ([S94, 6.3,7]) that
a necessary condition for a class of type(π,w) to give rise to a non-trivial Eisenstein cohomology
class inH•(G,E) is that the inequality

`(wQ/Q0)≥ (1/2)(dimNQ0(RRR)/dimNQ(RRR)) (44)

is satisfied. As usualNS(RRR) denotes the group of real points of the unipotent radicalNS of a
parabolicQQQ-subgroupS. In our case, the right-hand side of (44) takes the value3/5 for Q of P1

resp.3/4 for Q of typeP2. Thus, the condition reads as`(wQ/Q0) ≥ 1. As a consequence, if a
givenw∈WQ0 is also an element inWQ, i.e., one haswQ/Q0 = 1 in the decomposition (43), the
condition is not satisfied.
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This argument leads us to compare the setWP0 with the setsWP1 resp.WP2 as given in 3.2
when we analyse the possible Eisenstein cohomology classes attached to a non-trivial cohomol-
ogy class of type(π,w), w∈WP0. Of interest for us are only the elements of length 6, 5 and 4 in
WQ0.

The unique elementwG in WP0 of length6 is not contained inWPi i = 1,2. The correspond-
ing point of evaluation is

λwG = (c1 +c2 +c3 +3)ω01+(c2 +1)ω02.

One hasρP0 = 3ω01+ ω02 so thatλwG lies in the region of absolute convergence of the corre-
sponding Eisenstein series. By 5.4,[E( f ,λwG)] is a non-trivial regular Eisenstein cohomology
class inH6(mG,KRRR,AE,{P0},φ ⊗E).

There are three elements inWP0 of length 5. The elements1s2s3s2s1 =: salso lies inWP1 so
that a class of type(π,w) with w = s cannot be lifted to a class inH•(G,E). The two other ones

w′ = s1s2s1s3s2 w′′ = s2s1s3s2s1

are not contained in any of the setsWPi , i = 1,2. The corresponding pointsλw are given by

λw′ = (c2 +c3 +2)ω01+(c1 +c2 +2)ω02

λw′′ = (c1 +c2 +2)ω01+(c2 +c3 +2)ω02.

As above the classes of type(π,w) with w = w′ or w = w′′ give rise to Eisenstein cohomology
classes inH5(mG,KRRR,AE,{P},φ ⊗E) in the generic case.

There are five elements inWP0 of length 4. The elements2s1s3s2 also lies inWP2, the
elementss1s3s2s1 resp.s1s2s3s2 also lie inWP1. The remaining elements inWP0 of length 4 are

s′ = s1s2s3s1 and s′′ = s2s3s2s1,

they are not contained in any of the setsWPi , (i = 1,2). The corresponding points of evaluation
are given by

λs′ = (c3 +1)ω01+(c1 +1)ω02

λs′′ = (c1 +1)ω01+(c3 +1)ω02.

Forc1 > 2 andc3 > 2 classes of type(π,w) with w= s′ or w= s′′ give rise to Eisenstein cohomol-
ogy classes inH4(mG,KRRR,AE,{P},φ ⊗E). For c1 = 1 or c3 = 1 possible residues of Eisenstein
series cannot contribute to the total cohomologyH•(G,E) by an argument similar to the one
in 5.5 or 5.6: They cannot be lifted to the intermediate strata corresponding to the classes of
maximal parabolic subgroups. We summarize this discussion in the following theorem.

THEOREM 5.8. Let{P0} ∈ C be the associate class represented by the standard minimal
parabolicQQQ-subgroupP0 of G. Suppose that the highest weightΛ = (c1,c2,c3) of the represen-
tation (ν ,E) is regular. Then the summand

⊕

φ ∈ΦE,{P0}

Hq(mG,KRRR,AE,{P0},φ ⊗E)

in the Eisenstein cohomologyH∗
Eis(G,E)
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(1) is built up in degree 6 by regular Eisenstein cohomology classes attached to classes
(π,wG), wG the unique longest element inWQ, Q ∈ {P0}, `(wG) = 6, and π a cuspi-
dal automorphic representation ofLQ. The Archimedean component ofπ is determined
via 4.1 by the highest weightµwG as given in Table1.

(2) is built up in degreeq= 5,4 by regular Eisenstein cohomology classes attached to classes
(π,w) with w equals

w′ = s1s2s1s3s2 or w′′ = s2s1s3s2s1 for q = 5,

resp.

s′ = s1s2s3s1 or s′′ = s2s3s2s1 for q = 4.

In each case, the Archimedean component ofπ is determined via4.1 by the corresponding
weightµw as given in Table1.

(3) vanishes otherwise.

6. Cuspidal cohomology.

For the sake of completeness we also consider the case{P}= {G} with G = SU(2,2). By
the very definition the corresponding summand is cuspidal cohomology

H•
cusp(G,E) =

⊕

φ ∈ΦE,{G}

H•(mG,KRRR,AE,{G},φ ⊗E).

It may be rewritten by using the irreducible unitary representationsπ ∈ φ as a finite algebraic
sum

⊕

π∈ΦE,{G}
χπ∞ =χE∗

[H•(mG,KRRR,Hπ∞ ⊗E)⊗Hπf ]
m(π)

where the sum ranges over all cuspidal automorphic representationsπ ∈ ΦE,{G} for which the
infinitesimal characterχπ∞ of its Archimedean component matches the one of the representa-
tion E∗ contragradient toE. Thus we are led to determine all irreducible unitary representations
of the real Lie groupG(RRR) with non-vanishing(mG,KRRR)-cohomology. These are classified (up
to equivalence) in [V-Z ]. The representations in question are associated to variousθ -stable
parabolic subalgebrasq of gCCC. Consider one of these and letq = lCCC⊕ u be aθ -stable Levi de-
composition. ThenlCCC is the complexification of a real subalgebral of g. The normalizer ofq
in G(RRR) is connected, it coincides with the connected Lie subgroup ofG(RRR) with Lie algebral.
Starting off from one dimensional unitary representationλ of this group one obtains (if a positiv-
ity condition for the differential is satisfied) via cohomological induction an irreducible unitary
representation to be denotedAq(λ ). The representations so obtained exhaust (up to infinitesimal
equivalence) all irreducible unitary representations ofG(RRR) with non-zero cohomology.

Following [V-Z ], we list theθ -stable parabolic subalgebras and the cohomological repre-
sentations ofSU(2,2) in §6.1.

6.1. θθθ -stable parabolic subalgebras.
In the setting of Section 3, we specify the Cartan involutionθ by θ(1) = t 1̄−1 and the

maximal compact subgroupKRRR by the set ofθ -fixed elements. PutY = 1/
√

2
(12 −12

12 12

)
. Let
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Table 7. KCCC-conjugacy classes ofθ -stable parabolic subalgebras ofg.

ΞJ x∗ = ∑x j ε j ρux∗ ∩pCCC

0 x∗ = 0 0
I x1 > x2 > x4 > x3 [0,0;4]
I(a) x1 = x2 > x4 > x3 [0,0;4]
I(b) x1 > x2 = x4 > x3 [1/2,1/2;3]
I(c) x1 > x2 > x4 = x3 [0,0;4]
I(ab) x1 = x2 = x4 > x3 [0,1;2]
I(ac) x1 = x2 > x4 = x3 [0,0;4]
I(bc) x1 > x2 = x4 = x3 [1,0;2]
II x1 > x4 > x2 > x3 [1,1;2]
II(a) x1 = x4 > x2 > x3 [1/2,3/2;1]
II(c) x1 > x4 > x2 = x3 [3/2,1/2;1]
III x1 > x4 > x3 > x2 [2,0;0]
III (b) x1 > x4 = x3 > x2 [2,0;0]

ΞJ x∗ = ∑x j ε j ρux∗ ∩pCCC

III (ac) x1 = x4 > x2 = x3 [1,1;0]
VI x4 > x3 > x1 > x2 [0,0;−4]
VI(a) x4 = x3 > x1 > x2 [0,0;−4]
VI(b) x4 > x3 = x1 > x2 [1/2,1/2;−3]
VI(c) x4 > x3 > x1 = x2 [0,0;−4]
VI(ab) x4 = x3 = x1 > x2 [1,0;−2]
VI(ac) x4 = x3 > x1 = x2 [0,0;−4]
VI(bc) x4 > x3 = x1 = x2 [0,1;−2]
V x4 > x1 > x3 > x2 [1,1;2]
V(a) x4 = x1 > x3 > x2 [3/2,1/2;−1]
V(c) x4 > x1 > x3 = x2 [1/2,3/2;−1]
IV x4 > x1 > x2 > x3 [0,2;0]
IV(b) x4 > x1 = x2 > x3 [0,2;0]

Ad(Y) be a Cayley transform defined byY. Thenh′ := Ad(Y)h becomes a compact Cartan
subalgebra in the Lie algebrak of KRRR. We identify(h′)∗ with h∗ by the Cayley transform and so
with the root systemΦ = Φ(gCCC,hCCC). Then a computation shows that the compact roots (resp.
noncompact roots) are±{β1,β3} (resp.±{β1 + β2 + β3,β2,β2 + β3,β1 + β2}). We define aθ -
stable parabolic subalgebra in the following way. Note that the fundamental Cartan subalgebra
in our case is itself compact. Takex∗ ∈ √−1(h′)∗. Put (lx∗)CCC (resp. ux∗ ) be the sum of root
spacesgβ of rootsβ such that〈β ,x∗〉 = 0 (resp.〈β ,x∗〉 > 0). Thenqx∗ = (lx∗)CCC +ux∗ becomes
a θ -stable parabolic subalgebra determined byx∗.

TheKCCC-conjugacy classes of theθ -stable parabolic subgroups are found in Table 7 ([H-M ]).
It says the space

√−1(h′)∗ is divided into 26KCCC-conjugacy classes modulo the compact Weyl
group; there are6openKCCC-orbitsΞ j ( j = I, . . . ,VI), while the others appear in their closuresΞ j(∗)
(∗= (a),(b),(c),(ab),(ac),(bc),(abc)). These orbits correspond to theKCCC-conjugacy classes of
θ -stable parabolic subalgebras one by one, independent of the choice ofx∗ ∈ ΞJ.

6.2. Hodge type of the cohomological representations.
Let q be aθ -stable parabolic subalgebra determined byΞJ. Assume that the unitary char-

acterλ ∈ ΞJ of lCCC is good and integral with respect toq andg ([K-V , 0.49]). Then there is
an irreducible unitary representation determined by(q,λ ), whose underlying(g,K)-module is
denoted byAq(λ ). It belongs to the set of discrete series representations if and only ifl is com-
pact. Its infinitesimal character and the minimalK-type are given byλ + ρG andλ + 2ρu∩pCCC

respectively.
Let Λ be the highest weight of the finite dimensional representation(ν ,E) of G, taken

as a dominant integral weight with respect to the given positive system byq. Assume thatλ
coincides with the highest weight of the contragradient representation ofE, namely,λ =−wGΛ
with the longest elementwG. In our setting of coordinates (§3.3), the dual of(c1,c2,c3) is
(c3,c2,c1). By [V-Z , Theorem 5.5, Proposition 6.13], the(g,K)-cohomology ofAq(λ ) and its
Hodge type are detected. We list the result in Table 8. (Note that not all representations are
going to appear for a givenE, and that they are not necessarily distinct, for example,I andI(a)
of λ = 0 give an equivalent representation.) By Poincaré duality,Aq(λ ) which contributes to
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Table 8. The degreed(≤ 4) and the Hodge type(p,q)
of (g,K)-cohomologyHd(g,K,Aq(λ )⊗E).

Hd (p,q) types ofAq(λ )
H4 (4,0) I, I(a), I(c), I(ac)

(3,1) II , I(ab), I(bc)
(2,2) III , III (b), IV , IV(b), III (ac), triv.
(1,3) V, VI(ab), VI(bc)
(0,4) VI , VI(a), VI(c), VI(ac)

H3 (3,0) I(b)
(2,1) II(a), II(c)
(1,2) V(a), V(c)
(0,3) VI(b)

H2 (2,0) I(ab), I(bc)
(1,1) III (ac), triv.
(0,2) VI(ab), VI(bc)

H0 (0,0) triv.

H(p,q) also contributes toH(4−q,4−p). Note that, if the highest weightΛ is regular, the cuspidal
cohomology coincides withL2-cohomology and the discrete series (J = I, II , . . . ,VI) only happen
as non-trivial cohomology classes.

6.3. The minimalKKK-type of AAAq(((λλλ ))).
Because the minimalK-types of the representationsAq(λ ) are usually of interest, we sum-

marize the coordinate expression of its highest weights. The maximal compact groupK is iso-
morphic toS(U(2)×U(2)), so the set of the isomorphism classes of irreducible representations
K̂ of K is by use of Weyl’s trick the same as the set of the classes of irreducible finite dimensional
representations ofS(GL2(CCC)×GL2(CCC)) which has already appeared in§4.5. Take the basis of
the Cartan subalgebrah′CCC as

U1 =
1
2

(
I ′ I ′

I ′ I ′

)
, U2 =

1
2

(
−I ′ I ′

I ′ −I ′

)
, U3 =

(
0 12

12 0

)
,

with I ′ = diag(1,−1). Then we can relate the elementsβ of
√−1(h′)∗ with the highest weights

[u1,u2;u3] of τ[u1,u2;u3] by

u j = β (U j) ( j = 1,2,3).

For example, the compact rootsβ1, β3 and the noncompact roots are represented by[2,0;0],
[0,2;0] and [±1,±1;2], respectively. The highest weight of the minimalK-type of Aq(λ ) is
given byλ +2ρu∩pCCC and theρu∩pCCC can be read off from Table 7.
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