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Algebraic structures on quasi-primary states in superconformal algebras
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Abstract. Operator Product Expansions give algebraic structures on subspaces of quasi-
primary vectors in superconformal algebras. The structures characterize the structures of super-
conformal algebras if they meet a criteria, while in some cases the spaces of quasi-primary vectors
are finite dimensional. As an application the complete list of simple physical conformal superal-
gebras is given by classifying the corresponding algebraic structures on finite dimensional vector
spaces. The list contains a one-parameter family of superconformal algebras with4 supercharges
that is simple for general values.

1. Introduction.

For an infinite-dimensional Lie superalgebraG , one often assumes that there exists a finite
setF of generating functions of elements ofG and that the Lie bracket is written in terms of the
OPE (Operator Product Expansion), i.e.,

a(z)b(w)∼∑
j

c j(z)
(z−w) j , (1.1)

where the∑ is finite. It means

[a(z),b(w)] = ∑
j

c j(w)
j!

∂ jδ (z−w), (1.2)

c j(w) = Resz[a(z),b(w)](z−w) j , (1.3)

for a,b∈CCC[∂ ]F , where the∑ is always finite. The finiteness is called locality. Many significant
infinite-dimensional Lie superalgebras, e.g., affine Lie algebras, the Virasoro algebra, the Neveu-
Schwarz algebra, have locality.

The notion of conformal superalgebra (vertex Lie superalgebra) is formulated in [7] and [10]
independently, which is an axiomatic description of Lie superalgebras with OPE with respect to
the infinitely many operationsa( j)b = c j as above. Once a conformal superalgebra is given,
one can reconstruct the Lie superalgebraG . We shall require existence of conformal vector in
addition, which corresponds to a Virasoro subalgebra in the associated Lie superalgebra.

For a conformal superalgebraR the subspace of the quasi-primary vectors (see section 2 for
precise formulation) are identified withR/(∂R). For some kind of conformal superalgebras the
space of primary states generates the conformal superalgebra and the associated Lie superalgebra
([10]). On the other hand, it is well-known that a conformal superalgebraRyields a Lie superal-
gebra structure onR/(∂R). We will study more detailed structures onR/(∂R) (section 3).
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The algebraic structures on the space of the primary vectors are described in [1]. We will
study the algebraic structures on the space of the quasi-primary vectors, defining the〈n〉 products
on it by the projection of the(n) products. We will show that one can reconstruct the entire
conformal superalgebra from the〈n〉 products on the space of the quasi-primary vectors (section
4). For the normal product the structures given by the projection are discussed in [2].

The〈n〉 products are (anti-)commutative, but may not be associative. We have some simple
cases of the algebraic structures on the subspace of the quasi-primary vectors. The most simple
one is the case of affine Lie superalgebras, for which all products but the〈0〉 product vanish and
the〈0〉 product yields a Lie superalgebra structure on the finite-dimensional vector space of the
quasi-primary vectors. The second case is physical conformal superalgebras, which corresponds
to the superconformal algebras, for example, the Virasoro algebra, the Neveu-Schwarz algebra
and theN = 4 superconformal algebra. In this case all products but the〈0〉 product and the〈1〉
product vanish and they yield a left Clifford module structure on the finite-dimensional vector
space of the quasi-primary vectors. The action of Clifford algebra is described in [5]. It restricts
the dimension of the space of the quasi-primary vectors of physical conformal superalgebras.

Examples of simple physical conformal superalgebras are given in [3], [9], [7], and [8]. The
list of known simple physical conformal superalgebras areVir, K1, K2, K3, S2, W2, CK6, where
we have followed the notations of [3] and [6]. Vir is the Virasoro algebra.K j is known as the
N = j superconformal algebra.S2 andW2 are superconformal algebras with4 supercharges.S2

is known as theN = 4 superconformal algebra.CK6 is discovered in [3] and is the only known
superconformal algebra with more than4 supercharges.

In [8] a list for the simple physical conformal superalgebras is given, however, we are
making another approach. As an application of the reconstruction theorem we will classify
simple physical conformal superalgebras by working on the space of the quasi-primary vec-
tors and the〈n〉 products on it. We have found a simple physical conformal superalgebra
N4 and a one-parameter family of physical conformal superalgebrasNα

4 that is simple for all
α ∈ (CCC/{±1})\{[1]}, which imply a class of simple physical conformal algebras that is not in
the list of [8] exists;N4 andNα

4 s are counter examples to Lemma 4.1(b) in [8]. The simple phys-
ical conformal superalgebrasN4 andNα

4 coincide with the centerless conformal superalgebras of
the largeN = 4 superconformal algebras written down in [11]. The complete list of the simple
physical conformal superalgebras isVir, K1, K2, K3, S2, W2, N4, Nα

4 andCK6 (section 8).
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Minoru Wakimoto for valuable discussions and comments.

2. Preliminaries.

Let K be a subfield ofCCC. A K-vector spaceV with a direct sum decompositionV = V0⊕V1

is called aZZZ/2ZZZ-gradedK-vector space. The homomorphisms ofZZZ/2ZZZ-graded vector spaces are
supposed to be compatible with the gradation. TheZZZ/2ZZZ-gradation is calledparity. V0 is called
the subspace ofevenparity, andV1 is of oddparity.

The ZZZ/2ZZZ-graded objects are calledsuper-objects. Commutativity for the product· of a
superalgebra is defined to bea·b= (−1)p(a)p(b)b·a, wherea,b are supposed to be homogeneous



Algebraic structures on quasi-primary states in superconformal algebras 311

with respect to the parityp.
Now let us state the axioms for conformal superalgebras, based on the descriptions in [7]

and [8]. We denoteA( j) = A j/ j!, whereA is an operator.

DEFINITION 2.1. Let Rbe aZZZ/2ZZZ-gradedK-vector space equipped with countably many
products

(n) : R⊗R→ R, (n∈ NNN),

and a linear map∂ : R→ R. The triple(R,{(n)}n∈NNN,L) satisfying the following conditions for
an even vectorL ∈ R are called aconformal superalgebra:

(C) For alla,b,c∈ R,
(C0) there exists someN ∈ NNN such that for alln∈ NNN satisfyingn≥ N

a(n)b = 0,

(C1) for alln∈ NNN,

(∂a)(n)b =−na(n−1)b,

(C2) for alln∈ NNN,

a(n)b = (−1)p(a)p(b)
∞

∑
j=0

(−1) j+n+1∂ ( j)b(n+ j)a,

(C3) for allm,n∈ NNN,

a(m)(b(n)c) =
∞

∑
j=0

(
m
j

)(
a( j)b

)
(n+m− j) c+(−1)p(a)p(b)b(n)(a(m)c).

(V) L ∈ R satisfiesL(0)L = ∂L, L(1)L = 2L, L(2)L = 0, L(0) = ∂ as operators onR, andL(1) is
diagonalizable.

REMARK 2.2. The∑ in (C3) is a finite sum because of (C0).

L is called theconformal vectorof R. A homomorphism of conformal superalgebras from
R to R′ is aK[∂ ]-module homomorphismf : R→ R′ that is compatible with the(n) products for
all n∈ NNN and mapsL to the conformal vector ofR′. An ideal of a conformal superalgebra is a
K[∂ ]-submodule that is closed under the left multiplication of the(n) products for alln∈ NNN. A
conformal superalgebraRwith no ideals other than{0} andR itself is called asimpleconformal
superalgebra. The ideal{c∈ R|x(n)c = 0,x∈ R,n∈ NNN} is called thecenterof R. If the center is
{0} then the conformal superalgebra is said to becenterless.

REMARK 2.3. Right ideals are defined similarly, but they coincide with left ideals.

NOTE 2.4. The axiom (V) is not included in the definition of conformal superalgebras in
[7] and [8] nor of vertex Lie algebras in [10], while existence of the conformal vector is assumed
for superconformal algebras. We set it into the axioms for conformal superalgebras.
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Suppose given an isomorphism ofK[∂ ]-modulesf : R→ R′ that is compatible with the(n)
products where(R,{(n)}n∈NNN,L) and(R′,{(n)}n∈NNN,L′) are conformal superalgebras. We say that
(R,{(n)}n∈NNN,L) and(R′,{(n)}n∈NNN,L′) areequivalentto each other.

NOTE 2.5. In [7] and [8] the class with respect to the equivalence above is considered.
We will consider the isomorphism classes, which is stronger than to the equivalence classes.

The eigenvalue ofL(1) is denoted by∆(x) for an eigenvectorx and is called theconformal
weight ofx. DefineRk = {x∈ R|L(1)x = kx}, ∆R = {k∈ K|Rk 6= {0}} and∆ ′

R = ∆R\{0}.
REMARK 2.6. We have∆(∂x) = ∆(x)+1 and∆(x(n)y) = ∆(x)+∆(y)−n−1. That is,

(n) : Rp⊗Rq → Rp+q−n−1.

A conformal superalgebraR over CCC is called asuperconformal algebraif there exists a
finite-dimensional subspaceF such thatR = CCC[∂ ]F , all conformal weights are non-negative
half-integers, the even subspaceReven=

⊕
n∈NNN Rn and the odd subspaceRodd=

⊕
n∈NNN+1/2Rn.

We call a superconformal algebraRaphysical conformal superalgebraif F ⊂R2⊕R3/2⊕R1⊕
R1/2 andF ∩R2 = CCCL, following the terminology in [8].

SetR̂=
⊕

n∈ZZZ R(n) andJ = Span{(∂a)(n) +na(n−1)| a∈ R, n∈ ZZZ} whereR(n) is a copy of

R for eachn∈ ZZZ. The Lie superalgebrâR/J defined by[a(m),b(n)] = ∑∞
j=0

(
m
j

)
(a( j)b)(n+m− j) is

calledthe Lie superalgebra associated toR. If the conformal superalgebraR is not simple then
the Lie superalgebra associated toR is not simple.

3. ∂∂∂ -decomposition.

For a conformal superalgebra(R,{(n)}n∈NNN,L), we shall call the subspace{x∈ R|L(2)x ∈
R0} thereduced subspaceof Rand denote it by̌R. We call the elements of the reduced subspace
reduced vectors. DenoteŘk = Ř∩Rk, ∆Ř = {k∈ K|Řk 6= {0}} and∆ ′

Ř
= ∆Ř\{0}. Obviously we

haveŘ0 = R0.

REMARK 3.1. If the Lie algebra(R1,(0)) is perfect then we haveL(2)a = 0 for all a∈ Ř
becauseL(2)a(0)b = 0 for all a,b∈ Ř1.

We introduce the notion ofregular conformal superalgebras. The superconformal algebras
are regular.

DEFINITION 3.2. A conformal superalgebraR is regular ifR0 is the center and if∆R∩
(−NNN/2)⊂ {0} and for eachk∈ ∆R there exists someM ∈ NNN such thatk−m /∈ ∆R for all m∈ NNN
satisfyingm≥M.

PROPOSITION3.3. Let (R,{(n)}n∈NNN,L) be a regular conformal superalgebra anďR the
reduced subspace of(R,{(n)}n∈NNN,L). Then there exists a unique decomposition

x =
m

∑
j=0

∂ ( j)x j (3.1)

for anyx∈ Rfor somem∈ NNN wherex0 ∈ Ř andx j ∈⊕
k∈∆ ′

Ř
Řk for j > 0 .
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PROOF. SinceR0 is the center ofR, L(k) acts onR/R0 for all k ∈ NNN. So R/R0 has the
sl2-module structure defined by

E 7→ L(2),

H 7→ −2L(1), (3.2)

F 7→ −L(0).

Consider P =
⊕

k∈∆ ′R Span{x∈ R/R0| L(1)x = kx, x /∈U, L(2)x∈U for some submoduleU}.
Since L(1)P ⊂ P, we have a basis{eλ}λ∈Λ of R/R0 and a functionν : Λ → ∆ ′

R satisfying
L(1)eλ = ν(λ )eλ for all λ ∈ Λ so that{eλ}λ∈Λ ′ is a basis ofP for someΛ ′ ⊂ Λ . Consider
the sl2-module homomorphismf :

⊕
λ∈Λ ′Vλ → R/R0 defined by f (3λ ) = eλ whereVλ is the

Verma module of the highest weight−2ν(λ ) with respect toH and3λ is the highest weight vec-
tor of Vλ . SinceR is regularf is surjective and each Verma moduleV−2ν(λ ) is irreducible, hence

f is isomorphic. Thus we have a unique decompositionx = ∑ j ∂ ( j)x j for any x ∈ R/R0 where
x j ∈ P for all j. HenceP = Ř/R0, so we have the decomposition of the result. The uniqueness is
obvious. ¤

We shall call the decomposition of Proposition 3.3 the∂ -decompositionof x and x j the
j-part of x settingx j = 0 for ∆(x)− j /∈ ∆R.

COROLLARY 3.4. R= K[∂ ]Ř.

COROLLARY 3.5. Ř is isomorphic toR/(∂R) asK-vector spaces.

COROLLARY 3.6. A regular conformal superalgebraR over CCC is superconformal if
and only if the reduced subspace is finite-dimensional, all the conformal weights are half-
integers, the even subspace of the reduced subspaceŘeven=

⊕
n∈NNN Řn and the odd subspace

Řodd =
⊕

n∈NNN+1/2 Řn.

COROLLARY 3.7. Let Řbe the reduced subspace of a conformal superalgebraRandŘ(n)

a copy ofŘ for eachn∈ ZZZ. The Lie superalgebra associated toR is
⊕

n∈ZZZ Ř(n) with the product

[a(m),b(n)] = ∑∞
j=0

(
m
j

)
(a( j)b)(n+m− j).

PROPOSITION3.8. For a homomorphism of conformal superalgebras
f : (R,{(n)}n∈NNN,L)→ (R′,{(n)}n∈NNN,L′), (A) f (Ř)⊂ Ř′, (B) f (Ř) = Ř′ if and only if f is surjec-
tive, and(C) f |Ř is injective if and only iff is injective.

PROOF. (A) Since0 = f (L(2)a) = L′(2) f (a) for a∈ Ř, it is obvious f (Ř)⊂ Ř′.
(B) Assume thatf (Ř) = Ř′. Consider the∂ -decompositionx′ = ∑ j ∂ ( j)x′ j for x′ ∈R′. Then

we havexi ∈ Ř such thatf (xi) = x′i for all i ∈ NNN, so f (∑ j ∂ ( j)xi) = x. Conversely assume thatf

is surjective. Then for anya′ ∈ Ř′ there existsx∈Rsuch thatf (x) = a′, soa′−∑ j ∂ ( j) f (x j) = 0.
Since the∂ -decomposition is unique,f (x0) = a′ for somex0 ∈ Ř. Hence we havef (Ř) = Ř′.

(C) Assume thatf |Ř is injective. Takex∈ R such thatf (x) = 0. Then∑ j ∂ ( j) f (x j) = 0, so
we havef (xi) = 0 for all i ∈NNN. Hencexi = 0 for all i ∈NNN, which impliesx = 0. The converse is
obvious. ¤
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DEFINITION 3.9. Define the〈n〉 product onŘ for eachn∈ NNN by

〈n〉 : Ř× Ř→ Ř

(a,b) 7→ a〈n〉b = (a(n)b)0,

where(a(n)b)0 is the0-part ofa(n)b.

The center of a regular conformal superalgebraR is {3 ∈ Ř| 3〈n〉x = 0 for all x∈ Ř,n∈ NNN}.

REMARK 3.10. The 〈n〉 products vanish except for finite many〈n〉s if Ř is finite-
dimensional.

Let us denote(x;y) = Γ (x+y)/Γ (x) wherey is a non-negative integer andx∈CCC, and define

G(∆(a),∆(b),n, j) =





(2∆(a)−n− j−1; j)
(2(∆(a)+∆(b)−n− j−1); j)

= ∏ j−1
k=0

(2∆(a)−n− j−1+k)
(2(∆(a)+∆(b)−n− j−1)+k)

for ∆(a)+∆(b)−n− j−1 /∈ −(1/2)NNN,

1, for ∆(a)+∆(b)−n−1 = 0, j = 0,

0, otherwise.

PROPOSITION3.11. For a regular conformal superalgebraR

(a(n)b) j = G(∆(a),∆(b),n, j)a〈n+ j〉b (3.3)

wherea,b∈ Ř.

PROOF. If ∆(a) + ∆(b)− n− j − 1 = 0 the both sides are inR0, so the proposition is
obvious. Otherwise, applyL j

(2) to the both sides ofa(n)b = ∑ j ∂ ( j)(a(n)b) j and take the0-parts.
The left hand side is

(L j
(2)a(n)b)0 = (−1) j

(
n+ j−1

∏
k=n

(k+2(1−∆(a)))

)
(a(n+ j)b)0. (3.4)

Taking the0-part ofL j
(2) ∑ j ∂ ( j)(a(n)b) j , we obtain

(L j
(2)a(n)b)0 =

j

∏
k=1

(k+2(∆(a)+∆(b)−n− j−1)−1)(a(n)b) j . (3.5)

Hence we have

(a(n)b) j =

(
j−1

∏
k=0

−n−k+2∆(a)−2
k+2(∆(a)+∆(b)−n− j−1)

)
a〈n+ j〉b

= G(∆(a),∆(b),n, j)a〈n+ j〉b. (3.6)

¤
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PROPOSITION3.12. A K-linear map f : Ř→ Ř′ satisfying f (L) = L′ and f (a〈n〉b) =
f (a)〈n〉 f (b) for all a,b∈ Ř, n∈ NNN uniquely extends to a homomorphism of conformal superal-
gebrasf̃ : R→ R′, where(R,{(n)}n∈NNN,L) and(R′,{(n)}n∈NNN,L′) are regular conformal superal-
gebras.

PROOF. Define a mapf̃ : R→R′ by f̃ (x) = ∑ j ∂ ( j) f (x j) wherex∈R. Obviously f̃ (∂x) =
∂ f̃ (x) for all x∈ R. By (3.3) we havea(n)b = ∑∞

j=0G(∆(a),∆(b),n, j)∂ ( j)a〈n+ j〉b, by (C1) and

(C2) (∂ (k)a)(n)(∂ (l)b) = (−1)k ∑l
j=0 (n!/(k! j!(n−k− j)!))∂ (l− j)a(n−k− j)b for all a,b∈ Ř, k, l ∈

NNN. Hence the(n) products onR is written in terms of the〈n〉 products and the operator∂ , so
f̃ (x(n)y) = f̃ (x)(n) f̃ (y) for all x,y∈ R andn∈ NNN, that is, f̃ is an homomorphism of conformal
superalgebras.

Suppose given two extensionsf̃ and f̃ ′ of f . Then f̃ ′(∂ (k)a) = ∂ (k) f (a) = f̃ (∂ (k)a) holds
for all a∈ Ř. Hence the extension off is unique by Corollary 3.4. ¤

COROLLARY 3.13. Two conformal superalgebras(R,{(n)}n∈NNN,L) and(R′,{(n)}n∈NNN,L′)
are isomorphic if and only if there exists a bijectiveK-linear mapf : Ř→ Ř′ satisfyingf (L) = L′

and f (a〈n〉b) = f (a)〈n〉 f (b) for all a,b∈ Ř andn∈ NNN.

We can reconstruct the ideals of a regular conformal superalgebra(R,{(n)}n∈NNN,L) from the
triple (Ř,{〈n〉}n∈NNN,L).

PROPOSITION3.14. For an idealI of a conformal superalgebraR, there exists an ideaľI
of the reduced subspacěR with respect to the〈n〉 products. ConverselyI = K[∂ ]Ǐ is an ideal of
R for an idealǏ of Ř.

PROOF. We may assume thatI is proper without loss of generality. Consider the projection
f : R→ R/I . We have a projectioňf : Ř→ ˇ(R/I) with f̌ (a〈n〉b) = f̌ (a)〈n〉 f̌ (b) for all a,b∈ Ř.
SetǏ = ker f̌ . We havex〈n〉 Ǐ ⊂ Ǐ for all x∈ Ř andI = ker f = K[∂ ]Ǐ . The converse is obvious.¤

COROLLARY 3.15. A regular conformal superalgebra(R,{(n)}n∈NNN,L) is simple if and
only if any idealǏ of the reduced subspacěR is eitherŘor {0}.

Consider the following properties of the triple(P,{〈n〉}n∈NNN,L) for aZZZ/2ZZZ-gradedK-vector
spaceP equipped with countably many products{〈n〉}n∈NNN onV whereL ∈ P:

(P0) Fora,b∈ P there exists someN ∈ NNN such that for alln∈ NNN satisfyingn > N,

a〈n〉b = 0.

(P2) Fora,b∈ P andn∈ NNN,
a〈n〉b =−(−1)n+p(a)p(b)b〈n〉a.

(P3) Fora,b,c∈ P andn,m∈ NNN,

m

∑
j=0

(
m
j

)
G(∆(b),∆(c),n, j)a〈m− j〉b〈n+ j〉c

−(−1)p(a)p(b)
n

∑
j=0

(
n
j

)
G(∆(a),∆(c),m, j)b〈n− j〉a〈m+ j〉c

=
m+n

∑
j=0

F(∆(a),∆(b),m,n, j)
(
a〈 j〉b

)
〈m+n− j〉c,
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where

F(∆(a),∆(b),m,n, t)

=
t

∑
k=0

(
m

t−k

)(
m+n+k− t

k

)
(−1)kG(∆(a),∆(b), t−k,k).

(PV) L is even and satisfiesL〈0〉a = 0, L〈1〉L = 2L, L〈2〉a ∈ P0 for all a ∈ P. The operatorL〈1〉
is diagonalizable.P0 is central,∆P∩ (−NNN/2) ⊂ {0}, and for allk ∈ ∆P there exists some
M ∈NNN such thatk−m /∈ ∆P for all m∈NNN satisfyingm≥M, wherePk = {a∈P| L〈1〉a= ka}
and∆P = {k∈ K| Pk 6= {0}}.
PROPOSITION3.16. The triple(P,{〈n〉}n∈NNN,L) satisfies(P0), (P2), (P3), (PV), whereP

is the reduced subspace of a regular conformal superalgebra with the products{〈n〉}n∈NNN.

PROOF. Only (P3) is not obvious. We shall obtain (P3) by taking the0-part of the both
sides of (C3). Apply Proposition 3.3 to the right hand side of (C3) and take the0-part. Then,

(
m

∑
k=0

(
m
k

)(
a(k)b

)
(m+n−k) c

)0

=

(
∞

∑
j,k=0

(
m
k

)(
∂ ( j)(a(k)b) j

)
(m+n−k)

c

)0

=
∞

∑
j,k=0

(
m
k

)(
m+n−k

j

)
(−1) jG(∆(a),∆(b),k, j)

(
a〈k+ j〉b

)
〈m+n−k− j〉c

=
∞

∑
t=0

t

∑
k=0

(
m
k

)(
m+n−k

t−k

)
(−1)t−kG(∆(a),∆(b),k, t−k)

(
a〈t〉b

)
〈m+n−t〉c

=
m+n

∑
t=0

F(∆(a),∆(b),m,n, t)
(
a〈t〉b

)
〈m+n−t〉c, (3.7)

which is the right hand side of (P3). On the other hand the0-part of the terma(m)b(n)c of the left
hand side of (C3) is,

(
a(m)b(n)c

)0 =
m

∑
j=0

(
m
j

)
G(∆(b),∆(c),n, j)a〈m− j〉b〈n+ j〉c, (3.8)

and for the termb(n)a(m)c

(
b(n)a(m)c

)0 =
n

∑
j=0

(
n
j

)
G(∆(a),∆(c),m, j)b〈n− j〉a〈m+ j〉c. (3.9)

Thus we obtained the left hand side of (P3). ¤

EXAMPLE 3.17. Form= 0 andn = 0, (P3) is

a〈0〉b〈0〉c− (−1)p(a)p(b)b〈0〉a〈0〉c =
(
a〈0〉b

)
〈0〉c. (3.10)
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Form= 1 andn = 0,

a〈1〉b〈0〉c+
∆(b)−1

∆(b)+∆(c)−2
a〈0〉b〈1〉c− (−1)p(a)p(b)b〈0〉a〈1〉c

=
(
a〈0〉b

)
〈1〉c+

∆(b)−1
∆(a)+∆(b)−2

(
a〈1〉b

)
〈0〉c. (3.11)

Form= 1 andn = 1,

a〈1〉b〈1〉c+
2∆(b)−3

2(∆(b)+∆(c)−3)
a〈0〉b〈2〉c

−(−1)p(a)p(b)
(

b〈1〉a〈1〉c+
2∆(a)−3

2(∆(a)+∆(c)−3)
b〈0〉a〈2〉c

)

=
(
a〈0〉b

)
〈2〉c+

∆(b)−∆(a)
∆(a)+∆(b)−2

(
a〈1〉b

)
〈1〉c

− (2∆(a)−3)(2∆(b)−3)
2(∆(a)+∆(b)−3)(2∆(a)+2∆(b)−5)

(
a〈2〉b

)
〈0〉c. (3.12)

Form= 2 andn = 0,

a〈2〉b〈0〉c+
2(∆(b)−1)

∆(b)+∆(c)−2
a〈1〉b〈1〉c

+
(2∆(b)−3)(∆(b)−1)

(∆(b)+∆(c)−3)(2∆(b)+2∆(c)−5)
a〈0〉b〈2〉c− (−1)p(a)p(b)b〈0〉a〈2〉c

=
(
a〈0〉b

)
〈2〉c+

2(∆(b)−1)
∆(a)+∆(b)−2

(
a〈1〉b

)
〈1〉c

+
(∆(b)−1)(2∆(b)−3)

(∆(a)+∆(b)−3)(2∆(a)+2∆(b)−5)
(
a〈2〉b

)
〈0〉c. (3.13)

4. Reconstruction of the conformal superalgebras.

We can reconstruct the entire regular conformal superalgebra(R,{(n)}n∈NNN,L) from the
triple (Ř,{〈n〉}n∈NNN,L).

THEOREM 4.1. For a triple (P,{〈n〉}n∈NNN,L) satisfying(P0), (P2), (P3) and (PV), there
exists a regular conformal superalgebra(RP,{(n)}n∈NNN,L) whose reduced subspace isP and the
products satisfies(a(n)b)0 = a〈n〉b for all a,b∈ P, n∈NNN. Furthermore the conformal superalge-
bra is unique up to isomorphisms.

PROOF. Consider the leftK[∂ ]-moduleRP =
(
K[∂ ]⊗ (

⊕
k∈(∆P\{0}) Pk)

)⊕P0, where∂
is an indeterminate andP0 is regarded as a leftK[∂ ]-module by ∂P0 = 0. We omit the
⊗ for brevity. Define∆(∂ ja) = ∆(a) + j for a ∈ P. Eachx ∈ RP is uniquely written as
x = ∑ j ∂ ( j)x j for somex0 ∈ P and x j ∈ ⊕

k∈(∆P\{0}) Pk for all j > 0. Define (n) products

on RP by a(n)b = ∑∞
j=0G(∆(a),∆(b),n, j)∂ ( j)a〈n+ j〉b and (∂ (k)a)(n)(∂ (l)b) = (−1)k ∑l

j=0

(n!/(k! j!(n−k− j)!))∂ (l− j)a(n−k− j)b wherea,b∈ P. It is easy to check that the(n) products
satisfy (C0) and (C1), and by direct calculation∂ is a derivation with respect to the(n) products.
Now, for a,b∈ P,
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−(−1)p(a)p(b)+n
∞

∑
j=0

(−1) j∂ ( j)(b(n+ j)a)

=−(−1)p(a)p(b)+n
∞

∑
j,k=0

(−1) j∂ ( j)G(∆(b),∆(a),n+ j,k)∂ (k)(b〈n+ j+k〉a)

=
∞

∑
s=0

s

∑
k=0

(−1)s−k+p(a)p(b)+n+1
(

s
k

)
G(∆(b),∆(a),n+s−k,k)∂ (s)(b〈n+s〉a)

= a〈n〉b+
∞

∑
s=1

2F1

( −s 2∆(b)−n−s−1
2(∆(a)+∆(b)−n−s−1)

;1

)
∂ (s)(a〈n+s〉b), (4.1)

where 2F1

(
α β

γ ;x

)
= ∑∞

j=0 ((α; j)(β ; j))/(γ; j)x( j). We have 2F1

(
α β

γ ;1

)
=

(Γ (γ)Γ (γ−α−β ))/(Γ (γ−α)Γ (γ−β )) for γ /∈ −NNN and α ∈ −NNN. If s ≥ 1 and
∆(a)+∆(b)−n−s−1 = ∆(a〈n+s〉b) ∈ −NNN/2 then∂ (s)(a〈n+s〉b) = 0, so we have

−(−1)p(a)p(b)+n
∞

∑
j=0

(−1) j∂ ( j)(b(n+ j)a)

= a〈n〉b+
∞

∑
s=1

Γ (2(∆(a)+∆(b)−n−s−1))Γ (2∆(a)−n−1)
Γ (2(∆(a)+∆(b)−n−s−1)+s)Γ (2∆(a)−n−s−1)

∂ (s)(a〈n+s〉b)

=
∞

∑
s=0

G(∆(a),∆(b),n,s)∂ (s)(a〈n+s〉b)

= a(n)b. (4.2)

Then, (C2) is checked for alla = ∂ kx and b = ∂ l y by induction on k and l where
x,y ∈ P. Indeed, assume(∂ kx)(n)(∂ l y) = (−1)p(x)p(y) ∑ j(−1)1+n+ j∂ ( j)(∂ l y)(n+ j)(∂ kx) for
all n. Applying ∂ to the both sides we have(∂ k+1x)(n)(∂ l y) + (∂ kx)(n)(∂ l+1y) =
(−1)p(x)p(y) ∑ j((−1)1+n+ j/ j!)∂ j+1(∂ l y)(n+ j)(∂ kx). By (C1) we have

(∂ kx)(n)(∂ l+1y) = n(∂ kx)(n−1)(∂ l y)+(−1)p(x)p(y) ∑
j

(−1)n+ j j∂ ( j)(∂ l y)(n+ j−1)(∂ kx)

= (−1)p(x)p(y) ∑
j

(−1)1+n+ j∂ ( j)(∂ l+1y)(n+ j)(∂ kx), (4.3)

which implies (C2) fora = ∂ kx andb = ∂ l+1y. On the other hand

(∂ k+1x)(n)(∂ l y)+(∂ kx)(n)(∂ l+1y)

= (−1)p(x)p(y) ∑
j

(−1)1+n+ j∂ ( j)((∂ l+1y)(n+ j)(∂ kx)+(∂ l y)(n+ j)(∂ k+1x)
)
, (4.4)

thus we have (C2) fora = ∂ k+1x andb = ∂ l y, which completes the induction.
For all a∈ P, we have

L(0)(∂ ka) = ∂ k+1a, (4.5)

L(1)(∂ ka) = (∆(a)+k)∂ ka, (4.6)

L(2)(∂ ka) = k(k−1+2∆(a))∂ k−1a, (4.7)
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which imply (CV).
In order to show (C3), let

J(a,b,c,m,n,k)

= a(m)b(n)∂ kc− (−1)p(a)p(b)b(n)a(m)∂ kc−
∞

∑
j=0

(
m
j

)
(a( j)b)(m+n− j)∂ kc, (4.8)

wherea,b,c∈ P. By (C1) and the Leibniz rule we have

∂J(a,b,c,m,n,k)

=−mJ(a,b,c,m−1,n,k)−nJ(a,b,c,m,n−1,k)+J(a,b,c,m,n,k+1), (4.9)

where we understandJ(a,b,c,−1,n,k) = 0 andJ(a,b,c,m,−1,k) = 0 for all m,n,k ∈ NNN. We
have∆(b(n)∂ kc)−∆(∂ kc) = ∆(b)−n−1, soJ(L,b,c,1,n,k) = 0 for all n,k∈ NNN. By (P3) and
the definition ofL(1), J(L,b,c,2,n,0) = 0. Substituting them into (4.9) form = 2 we obtain
J(L,b,c,2,n,k) = 0 for all n,k ∈ NNN by induction onk. On the other hand taking the0-part of
(4.9) we obtain0=−mJ(a,b,c,m−1,n,k)0−nJ(a,b,c,m,n−1,k)0+J(a,b,c,m,n,k+1)0. By
induction onk we haveJ(a,b,c,m,n,k)0 = 0 for anym,n,k∈ NNN.

Consider

B(a,b,c,m,n) = a(m)b(n)c− (−1)p(a)p(b)b(n)a(m)c−
∞

∑
j=0

(
m
j

)(
a( j)b

)
(m+n− j) c, (4.10)

where a,b,c ∈ RP. By (C1) and (C2), it suffices to checkB(a,b,c,m,n) = 0 for m,n ∈ NNN
where a,b ∈ P and c ∈ RP. We haveB(a,b,c,m,n)0 = 0 for a,b ∈ P and c ∈ RP be-
causeJ(a,b,c,m,n,k)0 = 0 for all k ∈ NNN. If ∆(B(a,b,c,m,n)) = 0 then B(a,b,c,m,n) =
B(a,b,c,m,n)0 = 0, so we may assume∆(B(a,b,c,m,n)) 6= 0. By (4.7) we have

(
(L(2))

kB(a,b,c,m,n)
)0 = (2(∆(a)+∆(b)+∆(c)−m−n−2−k);k)(B(a,b,c,m,n))k. (4.11)

The coefficients on the right hand side never vanish because∆(B(a,b,c,m,n)k) /∈ −NNN/2, hence
Bk is proportional to((L(2))kB)0. SinceJ(L,b,c,2,n,k) = 0,

L(2)B(a,b,c,m,n) = −(n+2(1−∆(a)))B(a,b,c,m+1,n)

−(m+2(1−∆(b)))B(a,b,c,m,n+1)+B(a,b,L(2)c,m,n), (4.12)

(L(2))kB(a,b,c,m,n) is written by a linear combination of someBs. Thus we haveBk = 0 for all
k∈ NNN, which implies (C3).

The reduced subspace ofRP coincides withP itself. The uniqueness follows from Corollary
3.13. ¤

The following lemma plays an important role in later sections.

LEMMA 4.2.

a〈p〉b〈q〉c = ∑
j

r jb〈q− j〉a〈p+ j〉c+sj
(
a〈 j〉b

)
〈p+q− j〉c (4.13)

for somer j ,sj ∈ K wherea,b,c∈ Ř, p,q∈ NNN.
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PROOF. Denote (P3)m,n for (P3) specifyingm,n. For p = 0, (4.13) follows from (P3)0,q.
Suppose (4.13) holds for allp≤ k andq∈ NNN. (P3)k+1,q implies (4.13) forp = k+1. ¤

PROPOSITION4.3. Consider a regular conformal superalgebra(R,{(n)}n∈NNN,L). Let S
be a subset of the reduced subspaceŘ andIS the ideal generated byS. Then for a basisB with
an order< onB,

IS∩ Ř= Span
{
31〈n1〉3

2〈n2〉· · ·3r 〈nr 〉u
∣∣∣ 3k ∈ B, u∈ S, nk ∈ NNN, 3i < 3i+1

}
. (4.14)

PROOF. Set

FpǏS = Span
{
31〈n1〉3

2〈n2〉3
3〈n3〉· · ·3r 〈nr 〉u

∣∣∣3k,u∈ S, nk ∈ NNN, r ≤ p
}

. (4.15)

By Lemma 4.2,31〈n1〉3
2〈n2〉3

3〈n3〉· · ·3r 〈nr 〉u is written by a linear combination of these elements
with 3i and3i+1 swapped (butnl s may differ) as an element of(Fi ǏS)/(Fi−1ǏS). Hence we have

FpǏS = Span
{
31〈n1〉3

2〈n2〉· · ·3r 〈nr 〉u
∣∣∣ 3k ∈ B, u∈ S, nk ∈ NNN, r ≤ p, 3i < 3i+1

}
. (4.16)

SinceIS∩ Ř= ∑pFpǏS, thus we have the result. ¤

Let P be the category of triples(P,{〈n〉},L) satisfying (P0), (P2), (P3), (PV) whereP is a
vector space,{〈n〉} is a set of products onP, andL is a vector inP, with the morphisms being
the linear maps that commute with all the〈n〉 products and preserveL. We can summarize this
section: the category of regular conformal superalgebras is equivalent to the categoryP by the
functorF(R) = Ř andF( f ) = f |Ř.

5. Physical conformal superalgebra.

In this section we will study physical conformal superalgebras. One can reduce the axioms
for conformal superalgebras into some simple relations. We shall assumeK = CCC hereafter.

A regular conformal superalgebraR is physical if and only if the reduced subspaceŘ satis-
fies the following.

– Eigenvalues ofL(1) on Řare2, 3/2, 1 and1/2.
– Ř2 = CCCL.
– Ř3/2 andŘ1/2 are odd subspaces.
– Ř1 andŘ2 are even subspaces.

All the 〈n〉 products vanish except for the〈0〉 product and the〈1〉 product for physical conformal
superalgebras.

Let R be a physical conformal superalgebra andŘ be the reduced subspace. Consider the
products onŘdefined by,

a◦b =





a〈1〉b
∆(a)+∆(b)−2

, for ∆(a)+∆(b)−2 6= 0,

0, otherwise,

a•b = a〈0〉b.
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Obviously we have

(D0) L ◦a = a, L •a = 0,

(D1) a◦b = (−1)p(a)p(b)b◦a,

(D2) a•b =−(−1)p(a)p(b)b•a.

Rewriting the relations in Example 3.17 in terms of the product◦ and the product• we obtain

(D3) (∆(b)−1)a◦b◦c = (∆(b)−1)(a◦b)◦c,

(D4) (∆(b)+∆(c)−2)a◦b◦c− (−1)p(a)p(b)(∆(a)+∆(c)−2)b◦a◦c

= (∆(b)−∆(a))(a◦b) ◦c,

(D5) (∆(a)+∆(b)+∆(c)−3)a◦b•c+(∆(b)−1)a•b◦c

−(−1)p(a)p(b) (∆(a)+∆(c)−2)b•a◦c

= (∆(a)+∆(b)+∆(c)−3)(a•b) ◦c+(∆(b)−1)(a◦b) •c,

(D6) a•b•c− (−1)p(a)p(b)b•a•c = (a•b) •c.

Let us denoteV = Ř3/2, A = Ř1, F = Ř1/2 for a physical conformal superalgebraR, follow-
ing the notations in [8]. That is, Ř is decomposed intǒR= CCCL⊕V ⊕A⊕F . Define the inner
product(·, ·) onV by a〈0〉b = (a,b)L. Consider the following properties:

(H0) L ◦ = id, L • = 0 as operators oňR,

(H1) (Ř, •) is a Lie superalgebra,

(H2) (Ř, ◦) is an associative commutative superalgebra,

(H3) A• gives derivations with respect to◦ ,

(H4) u◦3 • f = (u◦3)• f +(u•3)◦ f , for u,3 ∈V and f ∈ F ,

(H5) (u◦ +u•)23= (u,u)3, for u,3 ∈V,

(H6) (u◦ +u•)2a = (u,u)a, for u∈V anda∈ A.

PROPOSITION5.1. For the reduced subspacěR=CCCL⊕V⊕A⊕F of a physical conformal
superalgebra, the products◦ and • have the properties(H0)–(H6).

PROOF. (D2) and (D6) yield (H1). The product◦ is commutative by (D1). We have
(∆(b)−1)a◦b◦c = (−1)p(a)p(c)+p(b)p(c)(∆(b)−1)c◦a◦b by (D1) and (D3). If∆(a) = ∆(b) =
∆(c) = 1 then the both sides are0 because∆(a)+ ∆(b)+ ∆(c)−4 = −1. So we may assume
∆(b) 6= 1 without loss of generality, hencea◦b◦c = (−1)p(a)p(c)+p(b)p(c)c◦a◦b, thusa◦b◦c =
(a◦b)◦c, we have (H2). For the others, let

Q(x,y,z) = (∆(x)+∆(y)+∆(z)−3)x◦y•z+(∆(y)−1)x•y◦z

−(−1)p(x)p(y)(∆(x)+∆(z)−2)y•x◦z− (∆(y)−1)(x◦y)•z

−(∆(x)+∆(y)+∆(z)−3)(x•y)◦z, (5.1)
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and

P(x,y,z) = (∆(x)−1)x◦y•z+(∆(y)−1)x•y◦z− (−1)p(x)p(y)(∆(y)−1)y◦x•z

−(−1)p(x)p(y)(∆(x)−1)y•x◦z− (∆(x)+∆(y)−2)(x•y)◦z. (5.2)

It is easy to check(∆(x)−1)Q(x,y,z)+(∆(y)−1)(−1)p(x)p(y)Q(y,x,z) = (∆(x)+∆(y)+∆(z)−
3)P(x,y,z). Since if∆(x)+∆(y)+∆(z)−3= 0 then the both sides are0, so we haveP(x,y,z) = 0
for all x,y,z∈ Ř becauseQ(x,y,z) = 0 for all x,y,z∈ Ř by (D5). P(x,y,z) = 0 for ∆(z) = 1,
(∆(x),∆(y),∆(z)) = (1/2,3/2,3/2), (3/2,3/2,3/2) and(3/2,3/2,1) imply (H3), (H4), (H5)
and (H6) respectively. ¤

(H4), (H5) and (H6) imply the following.

PROPOSITION5.2. The reduced subspacěR of a physical conformal superalgebra is a
left Cl(V,(·, ·))-module by the action3x = 3 ◦x+ 3 •x, where3 ∈V andx∈ Ř.

Thus we have obtained the action of the Clifford algebra Cl(V,(·, ·)) on the associated Lie
superalgebra, whereV is the space of the reduced vectors with the conformal weight3/2. The
action is discussed in [5].

COROLLARY 5.3. The Clifford algebraCl(V,(·, ·)) acts on the associated Lie superal-
gebra of a physical conformal superalgebra, whereV is the space of reduced vectors of the
conformal weight3/2 with the inner product defined by(u,3)L = u(0)3.

Furthermore we have the converse of Proposition 5.1.

PROPOSITION5.4. Suppose given a finite-dimensionalZZZ/2ZZZ-graded vector spacěRwith
the decompositioňR=CCCL⊕V⊕A⊕F with respect to a weight∆ , where∆(V) = 3/2, ∆(A) = 1,
and∆(F) = 1/2 with the parityp(CCCL) = p(A) = 0 and p(V) = p(F) = 1, and two products◦
and • with the weight∆(x•y) = ∆(x)+∆(y)−1, ∆(x◦y) = ∆(x)+∆(y)−2. If (Ř, • , ◦) have the
properties(H0)–(H6)then the triple(Ř,{〈n〉},L) is a physical conformal superalgebra where we
seta〈0〉b = a•b, a〈1〉b = (∆(a)+∆(b)−2)a◦b anda〈n〉b = 0 for n≥ 2.

PROOF. (P0), (P2) and (PV) are obvious. It is easy to check that (P3)a,b
m,n is equivalent

to (P3)b,a
n,m, hence (D0)–(D6) are sufficient to (P3). Only (D5) is not obvious since (D0) is (H0)

itself, (D1) and (D6) follow from (H1), and (D2), (D3) and (D4) follow from (H2). LetP andQ
be as in (5.1) and (5.2). Then, (H1) and (H2) imply

−(−1)p(y)p(z)P(x,z,y)+(−1)p(x)p(y)+p(x)p(z)P(y,z,x) = (−1)p(y)p(z)Q(x,z,y), (5.3)

hence ifP(x,y,z) = 0 for all x,y,z∈ Ř then we haveQ(x,y,z) = 0 for all x,y,z∈ Ř, which
implies (D5). Let us showP(x,y,z) = 0 for all x,y,z ∈ Ř. Since P satisfiesP(x,y,z) =
−(−1)p(x)p(y)P(y,x,z) and (−1)p(x)p(y)(∆(z) − 1)P(x,y,z) − (−1)p(x)p(y)+p(y)p(z)(∆(y) − 1)×
P(x,z,y) = −(−1)p(x)p(z)(∆(x)− 1)P(y,z,x), we have (1)P(x,y,z) = 0 ⇔ P(y,x,z) = 0 and
(2) if ∆(x) 6= 1, P(x,y,z) = 0∧P(x,z,y) = 0⇒ P(y,z,x) = 0. So it suffices to consider the
following cases:(∆(x),∆(y),∆(z)) = (3/2,3/2,3/2), (3/2,1,3/2), (3/2,1,1), (3/2,3/2,1),
(1/2,3/2,3/2). (H3) gives (3/2,1,3/2) and (3/2,1,1). (H5), (H6) and (H4) imply
(3/2,3/2,3/2), (3/2,3/2,1) and (1/2,3/2,3/2) respectively. Hence (D5) is shown for all
x,y,z∈ Ř. ¤
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6. Simple physical conformal superalgebra.

In this section we will describe some properties of simple physical conformal superalgebra.
A criterion for simplicity is given. LetR be a simple physical conformal superalgebra,Ř the
reduced subspace,V = Ř3/2, A = Ř1 andF = Ř1/2.

The following result is stated in [7] and [8]:

PROPOSITION6.1. Let Ř be the reduced subspace of a simple physical conformal super-
algebra. Then the inner product(·, ·) onV is nondegenerate.

PROOF. SetV0 = {3 ∈V | for all u∈V (u,3) = 0} and consider the idealIV0 generated
by V0. Fix a basisB of Ř and take an order onB such thata < b if ∆(a) < ∆(b). SetFpJ̌ =
Span

{
x1〈i1〉x

2〈i2〉· · ·xk〈ik〉30
∣∣xr ∈ B, 30 ∈V0, xi ≤ xi+1, k≤ p

}
. ObviouslyL /∈ F0J̌. Take any

u,3 ∈ V, 30 ∈ V0, xr ∈ B. Since3 •30 = 0, we havex1〈i1〉· · ·xp−1〈ip−1〉3 •30 = 0 in FpJ̌/Fp−1J̌.
By (D5) we have

x1〈i1〉· · ·xp−2〈ip−2〉3 •u◦30 = x1〈i1〉· · ·xp−2〈ip−2〉

(
−1

2
u•3 ◦30

)

= x1〈i1〉· · ·xp−2〈ip−2〉

(
1
4
3 •u◦30

)

= 0, (6.1)

in FpJ̌/Fp−1J̌. By (D3) we havex1〈i1〉· · ·xp−2〈ip−2〉3 ◦u◦30 = 0 in FpJ̌/Fp−1J̌. ∆(x〈n〉y) > ∆(y)
occurs only whenx∈V, thus we haveL /∈ ∑pFpJ̌. By Proposition 4.3∑pFpJ̌ = IV0 ∩ Ř, hence
IV0 is proper unlessV0 = {0}. ¤

Now, letF3 = { f ∈ F |31〈0〉32〈0〉33〈0〉 f = 0 for all 3k ∈V}.
PROPOSITION6.2. A physical conformal superalgebraR with V 6= {0} is simple if and

only if F3 = 0 and the inner product is nondegenerate.

PROOF. Suppose that the inner product onV 6= {0} is nondegenerate andR is not simple.
Take Ǐ a proper ideal of the reduced subspaceŘ. Ǐ is decomposed intǒI = (Ǐ ∩CCCL)⊕ (Ǐ ∩V)⊕
(Ǐ ∩A)⊕(Ǐ ∩F) by the action ofL〈1〉. Ǐ ∩CCCL= {0} becausěI 6= Ř. In particularǏ ∩V = {0} since
the inner product onV is nondegenerate.̌I is a Cl(V,(·, ·))-module becauseI is an ideal. The
Clifford action of a unit vector inV yields an isomorphism of vector spaces betweenǏ ∩(CCCL⊕A)
andǏ ∩ (V⊕F), so if Ǐ ∩F = {0} thenǏ = {0}. SinceL /∈ Ǐ we haveǏ ∩F ⊂ F3 while I 6= {0},
thusF3 6= {0}.

Conversely assumeF3 6= {0}. Let I be the ideal generated byF3. Apply Proposition 4.3
for S= F3 taking an order such thatx < y if ∆(x) < ∆(y). Take f ∈ F3, 3i ∈V,(i = 1,2,3), and
a∈ A. Then,

31 •32 •33 •a• f = a•31 •32 •33 • f − (a•31)•32 •33 • f − 31 •(a•32)•33 • f − 31 •32 •(a•33)• f

= 0, (6.2)

so A•F3 ⊂ F3. Applying (D5) for anya,b ∈ V and c ∈ F3, we havea◦b•c = (a•b)◦c+
(a◦b) •c∈ F3 +A•F3 = F3, henceF3 = I ∩F . Thus we haveL /∈ I , soI is proper. ¤
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PROPOSITION6.3. LetRbe a simple physical conformal superalgebra. Then the map

ι : Cl(V,(·, ·))→ Ř,

3132 · · ·3r 7→ (31 ◦ + 31 •)(32 ◦ + 32 •) · · ·(3r ◦ + 3r •)L,

is surjective unlessV ◦V ◦V = 0 with V 6= {0}.
PROOF. SupposeV = {0} and the mapι is neither zero nor surjective. Then the subspace

A⊕F is closed under the〈0〉 product and the〈1〉 product, soA+ F generates a proper ideal.
Otherwise supposeV ◦V ◦V 6= {0}. TakeǏ the ideal of the reduced subspaceŘ generated byS=
V ◦V ◦V. We haveA•S⊂ Sby (H3).V ◦V •S⊂ A•S+S⊂ Sbecause of (H4). Apply Proposition
4.3 taking an order so thatx < y if ∆(x) > ∆(y). Then we havěI ∩F = S, soS= F because
R is simple andS 6= {0}. Take a unit vectore of V. Ř is a Cl(V,(·, ·))-module and the Clifford
action ofe yields an isomorphism betweenCCCL⊕A andV⊕F . SinceV⊕F = V⊕S⊂ Imι , so
CCCL⊕A⊂ Imι , thus the mapι is surjective. ¤

We shall denote the conformal sub-superalgebra generated by Imι by Rι .

7. Invariants.

Let Rbe a physical conformal superalgebra,Ř the reduced subspace,V = Ř3/2, A = Ř1 and
F = Ř1/2. Consider the trilinear map defined by

η : V×V×V →V

(u,3,w) 7→ u•3 ◦w,

and the bilinear form(·, ·)V∧V onV ∧V defined by(u∧ 3,w∧ z)V∧VL = u•η(3,w,z). The form
is well-defined onV ∧V becauseu•3 •w◦z=−u•3 •z◦w and

u•3 •w◦z= (u•3)•w◦z− 3 •u•w◦z

=−3 •u•w◦z. (7.1)

The form(·, ·)V∧V is symmetric because

u•3 •w◦z=−u•w•3 ◦z−u•3 ◦w•z−u•w◦3 •z+2u•(3 •w)◦z

=−w•u•z◦3− (u,3)(w,z)L− (u,w)(3,z)L+2(u,z)(3,w)L

−2(w,3)(u,z)L− (u,3)(w,z)L− (u,w)(3,z)L+2(u,z)(3,w)L

= w•z•u◦3. (7.2)

The form(·, ·)V∧V is invariant under isomorphisms of physical conformal superalgebras.

PROPOSITION7.1. Let f : R→ R′ be an isomorphism of physical conformal superalge-
bras. f induces an isometric transformationf ∧ f : (V∧V,(·, ·)V∧V)→ (V ′∧V ′,(·, ·)V ′∧V ′) where
V ′ = Ř′3/2.
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PROOF. For an isomorphismf we have

(u∧ 3,w∧z) f (L) = f ((u∧ 3,w∧z)L)

= f (u•3 •w◦z)

= f (u)• f (3)• f (w)◦ f (z)

= ( f (u)∧ f (3), f (w)∧ f (z)) f (L). (7.3)

¤

Furthermore we can reconstruct the products◦ and • on ι(Cl(V,(·, ·))) from the form
(·, ·)V∧V for simple physical conformal superalgebras.

PROPOSITION7.2. Let R be a physical conformal superalgebra andŘ the reduced sub-
space. Consider the mapι of Proposition6.3 and the mapη . Thenx(n)y is uniquely determined
by the pair(ι ,η) for all n∈ NNN wherex,y∈ Rι .

PROOF. The actionsV ◦ andV • are uniquely determined byι andη , since

u◦3=
1
2

ι(u3− 3u), (7.4)

u◦3 ◦w = ι(u3w)− ι(η(u,3,w))− (3,w)V ι(u), (7.5)

u•3 ◦w◦z= ι(u3wz)− ι(uη(3,w,z))− (w,z)V ι(u3), (7.6)

u•3=
1
2

ι(u3+ 3u), (7.7)

u•3 ◦w = ι(η(u,3,w)), (7.8)

u◦3 •w◦x◦y = (u◦3)•w◦x◦y+(u•3)◦w◦x◦y

=−η(w,u,3)◦x◦y−w◦η(x,u,3)◦y−w◦x◦η(y,u,3)

=−ι(η(w,u,3)xy)− ι(wη(x,u,3)y)− ι(wxη(y,u,3))

+ι(η(η(w,u,3),x,y))+ ι(η(w,η(x,u,3),y))+ ι(η(w,x,η(y,u,3)))

+(x,y)V ι(η(w,u,3))+(η(x,u,3),y)V ι(w)+(x,η(y,u,3))V ι(w), (7.9)

u•3 •w◦x◦y = ι(u3wxy)− ι(u3η(w,x,y))− (x,y)V ι(u3w)

+ι(η(w,u,3)xy)+ ι(wη(x,u,3)y)+ ι(wxη(y,u,3))

−ι(η(η(w,u,3),x,y))− ι(η(w,η(x,u,3),y))− ι(η(w,x,η(y,u,3)))

−(x,y)V ι(η(w,u,3))− (η(x,u,3),y)V ι(w)− (x,η(y,u,3))V ι(w). (7.10)

By Lemma 4.2 we have(b〈q〉c)〈p〉a = ∑ j r jb〈q− j〉c〈p+ j〉a+sjc〈p+q− j〉b〈 j〉a for somer j ,sj ∈ K,
hence all(3¯x)¯ are written in some3¯s andx¯s where3 ∈V, x∈ Imι and¯ denotes any of
◦ and • . Since Imι = CCCL⊕V⊕ ((V ◦V)+(V •V ◦V ◦V))⊕ (V ◦V ◦V), we have the results. ¤
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Denote Cln(V,(·, ·)) = Span{3132 · · ·3k|3i ∈V, k≤ n}. (7.4), (7.5) and (7.6) imply the fol-
lowing.

PROPOSITION7.3. LetRbe a simple physical conformal superalgebra andŘ the reduced
subspace. For the mapι of Proposition6.3, we haveŘι = ι(Cl4(V,(·, ·))). Furthermore if
V ◦V ◦V = {0} thenŘι = ι(Cl2(V,(·, ·))).

8. Classification of simple physical conformal superalgebras.

We start classification of simple physical conformal superalgebras. We will follow the no-
tationsVir, K1, K2, K3, S2, W2, andCK6 given in [3] and [6]. By the results of the preceding
sections all that we have to do is listing up the left Cl(V,(·, ·))-submodules of Cl(V,(·, ·)) and the
symmetric forms onV ∧V appropriate to reconstruct simple physical conformal superalgebras.

Fix a vector spaceV with the nondegenerate inner product(·, ·) and consider an or-
thonormal basis{e1,e2, · · · ,eN} of V. Set D0

k = Dk = (e2k−1 + ie2k)/
√

2, D1
k = D̄k = Dk̄ =

(e2k−1− ie2k)/
√

2, andDw = Dw1
1 Dw2

2 · · ·Dwn
n wheren= bN/2c, w∈ (ZZZ/2ZZZ)n andwi denotes the

ith binary digit ofw. We have the following theorem for the decomposition of left Cl(V)-module
Cl(V) ([4]).

THEOREM 8.1. The leftCl(V)-moduleCl(V) is completely reducible. The irreducible
decomposition is given as follows. IfN = 2n then

Cl(V) =
⊕

w∈(ZZZ/2ZZZ)n

M(w), (8.1)

whereM(w) = Cl(V)Dw. If N = 2n+1 then

Cl(V) =
⊕

w∈(ZZZ/2ZZZ)n

(M+(w)⊕M−(w)), (8.2)

whereM±(w) = Cl(V)Dw(1±eN).

PROPOSITION8.2. Let R be a simple physical conformal superalgebra withdimV ≤ 3.
ThenR is isomorphic to one of Vir,K1, K2, K3.

PROOF. If dimV = 0 then the mapι is surjective, soR is isomorphic toVir. Otherwise

by Proposition 6.2dimF ≤
(

dimV
3

)
for a simple physical conformal superalgebraR, soR= Rι

for V 6= {0} unlessdimV = 3 with V ◦V ◦V = {0}. If dimV = 1 then we haveV ∧V = {0},
so the conformal superalgebraR = Rι is unique, which isK1. If dimV = 2 thendimV ∧V =
1. SinceD̄1 •D1 • D̄1 ◦D1 = L by (D5), so the only possible form(·, ·)V∧V is (D̄1∧D1, D̄1∧
D1)V∧V = 1. Hencekerι = {0} because otherwise the form(·, ·)V∧V = 0, thus the conformal
superalgebraR= Rι with dimV = 2 is unique, which isK2. If dimV = 3 thenD̄1 •D1 • D̄1 ◦D1 =
L, D1 •e3 •D1 ◦e3 = 0, D̄1 •e3 • D̄1 ◦e3 = 0 andD̄1 •e3 •D1 ◦e3 =−L by (D5). So the possible form
(·, ·)V∧V is uniquely determined, which is nondegenerate. Hencekerι = {0} because otherwise
the form(·, ·)V∧V is degenerate. Thus the conformal superalgebraRι with dimV = 3 is unique,
which isK3. V ◦V ◦V 6= {0} for K3, soR= K3. ¤
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Consider the polynomial ringXn = CCC[x1,x2, · · · ,xn] of Grassmann indeterminates.Xn is
decomposed intoXn =

⊕
s∈ZZZn Xn

s by the multidegree of polynomials. Define the action of Cl(V)
on Xn by Di f =

√
2xi f andD̄i f =

√
2∂i f for f ∈ Xn where∂i denotes∂/∂xi . If N = 2n then

the actionρ : Cl(V) → End(Xn) is an isomorphism, so for a left ideal of Cl(V) we have an
isomorphism of vector spacesρI : Cl(V)/I

∼→ Hom(∩w∈W kerρ(Dw),Xn), whereW ⊂ (ZZZ/2ZZZ)n

andI =
⊕

w∈W M(w). Hence Cl(V)/I is decomposed into

Cl(V)/I =
⊕

t∈{−1,0,1}n

(Cl(V)/I)t , (8.3)

where(Cl(V)/I)t = {u ∈ (Cl(V)/I)| ρI (u)(∩w∈W kerρ(Dw)∩Xn
s ) ⊂ Xn

s+t for all s∈ ZZZn}. De-
note the projectionsπ I

t : Cl(V)/I → (Cl(V)/I)t . If N = 2n+ 1 then we have a decomposi-
tion as left Cl(V)-modules Cl(V) = Cl(V/CCCeN)(1+ eN)⊕Cl(V/CCCeN)(1−eN). So we have an
isomorphismρI : Cl(V)/I

∼→Hom(∩w∈W+ kerρ(Dw),Xn)⊕Hom(∩w∈W− kerρ(Dw),Xn), where
W± ⊂ (ZZZ/2ZZZ)n andI = (

⊕
w∈W+ M+(w))⊕ (

⊕
w∈W− M−(w)). Hence the decomposition is

Cl(V)/I =
⊕

t∈{−1,0,1}n

(Cl(V)/I)+t ⊕
⊕

t∈{−1,0,1}n

(Cl(V)/I)−t . (8.4)

Denote the projectionsπ I±
t : Cl(V)/I → (Cl(V)/I)±t .

Considerαi, j ∈CCC defined byαi, jL = Di • D̄i •D j ◦ D̄ j for i, j ∈ {1,2, · · · ,n} andβi, j,k,l ∈CCC
by βi, j,k,l L = Di •D j •Dk ◦Dl for i, j,k, l ∈ {1, 1̄,2, 2̄, · · · ,n, n̄}. We have
D j •Di • D̄i ◦ D̄ j = (1+αi, j)L, D j • D̄i •Di ◦ D̄ j = (1−αi, j)L andαi, j = α j,i .

PROPOSITION8.3. Let R be a simple physical conformal superalgebra withdimV ≥ 4.
ThendimV is one of4, 6, 8. Furthermore ifV ◦V ◦V = {0} thendimV = 4.

PROOF. Suppose given a simple physical conformal superalgebraR with dimV = 2n+1
wheren≥ 2. For an arbitraryu∈ ZZZ/2ZZZ we have

0 =−(e2n+1 ◦ D̄i)•(Di ◦Du
j )− (Di ◦Du

j )•(e2n+1 ◦ D̄i)

= (Di •e2n+1 ◦ D̄i)◦Du
j +Di ◦(Du

j
•e2n+1 ◦ D̄i)

+(e2n+1 •Di ◦Du
j )◦ D̄i +e2n+1 ◦(D̄i •Di ◦Du

j ). (8.5)

Apply πkerι +
t + πkerι−

t to the both sides where all digits oft are0 except fort j = (−1)u. Then
we have((−1)uαi, j +2)e2n+1 ◦Du

j = 0. If e2n+1 ◦Du
j = 0 then0 = e2n+1 •e2n+1 ◦Du

j = Du
j , so we

haveαi, j =−(−1)u2 for an arbitraryu∈ ZZZ/2ZZZ wherei, j = 1,2, · · · ,n. HenceR does not exist.
Suppose given a simple physical conformal superalgebra withdimV = 2n andn > 4. Con-

siderS⊂ (ZZZ/2ZZZ)n such thatkerι = I =
⊕

s∈SM(s). By Proposition 7.3 Cl(V)/I = Cl4(V)/I ,
so we haveπ I

t = 0 if #{k ∈ NNN| tk 6= 0} > 4. Henceι(Dw) = π I
t (ι(Dw)) = 0 for an arbitrary

w∈ (ZZZ/2ZZZ)n whereti = (−1)wi , soS= (ZZZ/2ZZZ)n, that is, the mapι is the0 map, thus we have
the result.

If V ◦V ◦V = {0} then we havedimV = 4 in the same way by Cl(V)/I = Cl2(V)/I . ¤

PROPOSITION8.4. A simple physical conformal superalgebraR with dimV = 6 is iso-
morphic toCK6
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PROOF. Suppose given a simple physical conformal superalgebraR with dimV = 6. The
mapι is surjective. For alli, j,k∈ NNN satisfying{i, j,k}= {1,2,3} we have

0 = (D̄i ◦ D̄ j)•(D̄k ◦Di)+(D̄k ◦Di)•(D̄i ◦ D̄ j)

= (Di • D̄i ◦ D̄ j)◦ D̄k +Di ◦(D̄k • D̄i ◦ D̄ j)+(D̄i •Di ◦ D̄k)◦ D̄ j + D̄i ◦(D̄ j •Di ◦ D̄k)

= (αi, j +αi,k)D̄ j ◦ D̄k + · · · . (8.6)

Applying πkerι
t to the both sides where all trial digit oft is 0 except for theith and the jth,

ti = t j =−1, we have(αi, j +αi,k)D̄ j ◦ D̄k = 0. Hence we have(αi, j +αi,k)(α j,k+1) = 0 applying
D j •Dk • to the both sides. Similarly for0= (D̄i ◦D j) •(D̄k ◦Di)+(D̄k ◦Di) •(D̄i ◦D j) and the term
D j ◦ D̄k we have(αi, j −αi,k)(α j,k−1) = 0. It is easily checked that the solutions of the above
equations areα = (α1,2,α2,3,α3,1) = (0,0,0), α = (−1,−1,−1), α = (−1,1,1), α = (1,−1,1),
α = (1,1,−1). If α = (−1,−1,−1) then we haveDi ◦D j = 0 andD̄i ◦ D̄ j = 0 for all i, j = 1,2,3,
which impliesDw1

i
◦Dw2

j
◦Dw3

k = 0 for all w = (w1,w2,w3) ∈ (ZZZ/2ZZZ)3 where{i, j,k}= {1,2,3},
so R = 0. In the same wayR = 0 for eachα = (−1,1,1), α = (1,−1,1), α = (1,1,−1). If
α = (0,0,0) then the set{Dw1

i
◦Dw2

j |i 6= j, w∈ (ZZZ/2ZZZ)2} is linearly independent. Considering

the relations0= (Dw1
i
◦Dw2

j )•(Dw′1
k
◦D

w′2
l )+(D

w′k
i
◦D

w′2
k )•(Dw1

i
◦Dw2

j ) for all w,w′ ∈ (ZZZ/2ZZZ)2 and
i, j,k, l ∈ {1,2,3} in the same way, we haveβi, j,k,l = 0 if {i, j,k, l} 6= {s, s̄, t, t̄} for any s, t ∈
{1,2,3}. Consider the mapι for this case. By Proposition 7.3 we may assumeD̄1D̄2D̄3 ∈ kerι .
If we haveDw1

1
◦Dw2

2
◦Dw3

3 6= 0 for somew ∈ {(1,0,0),(0,1,0),(0,0,1)} thenR is not simple
by Proposition 6.2. HenceDw1

1
◦Dw2

2
◦Dw3

3 = 0 for all w∈ {(1,1,1),(1,0,0),(0,1,0),(0,0,1)}.
Thus the simple physical conformal superalgebra structure on this space is uniquely determined,
which isCK6. ¤

PROPOSITION8.5. Simple physical conformal superalgebras withdimV = 8 do not exist.

PROOF. Suppose given a simple physical conformal superalgebraR with dimV = 8. The
mapι is surjective. Then we have(αi, j +α j,k)(αi,k+1) = 0 and(αi, j−α j,k)(αi,k−1) = 0 for all
distinct i, j,k. It is easily checked that the set of solutionsα = (α1,2,α1,3,α1,4,α2,3,α2,4,α3,4) is
{(0,0,0,0,0,0), (1,1,1,−1,−1,−1), (1,1,−1,−1,1,1), (1,−1,1,1,−1,1), (1,−1,−1,1,1,1),
(−1,1,−1,1,−1,1), (−1,1,1,1,1,−1), (−1,−1,1,−1,1,1), (−1,−1,−1,−1,−1,−1)}. For
the non-zero solutions we haveDw1

i Dw2
j Dw3

k Dw4
l = 0 for all w ∈ (ZZZ/2ZZZ)4 where{i, j,k, l} =

{1,2,3,4}, henceR = 0. If α = 0 then the set{Dw1
i
◦Dw2

j |i 6= j, w ∈ (ZZZ/2ZZZ)2} is linearly
independent, soβi, j,k,l = 0 if {i, j,k, l} 6= {s, s̄, t, t̄} for any s, t ∈ {1,2,3,4}, which implies
ι(Dw1

i Dw2
j Dw3

k Dw4
l ) = 0 if and only if Dw1

i
•Dw2

j
◦Dw3

k
◦Dw4

l = 0. Supposeι(Dw1
i Dw2

j Dw3
k Dw4

l ) = 0

for somew∈ (ZZZ/2ZZZ)4 where{i, j,k, l} = {1,2,3,4}. Then0 = Dw1+1
i

◦Dw1
i
•Dw2

j
◦Dw3

k
◦Dw4

l =

Dw2
j
◦Dw3

k
◦Dw4

l because of (H4), so we haveι(Dw1+1
i Dw2

j Dw3
k Dw4

l ) = 0. Sincekerι 6= {0} by
Proposition 7.3, thusR= 0. ¤

PROPOSITION8.6. For a simple physical conformal superalgebra withdimV = 4 the form
(·, ·)V∧V is as given on table 1 for someα ∈CCC.

PROOF. The table 1 is obtained by using the following formulae:

Da
1
•Da

1
◦Db

2 = 0, (8.7)
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Table 1. The form(·, ·)V∧V for dimV = 4.

(·, ·)α
V∧V D̄1∧D1 D̄2∧D2 D1∧D2 D̄1∧D2 D1∧ D̄2 D̄1∧ D̄2

D̄1∧D1 1 α 0 0 0 0
D̄2∧D2 α 1 0 0 0 0
D1∧D2 0 0 0 0 0 −(1+α)
D̄1∧D2 0 0 0 0 −(1−α) 0
D1∧ D̄2 0 0 0 −(1−α) 0 0
D̄1∧ D̄2 0 0 −(1+α) 0 0 0

Da
2
•Da

2
◦Db

1 = 0, (8.8)

Da
1
•Da+1

1
◦Db

2 =−Da
1
•Db

2
◦Da+1

1

= Da
1
◦Db

2
•Da+1

1 +Db
2
•Da

1
◦Da+1

1 +Db
2
◦Da

1
•Da+1

1 −2(Da
1
•Db

2)◦Da+1
1

= Db
2 +(−1)a+bαDb

2, (8.9)

Da
2
•Da+1

2
◦Db

1 = Db
1 +(−1)a+bαDb

1, (8.10)

wherea,b∈ ZZZ/2ZZZ. ¤

REMARK 8.7. The form(·, ·)V∧V of Proposition 8.6 is given by

(ei ∧ej ,ek∧el )V∧V =−αεi jkl +δ jkδil −δikδ jl , (8.11)

whereεi jkl is antisymmetric withε1234= 1.

On the other hand we have the following proposition.

PROPOSITION8.8. A physical conformal superalgebra structure exists onCl(V) where
dimV = 4 with the form(·, ·)V∧V described in Table1 for an eachα ∈CCC.

PROOF. By Proposition 7.2 the form(·, ·)V∧V determines the products◦ and • on Cl(V)
for an arbitraryα ∈CCC. It is easily checked that they have all properties (H0)–(H6). By Proposi-
tion 5.4 a conformal superalgebra structure is determined on Cl(V) for eachα ∈CCC. ¤

We shall denote thus obtained family of physical conformal superalgebras by{Nα
4 }α∈CCC. Nα

4
is equivalent toN0

4 changing the conformal vectorL to Lα = L− (α/2)∂e1 •e2 ◦e3 ◦e4 except for
α2 = 1. Forα2 = 1 we shall denoteN4 = (N0

4 ,(n),L1), which is isomorphic to(N0
4 ,(n),L−1).

NOTE 8.9. The conformal superalgebraK4 is written down in [8]. The physical conformal
superalgebraN0

4 is isomorphic to the subalgebra ofK4 generated by the primary vectors other
thanξ1ξ2ξ3ξ4.

PROPOSITION8.10. Nα
4 andNβ

4 are isomorphic if and only ifα2 = β 2.

PROOF. SetE1 = D̄1∧D1, E2 = D̄2∧D2, E3 = D1∧D2, E4 = D̄1∧D2, E5 = D1∧ D̄2,
E6 = D̄1 ∧ D̄2. The characteristic polynomial of the matrixMi, j = (Ei ,E j)V∧V is ((t + 1)−
α2)((t−1)2−α2)2, which is invariant under automorphisms by Proposition 7.1. Hence ifNα

4
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andNβ
4 are isomorphic thenα2 = β 2. Conversely supposeβ =−α. Consider the mapf : V →V

defined byf (e1) = e2, f (e2) = e1, f (ek) = ek for all k > 2. Becausekerι = {0}, f extends to an
automorphism of conformal superalgebra, which mapsα to−α. ¤

For their simplicity we have the following.

PROPOSITION8.11. Nα
4 is simple if and only ifα2 6= 1.

PROOF. Consider the bilinear form〈·, ·〉 onV ∧V ∧V defined by〈u1∧u2∧u3,31∧ 32∧
33〉L = u3 •u2 •u1 •31 ◦32 ◦33. Denotefi, j = Di∧D̄i∧D j and f̄i, j = D̄i∧Di∧D̄ j and take the basis
{ fi, j , f̄i, j | {i, j} = {1,2}} of V ∧V ∧V. Then we have〈 f̄i, j , fk,l 〉 = 〈 fi, j , f̄k,l 〉 = (1−α2)δi,kδ j,l ,
〈 fi, j , fk,l 〉 = 〈 f̄i, j , f̄k,l 〉 = 0. So the form〈·, ·〉 is symmetric, and is nondegenerate if and only if
α2 6= 1. By Proposition 6.2,Nα

4 is simple if and only ifα2 6= 1. ¤

In particularN0
4 is simple, so we have the following corollary.

COROLLARY 8.12. N4 is simple.

NOTE 8.13. A one-parameter family of superconformal algebras that is called the large
N = 4 superconformal algebra is written down in [11]. In (2), (3), (4) of [11] setγ = (β +1)/2
and replace the central terms by0. Fix the conformal vectorL(z) = ∑n∈NNN Lnz−n−2. If β 2 6= 1

then the centerless largeN = 4 superconformal algebra is isomorphic toNβ
4 by

Ga =
√

2ea,

A±1 =
−1

2(1±β )
(e2 ◦e3±e1 ◦e4) ,

A±2 =
1

2(1±β )
(e1 ◦e3∓e2 ◦e4) ,

A±3 =
−1

2(1±β )
(e1 ◦e2±e3 ◦e4) , (8.12)

Qa =
1√

2(1−β 2)
(−1)aeb1

◦eb2
◦eb3,

U =
−1

1−β 2 e1 •e2 ◦e3 ◦e4,

where{a,b1,b2,b3}= {1,2,3,4} andb1 < b2 < b3. Forβ =±1 the largeN = 4 superconformal
algebra is isomorphic toN4.

NOTE 8.14. The action of the Lie algebra(A,(0)) on V is not faithful for Nα
4 since

e1 •e2 ◦e3 ◦e4 acts onV trivially. The ideal generated bye1 •e2 ◦e3 ◦e4 is R itself. As is dis-
cussed in (4.12) of [8], for a unit vectoru∈V one has anAu-module isomorphismu◦ : Au

∼→ F
with the inverse mapu• : F

∼→ Au whereAu = {a ∈ A| a•u = 0} in our terminology. Ae1 is
spanned byA+1 +A−1, A+2−A−2, A+3−A−3 andU , so the condition thatF is isomorphic to
Au asAu-modules is also satisfied here.

PROPOSITION8.15. A simple physical conformal superalgebraR with dimV = 4 is iso-
morphic to one ofS2, W2, N4 andNα

4 for someα ∈CCC whereα ∈ (CCC/{±1})\{[1]}.
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PROOF. Since the Clifford action of a unit vector inV yields an isomorphism between the
even subspace of Imι and the odd subspace of Imι , we havedimImι ≥ 2dimV, sodimImι is
one of8, 12and16.

If dimImι = 16 then the mapι is injective, soRι is isomorphic toNα
4 for someα ∈CCC. So

ι is surjective becauseV ◦V ◦V 6= {0} for all Nα
4 s. Nα

4 is simple if and only ifα2 6= 1, henceR is
isomorphic toNα

4 for someα2 6= 1.
If dimImι = 12 then dimkerι = 4, so we may assumekerι = M(00), which implies

D0
1
◦D0

2 = 0. α = −1 by Proposition 8.6, henceRι is uniquely determined, which is neither
simple nor withV ◦V ◦V = {0}. So simple physical conformal superalgebras withdimImι = 12
do not exist.

If dimImι = 8 thendimkerι = 8. We may assumeM(00)⊂ kerι , which impliesD0
1
◦D0

2 =
0. α = −1 by Proposition 8.6, sokerι = M(00)⊕M(11). HenceRι is uniquely determined,
which is S2. In particular the Lie algebra(V ◦V, •) and its action onV by the product• is
uniquely determined. Consider the pairingJ : V∧V∧V×F →CCC defined byJ(31∧32∧33, f )L =
31 •32 •33 • f . By (D6) we haveJ(a·ω, f )+J(ω,a· f ) = 0 for all a∈A, f ∈ F andω ∈V∧V∧V
whereV and F are supposed to be(A, •)-modules by the product• and so isV ∧V ∧V by
derivation. OnceJ is determined,u•3 • f is uniquely determined for allu,3 ∈V and f ∈ F , so the
action ofA=V ◦V +V •F onV by the product• is uniquely determined. The pairingJ is (A, •)-
invariant and ifJ(ω, f ) = 0 for all ω ∈V∧V∧V then f = 0, so the action ofAonF by the product
• is uniquely determined by the action ofA on V ∧V ∧V, which determines the productV ◦A
because of (H4). By Lemma 4.2 we have(b〈q〉c)〈p〉a = ∑ j r jb〈q− j〉c〈p+ j〉a+sjc〈p+q− j〉b〈 j〉a for
all a,b,c∈ Ř for somer j ,sj ∈CCC, so the simple physical conformal superalgebra structure onR is
uniquely determined by the pairingJ. Consider anA-submoduleJ0 = {ω ∈V∧V∧V| J(ω, f ) =
0 for all f ∈ F}. J0 6= V ∧V ∧V becauseR is simple. The(V ◦V, •)-moduleV ∧V ∧V is
decomposed into two2-dimensional irreducible modules, sodimJ0 is either0 or 2. If dimJ0 = 0
thenR is isomorphic toN4. If dimJ0 = 2 then we can choose a basis{D1,D2, D̄1, D̄2} of V that
satisfies(Di ,D j)= (D̄i , D̄ j)= δi j and(Di , D̄ j)= 0so thatJ0 = Span{D1∧D̄1∧D2,D1∧D2∧D̄2}
andkerι = M(00)⊕M(11), henceR is unique if exists, which isW2. ¤

Hence we have the complete list of simple physical conformal superalgebras.

THEOREM 8.16. A simple physical conformal superalgebras is isomorphic to one of Vir,
K1, K2, K3, S2, W2, N4, Nα

4 andCK6, whereα ∈ (CCC/{±1})\{[1]}.
If conformal superalgebrasR andR′ are equivalent then the Lie superalgebras(R/∂R,(0))

and(R′/∂R′,(0)) are isomorphic. Any pair of Lie superalgebras(Vir/∂Vir,(0)), (K1/∂K1,(0)),
(K2/∂K2,(0)), (K3/∂K3,(0)), (S2/∂S2,(0)), (W2/∂W2,(0)) and(N0

4/∂N0
4 ,(0)) is not isomor-

phic, whileN4 andNα
4 s are equivalent toN0

4 except forα2 = 1. Hence we have the following
corollary.

COROLLARY 8.17. A simple physical conformal superalgebra is equivalent to one of Vir,
K1, K2, K3, S2, W2, N0

4 andCK6.
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