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Orbit closures for representations of Dynkin quivers

are regular in codimension two

By Grzegorz Zwara
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Abstract. We develop reductions for classifications of singularities of orbit
closures in module varieties. Then we show that the orbit closures for representations
of Dynkin quivers are regular in codimension two.

1. Introduction and the main results.

Throughout the paper, k denotes an algebraically closed field, A denotes a finitely
generated associative k-algebra with identity, and by a module we mean a left A-module
whose underlying k-space is finite dimensional. Let d be a positive integer and denote
by Md(k) the algebra of d× d-matrices with coefficients in k. For an algebra A, the set
modA(d) of algebra homomorphisms A → Md(k) has a natural structure of an affine
variety. Indeed, if A ' k〈X1, . . . , Xt〉/I for some two-sided ideal I, then modA(d) can
be identified with the closed subset of (Md(k))t given by vanishing of the entries of
all matrices ρ(X1, . . . , Xt), ρ ∈ I. Moreover, the general linear group GL(d) acts on
modA(d) by conjugations

g ? (M1, . . . , Mt) = (gM1g
−1, . . . , gMtg

−1),

and the GL(d)-orbits in modA(d) correspond bijectively to the isomorphism classes of d-
dimensional modules. We shall denote by OM the GL(d)-orbit in modA(d) corresponding
to a d-dimensional module M . An interesting problem is to study geometric properties
of the Zariski closure OM of an orbit OM in modA(d). We refer to [2], [3], [4], [5], [6],
[12], [15], [16] and [17] for some results in this direction.

Following Hesselink [10, (1.7)] we call two pointed varieties (X , x0) and (Y , y0)
smoothly equivalent if there are smooth morphisms f : Z → X , g : Z → Y and a
point z0 ∈ Z with f(z0) = x0 and g(z0) = y0. This is an equivalence relation and the
equivalence classes will be denoted by Sing(X , x0) and called the types of singularities.
If Sing(X , x0) = Sing(Y , y0) then the variety X is regular (respectively, normal, Cohen-
Macaulay) at x0 if and only if the same is true for the variety Y at y0 (see [9, Section 17]
for more information about smooth morphisms). Obviously the regular points of the
varieties give one type of singularity, which we denote by Reg. Let M and N be d-
dimensional modules with ON ⊆ OM , i.e., N is a degeneration of M . We shall write
Sing(M, N) for Sing(OM , n), where n is an arbitrary point of ON . It was shown recently
[17, Theorem 1.1] that Sing(M, N) = Reg provided dimOM −dimON = 1. In this paper
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we investigate Sing(M, N) when dim OM − dimON = 2. First we prove some auxiliary
result.

Theorem 1.1. Let M ′, N ′ and X be modules such that ON ′⊕X ⊂ OM ′⊕X and
dimOM ′⊕X − dimON ′⊕X = 2. Then ON ′ ⊂ OM ′ and one of the following cases holds:

(1) dimOM ′ − dimON ′ = 1 and Sing(M ′ ⊕X, N ′ ⊕X) = Reg;
(2) dimOM ′ − dimON ′ = 2 and Sing(M ′ ⊕X, N ′ ⊕X) = Sing(M ′, N ′).

This allows to restrict our attention only to the case when the modules M and
N have no nonzero direct summands in common. We shall say that such modules are
disjoint. We denote by s(L) the number of summands in a decomposition of a module L

into a direct sum of indecomposable modules. The next result give us a further reduction
for the problem of description of the type Sing(M, N).

Theorem 1.2. Let M and N be disjoint modules such that ON ⊂ OM and
dimOM − dimON = 2. Then Sing(M, N) = Reg if s(N) ≥ 3.

If A = k[ε]/(ε2), M = AA and N is a direct sum of two simple A-modules, then
s(N) = 2, ON ⊂ OM , dimOM − dimON = 2 and

Sing(M, N) = Sing
({

[ x y
z −x ] ; x2 + yz = 0

}
, [ 0 0

0 0 ]
)

is the type of Kleinian singularity A2. Hence orbit closures in module varieties may be
singular in codimension two even for very simple algebras. However this is not true for
the modules over the path algebras of Dynkin quivers. We add that Theorems 1.1 and
1.2 are used in the proof of our main result stated below.

Theorem 1.3. Let M be a module over the path algebra of a Dynkin quiver. Then
the variety OM is regular in codimension two.

Let Q = (Q0, Q1, s, e) be a finite quiver. Here Q0 is a finite set of vertices, Q1 is a
finite set of arrows, and s, e : Q1 → Q0 are functions such that any arrow α ∈ Q1 has the
starting vertex s(α) and the ending vertex e(α). Let d = (di)i∈Q0 ∈ NQ0 . We define
the vector space

repQ(d) =
∏

α∈Q1

Mde(α)×ds(α)(k),

where Md′×d′′(k) denotes the set of d′×d′′-matrices with coefficients in k for any d′, d′′ ∈
N . The product GL(d) =

∏
i∈Q0

GL(di) of general linear groups acts on repQ(d) via

g ? V = (ge(α)Vαg−1
s(α))α∈Q1 ,

for any g = (gi)i∈Q0 ∈ GL(d) and V = (Vα)α∈Q1 ∈ repQ(d). Using an equivalence
described by Bongartz in [4] we can reformulate Theorem 1.3 as follows.
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Corollary 1.4. Let Q be a Dynkin quiver and d ∈ NQ0 . Then the closures of
the GL(d)-orbits in repQ(d) are regular in codimension two.

Let Q : 1 α−→ 2 be a Dynkin quiver of type A2 and d = (2, 2) ∈ NQ0 . Then
repQ(d) = M2×2(k) and the orbit closure

GL(d) ? [ 1 0
0 0 ] = {[ x y

z t ] ; xt− yz = 0}

is a singular variety of dimension three. This shows that “codimension two” in Corollary
1.4 (and in Theorem 1.3) cannot be improved by “codimension three”.

We shall consider in Section 2 some properties of short exact sequences, dimensions of
homomorphism spaces and degenerations of modules. Section 3 contains some sufficient
conditions on regularity of Sing(M, N). Sections 4, 5 and 6 are devoted to the proofs of
Theorems 1.1, 1.2 and 1.3, respectively.

For basic background on the representation theory of algebras and quivers we refer
to [1] and [11]. The author gratefully acknowledges support from the Polish Scientific
Grant KBN No. 1 P03A 018 27.

2. Degenerations of modules.

Let mod A denote the category of finite dimensional left A-modules and rad(modA)
denote the Jacobson radical of the category modA. We can describe rad(modA) as
the two-sided ideal of modA generated by nonisomorphisms between indecomposable
modules. We abbreviate by [X, Y ] the dimension dimk HomA(X, Y ) for any modules X

and Y . Recall that by a module we mean an object of modA.

Lemma 2.1. Let M and N be modules with dimk M = dimk N . Then dimOM −
dimON = [N, N ]− [M, M ].

Proof. Let L be a d-dimensional module and choose a point l in OL. Since the
isotropy group of l can be identified with the group of A-automorphisms of L and the
latter is a nonempty and open subset of the vector space EndA(L), then we conclude the
formula

dimOL = dim GL(d)− [L,L].

We get the claim by applying the formula for L = M and L = N . ¤

We shall need the following three simple facts on short exact sequences.

Lemma 2.2. Let X be a module and σ : 0 → U
f−→ W

g−→ V → 0 be an exact
sequence in mod A. Then:

(1) δσ(X) := [U ⊕ V, X]− [W,X] ≥ 0 and the equality holds if and only if any homo-
morphism in HomA(U,X) factors through f ;

(2) δ′σ(X) := [X, U ⊕ V ]− [X, W ] ≥ 0 and the equality holds if and only if any homo-
morphism in HomA(X, V ) factors through g.
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Proof. The claim follow from the induced exact sequences

0 → HomA(V, X)
HomA(g,X)−−−−−−−→ HomA(W,X)

HomA(f,X)−−−−−−−→ HomA(U,X),

0 → HomA(X, U)
HomA(X,f)−−−−−−−→ HomA(X, W )

HomA(X,g)−−−−−−−→ HomA(X, V ). ¤

Lemma 2.3. Let σ : 0 → U
f−→ W

g−→ V → 0 be an exact sequence in mod A. Then
the following conditions are equivalent.

(1) The sequence σ splits.
(2) W ' U ⊕ V .
(3) δσ(U) = 0.
(4) δ′σ(V ) = 0.

Proof. Clearly the condition (1) implies (2), and the condition (2) implies (3)
and (4). Applying Lemma 2.2 we get that (3) implies that the endomorphism 1U factors
through f , which means that f is a section and (1) holds. Similarly, it follows from (4)
that g is a retraction and (1) holds. ¤

Lemma 2.4. Let

0 → U

“
f1
f2

”

−−−→ W1 ⊕W2

“ g1,1 g1,2
g2,1 g2,2

”

−−−−−−−→ V1 ⊕ V2 → 0

be an exact sequence in mod A such that g1,1 is an isomorphism. Then

0 → U
f2−→ W2

g′−→ V2 → 0.

is also an exact sequence in mod A, where g′ = g2,2 − g2,1g
−1
1,1g1,2.

Proof. Straightforward. ¤

The next result follows from [14, Theorem 1.1] and from Lemma 2.4 and its dual.

Theorem 2.5. Let M and N be modules. Then the inclusion ON ⊆ OM is
equivalent to each of the following conditions:

(1) There is an exact sequence 0 → Z
f−→ Z⊕M

g−→ N → 0 in mod A for some module
Z.

(2) There is an exact sequence 0 → N
f ′−→ M ⊕ Z ′

g′−→ Z ′ → 0 in mod A for some
module Z ′.

Moreover, we may assume that f and g′ belong to rad(modA).

Corollary 2.6. Let

σ : 0 → U → M → V → 0
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be an exact sequence in mod A. Then OU⊕V ⊆ OM .

Proof. We apply Theorem 2.5 to a direct sum of σ and the exact sequence
0 → 0 → U

1U−−→ U → 0. ¤

Lemma 2.7. Let M and N be modules such that ON ⊆ OM . Then

δM,N (X) := [N, X]− [M, X] ≥ 0 and δ′M,N (X) := [X, N ]− [X, M ] ≥ 0

for any module X.

Proof. We get an exact sequence σ : 0 → Z → Z ⊕M → N → 0 in modA, by
Theorem 2.5. Then the claim follows from Lemma 2.2 and the equalities δM,N (X) =
δσ(X) and δ′M,N (X) = δ′σ(X) for any module X. ¤

Let M and N be modules with ON ⊆ OM and σ be a short exact sequence in
mod A. We shall use frequently without referring the following obvious properties of the
nonnegative integers δ(L):

• δ(X) = δ(Y ) if X ' Y ,
• δ(X ⊕ Y ) = δ(X) + δ(Y ),
• δ(X ⊕ Y ) = 0 implies δ(X) = 0,

where X and Y are modules and δ is an abbreviation of δσ, δ′σ, δM,N or δ′M,N .

3. Smooth points of orbit closures.

Throughout the section let M and N be d-dimensional modules such that ON ⊆ OM ,
and let FM,N and F ′

M,N denote complete sets of pairwise nonisomorphic modules X such
that δM,N (X) = 0 and δ′M,N (X) = 0, respectively.

Let U, V ∈ mod A. We denote by Z1
A(V, U) the group of cocycles, i.e., the k-linear

maps Z : A → Homk(V, U) satisfying

Z(aa′) = Z(a)V (a′) + U(a)Z(a′), for all a, a′ ∈ A.

The group Z1
A(V, U) contains the group of coboundaries

B1
A(V, U) = {hV − Uh; h ∈ Homk(V, U)}.

This leads to the k-functor

Z1
A(−,−) : modA×mod A → mod k

and its k-subfunctor B1
A(−,−). Any cocycle Z in Z1

A(V, U) induces an exact sequence

σZ : 0 → U
αZ−−→ WZ

βZ−−→ V → 0
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in modA. Then the cocycle Z is a coboundary if and only if the sequence σZ splits,
which is equivalent to the fact that WZ ' U ⊕ V , by Lemma 2.3. Let

ZM,N (V, U) = {Z ∈ Z1
A(V, U); δσZ

(X) = 0 for any X ∈ FM,N ,

δ′σZ
(Y ) = 0 for any Y ∈ F ′

M,N}.

Obviously ZM,N (V, U) contains B1
A(V, U) and does not depend on the choice of rep-

resentatives of isomorphism classes of modules in the definition of the sets FM,N and
F ′

M,N .

Lemma 3.1. A cocycle Z ∈ Z1
A(V, U) belongs to ZM,N (V, U) if and only if

Z1
A(V, f)(Z) ∈ B1

A(V, X) and Z1
A(g, U)(Z) ∈ B1

A(Y, U)

for any modules X ∈ FM,N , Y ∈ F ′
M,N and any homomorphisms f : U → X, g : Y →

V .

Proof. Let Z be a cocycle in Z1
A(V, U). By duality, it suffices to show that

δσZ
(X) = 0 if and only if the cocycle Z1

A(V, f)(Z) is a coboundary for any homomorphism
f : U → X. By Lemma 2.2, the equality δσZ

(X) = 0 means that any homomorphism
in HomA(U,X) factors through αZ . Let Z ′ = Z1

A(V, f)(Z) for some homomorphism
f : U → X. We consider the pushout of σZ under f :

σZ : 0 // U
αZ //

f

²²

WZ
βZ //

²²

V // 0

σZ′ : 0 // X
αZ′ // WZ′

βZ′ // V // 0.

Then f factors through αZ if and only if the sequence σZ′ splits, and the latter means
that the cocycle Z ′ is a coboundary. ¤

Lemma 3.2. ZM,N (−,−) is a k-subfunctor of Z1
A(−,−).

Proof. Let U and V be modules. We take X ∈ FM,N and Y ∈ F ′
M,N . Then

ZM,N (V, U) is a k-space, by Lemma 3.1 and since the appropriate maps Z1
A(V, f) and

Z1
A(g, U) are k-linear. Let Z be a cocycle in ZM,N (V, U). We set Z ′ = Z1

A(V, f ′)(Z),
where f ′ : U → U ′ is a homomorphism for some module U ′. Then

Z1
A(V, f̃)(Z ′) = Z1

A(V, f̃f ′)(Z) ∈ B1
A(V, X)

for any homomorphism f̃ : U ′ → X and

Z1
A(g̃, U ′)(Z ′) = Z1

A(g̃, f ′)(Z) = Z1
A(Y, f ′)

(
Z1

A(g̃, U)(Z)
)

∈ Z1
A(Y, f ′)

(
B1

A(Y, U)
) ⊆ B1

A(Y, U ′)
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for any homomorphism g̃ : Y → V . This shows that the cocyle Z ′ belongs to ZM,N

(V, U ′). Dually the cocycle Z1
A(g′, U)(Z) belongs to ZM,N (V ′, U) for any module V ′ and

any homomorphism g′ : V ′ → V . ¤

The module variety modA(d) is the underlying variety of an affine k-scheme modd
A

of finite type, which represents the functor

modd
A : (Commutative k–algebras) → (Sets),

where modd
A(R) is the set of k-algebra homomorphisms from A to the algebra of d× d-

matrices with coefficients in a commutative k-algebra R [4], [8]. We denote by TX ,x the
tangent space of a k-scheme X at a point x. Let n be a (closed) point of ON . Then the
tangent space Tmodd

A,n corresponds to the preimage of n via the canonical map

modd
A(k[ε]/(ε2)) → modd

A(k),

and the latter corresponds to the group of cocycles Z1
A(N, N). Hence we get a canonical

k-isomorphism

Φ : Tmodd
A,n

'−→ Z1
A(N, N).

Furthermore, Φ(TON ,n) = B1
A(N, N) which gives the isomorphism

Φ : Tmodd
A,n/TON ,n

'−→ Ext1A(N, N)

known as a Voigt result [8, Proposition 1.1]. Here and later on, the group Ext1A(V, U) of
extensions of V by U is identified with the quotient Z1

A(V, U)/B1
A(V, U) for any modules

U and V .

Lemma 3.3. Let n ∈ ON . Then Φ
(
TOM ,n

) ⊆ ZM,N (N, N).

Proof. We have to recall some notation and results of Section 3 in [15] (see also
the proof of [16, Proposition 2.2]). Let X be a module and

modd
A,X,t : (Commutative k–algebras) → (Sets)

be the subfunctor of modd
A defined in [16, (3.3)], where t = [X, M ]. This functor is

represented by an affine k-subscheme X = modd
A,X,t of modd

A such that the underlying
variety is given by

Xred = {l ∈ modA(d); [X, L] = t}.

Here L denotes a module corresponding to a point l in modA(d). Assume that δ′M,N (X) =
0. Then the orbits OM and ON are included in Xred. Therefore TOM ,n is contained in
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TX ,n. On the other hand, the tangent space TX ,n corresponds to the preimage of n via
the canonical map

modd
A,X,t(k[ε]/(ε2)) → modd

A,X,t(k).

Furthermore, by [15, Lemma 3.11], the latter corresponds to the subset of Z1
A(N, N)

consisting of the cocycles Z such that δ′σZ
(X) = 0. Hence Φ(TOM ,n) is contained in

{
Z ∈ Z1

A(N, N); δ′σZ
(X) = 0 for any X ∈ F ′

M,N

}
.

By duality, Φ(TOM ,n) is also contained in

{
Z ∈ Z1

A(N, N); δσZ
(X) = 0 for any X ∈ FM,N

}
,

and the claim follows from the definition of ZM,N (N, N). ¤

We define the quotient EM,N (V, U) = ZM,N (V, U)/B1
A(V, U) for any modules U and

V . An immediate consequence of Lemmas 3.1 and 3.2 is the following fact.

Corollary 3.4. EM,N (−,−) is a k-subfunctor of

Ext1A(−,−) : modA×mod A → mod k

and

EM,N (V, U) =
⋂

X∈FM,N

f∈HomA(U,X)

Ker
(
Ext1A(V, f)

) ∩
⋂

Y ∈F ′
M,N

g∈HomA(Y,V )

Ker
(
Ext1A(g, U)

)

for any modules U and V .

Now we are ready to formulate our first sufficient conditions for regularity of points
in OM .

Proposition 3.5. dimk EM,N (N, N) ≥ [N, N ] − [M, M ] and the equality implies
that Sing(M, N) = Reg.

Proof. Let n ∈ ON . Combining Lemmas 2.1 and 3.3 we get

dimk EM,N (N, N) = dimk ZM,N (N, N)− dimk B1
A(N, N)

≥ dimk TOM ,n − dimk TON ,n = dimk TOM ,n − dimON

≥ dimOM − dimON = [N, N ]− [M, M ].

Moreover, the equality dimk EM,N (N, N) = [N, N ]− [M, M ] implies that
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dimk TOM ,n = dim OM ,

which means that Sing(M, N) = Reg, as the variety OM is irreducible. ¤

As a consequence of the above proposition one can conclude the following useful
result [16, Proposition 2.2].

Proposition 3.6. Assume that one of the following cases holds.

(1) There is an exact sequence σ : 0 → Z → Z ⊕ M → N → 0 in mod A and
δ′M,N (Z ⊕M) = 0 for some module Z.

(2) There is an exact sequence σ′ : 0 → N → M ⊕ Z ′ → Z ′ → 0 in mod A and
δM,N (M ⊕ Z ′) = 0 for some module Z ′.

Then Sing(M, N) = Reg.

Proof (1). We may assume that Z ⊕ M belongs to F ′
M,N . By Corollary 3.4,

EM,N (N, N) is contained in the kernel of the last map in the following long exact sequence
induced by σ:

0 → HomA(N, N) → HomA(Z ⊕M, N) → HomA(Z,N) →
→ Ext1A(N, N) → Ext1A(Z ⊕M, N).

Consequently,

dimk EM,N (N, N) ≤ δσ(N) = δM,N (N) + δ′M,N (M) = [N, N ]− [M, M ].

Hence the claim follows from Proposition 3.5.
We proceed dually in case (2). ¤

Corollary 3.7. Let σ : 0 → U → M → V → 0 be an exact sequence in mod A

such that δ′σ(U ⊕M) = 0 or δσ(M ⊕ V ) = 0. Then

Sing(M, U ⊕ V ) = Reg .

Proof. If δ′σ(U ⊕M) = 0 then it suffices to apply Proposition 3.6 for Z = U and
the direct sum of σ and the sequence 0 → 0 → U

1U−−→ U → 0. We proceed in a similar
way if δσ(M ⊕ V ) = 0. ¤

We conclude from the proof of [17, Theorem 1.1] and its dual the following result.

Theorem 3.8. Assume that dimOM − dimON = 1. Then:

(1) δM,N (M) = δ′M,N (M) = 0 and δM,N (N) = δ′M,N (N) = 1;
(2) there is an exact sequence 0 → Z → Z ⊕ M → N → 0 in mod A for some

indecomposable module Z with δ′M,N (Z) = 0;
(3) there is an exact sequence 0 → N → M ⊕ Z ′ → Z ′ → 0 in mod A for some

indecomposable module Z ′ with δM,N (Z ′) = 0.
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In particular Sing(M, N) = Reg.

4. Reduction to disjoint modules.

Combining Lemmas 2.2 and 2.4 we get the following fact.

Lemma 4.1. Let

σ : 0 → U
f−→ W

g−→ V1 ⊕ V2 → 0

be an exact sequence in mod A such that δ′σ(V1) = 0. Then W = W1 ⊕ W2 for some
modules W1 ' V1 and W2 such that there is an exact sequence

η : 0 → U
f ′−→ W2

g′−→ V2 → 0

in mod A with f ′ : U → W2 being a component of f : U → W1 ⊕W2.

We denote by µ(L, Y ) the multiplicity of an indecomposable module Y as a direct
summand of a module L.

Lemma 4.2. Let M and N be modules such that ON ⊆ OM . Let Y be an inde-
composable module such that µ(M, Y ) < µ(N, Y ). Then δM,N (Y ) > 0 or δ′M,N (Y ) > 0.

Proof. Applying Theorem 2.5 we get an exact sequence

σ : 0 → Z
f−→ Z ⊕M → N → 0

in modA such that f belongs to rad(modA). Let Y be an indecomposable A-module
such that p := µ(N, Y ) > µ(M, Y ). Assume that δ′M,N (Y ) = 0. Then δ′σ(Y p) =
δ′M,N (Y p) = 0 and Y p is isomorphic to a direct summand of Z ⊕ M , by Lemma 4.1.
Therefore µ(Z ⊕M, Y ) ≥ p and consequently µ(Z, Y ) > 0. This means that there is a
retraction h : Z → Y . We know that h does not factor through f , as the latter belongs
to rad(modA). Hence δM,N (Y ) = δσ(Y ) > 0, by Lemma 2.2. ¤

Lemma 4.3. Let M ′, N ′ and X be modules such that ON ′⊕X ⊂ OM ′⊕X and
M ′ 6' N ′. Then [N ′, N ′] > [M ′,M ′].

Proof. Let M = M ′ ⊕ X and N = N ′ ⊕ X. Since M ′ and N ′ are not isomor-
phic and dimk M ′ = dimk N ′, then there is an indecomposable A-module Y such that
µ(N ′, Y ) > µ(M ′, Y ), or equivalently, µ(N, Y ) > µ(M, Y ). Consequently δM,N (Y ) > 0
or δ′M,N (Y ) > 0, by Lemma 4.2. Therefore the claim follows from the inequalities

[N ′, N ′]− [M ′,M ′] = δM,N (N ′) + δ′M,N (M ′) ≥ δM,N (N ′) ≥ δM,N (Y ),

[N ′, N ′]− [M ′,M ′] = δ′M,N (N ′) + δM,N (M ′) ≥ δ′M,N (N ′) ≥ δ′M,N (Y ). ¤
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We shall need the following cancellation properties proved by Bongartz [6, Corollary
2.5] [5, Theorem 2].

Theorem 4.4. Let M ′, N ′ and X be modules such that ON ⊆ OM for M = M ′⊕X

and N = N ′ ⊕X.

(1) If δM,N (X) = 0 or δ′M,N (X) = 0 then ON ′ ⊆ OM ′ .
(2) If δM,N (X) = 0 and δ′M,N (X) = 0 then Sing(M, N) = Sing(M ′, N ′).

Proof of Theorem 1.1. Let M ′, N ′ and X be modules such that ON ⊂ OM

and dimOM − dimON = 2, where M = M ′ ⊕ X and N = N ′ ⊕ X. In particular, the
modules M ′ and N ′ are not isomorphic and

2 = [N, N ]− [M, M ] = ([N ′, N ′]− [M ′,M ′]) + δM,N (X) + δ′M,N (X).

On the other hand [N ′, N ′]− [M ′,M ′] ≥ 1, by Lemma 4.3. Therefore

dimOM ′ − dimON ′ = [N ′, N ′]− [M ′,M ′] ∈ {1, 2},

and at least one of the numbers δM,N (X) and δ′M,N (X) is zero. Consequently ON ′ ⊆ OM ′ ,
by Theorem 4.4.

We first consider the case dim OM ′ − dimON ′ = 1. By duality, we may assume that
δ′M,N (X) = 0. Using Theorem 3.8 we derive the exact sequence

σ : 0 → Z → Z ⊕M ′ → N ′ → 0

in modA for some module Z such that δ′M ′,N ′(Z ⊕M ′) = 0. Hence

δ′M,N (Z ⊕M) = δ′M,N (Z ⊕M ′) + δ′M,N (X) = δ′M ′,N ′(Z ⊕M ′) = 0.

Let

0 → Z → Z ⊕M → N → 0

be a direct sum of σ and the short exact sequence

0 → 0 → X
1X−−→ X → 0.

Then Sing(M, N) = Reg, by Proposition 3.6.
It remains to consider the case dim OM ′ − dimON ′ = 2. Then δM,N (X) =

δ′M,N (X) = 0. Hence Sing(M, N) = Sing(M ′, N ′), by Theorem 4.4. ¤

5. Reduction to at most two summands.

We shall need the following result which can be derived from the proof of [13,
Theorem 2.3].
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Proposition 5.1. Let 0 → Z
f−→ Z⊕M → N → 0 be an exact sequence in mod A

such that the homomorphism f belongs to rad(modA). Then there are a positive integer
h and exact sequences

σi : 0 → Ni → Ni−1 ⊕Ni+1 → Ni → 0, i = 1, 2, . . . , h,

in mod A for some modules N0, N1, . . . , Nh+1 such that N0 = 0, N1 ' N , Nh+1 ' Nh⊕M

and Z is isomorphic to a direct summand of Nh.

Lemma 5.2. Let 0 → Z
f−→ Z ⊕ M → N → 0 be an exact sequence in mod A

such that f belongs to rad(modA). Let M̃ and Ñ be modules such that OÑ ⊆ OM̃ and
δM,N (M̃) = δM,N (Ñ) = δ′

M̃,Ñ
(N) = 0. Then δ′

M̃,Ñ
(Z) = 0.

Proof. We use Proposition 5.1 and the notation introduced there. Then

h∑

i=1

δσi(M̃) = δM,N (M̃) = 0.

This implies that

2 · [Ni, M̃ ]− [Ni+1, M̃ ]− [Ni−1, M̃ ] = δσi(M̃) = 0, i = 1, 2, . . . , h.

Proceeding by induction on i, one can show that

[Ni, M̃ ] = i · [N, M̃ ], i = 0, 1, . . . , h + 1.

In a similar way we get

[Ni, Ñ ] = i · [N, Ñ ], i = 0, 1, . . . , h + 1.

In particular

δ′
M̃,Ñ

(Nh) = h · δ′
M̃,Ñ

(N) = 0 and δ′
M̃,Ñ

(Z) = 0,

as Z is isomorphic to a direct summand of Nh. ¤

Proposition 5.3. Let M ′, M ′′, N ′ and N ′′ be modules such that M ′ 6' N ′,
M ′′ 6' N ′′, ON ′ ⊂ OM ′ , ON ′′ ⊂ OM ′′ and

dimOM ′⊕M ′′ − dimON ′⊕N ′′ = 2.

Then Sing(M ′ ⊕M ′′, N ′ ⊕N ′′) = Reg.

Proof. It follows from the assumptions and Lemma 2.1 that the integers
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c′ = dim OM ′ − dimON ′ and c′′ = dim OM ′′ − dimON ′′

are positive and

2 = c′ + c′′ + δM ′,N ′(N ′′) + δ′M ′,N ′(N ′′) + δM ′′,N ′′(M ′) + δ′M ′′,N ′′(M ′)

= c′ + c′′ + δM ′,N ′(M ′′) + δ′M ′,N ′(M ′′) + δM ′′,N ′′(N ′) + δ′M ′′,N ′′(N ′).

Hence c′ = c′′ = 1 and

δM ′,N ′(N ′′) = δ′M ′,N ′(N ′′) = δM ′′,N ′′(M ′) = δ′M ′′,N ′′(M ′) = 0,

δM ′,N ′(M ′′) = δ′M ′,N ′(M ′′) = δM ′′,N ′′(N ′) = δ′M ′′,N ′′(N ′) = 0.
(5.1)

By Theorem 3.8, there are exact sequences

0 → Z ′
f ′−→ Z ′ ⊕M ′ → N ′ → 0 and 0 → Z ′′

f ′′−−→ Z ′′ ⊕M ′′ → N ′′ → 0

in modA such that the modules Z ′ and Z ′′ are indecomposable and

δ′M ′,N ′(Z ′ ⊕M ′) = δ′M ′′,N ′′(Z ′′ ⊕M ′′) = 0. (5.2)

Observe that the homomorphisms f ′ and f ′′ belong to rad(modA), as they are not
sections and Z ′ and Z ′′ are indecomposable modules. Using (5.1) and applying twice
Lemma 5.2 we get

δ′M ′,N ′(Z ′′) = δ′M ′′,N ′′(Z ′) = 0. (5.3)

Let M = M ′ ⊕M ′′, N = N ′ ⊕N ′′ and Z = Z ′ ⊕ Z ′′. Taking a direct sum of the above
exact sequences we obtain an exact sequence of the form

0 → Z → Z ⊕M → N → 0.

Applying (5.1), (5.2) and (5.3) yields

δ′M,N (Z ⊕M) = δ′M ′,N ′(Z ′ ⊕M ′ ⊕ Z ′′ ⊕M ′′) + δ′M ′′,N ′′(Z ′ ⊕M ′ ⊕ Z ′′ ⊕M ′′) = 0.

Hence Sing(M, N) = Reg, by Proposition 3.6. ¤

We shall need the following result proved by Bongartz in [5, Theorem 5].

Proposition 5.4. Let U , V and M be modules such that OU⊕V ⊆ OM and
δ′M,U⊕V (U) = δM,U⊕V (V ) = 0. Then there is an exact sequence in mod A of the form
0 → U → M → V → 0.

Proposition 5.5. Let M and N be disjoint modules such that ON ⊆ OM . Assume
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that N ' U ⊕ L⊕ V for some modules U , L and V such that

δM,N (U) = 1, δM,N (L) = 1, δM,N (V ) = 0, δM,N (M) = 0,

δ′M,N (U) = 0, δ′M,N (L) = 1, δ′M,N (V ) = 1, δ′M,N (M) = 0.
(5.4)

Then Sing(M, N) = Reg.

Proof. Applying Theorem 2.5 we get an exact sequence

σ : 0 → Z
f−→ Z ⊕M

g−→ N → 0

in modA such that f belongs to rad(modA). Since δ′M,N (U) = 0 and the modules M

and U are disjoint, then Z ' U ⊕ Y and there is an exact sequence

τ : 0 → Z
f ′−→ Y ⊕M → L⊕ V → 0

in modA for some module Y and some homomorphism f ′ in rad(modA), by Lemma 4.1.
Taking a pushout of the sequence τ under a retraction π : Z → U leads to the following
commutative diagram with exact rows and columns

0

²²

0

²²
Y

²²

Y

²²
0 // Z

f ′ //

π

²²

Y ⊕M //

²²

L⊕ V // 0

0 // U //

²²

W //

²²

L⊕ V // 0.

0 0

Applying Corollary 2.6 and Theorem 2.5 to the exact sequences

ε : 0 → U
α−→ W

β−→ L⊕ V → 0 and 0 → Y → Y ⊕M → W → 0

we get that ON ⊆ OW and OW ⊆ OM . We conclude from (5.4) the equality δ′M,N (U ⊕
M) = 0. Therefore if W ' M then Sing(M, N) = Reg, by Corollary 3.7 applied to
the sequence ε. Thus we may assume that W 6' M . Since f ′ belongs to rad(modA)
then the retraction π does not factor through f ′ and consequently the exact sequence
ε does not split. This implies that W 6' U ⊕ L ⊕ V ' N , by Lemma 2.3. Therefore
dimON < dimOW as well as dim OW < dimOM . Since dimOM − dimON = 2 then
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dimOM − dimOW = 1 and dimOW − dimON = 1.

Applying Theorem 3.8 we get

δM,W (W ) = δ′M,W (W ) = δW,N (N) = δ′W,N (N) = 1, δ′W,N (W ) = 0. (5.5)

Consequently

1 = δ′W,N (N) ≥ δ′W,N (L⊕ V ) = δ′ε(L⊕ V ) > 0,

by Lemma 2.3. Thus

δ′W,N (L) + δ′W,N (V ) = 1,

which gives two possibilities.

Case 1. δ′W,N (L) = 1 and δ′W,N (V ) = 0.

Then δ′ε(V ) = 0, W ' V ⊕W ′ and there is an exact sequence

ε′ : 0 → U → W ′ → L → 0

in modA for some module W ′, by Lemma 4.1.
It follows from (5.4) and (5.5) that

δ′M,W (W ′) = δ′M,W (W )− δ′M,W (V ) = 1− (δ′M,N (V )− δ′W,N (V )) = 0,

δM,W (V ) = δM,N (V )− δW,N (V ) ≤ δM,N (V ) = 0.
(5.6)

Hence δM,W (V ) = 0 and there is an exact sequence

η : 0 → W ′ → M → V → 0

in mod A, by Proposition 5.4. It follows from (5.5) that δ′W,N (W ′) = 0. Consequently,
by (5.4) and (5.6),

δ′M,N (U ⊕W ′ ⊕M) = δ′M,N (W ′) = δ′M,W (W ′) + δ′W,N (W ′) = 0.

Taking a direct sum of the sequences ε′, η and 0 → 0 → U
1U−−→ U → 0 gives an exact

sequence of the form

0 → U ⊕W ′ → U ⊕W ′ ⊕M → N → 0.

Then Sing(M, N) = Reg, by Proposition 3.6 applied for Z = U ⊕W ′.
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Case 2. δ′W,N (L) = 0 and δ′W,N (V ) = 1.

Then δ′ε(L) = 0, W ' L⊕W ′′ and there is an exact sequence

ε′′ : 0 → U → W ′′ → V → 0

in modA for some module W ′′, by Lemma 4.1. In particular U ⊕ V 6' W ′′ and OU⊕V ⊆
OW ′′ , by Corollary 2.6. Applying Lemma 2.3 to the sequence ε yields δW,N (U) = δε(U) >

0. Consequently

δW,N (L) = δW,N (N)− δW,N (U ⊕ V ) ≤ δW,N (N)− δW,N (U) ≤ δW,N (N)− 1.

It follows from (5.4) and (5.5) that δW,N (N)− 1 = 0, δW,N (L) = 0 and

δM,W (W ′′) = δM,W (W )− δM,W (L) = 1− (δM,N (L)− δW,N (L)) = 0,

δ′M,W (W ′′) = δ′M,W (W )− δ′M,W (L) = 1− (δ′M,N (L)− δ′W,N (L)) = 0.
(5.7)

Let Y be an indecomposable direct summand of W ′′. Then δM,W (Y ) = δ′M,W (Y ) = 0
and µ(M, Y ) ≥ µ(W,Y ) > 0, by Lemma 4.2. This implies that M ' W ′′ ⊕M ′ for some
module M ′ not isomorphic to L. Furthermore OL ⊂ OM ′ , by (5.7) and Theorem 4.4.
Applying Proposition 5.3, we get

Sing(M, N) = Sing(W ′′ ⊕M ′, (U ⊕ V )⊕ L) = Reg .

This finishes the proof of Proposition 5.5. ¤

Proof of Theorem 1.2. We decompose N = N1 ⊕ · · · ⊕ Ns, where Ni is an
indecomposable module for i = 1, . . . , s = s(N). Our assumptions and Lemma 2.1 imply
that [N, N ]− [M, M ] = 2. Therefore

2 = δM,N (M) +
s∑

i=1

δ′M,N (Ni) = δ′M,N (M) +
s∑

i=1

δM,N (Ni),

4 = (δM,N (M) + δ′M,N (M)) +
s∑

i=1

(
δM,N (Ni) + δ′M,N (Ni)

)
.

(5.8)

Since the modules M and N are disjoint then µ(M, Ni) = 0 and consequently

δM,N (Ni) + δ′M,N (Ni) ≥ 1, i = 1, . . . , s, (5.9)

by Lemma 4.2. This implies that s ≤ 4. Recall that s ≥ 3, by our assumptions. Hence

δM,N (M) + δ′M,N (M) ≤ 1. (5.10)
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Let U and V be the direct sums of the modules Ni such that δ′M,N (Ni) = 0 and
δM,N (Ni) = 0, respectively. Then δ′M,N (U) = 0 and δM,N (V ) = 0. It follows from (5.8)
and (5.9) that N ' U ⊕ V ⊕ L, where either L = 0, or L = Nj for some j ≤ s and the
equalities (5.4) hold. We get Sing(M, N) = Reg in the latter case, by Proposition 5.5.
Therefore we may assume that L = 0, or equivalently, N ' U ⊕ V . Then there is an
exact sequence

0 → U → M → V → 0

in mod A, by Proposition 5.4. Furthermore, (5.10) implies that δM,N (M) = 0 or
δ′M,N (M) = 0. Hence Sing(M, N) = Reg, by Corollary 3.7. This finishes the proof
of Theorem 1.2. ¤

6. Path algebras of Dynkin quivers.

Throughout the section, A is the path algebra of a Dynkin quiver. We shall need
some special properties of modules over such algebra A described in the following three
lemmas, in order to prove Theorem 1.3. The first lemma follows from [7] and the second
one follows from [5, Lemma 5].

Lemma 6.1. There are only finitely many isomorphism classes of indecomposable
modules. Moreover, for each indecomposable module Y ,

EndA(Y ) = {t · 1Y ; t ∈ k} .

Lemma 6.2. Let M and N be disjoint modules such that ON ⊂ OM and dimOM−
dimON = 1. Then the inequality µ(M, Y ) ≤ 1 holds for any indecomposable module Y .

Lemma 6.3. Let M and N be disjoint modules with ON ⊂ OM . Then there are
indecomposable direct summands U and V of N such that

δM,N (U) > 0, δ′M,N (U) = 0 and δM,N (V ) = 0, δ′M,N (V ) > 0.

Proof. A complete set ind A of pairwise nonisomorphic indecomposable modules
is finite, by Lemma 6.1. Moreover there is a partial order ¹ on indA such that [X, Y ] > 0
implies X ¹ Y for any modules X and Y in indA. Applying Theorem 2.5 we get an
exact sequence

η : 0 → N → M ⊕ Z ′ → Z ′ → 0

in modA. Then δM,N (N) = δη(N) > 0, by Lemma 2.3. Hence there is a ¹-minimal
U ∈ indA with the property δM,N (U) > 0. Then µ(N, U) > 0, by [6, Lemma 3.1].
Moreover, using the Auslander-Reiten formula mentioned in the proof of [6, Lemma 3.1],
we get that δ′M,N (U) = 0. Dually we get an appropriate module V . ¤

Proposition 6.4. Let σ : 0 → U
f−→ M

g−→ V → 0 be an exact sequence in mod A
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such that the modules M and N = U ⊕ V are disjoint and

δσ(U) = 1, δσ(M) = 1, δσ(V ) = 0,

δ′σ(U) = 0, δ′σ(M) = 1, δ′σ(V ) = 1.
(6.1)

Then Sing(M, N) = Reg.

Proof of Proposition 6.4. The equality δσ(M) = 1 implies that M = M1⊕M ′

for an indecomposable module M1 and a module M ′ such that

δσ(M1) = 1 and δσ(M ′) = 0. (6.2)

We divide the proof into several steps.

Step 1. There are nonsplittable exact sequences in mod A of the form

σ1 : 0 → U

“
f
h

”

−−−→ M ⊕M1
(h′,−f ′)−−−−−→ X → 0, σ2 : 0 → M1

f ′−→ X
g′−→ V → 0.

Proof. Since δσ(M1) > 0 then there is a homomorphism h : U → M1 which
does not factor through f , by Lemma 2.2. Taking a pushout of σ under h leads to the
following commutative diagram with exact rows

0 // U
f //

h

²²

M
g //

h′

²²

V // 0

0 // M1
f ′ // X

g′ // V // 0,

this gives the exact sequences σ1 and σ2. The sequence σ2 does not split, by our con-
struction. Since the modules U and M ⊕M1 are disjoint, the sequence σ1 does not split
as well. ¤

Step 2. The following equalities hold:

δσ1(U) = 1, δσ1(M) = 0, δ′σ1
(U) = 0,

δσ2(V ) = 0, δ′σ2
(U) = 0, δ′σ2

(V ) = 1.
(6.3)

Proof. Since the sequences σ1 and σ2 do not split then the integers δσ1(U),
δσ2(M1) and δ′σ2

(V ) are positive, by Lemma 2.3. Hence the claim follows from (6.1),
(6.2) and the equalities

δσ(Y ) = δσ1(Y ) + δσ2(Y ) and δ′σ(Y ) = δ′σ1
(Y ) + δ′σ2

(Y ),

for any module Y . ¤
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Step 3. δσ1(X) = 0.

Proof. Let M̃ = M ⊕M1. The sequence σ1 induces the following commutative
diagram with exact rows and columns

0

²²

0

²²

0

²²
0 // HomA(X, U) //

²²

HomA(X, M̃) //

²²

HomA(X, X)

²²
0 // HomA(M̃, U) //

²²

HomA(M̃, M̃) //

α

²²

HomA(M̃, X)

γ

²²
0 // HomA(U,U) // HomA(U, M̃)

β // HomA(U,X).

Since δσ1(M̃) = δ′σ1
(U) = 0, then the homomorphisms α and β are surjective. Hence γ

is also surjective, which implies that δσ1(X) = 0. ¤

Step 4. δ′σ2
(M) = 0.

Proof. Suppose that δ′σ2
(M) ≥ 1. Since 1 = δσ(M) = δσ1(M) + δσ2(M), then

δ′σ1
(M) = 0 and δ′σ1

(M1) = 0,

as M1 is a direct summand of M . Observe that

δσ1(U)− δσ1(M ⊕M1) + δσ1(X) = δ′σ1
(U)− δ′σ1

(M ⊕M1) + δ′σ1
(X).

Applying (6.3) and Step 3 we get that δ′σ1
(X) = 1. Then X = X1 ⊕X ′ for an indecom-

posable module X1 and a module X ′ such that

δ′σ1
(X1) = 1 and δ′σ1

(X ′) = 0.

Let ϕ : X ′ → X be a section. Hence ϕ = h′h̃−f ′f̃ for some homomorphisms h̃ : X ′ → M

and f̃ : X ′ → M1, by Lemma 2.2 applied to the sequence σ1. Since the sequence σ2 does
not split and the module M1 is indecomposable, then f ′ belongs to rad(modA). Thus f ′f̃
belongs to rad(modA) and h′h̃ is a section. Consequently h̃ is also a section. Applying
Lemma 2.4 to σ1 we get that M ' X ′ ⊕M ′′ and there is an exact sequence

τ : 0 → U → M ′′ ⊕M1 → X1 → 0

in modA for some module M ′′. The modules U and M ′′ ⊕ M1 are disjoint, by our
assumptions. The modules X1 and M ′′⊕M1 are also disjoint, since X1 is indecomposable,
δ′σ1

(X1) > 0 and δ′σ1
(M ′′ ⊕M1) = 0. Observe that
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dimOM ′′⊕M1 − dimOU⊕X1 = δσ1(U ⊕X1) + δ′σ1
(M ′′ ⊕M1) = 1,

by (6.3) and Step 2. Hence µ(M ′′,M1) = 0, by Lemma 6.2. Since M1⊕M ′ is isomorphic
to X ′ ⊕M ′′ then µ(X, M1) ≥ µ(X ′,M1) ≥ 1 and X ' M1 ⊕X ′′ for some module X ′′.
Hence, up to an isomorphism, the sequence σ2 has the form

0 → M1

f ′=(α1
α2 )−−−−−−→ M1 ⊕X ′′ g′=(β1,β2)−−−−−−−→ V → 0.

Since the endomorphism α1 ∈ EndA(M1) belongs to rad(modA) and M1 is an indecom-
posable module, then α1 = 0, by Lemma 6.1. Observe that

Ker(β1) ⊆ Ker(g′) ∩M1 and Ker(g′) = Im(f ′) ⊆ X ′′.

Therefore the homomorphism β1 is injective and Im(β1)∩Im(β2) = {0}. Thus Im(β1) is a
direct summand of V , as g′ is surjective. Consequently the homomorphism β1 : M1 → V

is a section, which is impossible as M1 and V are disjoint modules. ¤

Step 5. δσ(X) = 0.

Proof. Observe that

δσ(M1)− δσ(X) + δσ(V ) = δ′σ2
(U)− δ′σ2

(M) + δ′σ2
(V ).

Hence the claim follows from (6.1), (6.2), (6.3) and Step 4. ¤

Step 6. There is an exact sequence σ3 : 0 → U → X ⊕M ′ → V ⊕ V → 0.

Proof. Since M = M1 ⊕M ′ then the sequence σ has the form

0 → U

“
f1
f2

”

−−−→ M1 ⊕M ′ (g1,g2)−−−−→ V → 0.

We get from (6.3) the equality δσ2(V ) = 0. Hence any homomorphism from M1 to V

factors through f ′, by Lemma 2.2. Thus g1 = jf ′ for some homomorphism j : X → V .
It is easy to check that the sequence

0 → U

„
f ′f1
f2

«

−−−−−→ X ⊕M ′

„
g′ 0
j g2

«

−−−−−−→ V ⊕ V → 0

is exact. ¤

We shall consider the k-functor EM,N (−,−) defined in Section 3.

Step 7. dimk EM,N (V, U) ≤ 2.

Proof. We know that δM,N (X ⊕M ′) = δσ(X) + δσ(M ′) = 0, by (6.2) and Step
5. Applying Corollary 3.4 we get that EM,N (V, U) is contained in the kernel of the last
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map in the following long exact sequence induced by σ3:

0 → HomA(V, U) → HomA(V, X ⊕M ′) → HomA(V, V ⊕ V ) →
→ Ext1A(V, U) → Ext1A(V, X ⊕M ′).

Consequently

dimk EM,N (V, U) ≤ δ′σ3
(V ) = δ′σ(V ) + δ′σ2

(V ) = 1 + 1 = 2,

by (6.1) and (6.3). ¤

Step 8. dimk EM,N (N, N) ≤ [N, N ]− [M, M ].

Proof. Let Y be a module. We know that δM,N (V ) = δσ(V ) = 0 and
δ′M,N (U) = δ′σ(U) = 0, by (6.1). Then EM,N (Y, V ) is contained in the kernel of
Ext1A(Y, 1V ) and EM,N (U, Y ) is contained in the kernel of Ext1A(1U , Y ), by Corollary
3.4. Hence EM,N (Y, V ) = 0 and EM,N (U, Y ) = 0. Consequently

EM,N (N, N) ' EM,N (U ⊕ V, U ⊕ V )

' EM,N (U,U)⊕ EM,N (U, V )⊕ EM,N (V, U)⊕ E (V, V ) ' EM,N (V, U).

Therefore the claim follows from Step 7 and the equalities

[N, N ]− [M, M ] = δσ(U) + δσ(V ) + δ′σ(M) = 1 + 0 + 1 = 2. ¤

Step 8 together with Proposition 3.5 imply that Sing(M, N) = Reg, which finishes
the proof of Proposition 6.4. ¤

Proof of Theorem 1.3. Let M be a module. It follows from Lemma 6.1 that
OM contains only finitely many orbits. Thus it suffices to show that Sing(M, N) = Reg
for any module N such that ON ⊂ OM and

c := dim OM − dimON ∈ {1, 2}.

If c = 1, then the claim follows from Theorem 3.8. Therefore we may assume that c = 2.
Applying Theorem 1.1 we reduce the problem to the case when the modules M and N

are disjoint. Then N ' U ⊕ V ⊕ L, where U and V are indecomposable modules such
that

δM,N (U) > 0, δ′M,N (U) = 0 and δM,N (V ) = 0, δ′M,N (V ) > 0,

by Lemma 6.3. Applying Theorem 1.2 we may assume that L = 0 and N ' U ⊕ V .
Hence there is an exact sequence

σ : 0 → U → M → V → 0,
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by Proposition 5.4. If δσ(M) = 0 or δ′σ(M) = 0 then Sing(M, N) = Reg, by Corollary
3.7. Therefore we may assume that the integers δσ(M) and δ′σ(M) are positive. On the
other hand, by Lemma 2.1,

2 = [N, N ]− [M, M ] = δσ(U) + δσ(V ) + δ′σ(M)

= δ′σ(U) + δ′σ(V ) + δσ(M),

which implies that the equalities (6.1) hold. Thus Sing(M, N) = Reg, by Proposition
6.4. This finishes the proof of Theorem 1.3. ¤
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