On harmonic function spaces

By Stevo Stević

(Received Jul. 22, 2003)
(Revised Oct. 7, 2004)

Abstract

In this paper we investigate a-Bloch, Hardy, Bergman, $B M O_{p}$ and Dirichlet spaces of harmonic functions on the open unit ball in \boldsymbol{R}^{n}, and the boundedness of the Hardy-Littlewood operator on these spaces.

1. Introduction.

Throughout this paper G is a domain in the Euclidean space $\boldsymbol{R}^{n}, n \geq 1, B(a, r)=$ $\left\{x \in \boldsymbol{R}^{n}| | x-a \mid<r\right\}$ denotes the open ball centered at $a \in \boldsymbol{R}^{n}$ of radius $r>0$, where $|x|$ denotes the norm of $x \in \boldsymbol{R}^{n}$ and B is the open unit ball in \boldsymbol{R}^{n}. $S=\partial B=\{x \in$ $\left.\boldsymbol{R}^{n}| | x \mid=1\right\}$ is the boundary of B.

Let $d V$ denote the Lebesgue measure on $\boldsymbol{R}^{n}, v_{n}$ the volume of $B, d \sigma$ the surface measure on S, σ_{n} the surface area of $S, d V_{N}$ the normalized Lebesgue measure on B, $d \sigma_{N}$ the normalized surface measure on S. Let $\mathscr{H}(B)$ denote the set of complex valued harmonic functions on B.

Let \boldsymbol{Z}_{n}^{+}be the set of all ordered n-tuples of nonnegative integers, and for each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \boldsymbol{Z}_{n}^{+}$let

$$
|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{n}!.
$$

For a harmonic function u we denote

$$
D^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial x_{1}{ }^{\alpha_{1}} \cdots \partial x_{n}{ }^{\alpha_{n}}} .
$$

Given a function u harmonic on a domain G, and a positive integer m, the gradient of u of order $m, \nabla^{m} u$, can be defined to be a vector valued function whose components are the derivatives of u of order $|\alpha|=m$, arranged in some fixed order. The norm of $\nabla^{m} u$ is then uniquely defined by the relation

$$
\left|\nabla^{m} u(x)\right|=\left(m!\sum_{\alpha \in \boldsymbol{Z}_{n}^{+},|\alpha|=m} \frac{\left|D^{\alpha} u(x)\right|^{2}}{\alpha_{1}!\cdots \alpha_{n}!}\right)^{1 / 2}
$$

In particular $\left|\nabla^{1} u\right|=|\nabla u|$, where ∇u is the usual gradient of u.

[^0]For $p>0, \mathscr{H}^{p}(B)$ denote the set of harmonic functions u on B such that

$$
\|u\|_{\mathscr{H}^{p}(B)}=\sup _{0<r<1}\left(\int_{S}|u(r \zeta)|^{p} d \sigma_{N}(\zeta)\right)^{1 / p}<+\infty
$$

Elements of $\mathscr{H}^{p}(B)$ theory can be found in [3, Chapter VI]. For elements of complex H^{p} theory see, for example, [5].

Let $a>0$. A function $f \in C^{1}(B)$ is said to be an a-Bloch function if

$$
\|f\|_{\mathscr{B}^{a}}=\sup _{x \in B}(1-|x|)^{a}|\nabla f(x)|<+\infty .
$$

The space of a-Bloch functions is denoted by $\mathscr{B}^{a}(B)=\mathscr{B}^{a}$. If $a=1, \mathscr{B}^{a}$ just becomes the Bloch space \mathscr{B}. Let $\mathscr{H}_{\mathscr{B}^{a}}(B)$ denote the space which consists of all harmonic a-Bloch functions on the unit ball, i.e., $\mathscr{H}(B) \cap \mathscr{B}^{a}(B)$. If $a=1$, we obtain the harmonic Bloch space $\mathscr{H}_{\mathscr{B}}(B)$. Basic results for analytic Bloch functions on the unit disc can be found in [2] and for analytic Bloch functions in several variables in [33]. For hyperharmonic Bloch functions see [25].

Let $p>0$. A Borel function f, locally integrable in the unit ball B, is said to be a $B M O_{p}(B)$ function if

$$
\|f\|_{B M O_{p}}=\sup _{B(a, r) \subset B}\left(\frac{1}{V(B(a, r))} \int_{B(a, r)}\left|f(x)-f_{B(a, r)}\right|^{p} d V(x)\right)^{1 / p}<+\infty
$$

where the supremum is taken over all balls $B(a, r)$ with $\bar{B}(a, r) \subset B$, and $f_{B(a, r)}$ is the mean value of f over $B(a, r)$.

Let $\mathscr{H}_{B M O_{p}}(B)=\mathscr{H}(B) \cap B M O_{p}(B)$.
In [18] for $p \geq 1$, Muramoto proved that $\mathscr{H}_{\mathscr{B}}(B)$ is isomorphic to $\mathscr{H}(B) \cap B M O_{p}(B)$ as Banach spaces. In fact he proved the following theorem:

Theorem A. Let $p \geq 1$. Then there is a positive constant $c(p, n)$, depending on p and n, such that for every $u \in \mathscr{H}(B)$

$$
\frac{1}{c(p, n)}\|u\|_{B M O_{p}} \leq\|u\|_{\mathscr{H}, n} \leq c(p, n)\|u\|_{B M O_{p}}
$$

where

$$
\|u\|_{\mathscr{H}, n}=\sup _{x \in B} \frac{1}{2}\left(1-|x|^{2}\right)|\nabla u(x)| .
$$

Note that the norms $\|u\|_{\mathscr{H}, n}$ and $\|u\|_{\mathscr{B}}$ are equivalent. In the case $n=2$, this result was essentially obtained by Coifman, Rochberg and Weiss [4] and Gotoh [9]. In $[\mathbf{2 0}$, Theorems 2 and 3] we proved that Muramoto's result is true also for $p \in(0,1)$. Moreover, by a slight modification of the proof of Theorem 1 in [20] we can prove that
$\mathscr{H}_{\mathscr{B}^{a}}(B) \subset \mathscr{H}_{B M O_{p}}(B)$ if $a \in(0,1]$ and $p>0$, or if $1<a<1+\frac{1}{p}$.
This Muramoto's paper inspired us to calculate exactly $B M O_{p}$ norm for harmonic functions, which is the theme of $[\mathbf{2 0}]$. In the proof of the main result in $[\mathbf{2 0}]$, we essentially proved a generalization of the Hardy-Stein identity (see, for example, [11, p. 42]). Some further applications of the identity can be found in $[\mathbf{2 4}]$ and $[\mathbf{3 0}]$. Among others in $[\mathbf{2 4}]$ we proved some results which are closely related to Yamashita's results for analytic functions on the unit disk [36], as the main result in [30] generalizes the main Yamashita's result in [34]. A generalization of the identity on the unit disk can be found in $[\mathbf{1 7}]$. A similar formula for analytic functions on the unit ball in \boldsymbol{C}^{n} can be found in [32].

Let $\omega(r), 0<r<1$, be a positive weight function which is integrable on $(0,1)$. We extend ω on B by setting $\omega(x)=\omega(|x|)$. We may assume that our weights are normalized so that $\int_{B} \omega(x) d V(x)=1$.

For $0<p<\infty$ the weighted Bergman space $b_{\omega}^{p}(B)$ is the space of all harmonic functions u on B such that

$$
\|u\|_{\omega, p}=\left(\int_{B}|u(x)|^{p} \omega(x) d V(x)\right)^{1 / p}<+\infty .
$$

If $\omega(r)=(1-r)^{\alpha}, \alpha>-1$, we denote the norm by $\|u\|_{p, \alpha}$ and the corresponding space by $b_{\alpha}^{p}(B)$.

It is easy to see that weights may be modified on intervals $[0, \sigma]$, with $\sigma<1$ without changing the Bergman space, in fact, the corresponding norms are equivalent. Recently there has been a great interest in studying the weighted Bergman spaces of analytic or harmonic functions with weights other than the classical $\omega(r)=(1-r)^{\alpha}, \alpha>-1$, see, for example, $[\mathbf{1}],[\mathbf{1 4}],[\mathbf{1 5}],[16],[19],[22],[23],[26],[27],[28]$ and the references therein.

For $\alpha \in(-1, \infty)$ let $\mathscr{D}_{\alpha}^{p}(B)=\mathscr{D}_{\alpha}^{p}$ be the class of all harmonic functions u on the unit ball obeying

$$
\|u\|_{\mathscr{D}_{\alpha}^{p}}^{p}=|u(0)|^{p}+\int_{B}|\nabla u(x)|^{p}(1-|x|)^{\alpha} d V(x)<\infty .
$$

We say that a locally integrable function f on B possesses $H L$-property, with a constant $c>0$ if

$$
f(a) \leq \frac{c}{r^{n}} \int_{B(a, r)} f(x) d V(x) \text { whenever } \bar{B}(a, r) \subset B .
$$

For example, every subharmonic function ([12]) possesses $H L$-property when $c=1 / v_{n}$. In [10] Hardy and Littlewood proved that $|u|^{p}, p>0, n=2$, also possesses $H L$-property whenever u is a harmonic function in B. In the case $n \geq 3$ a generalization was made by Fefferman and Stein [6]. Other classes of functions that possess $H L$-property can be found in [21], [29], [31].

In section 2 we prove some auxiliary results which we apply in the sections which follows.

In section 3 we consider the boundedness of the weighted Hardy-Littlewood operator

$$
L_{g}(f)(x)=\int_{0}^{1} f(t x) g(t) d t
$$

on the spaces $\mathscr{H}_{\mathscr{B}^{a}}(B), \mathscr{H}_{B M O_{p}}(B), \mathscr{H}^{p}(B), b_{\omega}^{p}(B)$ and $\mathscr{D}_{\alpha}^{p}(B)$.
In section 4 we generalize a result of Flett $[7]$ and give a short proof of the result. Also we give a new equivalent condition for a harmonic function to be a Bloch function.

In section 5 we improve a local estimate given in $[\mathbf{2 4}]$.
In the last section we consider the relationship between the functions which belong to $\mathscr{H}^{p}(B)$ and $\mathscr{D}_{\alpha}^{p}(B)$.

2. Auxiliary results.

In this section we prove some auxiliary results that we use in the sections which follows. The first one is a technical lemma.

For $\alpha \in(-1, \infty)$ and $p>0$ let $\mathscr{L}_{\alpha}^{p}(B)=\mathscr{L}_{\alpha}^{p}$ be the class of all measurable functions f obeying

$$
\|f\|_{\mathscr{L}_{\alpha}^{p}}^{p}=\int_{B}|f(x)|^{p}(1-|x|)^{\alpha} d V(x)<\infty
$$

Using Fubini's theorem, we can easily show the following lemma:
Lemma 1. Let $\alpha \in(0, \infty)$. Suppose that f is a nonnegative measurable function on B. Then

$$
\int_{B} f(x)(1-|x|)^{\alpha} d V(x)=\alpha \int_{0}^{1}\left(\int_{r B} f(x) d V(x)\right)(1-r)^{\alpha-1} d r
$$

Corollary 1. Let $p, \alpha \in(0, \infty)$ and $f \in \mathscr{L}_{\alpha}^{p}(B)$. Then

$$
\lim _{r \rightarrow 1}(1-r)^{\alpha} \int_{r B}|f(x)|^{p} d V(x)=0
$$

Proof. By Lemma 1 we have

$$
\int_{0}^{1}\left(\int_{r B}|f(x)|^{p} d V(x)\right)(1-r)^{\alpha-1} d r<\infty
$$

Hence, by Cauchy's criterion

$$
\lim _{\rho \rightarrow 1} \int_{\rho}^{1}\left(\int_{r B}|f(x)|^{p} d V(x)\right)(1-r)^{\alpha-1} d r=0
$$

Since the function

$$
\int_{r B}|f(x)|^{p} d V(x)
$$

is nondecreasing in r, we obtain

$$
\int_{\rho B}|f(x)|^{p} d V(x) \int_{\rho}^{1}(1-r)^{\alpha-1} d r \leq \int_{\rho}^{1}\left(\int_{r B}|f(x)|^{p} d V(x)\right)(1-r)^{\alpha-1} d r
$$

from which the result follows.
Corollary 2. Let f be a measurable function on B and $p, \alpha \in(0, \infty)$. Then the following equivalence holds

$$
\|f\|_{\mathscr{L}_{\alpha}^{p}}<\infty \Leftrightarrow \int_{0}^{1}\left(\int_{r B}|f(x)|^{p} d V(x)\right)(1-r)^{\alpha-1} d r<\infty
$$

By Corollary 1 we obtain the following growth result.
Corollary 3. Let $u \in \mathscr{D}_{\alpha}^{p}(B)$ and $\alpha \in(0, \infty)$. Then

$$
\lim _{r \rightarrow 1}(1-r)^{\alpha} \int_{r B}|\nabla u(x)|^{p} d V(x)=0
$$

Lemma 2. Let $u \in \mathscr{H}(B), \alpha$ a multi-index and $p>0$. Then

$$
\begin{equation*}
\left(\left|D^{\alpha} u(x)\right| r^{|\alpha|}\right)^{p} \leq \frac{C}{r^{n}} \int_{B(x, r)}|u|^{p} d V \tag{1}
\end{equation*}
$$

whenever $B(x, r) \subset B$, where $C=C(p, n, \alpha)$ is a positive constant.
Proof. By Fefferman-Stein Lemma we have

$$
|u(x)|^{p} \leq \frac{C}{r^{n}} \int_{B(x, r)}|u|^{p} d V, \quad \text { whenever } B(x, r) \subset B
$$

and consequently

$$
\begin{equation*}
\sup _{y \in B(x, r / 2)}|u(y)|^{p} \leq \frac{C 2^{n}}{r^{n}} \int_{B(x, r)}|u|^{p} d V \tag{2}
\end{equation*}
$$

where C is a positive constant depending only on n and p.
On the other hand, by Cauchy's estimate we have

$$
\begin{equation*}
\left|D^{\alpha} u(x)\right| \leq\left(\frac{2 n|\alpha|}{r}\right)^{|\alpha|} \sup _{y \in B(x, r / 2)}|u(y)| \tag{3}
\end{equation*}
$$

(see, for example, [8, p. 23]).
From (3) we obtain

$$
\begin{equation*}
\left|D^{\alpha} u(x)\right|^{p} \leq\left(\left(\frac{2 n|\alpha|}{r}\right)^{|\alpha|} \sup _{y \in B(x, r / 2)}|u(y)|\right)^{p} \tag{4}
\end{equation*}
$$

(1) follows from (2) and (4).

Corollary 4. Let u be a harmonic function on a domain $G \subset \boldsymbol{R}^{n}, p>0$ and $m \in \boldsymbol{N}$. Then there is a constant $C=C(m, n, p)$ such that

$$
\left|\nabla^{m} u(x)\right| \leq \frac{C}{r^{m}}\left(\frac{1}{V(B(x, r))} \int_{B(x, r)}|u(y)|^{p} d V(y)\right)^{1 / p}
$$

for each $B(x, r) \subset G$.
REmARK 1. For $p \geq(n-2) /(m+n-2)$ Lemma 2 was proved in [7] by T.M.Flett.
Lemma 3. Let u be a harmonic function on a domain G. Then

$$
\Delta^{m}|u|^{2}=2^{m}\left|\nabla^{m} u\right|^{2}
$$

Proof. Without loss of generality we may assume that u is a real valued harmonic function. We prove the lemma by induction.

Let $m=1$. Then

$$
\Delta|u|^{2}=\Delta u^{2}=2\left(|\nabla u|^{2}+u \Delta u\right)=2|\nabla u|^{2}
$$

since $\Delta u=0$, as desired.
Next, assume that the formula holds for all positive integers $m \leq k$. Then for $m=k+1$, we have

$$
\begin{aligned}
\Delta^{k+1} u^{2} & =\Delta\left(\Delta^{k} u^{2}\right)=\Delta\left(2^{k}\left|\nabla^{k} u\right|^{2}\right)=2^{k} \Delta\left(k!\sum_{\alpha \in \boldsymbol{Z}_{n}^{+},|\alpha|=k} \frac{\left|D^{\alpha} u\right|^{2}}{\alpha_{1}!\cdots \alpha_{n}!}\right) \\
& =2^{k} k!\sum_{\alpha \in \boldsymbol{Z}_{n}^{+},|\alpha|=k} \frac{\Delta\left|D^{\alpha} u\right|^{2}}{\alpha_{1}!\cdots \alpha_{n}!}
\end{aligned}
$$

Since for every multi-index α, the function $D^{\alpha} u$ is harmonic, we obtain

$$
\Delta\left|D^{\alpha} u\right|^{2}=2\left|\nabla\left(D^{\alpha} u\right)\right|^{2}=2 \sum_{i=1}^{n}\left|D^{\alpha_{1} \ldots\left(\alpha_{i}+1\right) \ldots \alpha_{n}} u\right|^{2}
$$

Therefore, we obtain that

$$
\begin{aligned}
\Delta^{k+1} u^{2} & =2^{k+1} k!\sum_{\alpha \in \boldsymbol{Z}_{n}^{+},|\alpha|=k} \frac{1}{\alpha_{1}!\cdots \alpha_{n}!} \sum_{i=1}^{n}\left(\left|D^{\alpha_{1} \ldots\left(\alpha_{i}+1\right) \ldots \alpha_{n}} u\right|^{2}\right) \\
& =2^{k+1} k!\sum_{\alpha \in \boldsymbol{Z}_{n}^{+},|\alpha|=k} \sum_{i=1}^{n} \frac{\alpha_{i}+1}{\alpha_{1}!\cdots\left(\alpha_{i}+1\right)!\cdots \alpha_{n}!}\left(\left|D^{\alpha_{1} \ldots\left(\alpha_{i}+1\right) \ldots \alpha_{n}} u\right|^{2}\right)
\end{aligned}
$$

Note that all multi-indices appearing in the above sum are of order $k+1$ and that each multi-index of order $k+1$ appears in the sum. Hence, we can rewrite the sum, summing over multi-indices of order $k+1$. Let β be an arbitrary multi-index of order $k+1$. Set

$$
I_{\beta}=\left\{i \in\{1, \ldots, n\}: \beta_{i}>0\right\}
$$

and

$$
J_{\beta}=\left\{\alpha \in \boldsymbol{Z}_{+}^{n}:|\alpha|=k \text { and } \alpha+e_{i}=\beta \text { for some } i \in I_{\beta}\right\},
$$

where

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)
$$

Then the coefficient standing by $\left|D^{\beta} u\right|^{2}$ is equal to

$$
\begin{aligned}
\sum_{\alpha \in J_{\beta}} \frac{1}{\alpha_{1}!\cdots \alpha_{n}!} & =\sum_{i \in I_{\beta}} \frac{1}{\beta_{1}!\cdots\left(\beta_{i}-1\right)!\cdots \beta_{n}!}=\sum_{i \in I_{\beta}} \frac{\beta_{i}}{\beta_{1}!\cdots \beta_{i}!\cdots \beta_{n}!} \\
& =\sum_{i=1}^{n} \frac{\beta_{i}}{\beta_{1}!\cdots \beta_{i}!\cdots \beta_{n}!} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\Delta^{k+1} u^{2} & =2^{k+1} k!\sum_{\beta \in \boldsymbol{Z}_{n}^{+},|\beta|=k+1}\left|D^{\beta} u\right|^{2} \sum_{i=1}^{n} \frac{\beta_{i}}{\beta_{1}!\cdots \beta_{i}!\cdots \beta_{n}!} \\
& =2^{k+1} k!\sum_{\beta \in \boldsymbol{Z}_{n}^{+},|\beta|=k+1} \frac{\left|D^{\beta} u\right|^{2}}{\beta_{1}!\cdots \beta_{n}!} \sum_{i=1}^{n} \beta_{i} \\
& =2^{k+1} k!\sum_{\beta \in \boldsymbol{Z}_{n}^{+},|\beta|=k+1} \frac{\left|D^{\beta} u\right|^{2}}{\beta_{1}!\cdots \beta_{n}!}|\beta| \\
& =2^{k+1}(k+1)!\sum_{\beta \in \boldsymbol{Z}_{n}^{+},|\beta|=k+1} \frac{\left|D^{\beta} u\right|^{2}}{\beta_{1}!\cdots \beta_{n}!}=2^{k+1}\left|\nabla^{k+1} u\right|^{2},
\end{aligned}
$$

finishing the proof.
Lemma 4. Suppose $0<p<\infty$ and $r \in(0,1)$. Then there is a constant $C=$ $C(p, r, n)$ such that

$$
\int_{|x|<r}|u(x)|^{p} d V_{N}(x) \leq C\left(|u(0)|^{p}+\int_{B}|\nabla u(x)|^{p}(1-|x|)^{p} d V_{N}(x)\right)
$$

for all $u \in \mathscr{H}(B)$.
Proof. First, notice that

$$
\int_{|x|<r}|u(x)|^{p} d V_{N}(x) \leq \max _{|x| \leq r}|u(x)|
$$

so, it is enough to estimate $\max _{|x| \leq r}|u(x)|$.
Since

$$
u\left(x_{0}\right)-u(0)=\int_{0}^{1} u^{\prime}\left(t x_{0}\right) d t=\int_{0}^{1}\left\langle\nabla u\left(t x_{0}\right), x_{0}\right\rangle d t
$$

by elementary inequalities we obtain

$$
\left|u\left(x_{0}\right)\right|^{p} \leq c_{p}\left(|u(0)|^{p}+\left|x_{0}\right|^{p} \max _{|x| \leq r}|\nabla u(x)|^{p}\right)
$$

for each $x_{0} \in \overline{B(0, r)}$, where $c_{p}=1$ for $0<p<1$ and $c_{p}=2^{p-1}$ for $p \geq 1$.
On the other hand by Fefferman-Stein Lemma we have

$$
\left|D^{\alpha} u(x)\right|^{p} \leq C \int_{B(x,(1-r) / 2)}\left|D^{\alpha} u(y)\right|^{p} d V(y)
$$

for each $x \in \overline{B(0, r)}$, every multi-index α of order 1 , and for some $C>0$ independent of $u \in \mathscr{H}(B)$.

This implies

$$
|\nabla u(x)|^{p} \leq C v_{n} \int_{B(x,(1+r) / 2)}|\nabla u(y)|^{p} d V_{N}(y)
$$

for each $x \in \overline{B(0, r)}$, and consequently

$$
\max _{|x| \leq r}|\nabla u(x)|^{p} \leq C v_{n}\left(\frac{2}{1-r}\right)^{p} \int_{B(0,(1+r) / 2)}|u(y)|^{p}(1-|y|)^{p} d V_{N}(y)
$$

From all above mentioned the result follows.

3. On the weighted Hardy-Littlewood operator.

Let $g:[0,1] \rightarrow \boldsymbol{R}$ be a function. For a measurable complex-valued function f on B, we define the weighted Hardy-Littlewood operator $L_{g}(f)$ as

$$
L_{g}(f)(x)=\int_{0}^{1} f(t x) g(t) d t
$$

for $x \in B$, provided that the integral exists.
For $g(t) \equiv 1$ and $n=1$, Hardy proved that this special operator is bounded on $\mathscr{L}^{p}(0, \infty), p>1$, moreover $\left\|L_{1}\right\|_{\mathscr{L}^{p}(0, \infty)} \leq \frac{p}{p-1}([\mathbf{5}, \mathrm{p} .234])$. We are interested in the boundedness of the weighted Hardy-Littlewood operator on $\mathscr{H}_{\mathscr{B}^{a}}(B), \mathscr{H}_{B M O_{p}}(B)$, $\mathscr{H}^{p}(B), b_{\omega}^{p}(B)$ and $\mathscr{D}_{\alpha}^{p}(B)$.

Theorem 1. Let $g \in \mathscr{L}[0,1]$ and $a>0$. Then L_{g} is a bounded operator from $\mathscr{H}_{\mathscr{B}^{a}}(B)$ to $\mathscr{H}_{\mathscr{B}^{a}}{ }^{a}(B)$.

Proof. Let $u \in \mathscr{H}_{\mathscr{B}^{a}}(B)$. Using Cauchy-Schwarz inequality, we have for $x \in B$

$$
\begin{aligned}
(1-|x|)^{a}\left|\nabla L_{g}(u)(x)\right| & =(1-|x|)^{a}\left|\int_{0}^{1} t\langle(\nabla u)(t x), g(t)\rangle d t\right| \\
& \leq(1-|x|)^{a}\left(\int_{0}^{1} t^{2}|g(t)| d t\right)^{1 / 2}\left(\int_{0}^{1}|(\nabla u)(t x)|^{2}|g(t)| d t\right)^{1 / 2} \\
& \leq\left(\int_{0}^{1} t^{2}|g(t)| d t\right)^{1 / 2}\left(\int_{0}^{1}(1-|t x|)^{2 a}|(\nabla u)(t x)|^{2}|g(t)| d t\right)^{1 / 2} \\
& \leq\|u\|_{\mathscr{H}_{\mathscr{B}^{a}}} \int_{0}^{1}|g(t)| d t .
\end{aligned}
$$

Taking supremum over $x \in B$ in the obtained inequality, we get the result.
REmark 2. In the above proof we did not use any special property of harmonic function. Hence we proved the following theorem:

Theorem 1.a). Let $g \in \mathscr{L}[0,1]$ and $a>0$. Then L_{g} is a bounded operator from $\mathscr{B}^{a}(B)$ to $\mathscr{B}^{a}(B)$.

Combining Theorem A and its extension for the case $p \in(0,1)$ ([18] and [20]), and Theorem 1 for $a=1$, we obtain the following corollary.

Corollary 5. Let $p \in(0, \infty)$ and $g \in \mathscr{L}[0,1]$. Then L_{g} is a bounded operator from $\mathscr{H}_{B M O_{p}}(B)$ to $\mathscr{H}_{B M O_{p}}(B)$.

It is interesting that in the case $p \geq 1$ there is a direct proof of Corollary 5 using definition of $\mathscr{H}_{B M O_{p}}(B)$. Moreover in this case we obtain a precise estimate of the norm of the operator L_{g}.

Theorem 2. Let $p \geq 1$ and $g \in \mathscr{L}[0,1]$. Then L_{g} is a bounded operator from $\mathscr{H}_{B M O_{p}}(B)$ to $\mathscr{H}_{B M O_{p}}(B)$, moreover

$$
\left\|L_{g}\right\|_{\mathscr{H}_{B M O_{p}}(B) \rightarrow \mathscr{H}_{B M O_{p}}(B)} \leq \int_{0}^{1}|g(t)| d t .
$$

Proof. Let $u \in \mathscr{H}_{B M O_{p}}(B)$. Then for any open ball $B(a, r)$ with $\bar{B}(a, r) \subset B$, by Fubini's theorem and the change of variables $t x \rightarrow x$ we obtain

$$
\begin{aligned}
L_{g}(u)_{B(a, r)} & =\frac{1}{V(B(a, r))} \int_{B(a, r)}\left(L_{g}\right)(u)(x) d V(x) \\
& =\int_{0}^{1}\left(\frac{1}{V(B(a, r))} \int_{B(a, r)} u(t x) d V(x)\right) g(t) d t \\
& =\int_{0}^{1} u_{B(t a, t r)} g(t) d t .
\end{aligned}
$$

Using this and Minkowski's inequality, we have

$$
\begin{aligned}
& \left\|L_{g}(u)\right\|_{\mathscr{\mathscr { H } _ { B M O _ { p } } (B)}} \\
& \quad=\sup _{B(a, r) \subset B}\left(\frac{1}{V(B(a, r))} \int_{B(a, r)}\left|L_{g}(u)(x)-L_{g}(u)_{B(a, r)}\right|^{p} d V(x)\right)^{1 / p} \\
& \quad=\sup _{B(a, r) \subset B}\left(\frac{1}{V(B(a, r))} \int_{B(a, r)}\left|\int_{0}^{1}\left(u(t x)-u_{B(t a, t r)}\right) g(t) d t\right|^{p} d V(x)\right)^{1 / p} \\
& \quad \leq \sup _{B(a, r) \subset B} \int_{0}^{1}|g(t)|\left(\frac{1}{V(B(a, r))} \int_{B(a, r)}\left|u(t x)-u_{B(t a, t r)}\right|^{p} d V(x)\right)^{1 / p} d t \\
& \quad=\sup _{B(a, r) \subset B} \int_{0}^{1}|g(t)|\left(\frac{1}{V(B(t a, t r))} \int_{B(t a, t r)}\left|u(x)-u_{B(t a, t r)}\right|^{p} d V(x)\right)^{1 / p} d t \\
& \quad \leq\|u\|_{\mathscr{H}_{B M O}(B)} \int_{0}^{1}|g(t)| d t
\end{aligned}
$$

from which the result follows.
Note that we again did not use any special property of harmonic function. Thus the following theorem holds:

Theorem 2. a). Let $p \geq 1$ and $g \in \mathscr{L}[0,1]$. Then L_{g} is a bounded operator from $B M O_{p}(B)$ to $B M O_{p}(B)$. Moreover the operator norm of L_{g} satisfies the estimate:

$$
\left\|L_{g}\right\|_{B M O_{p}(B) \rightarrow B M O_{p}(B)} \leq \int_{0}^{1}|g(t)| d t .
$$

Theorem 3. Let ω be a weight that is non-increasing in $r \in(0,1), p \geq 1$, and $g:[0,1] \rightarrow \boldsymbol{R}$ be a function which satisfies the condition

$$
\int_{0}^{1} t^{-n / p}|g(t)| d t<\infty
$$

Then $L_{g}: b_{\omega}^{p}(B) \rightarrow b_{\omega}^{p}(B)$ is a bounded operator.
Proof. Using Minkowski's inequality and the change of variables $t x \rightarrow x$, we have

$$
\begin{aligned}
\left\|L_{g}(u)\right\|_{b_{\omega}^{p}(B)} & =\left(\int_{B}\left|L_{g}(u)(x)\right|^{p} \omega(x) d V(x)\right)^{1 / p} \\
& \leq \int_{0}^{1}\left(\int_{B}|u(t x)|^{p} \omega(x) d V(x)\right)^{1 / p}|g(t)| d t \\
& \leq \int_{0}^{1}\left(\int_{B}|u(t x)|^{p} \omega(t x) d V(x)\right)^{1 / p}|g(t)| d t \\
& =\int_{0}^{1}\left(\int_{t B}|u(x)|^{p} \omega(x) d V(x)\right)^{1 / p} t^{-n / p}|g(t)| d t \\
& \leq\|u\|_{b_{\omega}^{p}(B)} \int_{0}^{1} t^{-n / p}|g(t)| d t,
\end{aligned}
$$

which implies that L_{g} is bounded on $b_{\omega}^{p}(B)$.
Exapmple 1. The weight $\omega(x)=(1-|x|)^{\alpha}$ where $\alpha \geq 0$ is an example of weights that satisfy the condition in Theorem 3.

If we note that $L_{g}(f)(0)=f(0) \int_{0}^{1} g(t) d t$, we can similarly prove the following result.
Theorem 4. Let $\alpha \geq 0, p \geq 1$, and $g:[0,1] \rightarrow \boldsymbol{R}$ be a function which satisfies the condition

$$
\int_{0}^{1} t^{-n / p}|g(t)| d t<\infty
$$

Then $L_{g}: \mathscr{D}_{\alpha}^{p}(B) \rightarrow \mathscr{D}_{\alpha}^{p}(B)$ is a bounded operator such that

$$
\left\|L_{g}\right\| \leq C \int_{0}^{1} t^{-n / p}|g(t)| d t
$$

where $C=C(n, p)$ is a positive constant.
In the case of $\mathscr{H}^{p}(B)$ we have the following result.
Theorem 5. Let $p \geq 1$ and $g \in \mathscr{L}[0,1]$. Then L_{g} is a bounded operator from
$\mathscr{H}^{p}(B)$ to $\mathscr{H}^{p}(B)$. Moreover

$$
\left\|L_{g}\right\|_{\mathscr{H}^{p}(B) \rightarrow \mathscr{H}^{p}(B)} \leq \int_{0}^{1}|g(t)| d t
$$

Proof. By Minkowski's inequality we get

$$
\begin{aligned}
&\left\|L_{g}(u)\right\|_{\mathscr{C}^{p}(B)}=\sup _{0 \leq r<1}\left(\int_{S}\left|L_{g}(u)(r \zeta)\right|^{p} d \sigma_{N}(\zeta)\right)^{1 / p} \\
& \leq \sup _{0 \leq r<1} \int_{0}^{1}\left(\int_{S}|u(r t \zeta)|^{p}|g(t)|^{p} d \sigma_{N}(\zeta)\right)^{1 / p} d t \\
& \leq\|u\|_{\mathscr{H}} \mathscr{C}^{p}(B) \\
& \int_{0}^{1}|g(t)| d t
\end{aligned}
$$

as desired.

4. Growth theorems for harmonic functions.

Throughout the rest of the paper we will use C to denote a positive constant, not necessarily the same on any two occurrences. Any dependence of C on say p, q, \ldots will be denoted by $C(p, q, \ldots)$.

In this section we generalize and give a short proof of the following result of Flett [7, Lemma 9]:

Theorem B. Let $m \in \boldsymbol{N}, n \geq 2$, and $(n-2) /(m+n-2) \leq p \leq 1$ (if $n=2$ we suppose that $0<p \leq 1)$. Let also $u \in \mathscr{H}(B)$ such that

$$
I=\int_{B}|u(x)|^{p} d V(x)<\infty
$$

Then, for $0 \leq r<1$,

$$
\int_{B(0, r)}\left|\nabla^{m} u(x)\right|^{p} d V(x) \leq C(m, n, p) I(1-r)^{-p m}
$$

First we prove a useful inequality.
Theorem 6. Let $p>0, \alpha>-1$ and $m \in \boldsymbol{N}$. Then there is a positive constant $C=C(n, p, \alpha, m)$ such that

$$
\begin{equation*}
\int_{B}\left|\nabla^{m} u(x)\right|^{p}(1-|x|)^{p m+\alpha} d V(x) \leq C \int_{B}|u(x)|^{p}(1-|x|)^{\alpha} d V(x) \tag{5}
\end{equation*}
$$

for all $u \in b_{\alpha}^{p}(B)$.

Proof. By Corollary 4, we have for $x \in B$

$$
\begin{equation*}
\left|\nabla^{m} u(x)\right|^{p}(1-|x|)^{p m} \leq \frac{C_{1}}{(1-|x|)^{n}} \int_{B\left(x, \frac{1-|x|}{2}\right)}|u|^{p} d V \tag{6}
\end{equation*}
$$

where $C_{1}=C_{1}(n, p, m)$ is a positive constant.
Since $\frac{1}{2}(1-|x|) \leq 1-|y| \leq \frac{3}{2}(1-|x|)$ for $y \in B\left(x, \frac{1-|x|}{2}\right)$, there is a constant $C_{2}=C_{2}(n, \alpha)>0$ such that $(1-|x|)^{\alpha-n} \leq C_{2}(1-|y|)^{\alpha-n}$ for $y \in B\left(x, \frac{1-|x|}{2}\right)$. Using this inequality, (6) and Fubini's theorem, we have

$$
\begin{aligned}
I & \equiv \int_{B}\left|\nabla^{m} u(x)\right|^{p}(1-|x|)^{p m+\alpha} d V(x) \\
& \leq C_{1} \int_{B}(1-|x|)^{\alpha-n} d V(x) \int_{B\left(x, \frac{1-|x|}{2}\right)}|u(y)|^{p} d V(y) \\
& \leq C_{1} C_{2} \int_{B} d V(x) \int_{B\left(x, \frac{1-|x|}{2}\right)}(1-|y|)^{\alpha-n}|u(y)|^{p} d V(y) \\
& =C_{1} C_{2} \int_{B}(1-|y|)^{\alpha-n}|u(y)|^{p} d V(y) \int_{A(y)} d V(x),
\end{aligned}
$$

where

$$
A(y)=\left\{x \in B \left\lvert\, y \in B\left(x, \frac{1-|x|}{2}\right)\right.\right\} \subset\{x \in B| | x-y|<1-|y|\}=B(y, 1-|y|)
$$

From this the desired result follows:

$$
I \leq C_{1} C_{2} v_{n} \int_{B}|u(y)|^{p}(1-|y|)^{\alpha} d V(y) .
$$

Corollary 6. Let $u \in b_{\alpha}^{p}(B), p>0, \alpha>-1$ and $p m+\alpha>0$. Then there is a positive constant $C=C(m, n, p, \alpha)$ such that for $0 \leq r<1$, the following holds:
(a) $(1-r)^{p m+\alpha} \int_{r B}\left|\nabla^{m} u(x)\right|^{p} d V(x) \leq C \int_{B}|u(x)|^{p}(1-|x|)^{\alpha} d V(x)$.

Moreover,
(b) $\lim _{r \rightarrow 1-0}(1-r)^{p m+\alpha} \int_{r B}\left|\nabla^{m} u(x)\right|^{p} d V(x)=0$.

Proof. Let $I=\int_{B}|u(x)|^{p}(1-|x|)^{\alpha} d V(x)$. By Theorem 6 we have that

$$
\int_{B}\left|\nabla^{m} u(x)\right|^{p}(1-|x|)^{p m+\alpha} d V(x) \leq C I<\infty
$$

for some $C=C(m, n, p, \alpha)$. By Corollary 1 for $f=\left|\nabla^{m} u\right|$ and $\alpha \rightarrow p m+\alpha$ we obtain the result.

The main idea in the proof of Theorem 6 motivated us to get another equivalence condition for a harmonic function to be a Bloch function. In order to formulate the result in more complete form we quote several conditions in the following theorem.

Theorem 7. Let $0<p<\infty, k \in N$ and $u \in \mathscr{H}(B)$, then the following conditions are equivalent:
(a) $u \in \mathscr{H}_{\mathscr{B}}(B)$,
(b) $\sup _{x \in B}(1-|x|)^{2} \Delta\left(|u|^{2}(x)\right)<+\infty$,
(c) $\sup _{x \in B}(1-|x|)^{k}\left|\nabla^{k} u(x)\right|<+\infty$,
(d) $\sup _{x \in B} \int_{B\left(x, \frac{1-|x|}{2}\right)}\left|\nabla^{k} u(z)\right|^{p}(1-|z|)^{k p-n} d V(z)<+\infty$,
(e) $\|u\|_{B M O_{p}}<+\infty$.

Proof. $\quad(a) \Leftrightarrow(b)$ is simple and is based on the formula $\Delta\left(f^{2}\right)=2 f \Delta f+2|\nabla f|^{2}$, for any real function f of C^{2} class.
$(a) \Leftrightarrow(e)$ was proved in [18] and $[\mathbf{2 0}]$.
$(a) \Rightarrow(c)$ can be found in [3, p. 42].
$(c) \Rightarrow(a)$ this is certainly well known to experts in the field of Bloch space. We include a proof here for completeness and for the lack of a specific reference.

Case $k=1$ is trivial. Let $k \geq 2$. Take $\alpha \in \boldsymbol{Z}_{+}^{n}$ with $|\alpha|=k-1$. Fix $x \in B$.
Since

$$
D^{\alpha} u(x)-D^{\alpha} u(0)=\int_{0}^{1} \frac{d}{d t}\left[D^{\alpha} u(t x)\right] d t=\int_{0}^{1}\left\langle\nabla D^{\alpha} u(t x), x\right\rangle d t
$$

we have

$$
\left|D^{\alpha} u(x)\right| \leq\left|D^{\alpha} u(0)\right|+\int_{0}^{1}\left|\nabla^{k} u(t x)\right||x| d t .
$$

Thus

$$
\begin{aligned}
\left|D^{\alpha} u(x)\right| & \leq\left|D^{\alpha} u(0)\right|+\int_{0}^{1} \frac{|x| d t}{(1-t|x|)^{k}} \sup _{y \in B}(1-|y|)^{k}\left|\nabla^{k} u(y)\right| \\
& =\left|D^{\alpha} u(0)\right|+\left(\frac{1}{(1-|x|)^{k-1}}-1\right) \frac{1}{k-1} \sup _{y \in B}(1-|y|)^{k}\left|\nabla^{k} u(y)\right| \\
& \leq\left|D^{\alpha} u(0)\right|+\frac{1}{(k-1)(1-|x|)^{k-1}} \sup _{y \in B}(1-|y|)^{k}\left|\nabla^{k} u(y)\right|
\end{aligned}
$$

i.e.

$$
(1-|x|)^{k-1}\left|D^{\alpha} u(x)\right| \leq(1-|x|)^{k-1}\left|D^{\alpha} u(0)\right|+\frac{1}{k-1} \sup _{y \in B}(1-|y|)^{k}\left|\nabla^{k} u(y)\right| .
$$

Since α is an arbitrary multi-index of order $k-1$ and x is an arbitrary point of B, the last inequality and (c) imply that

$$
\sup _{x \in B}(1-|x|)^{k-1}\left|\nabla^{k-1} u(x)\right|<+\infty .
$$

Therefore, by induction the result follows.
$(c) \Rightarrow(d)$ is simple.
Hence the only interesting direction is $(d) \Rightarrow(c)$. Let l be a nonnegative integer. Take $\alpha, \beta \in \boldsymbol{Z}_{+}^{n}$ with $|\alpha|=k$ and $|\beta|=l$. Fix $x \in B$.

By Cauchy's estimate and the $H L$-property of the function $\left|D^{\alpha} u\right|^{p}$, we have

$$
\begin{aligned}
\left|D^{\alpha+\beta} u(x)\right|^{p} & \leq\left[\left(\frac{n|\beta|}{4^{-1}(1-|x|)}\right)^{|\beta|} \sup _{y \in B(x,(1-|x|) / 4)}\left|D^{\alpha} u(y)\right|\right]^{p} \\
& \leq\left(\frac{4 n l}{(1-|x|)}\right)^{l p}\left[\sup _{y \in B(x,(1-|x|) / 4)} \frac{C 4^{n}}{(1-|x|)^{n}} \int_{B(y,(1-|x|) / 4)}\left|D^{\alpha} u\right|^{p} d V\right] \\
& \leq \frac{C}{(1-|x|)^{l p+n}} \int_{B(x,(1-|x|) / 2)}\left|D^{\alpha} u\right|^{p} d V \\
& \leq C \frac{(1-|x|)^{-k p+n}}{(1-|x|)^{l p+n}} \int_{B(x,(1-|x|) / 2)}(1-|y|)^{k p-n}\left|D^{\alpha} u(y)\right|^{p} d V(y) .
\end{aligned}
$$

Hence

$$
(1-|x|)^{(k+l) p}\left|D^{\alpha+\beta} u(x)\right|^{p} \leq C \int_{B(x,(1-|x|) / 2)}(1-|y|)^{k p-n}\left|\nabla^{k} u(y)\right|^{p} d V(y)
$$

if $\alpha, \beta \in \boldsymbol{Z}_{+}^{n},|\alpha|=k$ and $|\beta|=l$ and $x \in B$. This implies that

$$
\sup _{x \in B}(1-|x|)^{k+l}\left|\nabla^{k+l} u(x)\right| \leq C\left(\sup _{x \in B} \int_{B(x,(1-|x|) / 2)}\left|\nabla^{k} u(y)\right|^{p}(1-|y|)^{k p-n} d V(y)\right)^{1 / p}
$$

which completes the proof of the theorem.

5. A local estimate.

In [24, Theorems 1 and 2] we proved the following result.
Theorem C. Let $1<p<+\infty$. Function $u \in \mathscr{H}(B)$ belongs to $\mathscr{H}^{p}(B)$ if and only if

$$
\int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(1-|x|^{2}\right) d V_{N}(x)<+\infty .
$$

Moreover if $u \in \mathscr{H}^{p}(B), \quad 1<p<+\infty$, then

$$
\begin{equation*}
\|u\|_{\mathscr{H}{ }^{p}}^{p}=|u(0)|^{p}+\frac{p(p-1)}{n(n-2)} \int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(|x|^{2-n}-1\right) d V_{N}(x) \tag{7}
\end{equation*}
$$

and

$$
\|u\|_{\mathscr{H}^{p}}^{p}=\int_{B}|u(x)|^{p} d V_{N}(x)+\frac{p(p-1)}{2 n} \int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(1-|x|^{2}\right) d V_{N}(x) .
$$

Using among others Theorem C we proved in [24] the theorem:
Theorem D. Let $p \geq 2, n \geq 3$ and $u \in \mathscr{H}^{p}(B)$, then

$$
|\nabla u(0)|^{p} \leq \frac{n^{\frac{p}{2}} p(p-1)}{(n-2) n} \int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(|x|^{2-n}-1\right) d V_{N}(x) .
$$

However the following stronger inequality holds.
Theorem 8. Let $p \geq 2, n \geq 3$ and $u \in \mathscr{H}^{p}(B)$, then

$$
\left(\sum_{m=1}^{\infty} \frac{\left|\nabla^{m} u(0)\right|^{2}}{m!\prod_{i=0}^{m-1}(n+2 i)}\right)^{p / 2} \leq \frac{p(p-1)}{(n-2) n} \int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(|x|^{2-n}-1\right) d V_{N}(x)
$$

Proof. It is well-known that if $u \in \mathscr{H}(B)$ then $u(x)=\sum_{m=0}^{+\infty} p_{m}(x)$, where each $p_{m}(x)$ is a harmonic homogeneous polynomial of degree m. By Hölder inequality we have $\|u\|_{\mathscr{H}^{2}} \leq\|u\|_{\mathscr{H}^{p}}$. For $u \in \mathscr{H}^{2}(B)$, the following formula

$$
\begin{equation*}
\|u\|_{\mathscr{H}^{2}}^{2}=\sum_{m=0}^{+\infty} \int_{S}\left|p_{m}(\zeta)\right|^{2} d \sigma_{N}(\zeta) \tag{8}
\end{equation*}
$$

holds, see [3, p. 122].
On the other hand, since p_{m} is a homogeneous polynomial of degree m, it holds that $\left\langle\nabla p_{m}(x), x\right\rangle=m p_{m}(x), x \in \boldsymbol{R}^{n}$. From (8) we have

$$
\|u\|_{\mathscr{H}^{2}}-|u(0)|^{2}=\sum_{m=1}^{+\infty} \int_{S}\left|p_{m}(\zeta)\right|^{2} d \sigma_{N}(\zeta) .
$$

Without loss of generality we may assume that u is a real valued harmonic function. Then p_{m} is a real homogeneous harmonic polynomial of degree m, and so p_{m}^{2} is a real homogeneous polynomial of degree $2 m$. Hence

$$
\begin{equation*}
2 m \int_{S} p_{m}^{2}(\zeta) d \sigma_{N}(\zeta)=\int_{S}\left\langle\zeta, \nabla p_{m}^{2}(\zeta)\right\rangle d \sigma_{N}(\zeta)=\frac{1}{n} \int_{B} \Delta p_{m}^{2} d V_{N}(x), \tag{9}
\end{equation*}
$$

by the divergence theorem.
Hence

$$
\begin{align*}
\int_{S} p_{m}^{2}(\zeta) d \sigma_{N}(\zeta) & =\frac{1}{2 m} \int_{0}^{1} \int_{S} \Delta p_{m}^{2}(r \zeta) r^{n-1} d \sigma_{N}(\zeta) d r \\
& =\frac{1}{2 m(2 m+n-2)} \int_{S} \Delta p_{m}^{2}(\zeta) d \sigma_{N}(\zeta) \tag{10}
\end{align*}
$$

Note that $\Delta^{k} p_{m}^{2}, k=1,2, \ldots, m$ are homogeneous polynomials of degree $2 m-2 k$. Hence we can use (10) m times and obtain

$$
\begin{equation*}
\int_{S} p_{m}^{2}(\zeta) d \sigma_{N}(\zeta)=\frac{1}{(2 m)!!n(n+2) \cdots(n+2 m-2)} \Delta^{m} p_{m}^{2}(0) \tag{11}
\end{equation*}
$$

since $\Delta^{m} p_{m}^{2}$ is constant.
If h is a harmonic function by Lemma 3 we have

$$
\begin{equation*}
\Delta^{m}|h|^{2}=2^{m}\left|\nabla^{m} h\right|^{2} . \tag{12}
\end{equation*}
$$

By easy calculations we obtain

$$
\begin{equation*}
\left|\nabla^{m} u(0)\right|=\left|\nabla^{m} p_{m}(0)\right| . \tag{13}
\end{equation*}
$$

From (10)-(13) we obtain

$$
\begin{equation*}
\int_{S} p_{m}^{2}(\zeta) d \sigma_{N}(\zeta)=\frac{\left|\nabla^{m} u(0)\right|^{2}}{m!n(n+2) \cdots(n+2 m-2)} \tag{14}
\end{equation*}
$$

Hence

$$
\sum_{m=1}^{\infty} \frac{\left|\nabla^{m} u(0)\right|^{2}}{m!n(n+2) \cdots(n+2 m-2)} \leq\|u\|_{\mathscr{H}^{2}}^{2}-|u(0)|^{2} \leq\|u\|_{\mathscr{H}^{p}}^{2}-|u(0)|^{2}
$$

By the inequality $(a-b)^{q}+b^{q} \leq a^{q}, a \geq b>0, q \geq 1$, we obtain

$$
\begin{align*}
\left(\sum_{m=1}^{\infty} \frac{\left|\nabla^{m} u(0)\right|^{2}}{m!n(n+2) \cdots(n+2 m-2)}\right)^{p / 2} & \leq\left(\|u\|_{\mathscr{H}^{p}}^{2}-|u(0)|^{2}\right)^{p / 2} \\
& \leq\left(\|u\|_{\mathscr{H}^{p}}^{p}-|u(0)|^{p}\right) \tag{15}
\end{align*}
$$

From (7), (14) and (15) the result follows.

6. On Dirichlet type spaces.

In this section we consider the relationship between the functions which belong to $\mathscr{H}^{p}(B)$ and $\mathscr{D}_{\alpha}^{p}(B)$.

Theorem 9. Let $u \in \mathscr{H}(B), p \in[0, \infty), r \in(0, \infty), \alpha, \beta \in(-1, \infty), r<n+\alpha$, $r \leq q, \alpha \leq \beta$ and

$$
\begin{equation*}
p \leq \frac{(\beta-\alpha) r-(n+\alpha)(q-r)}{n+\alpha-r} \tag{16}
\end{equation*}
$$

Then there is a positive constant C such that

$$
\begin{equation*}
\int_{B}|u(x)|^{p}|\nabla u(x)|^{q}(1-|x|)^{\beta} d V(x) \leq C\|u\|_{\mathscr{D}_{\alpha}}^{p+q} . \tag{17}
\end{equation*}
$$

Proof. Without loss of generality we may assume $u(0)=0$. Since $\frac{\partial u}{\partial x_{i}}, i=$ $1, \ldots, n$, are harmonic, for every $r>0$ the function $|\nabla u(x)|^{r}$ possesses $H L$-property. Hence

$$
|\nabla u(x)|^{r} \leq \frac{C}{(1-|x|)^{n+\alpha}} \int_{B\left(x, \frac{1-|x|}{2}\right)}|\nabla u(y)|^{r}(1-|y|)^{\alpha} d V(y)
$$

for some $C>0$ independent of u and consequently

$$
\begin{equation*}
|\nabla u(x)| \leq C \frac{\|u\|_{\mathscr{D}_{\alpha}^{r}}}{(1-|x|)^{\frac{n+\alpha}{r}}} . \tag{18}
\end{equation*}
$$

On the other hand, from (18) we have

$$
\begin{align*}
|u(x)| & =\left|\int_{0}^{1}\langle\nabla u(t x), x\rangle d t\right| \leq C|x|\|u\|_{\mathscr{D}_{\alpha}^{r}} \int_{0}^{1} \frac{d t}{(1-|t x|)^{\frac{n+\alpha}{r}}} \\
& \leq C \frac{\|u\|_{\mathscr{D}_{\alpha}^{r}}}{(1-|x|)^{\frac{n+\alpha-r}{r}}} . \tag{19}
\end{align*}
$$

Let $\varepsilon=q-r$. Then using (18) and (19) we get

$$
\begin{aligned}
& \int_{B}|u(x)|^{p}|\nabla u(x)|^{q}(1-|x|)^{\beta} d V(x) \\
& \quad \leq C \int_{B} \frac{\|u\|_{\mathscr{Q}_{\alpha}^{r}}^{p}}{(1-|x|)^{\frac{n+\alpha-r}{r} p}}|\nabla u(x)|^{r} \frac{\|u\|_{\mathscr{D}_{\alpha}^{r}}^{\varepsilon}}{(1-|x|)^{\frac{n+\alpha}{r} \varepsilon}}(1-|x|)^{\beta} d V(x) \\
& \quad=C\|u\|_{\mathscr{D}_{\alpha}^{r}}^{p+\varepsilon} \int_{B}|\nabla u(x)|^{r}(1-|x|)^{\alpha+s} d V(x),
\end{aligned}
$$

where $s=\beta-p\left(\frac{n+\alpha-r}{r}\right)-\frac{n+\alpha}{r}(q-r)-\alpha$. From (16) we have $s \geq 0$. Hence the result follows.

Theorem 10. Let $u \in \mathscr{H}(B)$. If $u \in \mathscr{D}_{\alpha}^{2}$ for some $\alpha \in(-1,1]$ with $n+\alpha>2$, then $u \in \mathscr{H}^{p}(B)$ for all $p \in\left(0, \frac{2 n-2}{n+\alpha-2}\right]$. Moreover, there is a positive constant $C=C(n, \alpha)$ such that

$$
\begin{equation*}
\|u\|_{\mathscr{H}^{p}(B)} \leq C\|u\|_{\mathscr{D}_{\alpha}^{2}} \tag{20}
\end{equation*}
$$

for all $p \in\left(0, \frac{2 n-2}{n+\alpha-2}\right]$.
Proof. By Theorem 9 we have that there is a positive constant C independent of u such that

$$
\begin{equation*}
\int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}(1-|x|) d V(x) \leq C\|u\|_{\mathscr{D}_{\alpha}^{2}}^{p}, \tag{21}
\end{equation*}
$$

for $p \in\left[2, \frac{2 n-2}{n+\alpha-2}\right]$.
Hence, by Theorem C, we have $u \in \mathscr{H}^{p}(B)$ for all $p \in\left[2, \frac{2 n-2}{n+\alpha-2}\right]$ and consequently for $p \in\left(0, \frac{2 n-2}{n+\alpha-2}\right]$.

To get inequality (20) it remains to show

$$
\int_{B}|u(x)|^{p} d V_{N}(x) \leq\|u\|_{\mathscr{D}_{\alpha}^{2}}^{p} .
$$

It is well-known that for $u \in \mathscr{H}(B)$ and $p \in(0, \infty)$

$$
\begin{equation*}
\int_{B}|u(x)|^{p} d V_{N}(x) \leq C\left(|u(0)|^{p}+\int_{B}|\nabla u(x)|^{p}(1-|x|)^{p} d V_{N}(x)\right), \tag{22}
\end{equation*}
$$

for some $C>0$ independent of u. For example, it is a consequence of [13, Theorem 2]. Indeed, taking $\mathscr{D}=B, s=0, q=p, m=1, x_{0}=0$ and $\varepsilon \in(0,1)$ in [13, Theorem 2], and using the fact that the defining function for the unit ball is $\lambda(x)=|x|^{2}-1$, we get

$$
\begin{equation*}
\int_{0}^{\varepsilon} M_{p}^{p}(u, r) d r \leq C\left(|u(0)|^{p}+\int_{0}^{\varepsilon} r^{p} M_{p}^{p}(\nabla u, r) d r\right) \tag{23}
\end{equation*}
$$

for some $C>0$ independent of u, where

$$
M_{p}^{p}(g, r)=\int_{S}|g(\sqrt{1-r} \zeta)|^{p} d \sigma_{N}(\zeta)
$$

Using the change of variables $\rho=\sqrt{1-r}$ in both integrals in (23), then the polar coordinates and some simple calculation, we obtain

$$
\begin{equation*}
\int_{1>|x| \geq \sqrt{1-\varepsilon}}|u(x)|^{p} d V_{N}(x) \leq C_{1}\left(|u(0)|^{p}+\int_{1>|x| \geq \sqrt{1-\varepsilon}}|\nabla u(x)|^{p}(1-|x|)^{p} d V_{N}(x)\right) . \tag{24}
\end{equation*}
$$

On the other hand, Lemma 4 gives

$$
\begin{equation*}
\int_{|x|<\sqrt{1-\varepsilon}}|u(x)|^{p} d V_{N}(x) \leq C_{2}\left(|u(0)|^{p}+\int_{B}|\nabla u(x)|^{p}(1-|x|)^{p} d V_{N}(x)\right) \tag{25}
\end{equation*}
$$

for some $C_{2}>0$ independent of u.
(24) and (25) together show that (22) holds.

Let $p=\frac{2 n-2}{n+\alpha-2}$. Then by (22) and (18) we have

$$
\begin{aligned}
\int_{B}|u(x)|^{p} d V_{N}(x) & \leq C\left(|u(0)|^{p}+\|u\|_{\mathscr{D}_{\alpha}^{2}}^{p-2} \int_{B}|\nabla u(x)|^{2}(1-|x|)^{p-\frac{n+\alpha}{2}(p-2)} d V_{N}(x)\right) \\
& \leq C\left(|u(0)|^{p}+\|u\|_{\mathscr{D}_{\alpha}^{2}}^{p}\right) .
\end{aligned}
$$

From this, (18) and Theorem C we obtain

$$
\|u\|_{\mathscr{H}^{\frac{2 n-2}{n+\alpha-2}}(B)} \leq C\|u\|_{\mathscr{D}_{\alpha}^{2}}
$$

from which the result follows.
Corollary 7. Let $u \in \mathscr{H}(B)$. If $u \in \mathscr{D}_{\alpha}^{2}$ for some $\alpha \in(-1,1]$ with $n+\alpha>2$, then the function $|u|^{p}$ admits a harmonic majorant in B for all $p \in\left[1, \frac{2 n-2}{n+\alpha-2}\right]$.

This corollary is a slight generalization of the following result [35. Theorem 3]:
Theorem E. Let $u \in \mathscr{H}(B), n \geq 3$ such that

$$
\mathscr{D}_{\alpha}^{2}(u)=\int_{B}|\nabla u(x)|^{2}(1-|x|)^{\alpha} d V(x)<\infty
$$

for an $\alpha, 0 \leq \alpha \leq 1$. Then for $p=(2 n-2) /(n+\alpha-2)$, the function $|u|^{p}$ admits a harmonic majorant in B.

References

[1] A. Aleman and A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356.
[2] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J., 53 (1986), 315-332.
[3] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992.
[4] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several complex variables, Ann. of Math., 103 (1976), 611-635.
[5] P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[6] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[7] T. M. Flett, Inequalities for the p th mean values of harmonic and subharmonic functions with $p \leq 1$, Proc. London Math. Soc. (3), 20 (1970), 249-275.
[8] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1977.
[9] Y. Gotoh, On BMO functions on Riemann surface, J. Math. Kyoto Univ., 25 (1985), 331-339.
[10] G. H. Hardy and J. E. Littlewood, Some properties of conjugate function, J. Reine Angew. Math., 167 (1931), 405-423.
[11] W. Hayman, Multivalent functions, Cambridge Univ. Press, London, 1958.
[12] W. Hayman and P. B. Kennedy, Subharmonic functions, volume I, Academic Press, London, New York, San Francisco, 1976.
[13] Hu, Zhangjian, Estimates for the integral mean of harmonic functions on bounded domains in \boldsymbol{R}^{n}, Sci. China Ser. A, 38 (1995), 36-46.
[14] T. L. Kriete and B. D. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J., 41 (1992), 755-788.
[15] P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential weights, Integral Equations Operator Theory, 21 (1995), 460-483.
[16] D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., 107 (1985), 85-111.
[17] D. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc., 103 (1988), 887-893.
[18] K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math., 11 (1988), 381-386.
[19] A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math., 66 (2000), 651-664.
[20] S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math., 66 (2000), 553-563.
[21] S. Stević, On eigenfunctions of the Laplace operator on a bounded domain, Sci. Ser. A Math. Sci. (N.S.), 7 (2001), 51-55.
[22] S. Stević, A note on weighted integrals of analytic functions, Bull. Greek Math. Soc., 46 (2002), 3-9.
[23] S. Stević, On an area inequality and weighted integrals of analytic functions, Result. Math., 41 (2002), 386-393.
[24] S. Stević, On harmonic Hardy and Bergman spaces, J. Math. Soc. Japan, 54 (2002), 983-996.
[25] S. Stević, On Bloch hyperharmonic functions, Ann. Math. Silesianae, 16 (2002), 57-64.
$[26]$ S. Stević, Weighted integrals of harmonic functions, Studia Sci. Math. Hung., 39 (2002), 87-96.
[27] S. Stević, Weighted integrals of holomorphic functions in \boldsymbol{C}^{n}, Complex Variables, 47 (2002), 821-838.
[28] S. Stević, Composition operators on the generalized Bergman space, J. Indian Math. Soc., 69 (2002), 61-64.
[29] S. Stević, Inequalities for the gradient of eigenfunctions of the Laplace-Beltrami operator, Functiones et Approximatio, 31 (2003), 7-19.
[30] S. Stević, On harmonic Hardy spaces and area integrals, J. Math. Soc. Japan, 56 (2004), 339-347.
[31] S. Stević, On subharmonic behaviour of functions on balls in \boldsymbol{C}^{n}, Archives of Inequalities and Applications (to appear).
[32] M. Stoll, A characterization of Hardy spaces on the unit ball of \boldsymbol{C}^{n}, J. London Math. Soc., 48 (1993), 126-136.
[33] R. M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc., 12 (1980), 241-267.
[34] S. Yamashita, Criteria for functions to be of Hardy class H^{p}, Proc. Amer. Math. Soc., 75 (1979), 69-72.
[35] S. Yamashita, Dirichlet-finite functions and harmonic majorants, Illinois J. Math., 25 (1981), 626-631.
[36] S. Yamashita, Holomorphic functions and area integrals, Bollettino. U. M. I., 6 (1982), 115-120.

Stevo Stević
Mathematical Institute of Serbian Academy of Science
Knez Mihailova 35/I
11000 Beograd
Serbia
E-mail: sstevic@ptt.yu

[^0]: 2000 Mathematics Subject Classification. 31B05.
 Key Words and Phrases. harmonic function, weighted Hardy-Littlewood operator, Dirichlet type space, boundedness, Bloch space.

