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Abstract. In this paper we investigate a-Bloch, Hardy, Bergman, BMOp and
Dirichlet spaces of harmonic functions on the open unit ball in Rn, and the bound-
edness of the Hardy-Littlewood operator on these spaces.

1. Introduction.

Throughout this paper G is a domain in the Euclidean space Rn, n ≥ 1, B(a, r) =
{x ∈ Rn | |x − a| < r} denotes the open ball centered at a ∈ Rn of radius r > 0, where
|x| denotes the norm of x ∈ Rn and B is the open unit ball in Rn. S = ∂B = {x ∈
Rn | |x| = 1} is the boundary of B.

Let dV denote the Lebesgue measure on Rn, vn the volume of B, dσ the surface
measure on S, σn the surface area of S, dVN the normalized Lebesgue measure on B,
dσN the normalized surface measure on S. Let H (B) denote the set of complex valued
harmonic functions on B.

Let Z+
n be the set of all ordered n-tuples of nonnegative integers, and for each

α = (α1, ..., αn) ∈ Z+
n let

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!.

For a harmonic function u we denote

Dαu =
∂|α|u

∂x1
α1 · · · ∂xn

αn
.

Given a function u harmonic on a domain G, and a positive integer m, the gradient of u

of order m, ∇mu, can be defined to be a vector valued function whose components are
the derivatives of u of order |α| = m, arranged in some fixed order. The norm of ∇mu is
then uniquely defined by the relation

|∇mu(x)| =
(

m!
∑

α∈Z+
n ,|α|=m

|Dαu(x)|2
α1! · · ·αn!

)1/2

.

In particular |∇1u| = |∇u|, where ∇u is the usual gradient of u.
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For p > 0, H p(B) denote the set of harmonic functions u on B such that

‖u‖H p(B) = sup
0<r<1

(∫

S

|u(rζ)|pdσN (ζ)
)1/p

< +∞.

Elements of H p(B) theory can be found in [3, Chapter VI]. For elements of complex Hp

theory see, for example, [5].
Let a > 0. A function f ∈ C1(B) is said to be an a-Bloch function if

‖f‖Ba = sup
x∈B

(1− |x|)a|∇f(x)| < +∞.

The space of a-Bloch functions is denoted by Ba(B) = Ba. If a = 1, Ba just becomes
the Bloch space B. Let HBa(B) denote the space which consists of all harmonic a-Bloch
functions on the unit ball, i.e., H (B) ∩Ba(B). If a = 1, we obtain the harmonic Bloch
space HB(B). Basic results for analytic Bloch functions on the unit disc can be found
in [2] and for analytic Bloch functions in several variables in [33]. For hyperharmonic
Bloch functions see [25].

Let p > 0. A Borel function f , locally integrable in the unit ball B, is said to be a
BMOp(B) function if

‖f‖BMOp = sup
B(a,r)⊂B

(
1

V (B(a, r))

∫

B(a,r)

|f(x)− fB(a,r)|pdV (x)
)1/p

< +∞

where the supremum is taken over all balls B(a, r) with B(a, r) ⊂ B, and fB(a,r) is the
mean value of f over B(a, r).

Let HBMOp
(B) = H (B) ∩BMOp(B).

In [18] for p ≥ 1, Muramoto proved that HB(B) is isomorphic to H (B)∩BMOp(B)
as Banach spaces. In fact he proved the following theorem:

Theorem A. Let p ≥ 1. Then there is a positive constant c(p, n), depending on p

and n, such that for every u ∈ H (B)

1
c(p, n)

‖u‖BMOp
≤ ‖u‖H ,n ≤ c(p, n)‖u‖BMOp

where

‖u‖H ,n = sup
x∈B

1
2
(1− |x|2)|∇u(x)|.

Note that the norms ‖u‖H ,n and ‖u‖B are equivalent. In the case n = 2, this
result was essentially obtained by Coifman, Rochberg and Weiss [4] and Gotoh [9]. In
[20, Theorems 2 and 3] we proved that Muramoto’s result is true also for p ∈ (0, 1).
Moreover, by a slight modification of the proof of Theorem 1 in [20] we can prove that
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HBa(B) ⊂ HBMOp
(B) if a ∈ (0, 1] and p > 0, or if 1 < a < 1 + 1

p .

This Muramoto’s paper inspired us to calculate exactly BMOp norm for harmonic
functions, which is the theme of [20]. In the proof of the main result in [20], we essentially
proved a generalization of the Hardy-Stein identity (see, for example, [11, p. 42]). Some
further applications of the identity can be found in [24] and [30]. Among others in [24] we
proved some results which are closely related to Yamashita’s results for analytic functions
on the unit disk [36], as the main result in [30] generalizes the main Yamashita’s result
in [34]. A generalization of the identity on the unit disk can be found in [17]. A similar
formula for analytic functions on the unit ball in Cn can be found in [32].

Let ω(r), 0 < r < 1, be a positive weight function which is integrable on (0, 1). We
extend ω on B by setting ω(x) = ω(|x|). We may assume that our weights are normalized
so that

∫
B

ω(x)dV (x) = 1.
For 0 < p < ∞ the weighted Bergman space bp

ω(B) is the space of all harmonic
functions u on B such that

‖u‖ω,p =
( ∫

B

|u(x)|pω(x)dV (x)
)1/p

< +∞.

If ω(r) = (1 − r)α, α > −1, we denote the norm by ‖u‖p,α and the corresponding space
by bp

α(B).
It is easy to see that weights may be modified on intervals [0, σ], with σ < 1 without

changing the Bergman space, in fact, the corresponding norms are equivalent. Recently
there has been a great interest in studying the weighted Bergman spaces of analytic or
harmonic functions with weights other than the classical ω(r) = (1−r)α, α > −1, see, for
example, [1], [14], [15], [16], [19], [22], [23], [26], [27], [28] and the references therein.

For α ∈ (−1,∞) let Dp
α(B) = Dp

α be the class of all harmonic functions u on the
unit ball obeying

‖u‖p
Dp

α
= |u(0)|p +

∫

B

|∇u(x)|p(1− |x|)αdV (x) < ∞.

We say that a locally integrable function f on B possesses HL−property, with a
constant c > 0 if

f(a) ≤ c

rn

∫

B(a,r)

f(x)dV (x) whenever B(a, r) ⊂ B.

For example, every subharmonic function ([12]) possesses HL−property when
c = 1/vn. In [10] Hardy and Littlewood proved that |u|p, p > 0, n = 2, also pos-
sesses HL−property whenever u is a harmonic function in B. In the case n ≥ 3 a
generalization was made by Fefferman and Stein [6]. Other classes of functions that
possess HL−property can be found in [21], [29], [31].

In section 2 we prove some auxiliary results which we apply in the sections which
follows.

In section 3 we consider the boundedness of the weighted Hardy-Littlewood operator
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Lg(f)(x) =
∫ 1

0

f(tx)g(t)dt,

on the spaces HBa(B),HBMOp
(B),H p(B), bp

ω(B) and Dp
α(B).

In section 4 we generalize a result of Flett [7] and give a short proof of the result.
Also we give a new equivalent condition for a harmonic function to be a Bloch function.

In section 5 we improve a local estimate given in [24].
In the last section we consider the relationship between the functions which belong

to H p(B) and Dp
α(B).

2. Auxiliary results.

In this section we prove some auxiliary results that we use in the sections which
follows. The first one is a technical lemma.

For α ∈ (−1,∞) and p > 0 let L p
α (B) = L p

α be the class of all measurable functions
f obeying

‖f‖p
L p

α
=

∫

B

|f(x)|p(1− |x|)αdV (x) < ∞.

Using Fubini’s theorem, we can easily show the following lemma:

Lemma 1. Let α ∈ (0,∞). Suppose that f is a nonnegative measurable function
on B. Then

∫

B

f(x)(1− |x|)αdV (x) = α

∫ 1

0

( ∫

rB

f(x)dV (x)
)

(1− r)α−1dr.

Corollary 1. Let p, α ∈ (0,∞) and f ∈ L p
α (B). Then

lim
r→1

(1− r)α

∫

rB

|f(x)|pdV (x) = 0.

Proof. By Lemma 1 we have

∫ 1

0

( ∫

rB

|f(x)|pdV (x)
)

(1− r)α−1dr < ∞.

Hence, by Cauchy’s criterion

lim
ρ→1

∫ 1

ρ

( ∫

rB

|f(x)|pdV (x)
)

(1− r)α−1dr = 0.

Since the function
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∫

rB

|f(x)|pdV (x)

is nondecreasing in r, we obtain

∫

ρB

|f(x)|pdV (x)
∫ 1

ρ

(1− r)α−1dr ≤
∫ 1

ρ

( ∫

rB

|f(x)|pdV (x)
)

(1− r)α−1dr,

from which the result follows. ¤

Corollary 2. Let f be a measurable function on B and p, α ∈ (0,∞). Then the
following equivalence holds

‖f‖L p
α

< ∞⇔
∫ 1

0

( ∫

rB

|f(x)|pdV (x)
)

(1− r)α−1dr < ∞.

By Corollary 1 we obtain the following growth result.

Corollary 3. Let u ∈ Dp
α(B) and α ∈ (0,∞). Then

lim
r→1

(1− r)α

∫

rB

|∇u(x)|pdV (x) = 0.

Lemma 2. Let u ∈ H (B), α a multi-index and p > 0. Then

(
|Dαu(x)| r|α|

)p

≤ C

rn

∫

B(x,r)

|u|pdV, (1)

whenever B(x, r) ⊂ B, where C = C(p, n, α) is a positive constant.

Proof. By Fefferman-Stein Lemma we have

|u(x)|p ≤ C

rn

∫

B(x,r)

|u|pdV, wheneverB(x, r) ⊂ B

and consequently

sup
y∈B(x,r/2)

|u(y)|p ≤ C2n

rn

∫

B(x,r)

|u|pdV, (2)

where C is a positive constant depending only on n and p.
On the other hand, by Cauchy’s estimate we have

|Dαu(x)| ≤
(

2n|α|
r

)|α|
sup

y∈B(x,r/2)

|u(y)| (3)
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(see, for example, [8, p. 23]).
From (3) we obtain

|Dαu(x)|p ≤
((

2n|α|
r

)|α|
sup

y∈B(x,r/2)

|u(y)|
)p

. (4)

(1) follows from (2) and (4). ¤

Corollary 4. Let u be a harmonic function on a domain G ⊂ Rn, p > 0 and
m ∈ N . Then there is a constant C = C(m,n, p) such that

|∇mu(x)| ≤ C

rm

(
1

V (B(x, r))

∫

B(x,r)

|u(y)|pdV (y)
)1/p

,

for each B(x, r) ⊂ G.

Remark 1. For p ≥ (n−2)/(m+n−2) Lemma 2 was proved in [7] by T.M.Flett.

Lemma 3. Let u be a harmonic function on a domain G. Then

∆m|u|2 = 2m|∇mu|2.

Proof. Without loss of generality we may assume that u is a real valued harmonic
function. We prove the lemma by induction.

Let m = 1. Then

∆|u|2 = ∆u2 = 2(|∇u|2 + u∆u) = 2|∇u|2,

since ∆u = 0, as desired.
Next, assume that the formula holds for all positive integers m ≤ k. Then for

m = k + 1, we have

∆k+1u2 = ∆(∆ku2) = ∆(2k|∇ku|2) = 2k∆

(
k!

∑

α∈Z+
n ,|α|=k

|Dαu|2
α1! · · ·αn!

)

= 2kk!
∑

α∈Z+
n ,|α|=k

∆|Dαu|2
α1! · · ·αn!

.

Since for every multi-index α, the function Dαu is harmonic, we obtain

∆|Dαu|2 = 2|∇(Dαu)|2 = 2
n∑

i=1

|Dα1...(αi+1)...αnu|2.

Therefore, we obtain that
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∆k+1u2 = 2k+1k!
∑

α∈Z+
n ,|α|=k

1
α1! · · ·αn!

n∑

i=1

(|Dα1...(αi+1)...αnu|2)

= 2k+1k!
∑

α∈Z+
n ,|α|=k

n∑

i=1

αi + 1
α1! · · · (αi + 1)! · · ·αn!

(|Dα1...(αi+1)...αnu|2).

Note that all multi-indices appearing in the above sum are of order k + 1 and that
each multi-index of order k + 1 appears in the sum. Hence, we can rewrite the sum,
summing over multi-indices of order k + 1. Let β be an arbitrary multi-index of order
k + 1. Set

Iβ = {i ∈ {1, . . . , n} : βi > 0}

and

Jβ =
{
α ∈ Zn

+ : |α| = k and α + ei = β for some i ∈ Iβ

}
,

where

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Then the coefficient standing by |Dβu|2 is equal to

∑

α∈Jβ

1
α1! · · ·αn!

=
∑

i∈Iβ

1
β1! · · · (βi − 1)! · · ·βn!

=
∑

i∈Iβ

βi

β1! · · ·βi! · · ·βn!

=
n∑

i=1

βi

β1! · · ·βi! · · ·βn!
.

Thus

∆k+1u2 = 2k+1k!
∑

β∈Z+
n ,|β|=k+1

|Dβu|2
n∑

i=1

βi

β1! · · ·βi! · · ·βn!

= 2k+1k!
∑

β∈Z+
n ,|β|=k+1

|Dβu|2
β1! · · ·βn!

n∑

i=1

βi

= 2k+1k!
∑

β∈Z+
n ,|β|=k+1

|Dβu|2
β1! · · ·βn!

|β|

= 2k+1(k + 1)!
∑

β∈Z+
n ,|β|=k+1

|Dβu|2
β1! · · ·βn!

= 2k+1|∇k+1u|2,
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finishing the proof. ¤

Lemma 4. Suppose 0 < p < ∞ and r ∈ (0, 1). Then there is a constant C =
C(p, r, n) such that

∫

|x|<r

|u(x)|pdVN (x) ≤ C

(
|u(0)|p +

∫

B

|∇u(x)|p(1− |x|)pdVN (x)
)

,

for all u ∈ H (B).

Proof. First, notice that

∫

|x|<r

|u(x)|pdVN (x) ≤ max
|x|≤r

|u(x)|,

so, it is enough to estimate max|x|≤r |u(x)|.
Since

u(x0)− u(0) =
∫ 1

0

u′(tx0)dt =
∫ 1

0

〈∇u(tx0), x0〉dt,

by elementary inequalities we obtain

|u(x0)|p ≤ cp

(
|u(0)|p + |x0|p max

|x|≤r
|∇u(x)|p

)
,

for each x0 ∈ B(0, r), where cp = 1 for 0 < p < 1 and cp = 2p−1 for p ≥ 1.
On the other hand by Fefferman-Stein Lemma we have

|Dαu(x)|p ≤ C

∫

B(x,(1−r)/2)

|Dαu(y)|pdV (y)

for each x ∈ B(0, r), every multi-index α of order 1, and for some C > 0 independent of
u ∈ H (B).

This implies

|∇u(x)|p ≤ Cvn

∫

B(x,(1+r)/2)

|∇u(y)|pdVN (y)

for each x ∈ B(0, r), and consequently

max
|x|≤r

|∇u(x)|p ≤ Cvn

(
2

1− r

)p ∫

B(0,(1+r)/2)

|u(y)|p(1− |y|)pdVN (y).

From all above mentioned the result follows. ¤
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3. On the weighted Hardy-Littlewood operator.

Let g : [0, 1] → R be a function. For a measurable complex-valued function f on B,
we define the weighted Hardy-Littlewood operator Lg(f) as

Lg(f)(x) =
∫ 1

0

f(tx)g(t)dt,

for x ∈ B, provided that the integral exists.
For g(t) ≡ 1 and n = 1, Hardy proved that this special operator is bounded on

L p(0,∞), p > 1, moreover ‖L1‖L p(0,∞) ≤ p
p−1 ([5, p. 234]). We are interested in

the boundedness of the weighted Hardy-Littlewood operator on HBa(B),HBMOp
(B),

H p(B), bp
ω(B) and Dp

α(B).

Theorem 1. Let g ∈ L [0, 1] and a > 0. Then Lg is a bounded operator from
HBa(B) to HBa(B).

Proof. Let u ∈ HBa(B). Using Cauchy-Schwarz inequality, we have for x ∈ B

(1− |x|)a|∇Lg(u)(x)| = (1− |x|)a

∣∣∣∣
∫ 1

0

t〈(∇u)(tx), g(t)〉dt

∣∣∣∣

≤ (1− |x|)a

(∫ 1

0

t2|g(t)|dt

)1/2 (∫ 1

0

|(∇u)(tx)|2|g(t)|dt

)1/2

≤
(∫ 1

0

t2|g(t)|dt

)1/2 (∫ 1

0

(1− |tx|)2a|(∇u)(tx)|2|g(t)|dt

)1/2

≤ ‖u‖HBa

∫ 1

0

|g(t)|dt.

Taking supremum over x ∈ B in the obtained inequality, we get the result. ¤

Remark 2. In the above proof we did not use any special property of harmonic
function. Hence we proved the following theorem:

Theorem 1. a). Let g ∈ L [0, 1] and a > 0. Then Lg is a bounded operator from
Ba(B) to Ba(B).

Combining Theorem A and its extension for the case p ∈ (0, 1) ([18] and [20]), and
Theorem 1 for a = 1, we obtain the following corollary.

Corollary 5. Let p ∈ (0,∞) and g ∈ L [0, 1]. Then Lg is a bounded operator
from HBMOp

(B) to HBMOp
(B).

It is interesting that in the case p ≥ 1 there is a direct proof of Corollary 5 using
definition of HBMOp(B). Moreover in this case we obtain a precise estimate of the norm
of the operator Lg.
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Theorem 2. Let p ≥ 1 and g ∈ L [0, 1]. Then Lg is a bounded operator from
HBMOp

(B) to HBMOp
(B), moreover

‖Lg‖HBMOp (B)→HBMOp (B) ≤
∫ 1

0

|g(t)|dt.

Proof. Let u ∈ HBMOp
(B). Then for any open ball B(a, r) with B(a, r) ⊂ B,

by Fubini’s theorem and the change of variables tx → x we obtain

Lg(u)B(a,r) =
1

V (B(a, r))

∫

B(a,r)

(Lg)(u)(x)dV (x)

=
∫ 1

0

(
1

V (B(a, r))

∫

B(a,r)

u(tx)dV (x)
)

g(t)dt

=
∫ 1

0

uB(ta,tr)g(t)dt.

Using this and Minkowski’s inequality, we have

‖Lg(u)‖HBMOp (B)

= sup
B(a,r)⊂B

(
1

V (B(a, r))

∫

B(a,r)

|Lg(u)(x)− Lg(u)B(a,r)|pdV (x)
)1/p

= sup
B(a,r)⊂B

(
1

V (B(a, r))

∫

B(a,r)

∣∣∣∣
∫ 1

0

(u(tx)− uB(ta,tr))g(t)dt

∣∣∣∣
p

dV (x)
)1/p

≤ sup
B(a,r)⊂B

∫ 1

0

|g(t)|
(

1
V (B(a, r))

∫

B(a,r)

|u(tx)− uB(ta,tr)|pdV (x)
)1/p

dt

= sup
B(a,r)⊂B

∫ 1

0

|g(t)|
(

1
V (B(ta, tr))

∫

B(ta,tr)

|u(x)− uB(ta,tr)|pdV (x)
)1/p

dt

≤ ‖u‖HBMOp (B)

∫ 1

0

|g(t)|dt,

from which the result follows. ¤

Note that we again did not use any special property of harmonic function. Thus the
following theorem holds:

Theorem 2. a). Let p ≥ 1 and g ∈ L [0, 1]. Then Lg is a bounded operator from
BMOp(B) to BMOp(B). Moreover the operator norm of Lg satisfies the estimate:

‖Lg‖BMOp(B)→BMOp(B) ≤
∫ 1

0

|g(t)|dt.
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Theorem 3. Let ω be a weight that is non-increasing in r ∈ (0, 1), p ≥ 1, and
g : [0, 1] → R be a function which satisfies the condition

∫ 1

0

t−n/p|g(t)|dt < ∞.

Then Lg : bp
ω(B) → bp

ω(B) is a bounded operator.

Proof. Using Minkowski’s inequality and the change of variables tx → x, we have

‖Lg(u)‖bp
ω(B) =

(∫

B

|Lg(u)(x)|pω(x)dV (x)
)1/p

≤
∫ 1

0

(∫

B

|u(tx)|pω(x)dV (x)
)1/p

|g(t)|dt

≤
∫ 1

0

(∫

B

|u(tx)|pω(tx)dV (x)
)1/p

|g(t)|dt

=
∫ 1

0

(∫

tB

|u(x)|pω(x)dV (x)
)1/p

t−n/p|g(t)|dt

≤ ‖u‖bp
ω(B)

∫ 1

0

t−n/p|g(t)|dt,

which implies that Lg is bounded on bp
ω(B). ¤

Exapmple 1. The weight ω(x) = (1− |x|)α where α ≥ 0 is an example of weights
that satisfy the condition in Theorem 3.

If we note that Lg(f)(0) = f(0)
∫ 1

0
g(t)dt, we can similarly prove the following result.

Theorem 4. Let α ≥ 0, p ≥ 1, and g : [0, 1] → R be a function which satisfies the
condition

∫ 1

0

t−n/p|g(t)|dt < ∞.

Then Lg : Dp
α(B) → Dp

α(B) is a bounded operator such that

‖Lg‖ ≤ C

∫ 1

0

t−n/p|g(t)|dt,

where C = C(n, p) is a positive constant.

In the case of H p(B) we have the following result.

Theorem 5. Let p ≥ 1 and g ∈ L [0, 1]. Then Lg is a bounded operator from
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H p(B) to H p(B). Moreover

‖Lg‖H p(B)→H p(B) ≤
∫ 1

0

|g(t)|dt.

Proof. By Minkowski’s inequality we get

‖Lg(u)‖H p(B) = sup
0≤r<1

(∫

S

|Lg(u)(rζ)|pdσN (ζ)
)1/p

≤ sup
0≤r<1

∫ 1

0

(∫

S

|u(rtζ)|p|g(t)|pdσN (ζ)
)1/p

dt

≤ ‖u‖H p(B)

∫ 1

0

|g(t)|dt,

as desired. ¤

4. Growth theorems for harmonic functions.

Throughout the rest of the paper we will use C to denote a positive constant, not
necessarily the same on any two occurrences. Any dependence of C on say p, q, . . . will
be denoted by C(p, q, . . .).

In this section we generalize and give a short proof of the following result of Flett
[7, Lemma 9]:

Theorem B. Let m ∈ N , n ≥ 2, and (n − 2)/(m + n − 2) ≤ p ≤ 1 (if n = 2 we
suppose that 0 < p ≤ 1). Let also u ∈ H (B) such that

I =
∫

B

|u(x)|pdV (x) < ∞.

Then, for 0 ≤ r < 1,

∫

B(0,r)

|∇mu(x)|pdV (x) ≤ C(m,n, p)I(1− r)−pm.

First we prove a useful inequality.

Theorem 6. Let p > 0, α > −1 and m ∈ N . Then there is a positive constant
C = C(n, p, α, m) such that

∫

B

|∇mu(x)|p(1− |x|)pm+αdV (x) ≤ C

∫

B

|u(x)|p(1− |x|)αdV (x) (5)

for all u ∈ bp
α(B).
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Proof. By Corollary 4, we have for x ∈ B

|∇mu(x)|p(1− |x|)pm ≤ C1

(1− |x|)n

∫

B(x,
1−|x|

2 )

|u|pdV, (6)

where C1 = C1(n, p, m) is a positive constant.
Since 1

2 (1 − |x|) ≤ 1 − |y| ≤ 3
2 (1 − |x|) for y ∈ B

(
x, 1−|x|

2

)
, there is a constant

C2 = C2(n, α) > 0 such that (1 − |x|)α−n ≤ C2(1 − |y|)α−n for y ∈ B
(
x, 1−|x|

2

)
. Using

this inequality, (6) and Fubini’s theorem, we have

I ≡
∫

B

|∇mu(x)|p(1− |x|)pm+αdV (x)

≤ C1

∫

B

(1− |x|)α−ndV (x)
∫

B(x,
1−|x|

2 )

|u(y)|pdV (y)

≤ C1C2

∫

B

dV (x)
∫

B(x,
1−|x|

2 )

(1− |y|)α−n|u(y)|pdV (y)

= C1C2

∫

B

(1− |y|)α−n|u(y)|pdV (y)
∫

A(y)

dV (x),

where

A(y) =
{

x ∈ B

∣∣∣∣y ∈ B

(
x,

1− |x|
2

)}
⊂ {x ∈ B| |x− y| < 1− |y|} = B(y, 1− |y|).

From this the desired result follows:

I ≤ C1C2vn

∫

B

|u(y)|p(1− |y|)αdV (y).
¤

Corollary 6. Let u ∈ bp
α(B), p > 0, α > −1 and pm + α > 0. Then there is a

positive constant C = C(m,n, p, α) such that for 0 ≤ r < 1, the following holds:

(a) (1− r)pm+α

∫

rB

|∇mu(x)|pdV (x) ≤ C

∫

B

|u(x)|p(1− |x|)αdV (x).

Moreover,

(b) lim
r→1−0

(1− r)pm+α

∫

rB

|∇mu(x)|pdV (x) = 0.

Proof. Let I =
∫

B
|u(x)|p(1− |x|)αdV (x). By Theorem 6 we have that

∫

B

|∇mu(x)|p(1− |x|)pm+αdV (x) ≤ CI < ∞
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for some C = C(m,n, p, α). By Corollary 1 for f = |∇mu| and α → pm + α we obtain
the result. ¤

The main idea in the proof of Theorem 6 motivated us to get another equivalence
condition for a harmonic function to be a Bloch function. In order to formulate the result
in more complete form we quote several conditions in the following theorem.

Theorem 7. Let 0 < p < ∞, k ∈ N and u ∈ H (B), then the following conditions
are equivalent:

(a) u ∈ HB(B),

(b) sup
x∈B

(1− |x|)2∆(|u|2(x)) < +∞,

(c) sup
x∈B

(1− |x|)k|∇ku(x)| < +∞,

(d) sup
x∈B

∫
B(x,

1−|x|
2 ) |∇ku(z)|p(1− |z|)kp−ndV (z) < +∞,

(e) ‖u‖BMOp
< +∞.

Proof. (a) ⇔ (b) is simple and is based on the formula ∆(f2) = 2f∆f + 2|∇f |2,
for any real function f of C2 class.

(a) ⇔ (e) was proved in [18] and [20].
(a) ⇒ (c) can be found in [3, p. 42].
(c) ⇒ (a) this is certainly well known to experts in the field of Bloch space. We

include a proof here for completeness and for the lack of a specific reference.
Case k = 1 is trivial. Let k ≥ 2. Take α ∈ Zn

+ with |α| = k − 1. Fix x ∈ B.
Since

Dαu(x)−Dαu(0) =
∫ 1

0

d

dt
[Dαu(tx)]dt =

∫ 1

0

〈∇Dαu(tx), x〉dt,

we have

|Dαu(x)| ≤ |Dαu(0)|+
∫ 1

0

|∇ku(tx)| |x|dt.

Thus

|Dαu(x)| ≤ |Dαu(0)|+
∫ 1

0

|x|dt

(1− t|x|)k
sup
y∈B

(1− |y|)k|∇ku(y)|

= |Dαu(0)|+
(

1
(1− |x|)k−1

− 1
)

1
k − 1

sup
y∈B

(1− |y|)k|∇ku(y)|

≤ |Dαu(0)|+ 1
(k − 1)(1− |x|)k−1

sup
y∈B

(1− |y|)k|∇ku(y)|

i.e.
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(1− |x|)k−1|Dαu(x)| ≤ (1− |x|)k−1|Dαu(0)|+ 1
k − 1

sup
y∈B

(1− |y|)k|∇ku(y)|.

Since α is an arbitrary multi-index of order k − 1 and x is an arbitrary point of B,
the last inequality and (c) imply that

sup
x∈B

(1− |x|)k−1|∇k−1u(x)| < +∞.

Therefore, by induction the result follows.
(c) ⇒ (d) is simple.
Hence the only interesting direction is (d) ⇒ (c). Let l be a nonnegative integer.

Take α, β ∈ Zn
+ with |α| = k and |β| = l. Fix x ∈ B.

By Cauchy’s estimate and the HL-property of the function |Dαu|p, we have

|Dα+βu(x)|p ≤
[(

n|β|
4−1(1− |x|)

)|β|
sup

y∈B(x,(1−|x|)/4)

|Dαu(y)|
]p

≤
(

4nl

(1− |x|)
)lp [

sup
y∈B(x,(1−|x|)/4)

C4n

(1− |x|)n

∫

B(y,(1−|x|)/4)

|Dαu|pdV

]

≤ C

(1− |x|)lp+n

∫

B(x,(1−|x|)/2)

|Dαu|pdV

≤ C
(1− |x|)−kp+n

(1− |x|)lp+n

∫

B(x,(1−|x|)/2)

(1− |y|)kp−n|Dαu(y)|pdV (y).

Hence

(1− |x|)(k+l)p|Dα+βu(x)|p ≤ C

∫

B(x,(1−|x|)/2)

(1− |y|)kp−n|∇ku(y)|pdV (y)

if α, β ∈ Zn
+, |α| = k and |β| = l and x ∈ B. This implies that

sup
x∈B

(1− |x|)k+l|∇k+lu(x)| ≤ C

(
sup
x∈B

∫

B(x,(1−|x|)/2)

|∇ku(y)|p(1− |y|)kp−ndV (y)
)1/p

,

which completes the proof of the theorem. ¤

5. A local estimate.

In [24, Theorems 1 and 2] we proved the following result.

Theorem C. Let 1 < p < +∞. Function u ∈ H (B) belongs to H p(B) if and
only if
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∫

B

|u(x)|p−2|∇u(x)|2(1− |x|2)dVN (x) < +∞.

Moreover if u ∈ H p(B), 1 < p < +∞, then

‖u‖p
H p = |u(0)|p +

p(p− 1)
n(n− 2)

∫

B

|u(x)|p−2|∇u(x)|2 (|x|2−n − 1
)
dVN (x) (7)

and

‖u‖p
H p =

∫

B

|u(x)|pdVN (x) +
p(p− 1)

2n

∫

B

|u(x)|p−2|∇u(x)|2(1− |x|2)dVN (x).

Using among others Theorem C we proved in [24] the theorem:

Theorem D. Let p ≥ 2, n ≥ 3 and u ∈ H p(B), then

|∇u(0)|p ≤ n
p
2 p(p− 1)
(n− 2)n

∫

B

|u(x)|p−2|∇u(x)|2(|x|2−n − 1)dVN (x).

However the following stronger inequality holds.

Theorem 8. Let p ≥ 2, n ≥ 3 and u ∈ H p(B), then

( ∞∑
m=1

|∇mu(0)|2
m!

∏m−1
i=0 (n + 2i)

)p/2

≤ p(p− 1)
(n− 2)n

∫

B

|u(x)|p−2|∇u(x)|2(|x|2−n − 1)dVN (x).

Proof. It is well-known that if u ∈ H (B) then u(x) =
∑+∞

m=0 pm(x), where each
pm(x) is a harmonic homogeneous polynomial of degree m. By Hölder inequality we have
‖u‖H 2 ≤ ‖u‖H p . For u ∈ H 2(B), the following formula

‖u‖2H 2 =
+∞∑
m=0

∫

S

|pm(ζ)|2dσN (ζ) (8)

holds, see [3, p. 122].
On the other hand, since pm is a homogeneous polynomial of degree m, it holds that

〈∇pm(x), x〉 = mpm(x), x ∈ Rn. From (8) we have

‖u‖H 2 − |u(0)|2 =
+∞∑
m=1

∫

S

|pm(ζ)|2dσN (ζ).

Without loss of generality we may assume that u is a real valued harmonic function.
Then pm is a real homogeneous harmonic polynomial of degree m, and so p2

m is a real
homogeneous polynomial of degree 2m. Hence
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2m

∫

S

p2
m(ζ)dσN (ζ) =

∫

S

〈ζ,∇p2
m(ζ)〉dσN (ζ) =

1
n

∫

B

∆p2
mdVN (x), (9)

by the divergence theorem.
Hence

∫

S

p2
m(ζ)dσN (ζ) =

1
2m

∫ 1

0

∫

S

∆p2
m(rζ)rn−1dσN (ζ)dr

=
1

2m(2m + n− 2)

∫

S

∆p2
m(ζ)dσN (ζ). (10)

Note that ∆kp2
m, k = 1, 2, . . . , m are homogeneous polynomials of degree 2m − 2k.

Hence we can use (10) m times and obtain

∫

S

p2
m(ζ)dσN (ζ) =

1
(2m)!!n(n + 2) · · · (n + 2m− 2)

∆mp2
m(0), (11)

since ∆mp2
m is constant.

If h is a harmonic function by Lemma 3 we have

∆m|h|2 = 2m|∇mh|2. (12)

By easy calculations we obtain

|∇mu(0)| = |∇mpm(0)|. (13)

From (10)–(13) we obtain

∫

S

p2
m(ζ)dσN (ζ) =

|∇mu(0)|2
m!n(n + 2) · · · (n + 2m− 2)

. (14)

Hence

∞∑
m=1

|∇mu(0)|2
m!n(n + 2) · · · (n + 2m− 2)

≤ ‖u‖2H 2 − |u(0)|2 ≤ ‖u‖2H p − |u(0)|2.

By the inequality (a− b)q + bq ≤ aq, a ≥ b > 0, q ≥ 1, we obtain

( ∞∑
m=1

|∇mu(0)|2
m!n(n + 2) · · · (n + 2m− 2)

)p/2

≤ (‖u‖2H p − |u(0)|2)p/2

≤ (‖u‖p
H p − |u(0)|p). (15)

From (7), (14) and (15) the result follows. ¤
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6. On Dirichlet type spaces.

In this section we consider the relationship between the functions which belong to
H p(B) and Dp

α(B).

Theorem 9. Let u ∈ H (B), p ∈ [0,∞), r ∈ (0,∞), α, β ∈ (−1,∞), r < n + α,
r ≤ q, α ≤ β and

p ≤ (β − α)r − (n + α)(q − r)
n + α− r

. (16)

Then there is a positive constant C such that

∫

B

|u(x)|p|∇u(x)|q(1− |x|)βdV (x) ≤ C‖u‖p+q
Dr

α
. (17)

Proof. Without loss of generality we may assume u(0) = 0. Since ∂u
∂xi

, i =
1, . . . , n, are harmonic, for every r > 0 the function |∇u(x)|r possesses HL-property.
Hence

|∇u(x)|r ≤ C

(1− |x|)n+α

∫

B(x,
1−|x|

2 )
|∇u(y)|r(1− |y|)αdV (y)

for some C > 0 independent of u and consequently

|∇u(x)| ≤ C
‖u‖Dr

α

(1− |x|)n+α
r

. (18)

On the other hand, from (18) we have

|u(x)| =
∣∣∣∣
∫ 1

0

〈∇u(tx), x〉dt

∣∣∣∣ ≤ C|x| ‖u‖Dr
α

∫ 1

0

dt

(1− |tx|)n+α
r

≤ C
‖u‖Dr

α

(1− |x|)n+α−r
r

. (19)

Let ε = q − r. Then using (18) and (19) we get

∫

B

|u(x)|p|∇u(x)|q(1− |x|)βdV (x)

≤ C

∫

B

‖u‖p
Dr

α

(1− |x|)n+α−r
r p

|∇u(x)|r
‖u‖ε

Dr
α

(1− |x|)n+α
r ε

(1− |x|)βdV (x)

= C‖u‖p+ε
Dr

α

∫

B

|∇u(x)|r(1− |x|)α+sdV (x),
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where s = β − p
(

n+α−r
r

)− n+α
r (q − r)− α. From (16) we have s ≥ 0. Hence the result

follows. ¤

Theorem 10. Let u ∈ H (B). If u ∈ D2
α for some α ∈ (−1, 1] with n+α > 2, then

u ∈ H p(B) for all p ∈ (
0, 2n−2

n+α−2

]
. Moreover, there is a positive constant C = C(n, α)

such that

‖u‖H p(B) ≤ C‖u‖D2
α

(20)

for all p ∈ (
0, 2n−2

n+α−2

]
.

Proof. By Theorem 9 we have that there is a positive constant C independent of
u such that

∫

B

|u(x)|p−2|∇u(x)|2(1− |x|)dV (x) ≤ C‖u‖p
D2

α
, (21)

for p ∈ [
2, 2n−2

n+α−2

]
.

Hence, by Theorem C, we have u ∈ H p(B) for all p ∈ [
2, 2n−2

n+α−2

]
and consequently

for p ∈ (
0, 2n−2

n+α−2

]
.

To get inequality (20) it remains to show

∫

B

|u(x)|pdVN (x) ≤ ‖u‖p
D2

α
.

It is well-known that for u ∈ H (B) and p ∈ (0,∞)

∫

B

|u(x)|pdVN (x) ≤ C

(
|u(0)|p +

∫

B

|∇u(x)|p(1− |x|)pdVN (x)
)

, (22)

for some C > 0 independent of u. For example, it is a consequence of [13, Theorem 2].
Indeed, taking D = B, s = 0, q = p, m = 1, x0 = 0 and ε ∈ (0, 1) in [13, Theorem 2],
and using the fact that the defining function for the unit ball is λ(x) = |x|2 − 1, we get

∫ ε

0

Mp
p (u, r)dr ≤ C

(
|u(0)|p +

∫ ε

0

rpMp
p (∇u, r)dr

)
(23)

for some C > 0 independent of u, where

Mp
p (g, r) =

∫

S

|g(
√

1− r ζ)|pdσN (ζ).

Using the change of variables ρ =
√

1− r in both integrals in (23), then the polar
coordinates and some simple calculation, we obtain
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∫

1>|x|≥√1−ε

|u(x)|pdVN (x) ≤ C1

(
|u(0)|p+

∫

1>|x|≥√1−ε

|∇u(x)|p(1−|x|)pdVN (x)
)

. (24)

On the other hand, Lemma 4 gives

∫

|x|<√1−ε

|u(x)|pdVN (x) ≤ C2

(
|u(0)|p +

∫

B

|∇u(x)|p(1− |x|)pdVN (x)
)

, (25)

for some C2 > 0 independent of u.
(24) and (25) together show that (22) holds.
Let p = 2n−2

n+α−2 . Then by (22) and (18) we have

∫

B

|u(x)|pdVN (x) ≤ C

(
|u(0)|p + ‖u‖p−2

D2
α

∫

B

|∇u(x)|2(1− |x|)p−n+α
2 (p−2)dVN (x)

)

≤ C
(
|u(0)|p + ‖u‖p

D2
α

)
.

From this, (18) and Theorem C we obtain

‖u‖
H

2n−2
n+α−2 (B)

≤ C‖u‖D2
α

from which the result follows. ¤

Corollary 7. Let u ∈ H (B). If u ∈ D2
α for some α ∈ (−1, 1] with n + α > 2,

then the function |u|p admits a harmonic majorant in B for all p ∈ [
1, 2n−2

n+α−2

]
.

This corollary is a slight generalization of the following result [35. Theorem 3]:

Theorem E. Let u ∈ H (B), n ≥ 3 such that

D2
α(u) =

∫

B

|∇u(x)|2(1− |x|)αdV (x) < ∞

for an α, 0 ≤ α ≤ 1. Then for p = (2n − 2)/(n + α − 2), the function |u|p admits a
harmonic majorant in B.
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