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Abstract. A statement of Weierstrass is known for meromorphic functions
which admit an algebraic addition theorem. We give its precise formulation and
prove it complex analytically. In fact, we show that if K is a non-degenerate algebraic
function field in n variables over C which admits an algebraic addition theorem, then
any f ∈ K is a rational function of some coordinate functions and abelian functions
of other variables.

1. Introduction and history.

Weierstrass frequently stated the following in his lectures at Berlin: Every system of
n (independent) functions in n variables which admits an addition theorem is an algebraic
combination of n abelian (or degenerate) functions with the same periods. But his proof
was never published (see [12], other episodes are also stated there).

The first attempt to prove Weierstrass’ statement was done by Painlevé in his Stock-
holm lectures ([13]). He simplified it in [12]. However, Painlevé’s argument is not clear
at least to us. Later, Severi studied meromorphic functions on Cn with µ (< 2n) inde-
pendent periods admitting an algebraic addition theorem, which are called quasi-abelian
functions (see [14] and [17]). It seems that Severi’s work also does not explain the
problem clearly. Unfortunately, we could not find any paper which studies this problem
from complex analytic viewpoints. The referee kindly taught him works by Rosenlicht
and Weil ([15], [21], [22]; see also Capocasa and Catanese [7]) done from viewpoints of
algebraic geometry.

The purpose of this paper is to deal explicitly with the statement of Weierstrass and
to give a complex analytic proof.

Let us consider the statement of Weierstrass in the case n = 1. A degenerate elliptic
function is a rational function or a rational function of an exponential function (see [18]),
and the statement is true. We can see its proof due to Osgood in [4] (see [2] for another
proof).

On the other hand, it is not clear as to what are degenerate abelian functions or
quasi-abelian functions when n = 2. If we consider the field of meromorphic functions on
Cn with period Γ of rankΓ < 2n, its transcendence degree over C is not always finite
even when Cn/Γ does not contain C or C∗ as a direct summand. Then, we can not
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think of degenerate abelian functions merely as meromorphic functions with degenerate
periods.

Let K be a subfield of the field M(Cn) of meromorphic functions on Cn. We
assume that K is a non-degenerate algebraic function field over C which admits an
algebraic addition theorem (for a precise definition, see the next section). The problem
is to determine such a subfield K.

The referee suggested to us that there is a way to study it as follows. Weil’s result
([21]) says that K is regarded as the function field of an algebraic group G. By the
structure theorem for algebraic groups ([15]), there exists a linear algebraic subgroup H

of G such that G/H is an abelian variety.
Our argument is completely different from this. We treat the problem in a more

analytic way. First in [2] we studied it with an additional condition that K is algebraically
degenerate with respect to some coordinates. In this paper, we discuss it without any
additional assumption by clarifying Weierstrass’ statement.

Our main theorem is the following.

Theorem 1.1. Let K ⊂ M(Cn) be a non-degenerate algebraic function field of n

variables over C which admits an algebraic addition theorem. Then K is considered as a
subfield of C(z1, . . . , zp, w1, . . . , wq, g0, . . . , gr), where z1, . . . , zp are coordinate functions
of Cp, w1, . . . , wq are those of (C∗)q and g0, . . . , gr are generators of an abelian function
field of dimension r, p + q + r = n.

The proof follows the same line of the previous paper [2]. However, we need several
steps to drop the above additional condition. Our argument is as follows. We showed in
[2] that K is regarded as a subfield of the meromorphic function field M(Cn/Γ ) on Cn/Γ ,
where Γ is a discrete subgroup of Cn. There exist holomorphic functions ϕ0, . . . , ϕN on
Cn which give a Lie group isomorphism Φ = (ϕ0, . . . , ϕN ) : G := Cn/Γ −→ Ω, where
Ω is a set in the N -dimensional complex projective space P N . The abelian Lie group Ω

has the Zariski closure Y with K ∼= C(Y ). By Remmert-Morimoto’s theorem we have

G ∼= Cp × (C∗)q ×X,

where X is a toroidal group. In particular, X is a quasi-abelian variety because there
exists a non-degenerate function in K (see Section 7 for toroidal groups and quasi-abelian
varieties). Any toroidal group has a bundle structure on a complex torus. Compactifying
the fibers, we get a compactification G of G. With the help of one-dimensional case, we
show that every f ∈ K meromorphically extends to G. The additional condition made
this part easy in [2]. Without it we first consider the extension of a closed Lie subgroup of
Ω to Y . We show that it has the Zariski closure with the same dimension, by investigating
Lie algebras and Pfaffian equations. The result in the one-dimensional case guarantees
that any f ∈ K is separately extendable to the compactification of fibers. In [2], the
author quoted Sakai’s paper [16] in order to show that the separate extendability implies
the extendability as multidimensional functions. Although Sakai’s argument works also
in the present case, we give a direct proof in Section 6. We see that X is an abelian
variety by the extendability of f to G through a result about extendable line bundles on
toroidal groups. Finally, Theorem 1.1 will be proved in Section 9.
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2. Definitions.

Let M(Cn) be the field of meromorphic functions on Cn. We consider a subfield
K of M(Cn). We assume that K is finitely generated over C and TransK = n, where
TransK is the transcendence degree of K over C. Such a field K is called an algebraic
function field in n variables over C. Let f0, . . . , fn be generators of K.

Definition 2.1. We say that f0, . . . , fn admit an algebraic addition theorem (we
write it shortly as (AAT)) if for any j = 0, . . . , n there exists a rational function Rj such
that

fj(x + y) = Rj(f0(x), . . . , fn(x), f0(y), . . . , fn(y)) (1)

for all x, y ∈ Cn. An algebraic function field K in n variables over C admits (AAT) if it
has generators f0, . . . , fn which admit (AAT).

We note that if K admits (AAT), then any generators g0, . . . , gn of K admit (AAT).

Definition 2.2. An algebraic function field K of n variables over C admits an-
other addition theorem (AAT∗) if there exist algebraically independent f1, . . . , fn ∈ K

such that for any j = 1, . . . , n we have a non-zero polynomial Pj with

Pj(fj(x + y), f1(x), . . . , fn(x), f1(y), . . . , fn(y)) = 0 (2)

for all x, y ∈ Cn.

By an elementary algebraic argument, we obtain the following lemma.

Lemma 2.3. Let K be an algebraic function field of n variables over C. Then, K

admits (AAT ) if and only if it admits (AAT ∗).

A function f ∈ M(Cn) is degenerate if there exist an invertible linear transformation
L : Cn −→ Cn, x = L (y) and a non-negative integer r with r < n such that f(L (y))
does not depend on yr+1, . . . , yn. We say that f is non-degenerate if it is not degenerate.

Definition 2.4. A subfield K of M(Cn) is said to be non-degenerate if there
exists a non-degenerate function in K.

Throughout the paper, we assume that K is a non-degenerate algebraic function
field of n variables over C which admits (AAT).

3. Picard varieties.

We proved in [2] the following theorem which is basic to our argument.

Theorem 3.1 ([2, Theorem 2.6]). There exist holomorphic functions ϕ0, . . . , ϕN

on Cn, a discrete subgroup Γ of Cn, an algebraic subvariety Y of the N -dimensional
complex projective space P N and a connected complex abelian Lie group Ω in Y such
that
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(a) ϕ0, . . . , ϕN give a Lie group isomorphism

Φ = (ϕ0, . . . , ϕN ) : G := Cn/Γ −→ Ω,

where (x0, . . . , xN ) are homogeneous coordinates of P N ,
(b) ϕ1/ϕ0, . . . , ϕN/ϕ0 generate K and K is considered as a subfield of M(G),

where M(G) is the field of meromorphic functions on G,
(c) Y is the Zariski closure of Ω and

Φ
∗

: C(Y ) −→ K, R 7−→ R ◦ Φ

is an isomorphism, then dimC Y = dimC Ω = n, where C(Y ) is the rational function
field of Y .

We note that the group operation · on Ω is rational (see the proof of Proposition 2.4
in [2]). We call Y a Picard variety of K. Let K ′ be a subfield of M(Cn) satisfying the
same assumptions, and let Y ′ be a Picard variety of K ′. Then, K and K ′ are isomorphic
if and only if Y and Y ′ are birationally equivalent.

Applying the above theorem, we gave a short proof of the statement of Weierstrass
when n = 1 (the proof of Theorem 2.7 in [2]).

Theorem 3.2 (Weierstrass). A function f ∈ M(C) admits (AAT ∗) if and only if
it is an elliptic function or a rational function or a rational of eaz.

We later use this theorem in our argument.

4. Continuation of closed subgroups.

We assume the situation in Theorem 3.1. Let Ω be the connected complex abelian
Lie group embedded in P N . It has the Zariski closure Y with dimC Y = dimC Ω = n.
Let (x0, . . . , xN ) be homogeneous coordinates of P N . We write x(p) = (x0(p), . . . , xN (p))
for any p ∈ Ω. For any p, q ∈ Ω, we have

xi(p · q) = Ri(x(p), x(q)), i = 0, . . . , N, (3)

where Ri is a rational function. Let e ∈ Ω be the unit element of Ω. We denote by
Te(Ω) the complex tangent space of Ω at e. For any v ∈ Te(Ω) we can construct a left
invariant holomorphic vector field X(v) on Ω by

X(v)p := (Lp)∗v for p ∈ Ω,

where Lp : Ω −→ Ω, q 7−→ p · q is the left translation defined by p. Let g be the Lie
algebra of Ω. Then we have

g = {X(v); v ∈ Te(Ω)}.
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The following lemma is an immediate consequence of (3).

Lemma 4.1. For any X ∈ g and any p ∈ Ω, there exists a neighborhood U of p in
P N such that

X =
N∑

j=1

R̃j(t)
∂

∂tj
on U ∩Ω,

where t = (t1, . . . , tN ) are affine coordinates on U and R̃j(t) is a rational function of t.

Let M be an n-dimensional complex manifold, and let Tp(M) be the complex tangent
space of M at p. An assignment D : M 3 p 7−→ Dp ⊂ Tp(M) is called an r-dimensional
complex differential system on M if for any p ∈ M there exist a neighborhood U of p

and holomorphic 1-forms ω1, . . . , ωn−r on U such that

Dq = {v ∈ Tq(M); (ω1)q(v) = · · · = (ωn−r)q(v) = 0} (4)

for q ∈ U , and Dq is an r-dimensional complex linear subspace of Tq(M). In this case,
we say that D is defined by the Pfaffian equations

ω1 = · · · = ωn−r = 0 (5)

on U and that (5) is the local equations of D on U . A complex differential system D is
completely integrable if for any p ∈ M there exist a neighborhood U of p and holomorphic
functions f1, . . . , fn−r on U such that

df1 = · · · = dfn−r = 0

is the local equations of D on U . If D is completely integrable, there is an r-dimensional
integral manifold of D passing through p for any point p ∈ M . We say that D satisfies
the integrability condition if for any p ∈ M there exist a neighborhood U of p and the
local equations

ω1 = · · · = ωn−r = 0

of D on U with

dωi =
n−r∑

j=1

ω̃ij ∧ ωj , i = 1, . . . , n− r, (6)

where ω̃ij are holomorphic 1-forms on U . It is the complex version of Frobenius’ theorem
that a complex differential system D is completely integrable if and only if it satisfies
the integrability condition (see, e.g., p. 165 of [9]).

We now consider a connected closed complex Lie subgroup H of Ω. Let h be the Lie
algebra of H. We can take a basis {X1, . . . , Xm, Y1, . . . , Yr} of g such that {Y1, . . . , Yr}
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is a basis of h, where r = dimC H. Let {ω1, . . . , ωm, η1, . . . , ηr} be a set of holomorphic
1-forms on Ω which forms the dual system of {X1, . . . , Xm, Y1, . . . , Yr}. For any p ∈ Ω

we assign

Dp := {v ∈ Tp(Ω); (ω1)p(v) = · · · = (ωm)p(v) = 0}.

Then D : Ω 3 p 7−→ Dp ⊂ Tp(Ω) is an r-dimensional complex differential system. Since
Ω is abelian, [X, Y ] = 0 for all X, Y ∈ g. Then we obtain the following lemma.

Lemma 4.2. All holomorphic 1-forms ωi (i = 1, . . . , m) and ηj (j = 1, . . . , r) are
d-closed.

We may assume by the resolution of singularities that Y is non-singular. By Lemma
4.1 each Xi, Yj , ωi, ηj is meromorphically extendable to Y . We use the same notations
Xi, Yj , ωi, ηj for their extensions to Y , without confusion. It follows from Lemma 4.2
that dωi = 0 on Y for i = 1, . . . , m.

Lemma 4.3. Let U be an open set in Cn, and let ω be a meromorphic 1-form on U

with dω = 0. Assume that there exists a holomorphic function f on U such that ω̃ := fω

is a holomorphic 1-form on U and ω̃q 6= 0 for any q ∈ U . Then the complex differential
system given by ω̃ on U satisfies the integrability condition on U .

Proof. For any p ∈ U there exists a neighborhood V of p on which we have the
unique representation

d ω̃ = τ ∧ ω̃ + σ,

where τ is a holomorphic 1-form and σ is a holomorphic 2-form without terms including
ω̃. On the other hand, we have

d ω̃ =
df

f
∧ ω̃

on V ′ := {q ∈ V ; f(q) 6= 0} for ω is d-closed. Then σ = 0 on V ′, and on V . ¤

Let Di be the (n− 1)-dimensional complex differential system on Ω defined by the
local equation ωi = 0, for i = 1, . . . , m. Since Di is completely integrable on Ω (Lemma
4.2), there exists an (n− 1)-dimensional integral manifold Zi of Di such that

H =
m⋂

i=1

Zi.

Proposition 4.4. For any i = 1, . . . , m, there exists an irreducible analytic subset
Z̃i of Y of pure codimension 1 such that

Zi = Z̃i ∩Ω.
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Proof. Let p ∈ Y . There exist a neighborhood U of p and holomorphic functions
fj , gj which are mutually prime at every point of U such that

ωi =
n∑

j=1

gj

fj
dtj ,

where (t1, . . . , tn) are coordinates on U . Take any k, ` with k 6= `, 1 5 k, ` 5 n. Let f0

be the common factor of fk and f`. Then we have fk = f0f̃k and f` = f0f̃`, where f̃k

and f̃` are mutually prime. We set

Nk,` := {q ∈ U ; f̃k(q) = 0, f̃`(q) = 0},
Ij := {q ∈ U ; fj(q) = 0, gj(q) = 0}

and

N :=
(⋃

k 6=`

Nk,`

)
∪

( n⋃

j=1

Ij

)
.

Then N is an analytic set of U with dimC N = n− 2. Therefore, it suffices to show that
Zi continues to U \N , by a classical continuation theorem of analytic sets.

Let p ∈ U \ N . If p is a regular point of ωi, then there exist a neighborhood V of
p and a holomorphic function f on V such that ωi = df on V , for dωi = 0. Then Zi

extends to V .
Suppose that p is a singular point of ωi. Since p /∈ N , there exist a neighborhood

W of p and a holomorphic function f on W such that ω̃i := fωi is a holomorphic 1-form
and (ω̃i)q 6= 0 for any q ∈ W . By Lemma 4.3, ω̃i satisfies the integrability condition on
W . Then Zi is also extendable to W . ¤

We set

Z :=
m⋂

i=1

Z̃i.

Then Z is an r-dimensional irreducible analytic subset of Y with Z ∩Ω = H. Therefore,
it is the Zariski closure of H. We summarize the above results in the following theorem
for the later use.

Theorem 4.5. Let H be a connected closed complex Lie subgroup of Ω. Then the
Zariski closure Z of H has the same dimension as H.

5. Restriction to a closed subgroup.

Let H be a connected closed complex Lie subgroup of G = Cn/Γ . We consider the
restriction of K to H. For any f ∈ M(G) we denote by P (f) the polar set of f . We
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define the restriction fH of f to H by

fH :=

{
0, if H ⊂ P (f)

f |H , otherwise.

Let KH := {fH ; f ∈ K} be the restriction of K to H. If f0, . . . , fn are generators of K,
then KH = C((f0)H , . . . , (fn)H). It is obvious that KH is non-degenerate and admits
(AAT).

Proposition 5.1. It holds that TransKH = dimC H.

Proof. Let Φ : G −→ Ω be the isomorphism in Theorem 3.1. Then H̃ := Φ(H)
is a connected closed complex Lie subgroup of Ω. Let Z be the Zariski closure of H̃. By
Theorem 4.5 we have dimC Z = dimC H̃ = dimC H. Since

KH
∼= {f eH ; f ∈ C(Y )} ∼= C(Z)

and Trans C(Z) = dimC Z, we obtain the conclusion. ¤

6. Separately extendable meromorphic functions.

In this section, we discuss the extendability of separately extendable meromorphic
functions improving the arguments in [6].

Let D and E be domains in Cn and Cm respectively. We consider meromorphic
functions F1(z, w), . . . , FN (z, w) on D × E, which are not all identically zero. Let Pi be
the polar set of Fi. We set

P :=
N⋃

i=1

Pi.

Then P is an analytic subset of D × E with codimCP = 1. There exist subdomains
D0 ⊂ D and E0 ⊂ E such that

D0 × E0 ⊂ (D × E) \ P.

We obtain the following lemma along an argument in [6] (Chapter IX, Section 5, Lemma
6).

Lemma 6.1. Assume that there exist functions c1(w), . . . , cN (w) on E0 such that

c1(w)F1(z, w) + · · ·+ cN (w)FN (z, w) ≡ 0 on D0 × E0,

where c1(w), . . . , cN (w) are not all zero for any w ∈ E0. Then, there exist meromorphic
functions C1(w), . . . , CN (w) on E, which are not all identically zero, such that
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C1(w)F1(z, w) + · · ·+ CN (w)FN (z, w) ≡ 0 on D × E.

Proof. By the assumption we have the following equalities





c1(w)F1(z(1), w) + · · ·+ cN (w)FN (z(1), w) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c1(w)F1(z(N), w) + · · ·+ cN (w)FN (z(N), w) = 0

for any (z(1), . . . , z(N);w) ∈ DN
0 × E0. Since (c1(w), . . . , cN (w)) 6= (0, . . . , 0), we obtain

det
(
Fi(z(j), w)

)
i,j=1,...,N

≡ 0 on DN
0 × E0.

Let k be the positive integer such that determinants of all submatrices of order k are zero
and that there exists a submatrix of order k − 1 with non-zero determinant. Trivially
k = 2. Renumbering Fi(z(j), w) if necessary, we may assume that

∣∣∣∣∣∣∣

F1(z(1), w) . . . Fk(z(1), w)
. . . . . . . . . . . . . . . . . . . . . . . .

F1(z(k), w) . . . Fk(z(k), w)

∣∣∣∣∣∣∣
≡ 0 (7)

and
∣∣∣∣∣∣∣

F1(z(1), w) . . . Fk−1(z(1), w)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1(z(k−1), w) . . . Fk−1(z(k−1), w)

∣∣∣∣∣∣∣
(8)

is not identically zero. Letting z(k) = z, we expand the determinant (7) according to the
last row. Then we obtain

k∑

i=1

Ci(z(1), . . . , z(k−1);w)Fi(z, w) ≡ 0, (9)

where Ci(z(1), . . . , z(k−1);w) is the cofactor of the (k, i)-element of (7). There exist
a(1), . . . , a(k−1) ∈ D0 such that at least a Ci(a(1), . . . , a(k−1);w) is not identically zero.
We fix such a(1), . . . , a(k−1). Let Ci(w) := Ci(a(1), . . . , a(k−1);w) for i = 1, . . . , k and
Cj(w) := 0 for j = k + 1, . . . , N . Then we get by (9)

N∑

i=1

Ci(w)Fi(z, w) ≡ 0 (10)

on D0 ×E0. By the definition of Ci(w), it is a meromorphic function on E. Hence, (10)
holds on D × E by the uniqueness theorem. ¤
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Remark 6.2. If Fi(z, w) (i = 1, . . . , N) is a rational function of w for any fixed
z ∈ D in addition to the assumption in Lemma 6.1, then we can take Ci(w) (i = 1, . . . , N)
as a rational function.

Using this fact, we can prove the following proposition.

Proposition 6.3 ([6, Chapter IX, Section 5, Theorem 5]). Let D×E ⊂ Cn×Cm

be a domain, and let f(z, w) be a holomorphic function on D ×E. If f(z, w) is rational
in w for any z ∈ D and rational in z for any w ∈ E, then it is a rational function of
(z, w).

Let f(z) be a meromorphic function on D := Cp × (C∗)q, p + q = n, and let P be
its polar set. We define

Pi := {(z′, z′′) = (z1, . . . , zi−1; zi+1, . . . , zn); {z′} ×C × {z′′} ⊂ P}

for i = 1, . . . , p and

Pi := {(z′, z′′) = (z1, . . . , zi−1; zi+1, . . . , zn); {z′} ×C∗ × {z′′} ⊂ P}

for i = p+1, . . . , n, where z = (z1, . . . , zn) are coordinates of D. We set Di = {(z′, z′′) =
(z1, . . . , zi−1; zi+1, . . . , zn)} for i = 1, . . . , n.

Proposition 6.4. If for any i = 1, . . . , n and any (z′, z′′) ∈ Di \ Pi, f(z′, zi, z
′′)

is rational in zi, then f(z) is a rational function of z.

Proof. We can take a polydisc ∆ in D \P . By Proposition 6.3, f(z) is a rational
function on ∆. Then, it is rational on D by the uniqueness theorem. ¤

Let D be a domain in Ck, and let E := Cp × (C∗)q, p + q = `, k + ` = n. We
consider a meromorphic function f(z, w) on D × E. Let P be the polar set of f . If we
set

Pz := {z ∈ D; {z} × E ⊂ P},

then Pz is an analytic subset of D. Let {pν(w)}∞ν=1 be the sequence of all monomials
{wα1

1 · · ·wα`

` }.
Theorem 6.5. Assume that f(z0, w) is rational in w for any z0 ∈ D \ Pz. Then,

there exist meromorphic functions a1(z), . . . , aM (z), b1(z), . . . , bN (z) on D such that

f(z, w) =
Q(z, w)
P (z, w)

on D × E,

where P (z, w) =
∑M

µ=1 aµ(z)pµ(w) and Q(z, w) =
∑N

ν=1 bν(z)pν(w). Therefore, f(z, w)
meromorphically extends to D × (P 1)`.
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Proof. We follow an argument in the proof of [6, Chapter IX, Section 5, Theorem
5].

There exist domains U ⊂ D and V ⊂ E such that U × V ⊂ (D × E) \ P . For any
z ∈ U , there exist positive integers Mz and Nz, complex numbers aµ(z) (µ = 1, . . . , Mz)
and bν(z) (ν = 1, . . . , Nz) such that

f(z, w) =
−∑Nz

ν=1 bν(z)pν(w)∑Mz

µ=1 aµ(z)pµ(w)

for w ∈ V , where (a1(z), . . . , aMz (z)) 6= (0, . . . , 0). Then we have

(
Mz∑
µ=1

aµ(z)pµ(w)

)
f(z, w) +

Nz∑
ν=1

bν(z)pν(w) = 0 (11)

for w ∈ V . We can normalize aµ(z) and bν(z) as follows

Mz∑
µ=1

|aµ(z)|2 +
Nz∑
ν=1

|bν(z)|2 = 1. (12)

For any (M, N) ∈ N2, we define

UM,N := {z ∈ U ; there exist aµ(z)’s and bν(z)’s with (11) and (12) for (M, N)}.

Then U =
⋃

(M,N) UM,N . Take any sequence {z(j)} in UM,N with z(j) → z(0), where
z(0) ∈ U . Without loss of generality, we may assume that aµ(z(j)) → aµ, bν(z(j)) → bν

and
∑M

µ=1 |aµ|2 +
∑N

ν=1 |bν |2 = 1. By the continuity of f(z, w) we obtain

(
M∑

µ=1

aµpµ(w)

)
f(z(0), w) +

N∑
ν=1

bνpν(w) = 0

for all w ∈ V . This means that UM,N is a closed set. By Baire’s category theorem, at
least one of UM,N ’s has an interior point. Take such a UM,N and let U0 be its open
kernel. We define

Fµ(z, w) := pµ(w)f(z, w) for µ = 1, . . . , M,

FM+ν(z, w) := pν(w) for ν = 1, . . . , N.

Then F1(z, w), . . . , FM+N (z, w) are meromorphic on D×E and holomorphic on U0×V .
It follows from (11) that

M∑
µ=1

aµ(z)Fµ(z, w) +
N∑

ν=1

bν(z)FM+ν(z, w) ≡ 0
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on U0 × V . By Lemma 6.1 we can take meromorphic functions Aµ(z) (µ = 1, . . . , M)
and Bν(z) (ν = 1, . . . , N) on D such that

M∑
µ=1

Aµ(z)Fµ(z, w) +
N∑

ν=1

Bν(z)FM+ν(z, w) ≡ 0

on D × E. Thus we obtain the conclusion. ¤

7. Extendable line bundles on toroidal groups.

A connected complex Lie group G0 is called a toroidal group if H0(G0,O) = C.
Every toroidal group is abelian ([10]). Then we can write G0 = Cr/Γ ∗, where Γ ∗ is a
discrete subgroup of Cr with rank Γ ∗ = r + m (1 5 m 5 r). We denote by Γ ∗R the real
linear subspace of Cr spanned by Γ ∗. Let Γ ∗C := Γ ∗R ∩

√−1Γ ∗R be the maximal complex
linear subspace contained in Γ ∗R. It is easy to see that dimC Γ ∗C = m.

The following definition is due to Andreotti-Gherardelli [5].

Definition 7.1. A toroidal group G0 = Cr/Γ ∗ is said to be a quasi-abelian
variety if there exists a Hermitian form H on Cr such that

(a) H is positive definite on Γ ∗C ,
(b) the imaginary part A := Im H of H is Z-valued on Γ ∗ × Γ ∗.

We call such a Hermitian form H an ample Riemann form for Γ ∗ or G0.

From the projection pr : Cr −→ Γ ∗C we obtain a fiber bundle structure σ : G0 −→ T

on an m-dimensional complex torus T with fibers (C∗)`, ` = r−m ([20, Proposition 3]).
Replacing fibers (C∗)` with (P 1)`, we obtain the associated (P 1)`-bundle σ : G0 −→ T .

Proposition 7.2 ([19, Satz 3.2.8]). Let L −→ G0 be a holomorphic line bundle
which is holomorphically extendable to G0. Then there exists a theta bundle Lθ −→ T

such that

L ∼= σ∗Lθ.

8. Extension to a compactification of G.

We return to our situation. By the theorem of Remmert-Morimoto ([8] and [11]),
we have

G ∼= Cp × (C∗)q ×X,

where X = Cr/Γ ∗ is a toroidal group of rankΓ ∗ = r+m (1 5 m 5 r) and p+ q + r = n.
Since there exists a non-degenerate meromorphic function on X, X is a quasi-abelian
variety ([1] and [7]). We have a (C∗)s-bundle σ : X −→ T on an m-dimensional complex
torus T , where s = r − m. Let σ : X −→ T be the associated (P 1)s-bundle. These
bundles give fiber bundles τ : G −→ T with fibers Cp × (C∗)q × (C∗)s and τ : G −→ T
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with fibers (P 1)`, ` = p + q + s, where G = (P 1)p+q ×X. For any a ∈ T we set

Fa := τ−1(a) ∼= Cp × (C∗)q × (C∗)s,

F a := τ−1(a) ∼= (P 1)`.

Theorem 8.1. Every f ∈ K meromorphically extends to G.

Proof. Let e ∈ T be the unit element of T . We take coordinates (z1, . . . , z`) on
Fe. For any i = 1, . . . , ` we define

Li := {(0, zi, 0) ∈ Fe}.

Then Li is a connected closed complex Lie subgroup of G with dimC Li = 1. It follows
from Proposition 5.1 that TransKLi

= 1. KLi
is non-degenerate, admits (AAT) and is

not periodic. Then, any g ∈ KLi is a rational function of zi by Theorem 3.2. Therefore,
fFe is rational for any f ∈ K by Proposition 6.4.

Let f be any function in K. Take any point a ∈ T . We define g(x) := f(x + ã)
for some ã ∈ G with τ(ã) = a. By (AAT), we can verify that g ∈ K. From the above
observation, we know that gFe

is rational. Since Fa = Fe + ã and fFa
= gFe

, fFa
is

rational. Furthermore, there exists an open set U ⊂ T such that

τ−1(U) ∼= U × (Cp × (C∗)q × (C∗)s).

As we have seen in the above, fτ−1(U) satisfies the assumption in Theorem 6.5. Then
fτ−1(U) meromorphically extends to τ−1(U) ∼= U × (P 1)`. This completes the proof. ¤

9. Proof of Theorem 1.1.

We write the situation again, in order to have a clear picture of the problem.
Let K ⊂ M(Cn) be a non-degenerate algebraic function field of n variables over

C. We assume that K admits (AAT). It is considered as a subfield of M(G), where
G = Cn/Γ . We have the decomposition

G ∼= Cp × (C∗)q ×X,

where X = Cr/Γ ∗ is a quasi-abelian variety. And X has the fibration in the previous
section.

Proposition 9.1. The quasi-abelian variety X is an abelian variety.

Proof. There exists a function f ∈ K such that g := fX is non-degenerate.
Let L̃ be the holomorphic line bundle on G given by the zero-divisor of f . Since f is
meromorphically extendable to G (Theorem 8.1), L̃ has the holomorphic extension to G.
Then, L := L̃|X extends to X.

Let rank Γ ∗ = r + s. Suppose that 1 5 s < r. Then there exists a (C∗)r−s-bundle
σ : X −→ T on a complex torus T with dimC T = s < r. By Proposition 7.2 we can
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take a theta bundle Lθ −→ T such that L ∼= σ∗Lθ. Let σ : X −→ T be the associated
(P 1)r−s-bundle. We denote by g and L the extensions of g and L, respectively. Then
there exist ϕ, ψ ∈ H0(X, O(L)) such that g = ψ/ϕ. Since

H0(X, O(L)) = σ∗H0(T ,O(Lθ)),

g is constant on the fibers. This contradicts the assumption that g is non-degenerate. ¤

Proof of Theorem 1.1. It follows from Proposition 9.1 that

G ∼= Cp × (C∗)q ×A,

where A = Cr/Γ ∗ is an abelian variety. By Theorem 8.1, any f ∈ K meromorphically
extends to G ∼= (P 1)p+q ×A. Then we obtain the conclusion. ¤
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