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Abstract. Let us consider the following nonlinear singular partial differential
equation (t∂/∂t)mu = F (t, x, {(t∂/∂t)j(∂/∂x)αu}j+α≤m,j<m) in the complex do-

main with two independent variables (t, x) ∈ C2. When the equation is of totally
characteristic type, this equation was solved in [2] and [9] under certain Poincaré con-
dition. In this paper, the author will prove the uniqueness of the solution under the as-
sumption that u(t, x) is holomorphic in {(t, x) ∈ C2 ; 0 < |t| < r, | arg t| < θ, |x| < R}
for some r > 0, θ > 0, R > 0 and that it satisfies u(t, x) = O(|t|a) (as t −→ 0)
uniformly in x for some a > 0. The result is applied to the problem of removable
singularities of the solution.

1. Introduction.

Notations: (t, x) ∈ Ct ×Cx, N = {0, 1, 2, . . .}, and N∗ = {1, 2, . . .}. Let m ∈ N∗

be fixed, set N = #{(j, α) ∈ N ×N ; j + α ≤ m, j < m} (that is, N = m(m + 3)/2),
and denote the complex variable z ∈ CN by z = {zj,α}j+α≤m,j<m.

In this paper we will consider the following nonlinear singular partial differential
equation:

(E)
(

t
∂

∂t

)m

u = F

(
t, x,

{(
t
∂

∂t

)j(
∂

∂x

)α

u

}
j+α≤m
j<m

)
,

where F (t, x, z) is a function of the variables (t, x, z) defined in a neighborhood ∆ of the
origin of Ct ×Cx ×CN

z , and u = u(t, x) is the unknown function. Set ∆0 = ∆ ∩ {t =
0, z = 0}, and set also Im = {(j, α) ∈ N ×N ; j +α ≤ m, j < m } and Im(+) = {(j, α)
∈ Im ; α > 0}.

Let us first assume the following conditions:

A1) F (t, x, z) is a holomorphic function on ∆;
A2) F (0, x, 0) ≡ 0 on ∆0.

Then, by expanding F (t, x, z) into Taylor series with respect to (t, z) we have

F (t, x, z) = a(x)t +
∑

j+α≤m
j<m

bj,α(x)zj,α +
∑

p+|ν|≥2

gp,ν(x)tpzν ,
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where a(x), bj,α(x) (j+α ≤ m, j < m) and gp,ν(x) (p+ |ν| ≥ 2) are all holomorphic func-
tions on ∆0, ν = {νj,α}(j,α)∈Im

∈ NN , |ν| = ∑
(j,α)∈Im

νj,α and zν =
∏

(j,α)∈Im
[zj,α]νj,α .

We divide our equation into the following three types:

Type (1) : bj,α(x) ≡ 0 for all (j, α) ∈ Im(+);
Type (2) : bj,α(0) 6= 0 for some (j, α) ∈ Im(+);
Type (3) : bj,α(0) = 0 for all (j, α) ∈ Im(+), but bi,β(x) 6≡ 0 for some (i, β) ∈ Im(+).

Type (1) is called a Gérard-Tahara type partial differential equation and it was studied
in [3], [4] and [10]; the uniqueness of the solution was studied in [7] and [8]. Type (2)
is called a spacially nondegenerate type partial differential equation and it was studied
in [5]. Type (3) is called a totally characteristic type partial differential equation and it
was studied in [2] and [9].

In this paper we will consider the type (3) under the following condition:

A3) bj,α(x) = O(xα) (as x −→ 0) for all (j, α) ∈ Im(+).

Then, by the condition A3) we have bj,α(x) = xαcj,α(x) for some holomorphic functions
cj,α(x) ((j, α) ∈ Im) and therefore our equation (E) is written in the form

C

(
x, t

∂

∂t
, x

∂

∂x

)
u = a(x) t +

∑

p+|ν|≥2

gp,ν(x) tp
∏

(j,α)∈Im

[(
t
∂

∂t

)j(
∂

∂x

)α

u

]νj,α

(1.1)

where

C(x, λ, ρ) = λm −
∑

j+α≤m
j<m

cj,α(x)λjρ(ρ− 1) · · · (ρ− α + 1).

Set

L(λ, ρ) = λm −
∑

j+α≤m
j<m

cj,α(0)λjρ(ρ− 1) · · · (ρ− α + 1), (1.2)

Lm(X) = Xm −
∑

j+α=m
j<m

cj,α(0)Xj , (1.3)

and denote by c1, . . . , cm the roots of the equation Lm(X) = 0 in X. If we factorize
L(λ, l) into the form

L(λ, l) = (λ− λ1(l)) · · · (λ− λm(l)), l ∈ N , (1.4)

by renumbering the subscript i of λi(l) suitably we have

lim
l→∞

λi(l)
l

= ci for i = 1, . . . , m.
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On the existence of a solution of (E) we have the following results.

Theorem 1. Assume the conditions A1), A2) and A3). We have:
(1)(Chen-Tahara [2]) If L(k, l) 6= 0 holds for any (k, l) ∈ N∗ × N and if ci ∈

C \ [0,∞) holds for i = 1, . . . , m, the equation (E) has a unique holomorphic solution
u(t, x) in a neighborhood of (0, 0) ∈ Ct ×Cx satisfying u(0, x) ≡ 0.

(2)(Tahara [9]) If ci ∈ C \ [0,∞) holds for i = 1, . . . , m, the equation (E) has a
family of solutions u(t, x) of the form

u(t, x) = w
(
t, t log t, t(log t)2, . . . , t(log t)µ, x

)
,

where w(t, t1, t2, . . . , tµ, x) is a holomorphic function with µ arbitrary constants in a
neighborhood of (t, t1, t2, . . . , tµ, x) = (0, 0, 0, . . . , 0, 0) satisfying w(0, 0, 0, . . . , 0, x) ≡ 0
and µ is a non-negative integer determined by the equation.

Chen-Luo [1] and Shirai [6] have generalized the existence of the unique holomorphic
solution in (1) of Theorem 1 to the case of several variables (t, x) ∈ C ×Cn and (t, x) ∈
Cd ×Cn.

In this paper, we will establish the uniqueness of the solution of the equation (E).

2. Uniqueness of the solution.

We denote:

- R(C \ {0}) the universal covering space of C \ {0},
- Sθ = {t ∈ R(C \ {0}); | arg t| < θ} a sector in R(C \ {0}),
- Sθ(r) = {t ∈ Sθ; 0 < |t| < r},
- DR = {x ∈ C; |x| ≤ R}.

Let us define sets of functions S̃a and S̃+ in which we will prove the uniqueness of the
solution of (E).

Definition 1. (1) Let a > 0. We denote by S̃a the set of all u(t, x) satisfying
the following i) and ii): i) u(t, x) is a holomorphic function on Sθ(r)×DR for some θ > 0,
r > 0 and R > 0; and ii) u(t, x) satisfies

max
x∈DR

∣∣u(t, x)
∣∣ = O(|t|a) (as t −→ 0 in Sθ(r)).

(2) We define S̃+ by

S̃+ =
⋃
a>0

S̃a.

Let λ1(l), . . . , λm(l) be the ones in (1.4). Our main theorem is as follows:

Theorem 2. Assume the conditions A1), A2), A3) and

Re ci < 0 for i = 1, . . . , m. (2.1)



1048 H. Tahara

Then, if u1(t, x) and u2(t, x) are solutions of (E) belonging in the class S̃+ and if u1−u2 ∈
S̃a holds for some a > 0 satisfying

a > max
1≤i≤m

l≥0

Re λi(l), (2.2)

we have u1 = u2 in S̃+.

Since λi(l)/l −→ ci (as l −→∞) for i = 1, . . . , m, under the condition (2.1) we have
Re λi(l) −→ −∞ (as l −→ ∞) for i = 1, . . . , m and therefore the righthand side of (2.2)
is well-defined. We note:

Lemma 1. Let a > 0. The following two conditions are equivalent :
(1) (2.1) and (2.2) hold ;
(2) there are 0 ≤ b < a and c > 0 such that b − Re λi(l) ≥ c l holds for any l ∈ N

and i = 1, . . . , m.

Proof. Suppose the condition (1). Set

β = max

[
0, max

1≤i≤m
l≥0

Re λi(l)

]

and take b > 0 so that β < b < a. Since Re λi(l)/l −→ Re ci (as l −→∞) for i = 1, . . . , m,
under the condition (2.1) we can find ε > 0 and L ∈ N such that −Re λi(l) ≥ ε l for any
l > L and i = 1, . . . , m. Then, by taking c > 0 so that 0 < c ≤ min{ε, (b− β)/L} we can
verify the condition (2) in the following way: if l > L we have b−Re λi(l) ≥ −Re λi(l) ≥
ε l ≥ c l, and for 0 ≤ l ≤ L we have b−Re λi(l) ≥ b−β ≥ cL ≥ c l. Thus, we have proved
that (1) implies (2).

Conversely, suppose the condition (2). Then we have (b−Re λi(l))/l ≥ c and so by
letting l −→∞ we have −Re ci ≥ c for i = 1, . . . , m; this proves (2.1). Since a > b holds,
we have a > b ≥ Re λi(l) + c l ≥ Re λi(l) for any l ∈ N and i = 1, . . . , m; this proves
(2.2). Thus, we have proved also that (2) implies (1). ¤

Thus, Theorem 2 is equivalent to the following

Theorem 2∗. Assume the conditions A1), A2), A3) and that there are b ≥ 0 and
c > 0 such that

b− Re λi(l) ≥ c l for any l ∈ N and i = 1, . . . , m. (2.3)

If u1(t, x) and u2(t, x) are solutions of (E) belonging in the class S̃+ and if u1−u2 ∈ S̃a

holds for some a > b, then we have u1 = u2 in S̃+.

The rest part of this paper is organized as follows. In the next section 3 we will
present basics of the theory of pseudo-differential operators, in section 4 we will prove
a uniqueness theorem for some linear pseudo-differential equations, and in section 5 we
will prove Theorem 2∗ by applying the result in section 4 to our nonlinear equations. In
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the last section 6 we will give an application of Theorem 2 to the problem of removable
singularities of the solution of (E).

3. Basics of pseudo-differential operators.

We denote by C[[x]] the ring of formal power series in x with complex coefficients.
For a sequence λ(l) (l = 0, 1, 2, . . .) of complex numbers, we define the operator λ(θ) :
C[[x]] −→ C[[x]] by the following:

C[[x]] 3 f =
∑

l≥0

flx
l 7−→ λ(θ)f =

∑

l≥0

flλ(l)xl ∈ C[[x]]. (3.1)

If λ(ρ) is a mapping from N into C, we can define an operator λ(θ) : C[[x]] −→ C[[x]].
In particular, if λ(ρ) is a function defined on R+ = {ρ ∈ R ; ρ ≥ 0}, we have an operator
λ(θ) : C[[x]] −→ C[[x]]. If λ(ρ) is a polynomial in ρ, we easily see that λ(θ) = λ(x(d/dx))
holds as an operator from C[[x]] into C[[x]]. Thus, our operator λ(θ) can be regarded
as a generalization of a differential operator. From now, we will call this operator λ(θ)
as a pseudo-differential operator.

If a pseudo-differential operator λ(θ) : C[[x]] −→ C[[x]] satisfies

|λ(l)| ≤ C(1 + l)k (l = 0, 1, 2, . . .)

for some C ≥ 0 and k ≥ 0, we say that λ(θ) is a pseudo-differential operator of order k.
We denote by Sk the set of all such pseudo-differential operators of order k as above.

For a formal power series f(x) =
∑

l≥0 fl x
l ∈ C[[x]], we define

|f |(x) =
∑

l≥0

|fl|xl and |f |ρ = |f |(ρ) =
∑

l≥0

|fl| ρl. (3.2)

Let R > 0. Using this norm, we define XR by

XR = {f(x) ∈ C[[x]] ; |f |R < ∞}.

It is easy to see that XR is a Banach space with the norm | · |R. We denote by
C0([0, T ], XR) the space of all continuous functions f(t, x) on [0, T ] with values in XR:
it is also a Banach space with the norm ‖f‖ = maxt∈[0,T ] |f(t)|R.

The following lemma is an easy consequence of the definition.

Lemma 2. (1) Let λ(θ) be a pseudo-differential operator of order 0. If f(t, x) ∈
C0([0, T ], XR), we have λ(θ)f(t, x) ∈ C0([0, T ], XR). Moreover, if |f(t)|R = O(ts) (as
t −→ 0) for some s > 0, we have |λ(θ)f(t)|R = O(ts) (as t −→ 0).

(2) Let m ∈ N∗ and let λ(θ) be a pseudo-differential operator of order m. If f(t, x) ∈
C0([0, T ], XR), we have λ(θ)f(t, x) ∈ C0([0, T ], XR1) for any 0 < R1 < R. Moreover, if
|f(t)|R = O(ts) (as t −→ 0) for some s > 0, we have |λ(θ)f(t)|R1 = O(ts) (as t −→ 0)
for any 0 < R1 < R.
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Now, let us consider the following pseudo-differential equation:

(
t
∂

∂t
− λ(θ)

)
u = f(t, x). (3.3)

For u(t, x) =
∑

l≥0 ul(t)xl, instead of |u(t)|ρ we often write

|u|(t, ρ) =
∑

l≥0

|ul(t)|ρl.

Lemma 3. Let R > 0 and c ≥ 0. Assume that

−Re λ(l) ≥ c l for any l = 0, 1, 2, . . .. (3.4)

(1)(Integral representation) If u(t, x) ∈ C1((0, T ], XR) satisfies |u(t)|R = o(1) (as
t −→ 0), if f(t, x) ∈ C0([0, T ], XR) satisfies |f(t)|R = O(tε) (as t −→ 0) for some ε > 0,
and if u(t, x) and f(t, x) satisfy the equation (3.3) on (0, T ]×DR, then u(t, x) is expressed
in the form

u(t, x) =
∫ t

0

∑

l≥0

fl(τ)(τ/t)−λ(l) xl dτ

τ
on (0, T ]×DR. (3.5)

(2)(A priori estimate) Under the same conditions as in (1) we have

|u|(t, ρ) ≤
∫ t

0

|f |(τ, (τ/t)cρ)
dτ

τ
on (0, T ]× [0, R]. (3.6)

In the above (3.6) we can replace “ ≤ ” by “ ¿ ”, where
∑

l≥0 alρ
l ¿ ∑

l≥0 blρ
l means

that |al| ≤ bl holds for all l = 0, 1, 2, . . ..
(3)(Uniqueness) If u1(t, x) and u2(t, x) are solutions of (3.3) belonging in the class

C1((0, T ], XR) and if |u1(t)−u2(t)|R = o(1) (as t −→ 0) holds, we have u1(t, x) = u2(t, x)
on [0, T ]×DR.

(4)(Solvability) If λ(θ) is a pseudo-differential operator of order 1, and if f(t, x) ∈
C0([0, T ], XR) satisfies |f(t)|R = O(tε) (as t −→ 0) for some ε > 0, the equation (3.3)
has a unique solution u(t, x) ∈ C0([0, T ], XR) ∩ C1((0, T ], XR1) for any 0 < R1 < R

such that |u(t)|R = O(tε) (as t −→ 0) and |(∂u/∂t)(t)|R1 = O(tε−1) (as t −→ 0) for any
0 < R1 < R.

Proof. Let us prove (1). Set u(t, x) =
∑

l≥0 ul(t)xl and f(t, x) =
∑

l≥0 fl(t)xl.
By the equation (3.3) we have

(
t
∂

∂t
− λ(l)

)
ul(t) = fl(t) for any l = 0, 1, 2, . . .,
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which is equivalent to (∂/∂t)(t−λ(l)ul(t)) = t−λ(l)−1fl(t) for l = 0, 1, 2, . . .. By integrating
this from t0 to t (with 0 < t0 < t) we have

t−λ(l)ul(t)− t0
−λ(l)ul(t0) =

∫ t

t0

τ−λ(l)fl(τ)
dτ

τ
. (3.7)

Since −Reλ(l) ≥ 0 is assumed, by the assumption we have

|t0−λ(l)ul(t0)| ≤ |t0|−Reλ(l)|ul(t0)| ≤ |ul(t0)| = o(1) (as t0 −→ 0), and

|τ−λ(l)fl(τ)(1/τ)| ≤ |τ |−Reλ(l)O(τε−1) = O(τε−1) (as τ −→ 0) :

therefore by letting t0 −→ 0 in (3.7) we have

t−λ(l)ul(t) =
∫ t

0

τ−λ(l)fl(τ)
dτ

τ
for any l = 0, 1, 2, . . .

which is equivalent to

ul(t) =
∫ t

0

(τ/t)−λ(l)fl(τ)
dτ

τ
for any l = 0, 1, 2, . . ..

This proves the result (1). By (3.5) we have the result (2) as follows:

|u(t, ρ)| = |u(t)|ρ ≤
∫ t

0

∑

l≥0

|fl(τ)|(τ/t)−Reλ(l)ρl dτ

τ

≤
∫ t

0

∑

l≥0

|fl(τ)|(τ/t)clρl dτ

τ
=

∫ t

0

|f |(τ, (τ/t)cρ)
dτ

τ
.

The result (3) is an easy consequence of the result (1).
Lastly, let us prove (4). By the argument in the proof of (1) it is easy to see that

the unique solution u(t, x) is given by

u(t, x) =
∫ t

0

∑

l≥0

fl(τ)(τ/t)−λ(l) xl dτ

τ
.

By the assumption on f(t, x) we have

|u(t)|R ≤
∫ t

0

|f(τ)|R dτ

τ
=

∫ t

0

O(τε)
dτ

τ
= O(tε) (as t −→ 0),

and by Lemma 2 we have |λ(θ)u(t)|R1 = O(tε) (as t −→ 0) for any 0 < R1 < R;
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therefore we obtain |t(∂u/∂t)(t)|R1 ≤ |f(t)|R1 + |λ(θ)u(t)|R1 = O(tε) (as t −→ 0) for any
0 < R1 < R. This proves the result (4). ¤

Set

L = t
∂

∂t
− λ(θ). (3.8)

In the proof of Theorem 2∗ we will use Lemma 3 in the following form:

Proposition 1. Let R > 0 and c ≥ 0. Assume that λ(θ) is a pseudo-differential
operator of order 1 and that

−Re λ(l) ≥ c l for any l = 0, 1, 2, . . .. (3.9)

Assume also that u(t, x) ∈ C1((0, T ], XR) satisfies |u(t)|R = O(tε) (as t −→ 0) and
|(∂u/∂t)(t)|R = O(tε−1) (as t −→ 0) for some ε > 0. Set

φ(t, ρ) =
∫ t

0

|Lu|(τ, (τ/t)cρ)
dτ

τ
on (0, T ]× [0, R).

Then we have |u|(t, ρ) ≤ φ(t, ρ) on (0, T ]× [0, R) (or |u|(t, ρ) ¿ φ(t, ρ) as formal power
series in ρ) and

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φ(t, ρ) = |Lu|(t, ρ) on (0, T ]× [0, R).

Proof. Set f(t, x) = (Lu)(t, x); then by the assumption and Lemma 2 we see that
f(t, x) ∈ C0([0, T ], XR1) and |f(t)|R1 = O(tε) (as t −→ 0) hold for any 0 < R1 < R.
Since φ(t, ρ) is nothing but

φ(t, ρ) =
∫ t

0

|f |(τ, (τ/t)cρ)
dτ

τ
=

∫ t

0

∑

l≥0

|fl(τ)|(τ/t)cl ρl dτ

τ
,

by (2) of Lemma 3 we have |u|(t, ρ) ≤ φ(t, ρ) on (0, T ]×[0, R1], and by the same argument
as in the proof of (4) of Lemma 3 we obtain (t∂/∂t + cρ∂/∂ρ)φ(t, ρ) = |f |(t, ρ) on
(0, T ]× [0, R1]. Since 0 < R1 < R is arbitrary, this proves the proposition. ¤

The following lemma will be used in section 4.

Lemma 4. Let p ≥ 0, k ∈ N∗ and let λ(θ) be a pseudo-differential operator of
order 1 with the estimates |λ(l)| ≤ C(1 + l) (l = 0, 1, 2, . . .). Then for any f(x) ∈ XR

and 0 ≤ ρ ≤ R we have the following results:

i)
∣∣∣∣(1 + θ)p

(
∂

∂x

)
f

∣∣∣∣(ρ) ≤
∣∣∣∣
(

∂

∂x

)
(1 + θ)pf

∣∣∣∣(ρ) =
∂

∂ρ
|(1 + θ)pf |(ρ);
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ii)
∣∣∣∣λ(θ)

(
∂

∂x

)
f

∣∣∣∣(ρ) ≤ C

∣∣∣∣(1 + θ)
(

∂

∂x

)
f

∣∣∣∣(ρ) ≤ C

∣∣∣∣
(

∂

∂x

)
(1 + θ)f

∣∣∣∣(ρ);

iii)
∣∣∣∣
(

∂

∂x

)k

λ(θ)f
∣∣∣∣(ρ) ≤ C(1 + k)

∣∣∣∣(1 + θ)
(

∂

∂x

)k

f

∣∣∣∣(ρ);

iv) |(1 + θ)f |(ρ) =
(

1 + ρ
∂

∂ρ

)
|f |(ρ).

Proof. i) is verified by the condition: (1 + (l − 1))p ≤ (1 + l)p (l = 1, 2, . . .). ii)
is verified by the assumption |λ(l)| ≤ C(1 + l) (l = 0, 1, . . .) and the result i) with p = 1.
iii) is verified by the condition |λ(l)| ≤ C(1 + k)(1 + (l − k)) for any l ≥ k. iv) is clear
from the definition. ¤

For a sequence a(t, x; l) ∈ C0([0, T ], XR) (l = 0, 1, 2, . . .) we define the operator
a(t, x; θ) by the following:

f(t, x) =
∑

l≥0

fl(t)xl 7−→ a(t, x; θ)f(t, x) =
∑

l≥0

a(t, x; l)fl(t)xl. (3.10)

We often write a(t; θ)f(t) instead of a(t, x; θ)f(t, x). By the definition we have:

Lemma 5. For any f(t, x) =
∑

l≥0 fl(t)xl ∈ C0([0, T ], XR) we have

|a(t; θ)f(t)|R ≤
∑

l≥0

|a(t; l)|R |fl(t)|Rl (3.11)

where |a(t; l)|R is the norm of a(t, x; l) ∈ XR for fixed (t, l).

In view of Lemma 5, we say that a(t, x; θ) is a pseudo-differential operator of order
k (≥ 0) with symbol in C0([0, T ], XR), if it satisfies

|a(t; l)|R ≤ C(1 + l)k, 0 ≤ t ≤ T and l = 0, 1, 2, . . . (3.12)

for some C > 0. We denote by Sk([0, T ], XR) the set of all the pseudo-differential
operators of order k with symbol in C0([0, T ], XR).

Proposition 2. (1) Let a(t; θ) = a(t, x; θ) ∈ S0([0, T ], XR). Then the mapping
a(t; θ) : C0([0, T ], XR) −→ C0([0, T ], XR) is well defined, and we have

|a(t; θ)f(t)|R ≤ A |f(t)|R with A = sup
0≤t≤T

l≥0

|a(t; l)|R (3.13)

for any f(t) = f(t, x) ∈ C0([0, T ], XR).
(2) Let k be a positive integer and let a(t; θ) = a(t, x; θ) ∈ Sk([0, T ], XR). Then the

mapping a(t; θ) : C0([0, T ], XR) −→ C0([0, T ], XR0) is well defined for any 0 < R0 < R,
and we have
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|a(t; θ)f(t)|R0 ≤
A0

(1−R0/R)1+k
|f(t)|R (3.14)

with

A0 = sup
0≤t≤T

l≥0

k! |a(t; l)|R0

(1 + l)(2 + l) · · · (k + l)

for any f(t) = f(t, x) ∈ C0([0, T ], XR).

Proof. (1) is verified by Lemma 5 and

|a(t; θ)f(t)|R ≤
∑

l≥0

|a(t; l)|R |fl(t)|Rl ≤ A
∑

l≥0

|fl(t)|Rl = A|f(t)|R.

By Cauchy’s inequality we have |fl(t)| ≤ |f(t)|R/Rl for any l = 0, 1, 2, . . .: then (2) is
verified as follows:

|a(t; θ)f(t)|R0 ≤
∑

l≥0

|a(t; l)|R0 |fl(t)|R0
l ≤

∑

l≥0

A0(1 + l)(2 + l) · · · (k + l)
k!

|f(t)|R
Rl

R0
l

= A0 |f(t)|R 1
(1−R0/R)1+k

. ¤

4. A uniqueness result in some linear equations.

In this section we will prove the uniqueness of the solution of some linear pseudo-
differential equations.

Let T > 0, R > 0, and let

1) λi(θ) ∈ S1 (i = 1, . . . , m),
2) aj(t, x; θ) ∈ Sm−j([0, T ], XR) (j < m),
3) bq,j(t, x; θ) ∈ Sm−q−j([0, T ], XR) (q + j ≤ m, q > 0),

and set

Θ0 = 1,

Θ1 =
(

t
∂

∂t
− λ1(θ)

)
,

Θ2 =
(

t
∂

∂t
− λ2(θ)

)(
t
∂

∂t
− λ1(θ)

)
,

· · · · · · · · ·

Θm =
(

t
∂

∂t
− λm(θ)

)(
t
∂

∂t
− λm−1(θ)

)
· · ·

(
t
∂

∂t
− λ1(θ)

)
.
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Let µ ∈ R, and let us consider the following linear pseudo-differential equation:

Θmu =
∑

j<m

aj(t, x; θ)Θju +
∑

q+j≤m
q>0

bq,j(t, x; θ)
(

tµ
∂

∂x

)q

Θju. (4.1)

Main assumptions are:

H1) there is a c > 0 such that −Re λi(l) ≥ c l holds for any l ∈ N and i = 1, . . . , m;
H2) for i = 0, 1, . . . , m− 1 we have

sup
0≤t≤T0

l≥0

|aj(t; l)|R0

(1 + l)m−j
= o(1) (as T0 −→ 0 and R0 −→ 0);

H3) µ > 0.

Theorem 3. Assume the conditions H1), H2) and H3). Then, if u(t, x) is a
solution of (4.1) belonging in the class Cm((0, T ], XR) and satisfies

∣∣∣∣
(

t
∂

∂t

)j

u(t)
∣∣∣∣
R

= O(ta) (as t −→ 0) for j = 0, 1, . . . , m− 1 (4.2)

for some a > 0, we have u(t, x) ≡ 0 on (0, ε]×Dδ for some ε > 0 and δ > 0.

The rest part of this section will be used to prove this theorem. Let u(t, x) ∈
Cm((0, T ], XR) be a solution of (4.1) satisfying the condition (4.2). First, for (q, j) ∈
N ×N with q + j ≤ m− 1 we set

φq,j(t, ρ) =
∫ t

0

|Lj+1Dq,ju|(τ, (τ/t)cρ)
dτ

τ
, (4.3)

where c > 0 is the constant in H1),

Lj+1 =
(

t
∂

∂t
− λj+1(θ)

)
, j = 0, 1, . . . , m− 1,

Dq,j = (1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

Θj , q + j ≤ m− 1.

By (4.2) we see that φq,j(t, ρ) (q+j ≤ m−1) are well defined on (0, T ]× [0, R). Moreover
we have:

Lemma 6. In the above context we have:

c1) |Dq,ju|(t, ρ) ≤ φq,j(t, ρ) on (0, T ] × [0, R) (or |Dq,ju|(t, ρ) ¿ φq,j(t, ρ) as formal
power series in ρ).

c2)
(
t ∂

∂t + c ρ ∂
∂ρ

)
φq,j(t, ρ) = |Lj+1Dq,ju|(t, ρ) on (0, T ]× [0, R).
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c3) φq,j(t, ρ) = O(ta) (as t −→ 0) uniformly in ρ ∈ [0, R0] (for any 0 < R0 < R).
c4) When q ≥ 1 we have

|Lj+1Dq,ju|(t, ρ)

≤ tµ
∂

∂ρ
|Dq−1,j+1u|(t, ρ) + (µq + Cj+1(q + 1))tµ

∂

∂ρ
|Dq−1,ju|(t, ρ) (4.4)

on (0, T ]× [0, R), where

Cj+1 = sup
l≥0

|λj+1(l)|
(1 + l)

.

c5) When q = 0 and j = 0, 1, . . . , m− 2 we have

|Lj+1D0,ju|(t, ρ) =
(

1 + ρ
∂

∂ρ

)
|D0,j+1u|(t, ρ) on (0, T ]× [0, R). (4.5)

c6) When q = 0 and j = m− 1, for any 0 < T0 ≤ T and 0 ≤ R0 < R we have

|LmD0,m−1u|(t, ρ) = |Θmu|

≤
∑

j<m

Aj

(
1 + ρ

∂

∂ρ

)
|D0,ju|(t, ρ) +

∑

q+j≤m
q>0

Bq,j tµ
∂

∂ρ
|Dq−1,ju|(t, ρ) (4.6)

on (0, T0]× [0, R0], where

Aj = sup
0≤t≤T0

l≥0

|aj(t; l)|R0

(1 + l)m−j
and Bq,j = sup

0≤t≤T0
l≥0

|bq,j(t; l)|R0

(1 + l)m−q−j
. (4.7)

Proof. c1) and c2) are clear from Proposition 1. Let us show c3). Since u(t, x) is
a solution of (4.1), by (4.2) and Proposition 2 we have

∣∣∣∣
(

t
∂

∂t

)m

u(t)
∣∣∣∣
R0

= O(ta) (as t −→ 0)

for any 0 < R0 < R and so |Lj+1Dq,ju|(t, ρ) = O(ta) (as t −→ 0) uniformly on [0, R0];
therefore c3) is verified by

φq,j(t, ρ) =
∫ t

0

O(τa)
dτ

τ
= O(ta) (as t −→ 0) uniformly on [0, R0].

Let us prove c4). When q ≥ 1 we have
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Lj+1Dq,ju =
(

t
∂

∂t
− λj+1(θ)

)
(1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

Θju

= (1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

Lj+1Θju + µq(1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

Θju

+ (1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

λj+1(θ)Θju

− λj+1(θ)(1 + θ)m−1−q−j

(
tµ

∂

∂x

)q

Θju.

Therefore, by the conditions Lj+1Θj = Θj+1, (1 + l)m−1−q−j ≤ (1 + l)m−q−j (l =
0, 1, 2, . . .), and by Lemma 4 we see:

|Lj+1Dq,ju|(t, ρ) ≤ tµ
∂

∂ρ

∣∣∣∣(1 + θ)m−1−q−j

(
tµ

∂

∂x

)q−1

Θj+1u

∣∣∣∣(t, ρ)

+ µq tµ
∂

∂ρ

∣∣∣∣(1 + θ)m−q−j

(
tµ

∂

∂x

)q−1

Θju

∣∣∣∣(t, ρ)

+ Cj+1 q tµ
∂

∂ρ

∣∣∣∣(1 + θ)m−q−j

(
tµ

∂

∂x

)q−1

Θju

∣∣∣∣(t, ρ)

+ Cj+1 tµ
∂

∂ρ

∣∣∣∣(1 + θ)m−q−j

(
tµ

∂

∂x

)q−1

Θju

∣∣∣∣(t, ρ)

= tµ
∂

∂ρ
|Dq−1,j+1u|(t, ρ) + (µq + Cj+1(q + 1))tµ

∂

∂ρ
|Dq−1,ju|(t, ρ)

which proves the condition c4). When q = 0 and j = 0, 1, . . . , m− 2, by iv) of Lemma 4
we have

|Lj+1D0,ju|(t, ρ) =
∣∣∣∣
(

t
∂

∂t
− λj+1(θ)

)
(1 + θ)m−1−jΘju

∣∣∣∣(t, ρ)

=
∣∣∣∣(1 + θ)(1 + θ)m−1−(j+1)Θj+1u

∣∣∣∣(t, ρ) =
(

1 + ρ
∂

∂ρ

)
|D0,j+1u|(t, ρ)

which proves the condition c5). Lastly, let us prove c6). Let q = 0 and j = m− 1. Since
u(t, x) is a solution of (4.1), we have

|LmD0,m−1u|(t, ρ) =
∣∣∣∣
(

t
∂

∂t
− λm(θ)

)
Θm−1u

∣∣∣∣(t, ρ) = |Θmu|(t, ρ)

≤
∑

j<m

|aj(t; θ)Θju|(t, ρ) +
∑

q+j≤m
q>0

∣∣∣∣bq,j(t; θ)
(

tµ
∂

∂x

)q

Θju

∣∣∣∣(t, ρ). (4.8)
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By the definition of Aj , Proposition 2 and iv) of Lemma 4 we have

|aj(t; θ)Θju|(t, ρ) =
∣∣∣∣

aj(t; θ)
(1 + θ)m−j

(1 + θ)m−jΘju

∣∣∣∣(t, ρ)

≤ Aj |(1 + θ)m−jΘju|(t, ρ) = Aj

(
1 + ρ

∂

∂ρ

)
|D0,ju|(t, ρ)

on (0, T0]× [0, R0]. Similarly, by the definition of Bq,j we have

∣∣∣∣bq,j(t; θ)
(

tµ
∂

∂x

)q

Θju

∣∣∣∣(t, ρ) =
∣∣∣∣

bq,j(t; θ)
(1 + θ)m−q−j

(1 + θ)m−q−j

(
tµ

∂

∂x

)q

Θju

∣∣∣∣(t, ρ)

≤ Bq,j

∣∣∣∣(1 + θ)m−q−j

(
tµ

∂

∂x

)q

Θju

∣∣∣∣(t, ρ)

≤ Bq,j tµ
∂

∂ρ

∣∣∣∣(1 + θ)m−q−j

(
tµ

∂

∂x

)q−1

Θju

∣∣∣∣(t, ρ)

= Bq,j tµ
∂

∂ρ
|Dq−1,ju|(t, ρ)

on (0, T0]× [0, R0]. Thus, applying these two estimates to (4.8) we obtain the result (4.6).
This proves c6). ¤

Next, let β0 > 0, β1 > 0, . . . , βm−1 > 0 and set

Φ(t, ρ) =
∑

j<m

βjφ0,j(t, ρ) +
∑

q+j≤m−1
q>0

φq,j(t, ρ) (4.9)

on (0, T ]× [0, R).

Lemma 7. For any 0 < T0 ≤ T and 0 ≤ R0 < R we have the following inequality

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
Φ(t, ρ) ≤M tµ

∂

∂ρ
Φ(t, ρ) +

∑

j≤m−2

βj

(
1 + ρ

∂

∂ρ

)
φ0,j+1(t, ρ)

+ βm−1

∑

j<m

Aj

(
1 + ρ

∂

∂ρ

)
φ0,j(t, ρ) (4.10)

on (0, T0] × [0, R0], where c > 0 is the constant in H1), M > 0 is a suitable constant
depending on β0, β1, . . . , βm−1, T0 and R0, and Aj is the constant in (4.7).

Proof. By c1), c2) and Lemma 6 we have the following results: when q ≥ 1 by
c4) we have

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φq,j(t, ρ) ≤ tµ

∂

∂ρ
φq−1,j+1(t, ρ) + (µq + Cj+1(q + 1))tµ

∂

∂ρ
φq−1,j(t, ρ)
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on (0, T ]× [0, R); when q = 0 and j = 0, 1, . . . , m− 2 by c5) we have

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φ0,j(t, ρ) ≤

(
1 + ρ

∂

∂ρ

)
φ0,j+1(t, ρ)

on (0, T ] × [0, R); when q = 0 and j = m − 1, for any 0 < T0 ≤ T and 0 ≤ R0 < R we
have

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φ0,m−1(t, ρ) ≤

∑

j<m

Aj

(
1 + ρ

∂

∂ρ

)
φ0,j(t, ρ) +

∑

q+j≤m
q>0

Bq,j tµ
∂

∂ρ
φq−1,j(t, ρ)

on (0, T0]× [0, R0]. Hence, by applying these inequalities to

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
Φ =

∑

j<m

βj

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φ0,j +

∑

q+j≤m−1
q>0

(
t
∂

∂t
+ c ρ

∂

∂ρ

)
φq,j

we can obtain the result (4.10). ¤

Corollary to Lemma 7. Let u(t, x) ∈ Cm((0, T ], XR) be a solution of (4.1) sat-
isfying the condition (4.2) for some a > 0. Then we can find β0 > 0, β1 > 0, . . . , βm−1 >

0, 0 < b < a, M > 0, T0 and R0 such that Φ(t, ρ) defined by (4.9) satisfies

t
∂

∂t
Φ(t, ρ) ≤ b Φ(t, ρ) + M tµ

∂

∂ρ
Φ(t, ρ) on (0, T0]× [0, R0]. (4.11)

Proof. We choose B > 0 so that B ≤ min{a/3, c/2} and then set βj = 1/Bj for
j = 0, 1, . . . , m− 1: then we have

∑

j≤m−2

βj

(
1 + ρ

∂

∂ρ

)
φ0,j+1(t, ρ) = B

∑

j≤m−2

βj+1

(
1 + ρ

∂

∂ρ

)
φ0,j+1(t, ρ)

≤ B

(
1 + ρ

∂

∂ρ

)
Φ(t, ρ) ≤ a

3
Φ(t, ρ) +

c

2
ρ

∂

∂ρ
Φ(t, ρ).

(4.12)

By the assumption H2) we see that the constant Aj satisfies Aj −→ 0 (as T0 −→ 0 and
R0 −→ 0): therefore, by taking T0 > 0 and R0 > 0 sufficiently small we may assume

max
j<m

βm−1Aj

βj
≤ min

{
a

3
,
c

2

}
.

Then we have
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βm−1

∑

j<m

Aj

(
1 + ρ

∂

∂ρ

)
φ0,j(t, ρ) = βm−1

∑

j<m

Aj

βj

(
1 + ρ

∂

∂ρ

)
βjφ0,j(t, ρ)

≤
(

max
j<m

βm−1Aj

βj

)(
1 + ρ

∂

∂ρ

)
Φ(t, ρ) ≤ a

3
Φ(t, ρ) +

c

2
ρ

∂

∂ρ
Φ(t, ρ). (4.13)

Hence, by applying (4.12), (4.13) to (4.10), and by setting b = 2a/3 we have the inequality
(4.11) on (0, T0]× [0, R0]. ¤

Completion of the proof of Theorem 3. Since

|u|(t, ρ) ≤ |(1 + θ)m−1u|(t, ρ) = |D0,0u|(t, ρ) ≤ φ0,0(t, ρ)

holds, to show Theorem 3 it is sufficient to prove that Φ(t, ρ) ≡ 0 holds on {(t, ρ) ; 0 <

t ≤ ε and 0 ≤ ρ ≤ δ} for some ε > 0 and δ > 0.
Let b > 0 and M > 0 be as in Corollary to Lemma 7. Choose T1 > 0 so that

0 < T1 ≤ T0 and MT1
µ/µ ≤ R0 hold. Define the function ρ(t) by

ρ(t) = M

∫ T1

t

τµ

τ
dτ = M(T1

µ − tµ)/µ, 0 ≤ t ≤ T1.

Then, ρ(t) is a solution of t(dρ/dt) = −Mtµ, 0 < ρ(0) ≤ R0, ρ(T1) = 0 and ρ(t) is
decreasing in t. Set

ψ(t) = t−bΦ(t, ρ(t)), 0 < t ≤ T1.

Since Φ(t, ρ) = O(ta) (as t −→ 0) uniformly on [0, R0] and since a > b > 0 holds, we
have ψ(t) = O(ta−b) = o(1) (as t −→ 0). Moreover, by Corollary to Lemma 7 we have

t
d

dt
ψ(t) = − b t−bΦ(t, ρ(t)) + t−b t

∂Φ

∂t
(t, ρ(t)) + t−b ∂Φ

∂ρ
(t, ρ(t)) t

dρ(t)
dt

≤ − b t−bΦ(t, ρ(t)) + t−b

(
b Φ(t, ρ(t)) + M tµ

∂

∂ρ
Φ(t, ρ(t))

)

+ t−b ∂Φ

∂ρ
(t, ρ(t)) (−Mtµ)

= 0

and therefore (d/dt)ψ(t) ≤ 0 for 0 < t ≤ T1. By integrating this from ε to t(> 0) we get
ψ(t) ≤ ψ(ε) for 0 < ε ≤ t ≤ T1 and by letting ε −→ 0 we have ψ(t) ≤ 0 for 0 < t ≤ T1.
On the other hand, ψ(t) ≥ 0 is clear from the definition of ψ(t). Hence, we obtain
ψ(t) = 0 for 0 < t ≤ T1: this implies

Φ(t, ρ) = 0 on {(t, ρ) ; 0 < t ≤ T1 and ρ = ρ(t)}. (4.14)
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Since Φ(t, ρ) is increasing in ρ, (4.14) implies

Φ(t, ρ) ≡ 0 on {(t, ρ) ; 0 < t ≤ T1 and 0 ≤ ρ ≤ ρ(t)}.

This completes the proof of Theorem 3. ¤

Let us give a variation. Set

H1)∗ there are b ≥ 0 and c > 0 such that b − Re λi(l) ≥ c l holds for any l ∈ N and
i = 1, . . . , m.

We have

Theorem 3∗. Assume the conditions H1)∗, H2) and H3). Then, if u(t, x) is a
solution of (4.1) belonging in the class Cm((0, T ], XR) and satisfies

∣∣∣∣
(

t
∂

∂t

)j

u(t)
∣∣∣∣
R

= O(ta) (as t −→ 0) for j = 0, 1, . . . , m− 1 (4.15)

for some a > b, we have u(t, x) ≡ 0 on (0, ε]×Dδ for some ε > 0 and δ > 0.

Proof. By setting u∗ = t−bu, a∗ = a− b and λ∗i (θ) = −b + λi(θ), we can reduce
our problem to the case in Theorem 3∗. ¤

5. Proof of Theorem 2∗.

In this section, we will prove Theorem 2∗ by using Theorem 3∗.
Let λ1(l), . . . , λm(l) (l ∈ N) be the ones in (1.4), and assume that there are b ≥ 0

and c > 0 which satisfy the condition (2.3). Let u1(t, x) and u2(t, x) be solutions of (E)
belonging in the class S̃+ and assume that u1 − u2 ∈ S̃a holds for some a > b. By the
definition of S̃+ we have ui(t, x) ∈ S̃s (i = 1, 2) for some s > 0.

Set

w(t, x) = u2(t, x)− u1(t, x) ∈ S̃a . (5.1)

Our aim is to prove that w(t, x) ≡ 0 holds on (0, ε]×Dδ for some ε > 0 and δ > 0. Let
us show this now.

It is easy to see that w(t, x) ∈ Cm((0, T ], XR) holds for some T > 0 and R > 0, and

∣∣∣∣
(

t
∂

∂t

)j

w(t)
∣∣∣∣
R

= O(ta) (as t −→ 0) for j = 0, 1, . . . , m− 1. (5.2)

Moreover, since u1(t, x) and u2(t, x) are solutions of (1.1) we see that w(t, x) satisfies the
following equation

C

(
x, t

∂

∂t
, x

∂

∂x

)
w = G

(
t, x, D(u1 + w)

)−G
(
t, x, Du1

)
(5.3)
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where

G(t, x, z) =
∑

p+|ν|≥2,|ν|≥1

gp,ν(x) tp
∏

(j,α)∈Im

[zj,α]νj,α , and

Du =
{(

t
∂

∂t

)j(
∂

∂x

)α

u

}

(j,α)∈Im

with z = {zj,α}(j,α)∈Im
. Let us write [λ]0 = 1, and [λ]α = λ(λ − 1) · · · (λ − α + 1) for

α ∈ N∗. Then the eqution (5.3) is written in the form

L

(
t
∂

∂t
, x

∂

∂x

)
w = x

∑

(j,α)∈Im

S(cj,α)(x)
(

t
∂

∂t

)j[
x

∂

∂x

]

α

w

+
∑

(j,α)∈Im

hj,α(t, x)
(

t
∂

∂t

)j(
∂

∂x

)α

w (5.4)

where for (j, α) ∈ Im

S(cj,α)(x) =
cj,α(x)− cj,α(0)

x
,

hj,α(t, x) =
∫ 1

0

∂G

∂zj,α

(
t, x, Du1(t, x) + σDw(t, x)

)
dσ.

We note the following lemma:

Lemma 8. Let λi(θ) ∈ S1 be the pseudo-differential operator corresponding to λi(l)
(l ∈ N) for i = 1, . . . , m, and define the operators Θj (j = 0, 1, . . . , m) as in section 4.
We have the following results.

(1) We have L(t∂/∂t, x∂/∂x) = Θm as an operator from Cm((0, T ], XR) into
C0((0, T ], XR1) for any 0 < R1 < R.

(2) For j = 0, 1, . . . , m− 1 the operator (t∂/∂t)j is expressed in the form

(
t
∂

∂t

)j

=
j∑

p=0

Λj,p(θ)Θj−p

for some Λj,p(θ) ∈ Sp; of course, we have Λj,0(θ) = 1.
(3) [θ]α ∈ Sα, that is, [θ]α is a pseudo-differential operator of order α.
(4) hj,α(t, x) ∈ S̃d holds for any 0 < d ≤ min{1, s, a}, and therefore, if we take µ

satisfying 0 < µ < d/m we have hj,α(t, x) = tµαkj,α(t, x) for some kj,α(t, x) ∈ S̃+.
(5) We have the relation: (tµ∂/∂x)qΛj,p(θ) = Λj,p(q + θ)(tµ∂/∂x)q.

By using this lemma, we can rewrite our equation (5.4) into
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Θmw =
∑

j<m

∑

j≤i<m
i+α≤m

xS(ci,α)(x) Λi,i−j(θ) [θ]α Θjw

+
∑

q+j≤m
j<m

∑

j≤i≤m−q
i<m

ki,q(t, x) Λi,i−j(q + θ)
(

tµ
∂

∂x

)q

Θjw,

and hence by setting

aj(t, x; θ) =
∑

j≤i<m
i+α≤m

xS(ci,α)(x) Λi,i−j(θ) [θ]α +
∑

j≤i<m

ki,0(t, x) Λi,i−j(θ),

bq,j(t, x; θ) =
∑

j≤i≤m−q
i<m

ki,q(t, x) Λi,i−j(q + θ)

we obtain the following equation

Θmw =
∑

j<m

aj(t, x; θ)Θjw +
∑

q+j≤m
q>0

bq,j(t, x; θ)
(

tµ
∂

∂x

)q

Θjw (5.5)

which is just discussed in section 4.
By the definition we see:

aj(t, x; θ) ∈ Sm−j([0, T ], XR) and bq,j(t, x; θ) ∈ Sm−q−j([0, T ], XR)

for some T > 0 and R > 0. Moreover, since |xS(ci,α)(x)| = o(1) (as |x| −→ 0) and
|ki,q(t, x)| = o(1) (as |t| −→ 0) are known, we easily see that

sup
0≤t≤T0

l≥0

|aj(t; l)|R0

(1 + l)m−j
= o(1) (as T0 −→ 0 and R0 −→ 0).

Summing up, we have seen that we can apply Theorem 3∗ to the equation (5.5). Thus,
we obtain the conclusion that w(t, x) ≡ 0 on (0, ε]×Dδ for some ε > 0 and δ > 0. This
completes the proof of Theorem 2∗. ¤

6. Application.

Lastly, let us give an application of Theorem 2 to the problem of removable singu-
larities of solutions of (E). The following theorem asserts the removability of some kind
of singularities on {t = 0}.

Theorem 4. Assume A1), A2), A3), and the following i) and ii):

i) Re λi(l) ≤ 0 for any l ∈ N and i = 1, . . . , m;
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ii) Re ci < 0 for i = 1, . . . , m.

Then, if u(t, x) is a solution of (E) belonging in the class S̃+, u(t, x) is holomorphic in
a full neighborhood of (0, 0) ∈ Ct ×Cx.

Proof. Since the condition i) implies that L(k, l) 6= 0 holds for any (k, l) ∈
N∗ ×N , by (1) of Theorem 1 we see that the equation (E) has a unique holomorphic
solution u0(t, x) satisfying u0(0, x) ≡ 0.

Let u(t, x) be a solution of (E) in the class S̃s for some s > 0. Then we have
u − u0 ∈ S̃a for any 0 < a ≤ min{1, s}, and so by Theorem 2 we have u = u0. This
concludes that u(t, x) is holomorphic in a full neighborhood of (0, 0) ∈ Ct ×Cx. ¤

Conversely, if the condition i) in Theorem 4 is not satisfied we have

Theorem 5. Assume A1), A2), A3), and the following i) and ii):

i) there is a (p, l) such that Reλp(l) > 0 and λp(l) 6∈ N∗ hold ;
ii) Re ci < 0 for i = 1, . . . , m.

Then, the equation (E) has a solution u(t, x) belonging in the class S̃+ which has really
singularities on {t = 0}.

Proof. Set β = λp(l). By the same argument as in [9] we can construct an
S̃+-solution u(t, x) of the form

u(t, x) = w
(
t, t(log t), . . . , t(log t)µ, tβ , tβ(log t), . . . , tβ(log t)κ, x

)

= · · ·+ Atβxl + · · ·

where w(t0, . . . , tµ, ζ0, . . . , ζκ, x) is a holomorphic function in a neighborhood of the origin
of C1+µ

t × C1+µ
ζ × Cx satisfying w(0, . . . , 0, x) ≡ 0, A ∈ C is an arbitrary constant,

µ = #{(i, l) ; λi(l) ∈ N∗ \ S} with S = {p + qβ ; (p, q) ∈ N × N∗}, and 1 + κ =
#{(i, l) ; λi(l) ∈ S}. If we take A 6= 0, by looking at the term Atβxl we can conclude
that this solution has really singularities on {t = 0}. The argument of the construction
is almost the same as in [9], and so we may omit the details. ¤
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