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Abstract. We consider well-posedness of microhyperbolic Cauchy problems in
the category of microlocal ultradistributions. For this purpose, we discuss about the
expression of microdifferential operators, and define their irregularities. This enables
us to give a general theory about the well-posedness.

1. Introduction.

It is well-known that a microhyperbolic Cauchy problem is always well-posed in the
category of microfunctions (c.f. M. Kashiwara and T. Kawai [3]). Let us consider its
well-posedness in the category of microfunctions which are the singularity spectrums of
ultradistributions. There is a fundamental result of K. Kajitani and S. Wakabayashi [2]
for this problem. However, there are some special but important cases for which their
theory does not apply in a satisfactory way. Therefore we want to ameliorate it.

Let n > 2, let (,&) be the variables of /—1T*R", and let = (21,2’) = (2", 2,) =
(v1,2" 2,) = (21, -+ ,2n). Let 2* € /=1T*R" be the point defined by = = 0,
€ = (0,---,0,4/~1), and let 2* € /—1T*R"! be the point defined by 2’ = 0,
& =(0,---,0,v/—1). We denote by B, €, &, O the sheaves of hyperfunctions, mi-
crofunctions, microdifferential operators, and holomorphic functions, respectively (c.f.
[9]). For 1 < s < oo we denote the usual Gevrey functions with compact supports by
2%} and 20%):

21N (w) = {f(z) € C>®(w); supp f is compact and there exists
C > 0 such that |82 f(z)| < ClolH1al®},
2 (w) = {f(z) € C°°(w); supp f is compact and for Ve > 0 there exists
C. > 0 such that |82 f(z)] < C.el*lat*}
for an open subset w of R™. Let 215} = inj,, lim 213} (w), 20! = inj,, lim 2)" (w)
be the set of germs of ultradistributions at the origin (c.f. H. Komatsu [4]). For the sake
of convenience, we denote by 21} the sheaf of hyperfunctions. We denote by 2{=}

(and also by 2(>)’) the sheaf of distributions.
Let sp : rn,0 — €rn »+ be the canonical map, and let

Gl =sp(21) (1<s<o0), Gl =sp(29)) (1<s<o0),

*
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which we call microlocal ultradistributions. If s = 1, then ‘KI{{;} 4+ 15 the usual set of
germs of microfunctions.
Let P(z, D) € &« be written in the form

P(z,D)=Dp"+ >  Pi(z,D')Di,
0<j<m—1 (1)
ordP; <m —j for0<j<m-—1.

Here we define D = 9/0x. We assume that

for 1 < j < m there exists A;(z,&) =& — A\j(2, &) € Ocen 4

which is homogeneous in & of degree 1, vanishing at x*, and

we have 0,,(P) = H Aj(x,€),

1<j<m

(2)

where o,,,(P) denotes the principal symbol of P. We finally assume that P is microhy-
perbolic, i.e.,

(2,8) e R" x V-1IR"' = )\(z,¢)eV-1R (1<j<m). (3)

We do not assume any further conditions for these characteristic roots.
Let us consider the following Cauchy problem:

P(z, D)u(z) = f(z), D] 'u(0,2') = v;(z") (1<j<m). (4)

REMARK. In (4) we assume f(z) € Crn o+ and vi(z'), -+ , v (2) € Crn-1 4+, and
that the support of f is contained in a small neighborhood of 2*. The problem (4) should
be formulated more naturally for u, f € pi(€rn|r) where L = /—1T*R"™ ({21 = 0} and

p: L>(0,2,¢) —s (2,¢) e V-1T*R" .

In fact, the traces D{_lu(O7 «’) as microfunctions depend on the spectrum of u along the
fiber of p. Therefore these traces are defined by a sheaf morphism p\(€rn|r) — Crn-1.
Though, u is uniquely determined outside of z* by the ellipticity of P. Hence, considering
the flabbiness of €, one can reduce the solvability of the Cauchy problem to the case that
the support of f is contained in a sufficiently small neighborhood of z* (We decompose
f=fi+ foin pi(€rnlL), where fo = 0 in a neighborhood of z*. Then, consider the
new problem for f; as the right term, and v;(z') — (Di"'P~1f,)(0,2') as the initial
values). It is well-known that for any f(z),vi(2’), - -, v, (z’) there exists a unique
solution u(x) € €rn 4+ of (4) in this sense.

We say that P is {s} well-posed if for any f(x) € ‘Kl{qﬁ’m* with small support and

vi(@), - om(2’) € %1{{1}_1’1*, there exists u(z) € %{%‘Z}JB which satisfies (4) in the above
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sense. Similarly we define (s) well-posedness. K. Kajitani and S. Wakabayashi [2] proved
the following result:

THEOREM 1. If1 <s<m/(m—1), then P is {s} well-posed. If1 < s <m/(m—1),
then P is (s) well-posed (if m = 1, we define m/(m — 1) = 00).

To see that we cannot generally improve the ultradistribution order any more, let
us consider the following:

EXAMPLE 1. Let P = D" — D™~1 and let us consider
P(z, D)u(z) =0, DI 'u(0,z) = 1o(x) (1<j<m).

It is easy to see that the microfunction solution is given by u(x) = Q(x, D)v(z'), where

1 21/ =1y
Q(z,D)=— Z exp (MmlDﬁlm_l)/’”).
m - m
0<j<m-—1
If we restrict ourselves to microlocal ultradistributions, @ : ‘51{{1}:6* — CKI{Q‘Z} L+ 15 well-
defined if, and only if, 1 < s < m/(m — 1), and Theorem 1 is the best possible result in
this sense.

However, this criterion is not satisfactory for the following cases:

EXAMPLE 2 (regular involutive operators). Let n > 3 and let P = Dy(D1+ D3) +
aDs, a € C. Theorem 1 means that if 1 < s < 2 (resp. 1 < s < 2), then P is {s}
well-posed (resp. (s) well-posed). However Y. Okada [8] proved that it is {oco} well-posed.

EXAMPLE 3 (non-involutive operators). Let P = Dy(Dy42¢D,)+az? ' D, The-
orem 1 means the same result as in Example 2 for this case. But it is well-known that
P is {s} well-posed (resp. (s) well-posed) for any s (Among many papers, we refer to N.
Hanges [1]).

EXAMPLE 4 (operators with constant multiplicities).  Assume that Ay = --- =
Am = 01in (1). H. Komatsu [5] defined the irregularity ¢ for this case by

¢ =max(l, max{(m —j)/(m—j—ordP;); 0 <j<m-—1})

In this case it is known that P is {s} well-posed (resp. (s) well-posed) if 1 < s < ¢/(¢—1)
(resp. 1 < s<¢/(t—1)). We have ¢ < m, and this is a stronger result than Theorem 1.
Since the theory which we are going to develop is strongly influenced by [5], we briefly
sketch the idea of Komatsu:

(i) A hyperbolic partial differential operator P with constant multiplicity can be writ-
ten in a special form, which he called De Paris decomposition.
(ii) Rewriting P in such a form, we can define its irregularity ¢ similarly as above.
(iii) P is {s} well-posed if 1 < s < ¢/(t —1).
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As we shall see in the next section, we can extend this theory to the general case.

Our aim is to give a criterion which improves Theorem 1, and is satisfactorily ap-
plicable to these examples too. For this purpose we shall define the irregularity of P in
the next section, but before such a discussion we first give the main result.

THEOREM 2. If P satisfies (1)—~(3), then we can define Irr P, which is a rational
number satisfying 1 < Irr P < m. Furthermore, if 1 < s < Irr P/(Irr P — 1), then P is
{s} well-posed, and if 1 < s <Irr P/(Irr P — 1), then P is (s) well-posed.

REMARK. Since 1 <Irr P < 'm, Theorem 2 is always better than (or equivalent
to) Theorem 1. In the above examples, it will turn out that Irr P = m in Example 1,
Irr P = 1 in Examples 2, 3, Irr P = ¢ (= the above number) in Example 4. This coincides
with the well-known results.

2. Lascar decomposition.

We first want to express P in a special form. If 0 < g < m we define S,,,4 to be the set
of all g-tuples p = (1, ft2, - -+ , f1q) such that 1, pro, -+, g € {1,2,--- ,m} are mutually
distinctive. Here we distinguish different arrangements of the same set of numbers.
Although S,,,0 does not make sense, we assume that it consists of only one element, which
we denote by &. We define S = Uy< <, Smq> and 8" = Upcycm_1 Smq- If 0 € Sing,
then we define |u| = ¢, and A*(z, D) = A, (x,D)--- Ay, (2, D). Here Aj(x, D) denotes
the microdifferential operator whose complete symbol is A;(z,&). We also define A7 = 1.
We define &,-(j) = {P € &-; [P,x1] =0, ord P < j}. By a Lascar decomposition we
mean an expression of the following form:

P(x,D) = A (2, D) A1 (2,D) + Y (27" ay, (2, D) + b, (x, D)) A*(2, D),
RES’ (5)
a#(an,) Eé_ﬂz*(o)a bll«(xﬂD,) Eé_ﬂx*(m7|:u‘|71)'

Here we consider a negative power of x; formally. The reason for using a negative power
will be explained below. It may happen that p and v are different, but A* and A" are
the same operator. However we distinguish these two expressions. Then it is easy to see
that if m > 2, an arbitrary operator has an infinitely many Lascar decompositions. If
m = 1, there uniquely exists a Lascar decomposition.

EXAMPLE 2P, Let us consider

P = Dl(Dl + Dg) + OZDQ (6)

again. Here Ay = D; + Dy, As = D;, and by a Lascar decomposition we mean an
expression of the following form:

P =AxA1 + (:vflal + bl)/ll + (.’L‘;lag + bQ)AQ =+ ($;2ag =+ bg)7

where orda, <0, ordb, <1—|p|. Note that (6) is a Lascar decomposition as it stands.
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In fact we may take by = aDs, and all the other coefficient operators to be 0. We also
have another expression:

P = A2A1 + O(Al - 04/12. (7)

This means by = —bs = «, and all the other coefficient operators are 0. We have still
other expressions, but they are not important. Later we shall judge which expression is
the best one.

ExAMPLE 3", Let P = Dy(D; + 2{D,) + ax(lran, as before. Here A; =
D + x‘fDn, As = Dq. Again this is a Lascar decomposition as it stands. We also have
another expression, using a negative power: P = AxA; + ole_l/ll — 01131_1/12.

In (5), P is decomposed into three parts. Firstly, A,,---A; denotes the principal
part. The lower order terms are formally written in a form like an element of some
&x«-module generated by A*, p € S’. For the sake of convenience, let us call A* the

generator part, and xl_m'H“ ‘a# + b, the coeflicient part. Roughly speaking we have

P(z, D) = principal part + lower order part

= principal part + (coefficient part x generator part).

If we calculate the amount of the lower order part (= coefficient partxgenerator part),
we can prove Theorem 1. However we should be able to determine the ultradistribution
order of the solution by the amount of the coefficient part alone (which is smaller than
the whole lower order part). Of course less amount gives a better result, and such an idea
leads us to Theorem 2. However, the coefficient part depends on Lascar decompositions,
and we must next compare infinitely many decompositions.

For each Lascar decomposition (5) we define

k= max(1, max{(m — |p])/(m — |u| —ordb,); p € 5'}). (8)

Clearly we have 1 < k < m. Let us consider the meaning of (8). In (5) we assumed that
ordb, < m — |u| — 1. Increasing this number by one, we consider that the order of b,
may be at most m — | x|, and there remains a capacity of m —| x| —ordb,. Therefore the
above fractional number is the reciprocal of the vacancy rate, which is equivalent to the
occupancy rate. Anyway, it represents the congestion of the coefficient part. This number
depends on the decomposition, and if x is small, we may say that the corresponding
decomposition is concisely written. We define irr P as the minimum value of x among
all the Lascar decompositions. Although there are infinitely many decompositions, the
minimum value is well-defined. In fact from (8) we have k € {p/q; 1 < ¢ < p < m},
and there are only finitely many possible values. Let us consider the previous examples
again.

EXAMPLE 2. In (6) we have m = 2, and ordby = 1, || = 0. Therefore
we have £ = max(1,(2 —0)/(2 —0 — 1)) = 2 for this decomposition. On the other
hand, in (7) we have ordb; = ordby = 0, |1| = |2| = 1. Therefore we have x =

max(1,(2—-1)/(2—-1-0)) = 1 for this decomposition. This means that (7) is a better
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expression than (6), and we obtain irr P = 1. We can similarly prove irr P = m, 1, for
Examples 1, 3, 4 respectively.

We next consider permutations in the principal part. Let 7 € S, and let us
consider the following expression:

P(z,D) = A"(z,D)+ Y («7" " "a) (2, D) + V), (x, D)) A*(z, D),
pnes’ (9)
a)(2,D') € &4+ (0), b,(2,D') € &pe(m — || — 1).

We call (9) a Lascar decomposition subordinate to 7. For each expression we de-
fine v = max(l, max{(m — |u[)/(m — [p| — ordd)); p € S'}), and irr, P =
min{x’; Lascar decompositions subordinate to 7}. Finally we define the irregularity
Irr P of P by

Irr P = max{irr; P; 7 € Spum }- (10)

In all the above examples we have irr P = irr, P = Irr P (See Lemma 1 below).

REMARK. (i) Although we have infinitely many Lascar decompositions, to con-
struct the fundamental solution we can choose the best decomposition, and neglect all
the other expressions. This means that we may use the minimum value of x. Therefore
we define irr P = min{k; Lascar decompositions}. To the contrary, we must take the
maximum value in (10). This is because we need to consider Lascar decompositions
subordinate to V7 € S,,.,, as will be explained in section 4.

(ii) R. Lascar considered an expression of the form (5) in [6]. In his paper he
assumed that the characteristic variety of P is regularly involutive, and he assumed that

= 0, ordb, < 0. Under these assumptions he proved that the wave front set of the
distribution solution of Pu = 0 propagates along the integral manifold defined by the
characteristic variety. His result does not have a direct relation with ours.

The definition of Irr P consists of three steps. Firstly one must calculate x for each
Lascar decomposition, secondly calculate irr P, and finally Irr P. In some special cases
one can skip the third step, and the definition becomes considerably simple. At first we
give the following result:

LEMMA 1. Assume that
{Al(x7£)7 Aj<x’€)} € xflAZ<x’§)ﬁw* +x;1Aj($7£)ﬁw* (11)

for each i and j. Then we have irr, P =irr, P =Irr P for each 0,7 € Sy -

PROOF. Let o,7 € Spmm. From (11) we have [A;(z,D),A;(xz,D)] €
271 € (0)Ai(z, D) + 27 & (0)Aj(x, D) + 27'&,-(0). Tt follows that AT(JL‘,D) -
A%(x, D) = 3 cqr mfm+|”|aZ(x7D’)/1“(a:,D) for some a” € &,-(0). If irr, P = &y,
then we have (9) where b, € & ((kr — 1)(m — |p|)/k-) (If j € R, then we define
& (4) = &= ([4])). Tt follows that P = A7 + ues (@ m+|”|(aIL+a:ﬁ) +b;,)A*. Since we
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do not have changed b;“ we have irr, P < irr; P. Similarly we have irr, P > irr; P, and
we obtain the statement. O

Regularly involutive operators and non-involutive operators satisfy (11). In such
cases we only need to calculate irr P instead of Irr P. We emphasize again that irr P is
easier to calculate than Irr P. The second case is the following result:

LEmMMA 2. If 0,7 € Spm, then we have

irr, P < max(2,irr, P), Irr P < max(2,irr, P).

PROOF. Let 0,7, k. be as above. We always have [A;(z, D), A;(x, D)] € & (1).
It follows that A7 (z, D) — A7(2, D) = 32 ,|<;n—2 bu(z, D) A (2, D) for some by; € &Epe(1).
Similarly as in Lemma 1, from (9) we obtain P = A7 +3_ o (xl_mﬂu‘a; + (by, +b7;)) A*.
We have ord(b;, + b)) < max((k, —1)/kr,1/2) - (m — |p|). This means that irr, P <
max(kr,2). The latter statement follows from this. O

This result is very interesting. We are often interested in microlocal ultradistribu-
tions of some special order sg. Theorem 2 means that P is {so} well-posed if

Ir P < 50/(50 — 1). (12)

Assume that 1 < s < 2. According to Lemma 2, (12) is equivalent to irr P < s¢/(so—1),
which means that we can use irr P instead of Irr P, and otherwise we must calculate
Irr P. Therefore the criterion is more complicated if 2 < sy < co. The author thinks
that it coincides with historical experience: The well-posedness is an easy problem in
hyperfunction theory (where s = 1), and is a difficult problem in distribution theory
(where s = 00). Even in the case 2 < sy < o0, the situation is not so bad if either we
can use Lemma 1 or m is not large. In distribution theory it is usual to assume such an
assumption. Otherwise we need to calculate irr, P for many elements o of S;,,,. Then
the criterion may be complicated.

At the end of this section we consider the case of m = 2 as an example. In this case
we have Irr P € {1, 2}, and

hrP=1<=irrqo P =it P =1

{P € Aoy + 27 8 (0) Ay + 27 18- (0)Ag + 2726, (0),

e ( (
P € My + a7 6 (0) Ay + 27 6 (0) Ay + 2726, (0)
« « (

P e A2A1 + $1_ng O)Al + Jfl_lé_al O)A2 + .’131_25)1-* 0),
<~ _ _ _
(A1, A] € 27 8- (0) Ay + 27 6= (0) Ay 4 27 2E,+(0).

This is equivalent to

P € Ao Ay + 271 6 (0) Ay + 271 84+ (0) Az + 272 8,+(0), (13)
Ay and Aj satisfy (11). (14)
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If (13) and (14) are true, then Irr P = 1 and P is {s} well-posed for any s. Otherwise
Irr P =2 and P is {s} well-posed for 1 < s < 2. In other words, according to our result
we must assume (13) and (14) for the case 2 < s < co. (13) means that the lower order
terms must vanish according to some rule, and is not surprising. However as far as our
theory applies, we must also assume condition (14) for the principal symbol.

3. Operator theory.

To prove Theorem 2, we need to use a theory of integral operators and symbol func-
tions. They are similar to that of [3], but we develop a theory applicable for microlocal
ultradistributions. Let C' > 0 be a large number, j € Z; = {0,1,2,---}, and let

A;(C) ={(z,y1,§) EC" x C x C"!; Clay| < 1, Cla’| <1, Clzy —y1| < 1,

C1&" | <Imé&,, C|Re& | <Im&,, C(H+1)< Imﬁn}.

Let 0 < k1 < 1. We denote by %y, (C) set of formal series 3, f;(#,y1,¢’) such that

(i) f; is holomorphic on A;(C),
(ii) for 3C’" > 0 and 3R € (0,1) we have

151 < C'RI(Im&,)" exp(Clay — ya | Imé, + C(Imé,)™) on 4;(C)
for each j. We define ., (C) C %, (C) and A, (C) C S, (C) by

S (C) = { > fila,y1,€) € %, (C); for IC’ > 0 and IR € (0,1) we have
J€Zy
ot o+ f5] < C'(mé) exp (CIme)"™)
x { exp(Ctp(z,y1,£)) + R exp(Clzy — y1 [ Im&,)} on Aj(C)}7
N (C) = { > fila,y1,8) € Za, (C); for IC’ > 0 and 3R € (0,1) we have
JE€Z4
Fit et £ < ORI exp (Clay — | Tmé, + C(Imé,)™)

on AJ(C)},

where

V(z,y1,8) = |21 — o [([Tm(z, 21 — y1) [Tm &, + |Re ')
+ [Im(zy = y) [(| (&', 21 — 1) [ Tm &, + [ €7 ]).
We use the following notations for asymptotic expansions a = jez, @ (z,11,8), b =

ZjEZ+ bj(x,y1,£). We write > a; = > b; if a; = b;, for any j. This does not merely
mean that their summations coincide. We define @ = 0 + ag + a1 + - - -, therefore a; =
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We
51:0/0/!'

aj_1 for j > 1. We define 0,,a by 9,,a = Z@xlaj, and 0., by a,;la =
define ¢; = 37414 0= [08ak0gbi]e,=0/al, and ¢ = 35, 11 0 —; (08 ", 0% by
We denote » c; (resp. > c}) by aob (resp. a © b)

REMARK. Let a=3} .5 a;,b=3 .5 b;j € (C). Since they do not contain
&1, we have aob = a S b, which belongs to %, (C1), Ci1 > C. We have a —a € A, (C).
Ifa e A, (C)orbe A, (C), then we have aob € A, (C1).

Let } ez, fj € Zk (C) and let € < C1 < Cy. We define

ay Z / yl).glfj(xvylagl)dgla

JEZy Cl)

where A;(Cy) = {¢ € V=1R"'; C1|/Im¢&"”| < Im¢&,, Ci(j +1) < Im¢&,}. Then we
have the following result:

LEMMA 3. (i) Z(f)(x,y) is holomorphic on 2(C2) = {(x,y) € C**; Caf(z,y)| <
1, Im(z,, — yn) > Co|Im(z,y”)|}. Therefore it becomes a defining function of a hyper-
function g(x,y), and in fact we have g € 21/},

(i) Let w(C2) = {(z, ;&m0 € V=1S*R*"; Cal(w,y)| < 1, CoIm(§",& +n)| <
Im¢,}. Then S.S.g Nw(Cs) is contained in

wi(Ca) = {(z,y:&m)oc € w(r); o' —y' | < Colmr — w1 |,
Im(¢§ 4 n)| < Colar —y1 | Im &y, [Imny | < Co(| (z, 1) [ Im &y + [Im ™)}

(iil) If X" f; € A, (C), then g is real analytic at the origin.

PrOOF. (i) Let £2:(C2) = {(z,y) € 2(C2); Im(xy, — yp) > Co|Im(x,y"”)| + e} for
0<e<Cyl If (z,9) € £2.(Cy), there exists C’ > 0 and R € (0,1) such that

ELEIED> / &V (fo b ) (g, €)dE
jez, | /A (CNA;41(C1)
> / exp (— Im(' — ') - Im € + C(Im &)™) (1m&,)
jez, 7 Ai(C\A;+1(C1)

X {exp{C|x1 - y1| : |Im(m,x1 - yl)‘Imgn
+ ClIm(zy —y) (| (¢, 21 — 1) [Im & + 7))}
+ R exp(Clay — yi [ Im&,) }| d€’|

/

C K1
C'(Imé¢, C(Im¢,
3 o, Cme) ep (Cme™)

jezy’A

IN

x {exp(—eIm¢&,) + R’ exp (4C; " Im¢&,,) }|d€'|.

We have Im¢&, < Ci(j +2) on A;(C1) \ Aj41(C1). Since Cs is very large, we have
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C'RI exp(4C5 ' Tm&,) < 2C" exp(—eImé&,) there. Tt follows that

|.Z(f)(z,y)| < 3C" Z/ exp(—sImfn+C(Im§n)m)(lm§n)0/\d§’\

jezy 7 Ai(C\A;+1(Ch)

C1(3+2) ,
<3¢ > / exp (— et + Ct™)t% T2t
JjE€EZ C1(j+1)

on {2.(Cy) (We have denoted ¢t =Im¢,). From

c rk1/(k1—1) c
K1 < —
exp(Ct™) < exp {C<3n10> + 3t}

and

9

, 3 [C"]4+n—-1 c
t¢In=2 < () ([C'+n— 1)!exp{3t},

we obtain

Fneazscee{e(z2) " HE) T e

Z /Cl(j+2) e
X exp{ — t}dt
: Ci(i+1) 3

JEZy

) c r1/(k1—1) 3 [C')+n ,
< - —1)!
<3C exp{0(3n10> }(€> ([C'T+n—-1)

on 2.(Cy). This means g € 21/")} (c.f. [4]).
(ii) Let

C1(j+2) L
F(Nlay. )= 3 / VIO (fy ot f) (V=10 ) R

jez, Y C1(G+D)
Let ¢’ = (0,---,0,1) € R"1. We can similarly prove that it is holomorphic on

{(z,y,{) eC" xC" x C"™"; Cy(z,y,¢" — (') <1,

Im((2' —y') - ¢') > Col (w1 — y1) [ [Im(2, y1, ¢') [ + Ca (2,91, ¢") | - [Tm(a1 — y1) [},
and is real analytic on

{(I7y7</) € R" x R" x Rnil; C2|($7yvclf CIO)| < 17 |(I,*y/) ' §/| > 02|x17y1|}'



Irregularities of microhyperbolic operators 463

Therefore .Z'(f) defines a hyperfunction ¢'(z,y,¢’) on {(x,y,{’) € R" x R" x R"1;
Co| (x,y,¢" — ') | < 1}, and we have

S.8.g' € {(x,y,¢';6,m,2 )00 € V=1S*(R" x R" x R"™");
¢ (& =) < Colar —wn |, 1" = G ',
ITm (€ + 1) | < V2Ca|z1 — 51 ]G, (— Tmny),
[Tm(2" + ¢, '@ — ') | < Caol 21 — 41 (¢, (= Tmny,),

[Tm | < Coloy =yl + [ (2,51, ¢") )¢ (= Tmn) },

where (§,m,2’) is the dual variables of (z,y,{’). We can restrict ¢’ to {|{'| =
1}, and denoting by p(¢’) the canonical volume element on the unit sphere
V1" [sp(g' (2, ) j¢r=1)du(C) € €(w(C2)) is well-defined, whose support is con-
tained in wq (Cy). This coincides with the singularity spectrum of the above hyperfunction
g(x,y) on w(Cy), and we obtain (ii). We can prove (iii) similarly to (i). O

We finally define h(z,y) € Gron (2+,—2+) by h(z,y) = sp(Y (21 — y1)9(z,y)), where
Y is Heaviside function. Let

w2 (C) = {(z,y;&,m)o0 € w(O); @1 >y, |2/ —y'| < Clar — ),
Im (£ + )| < C(z1 —y1)Im&, }.

We have h € J7,- N %gﬁfzi*ﬁm*y where J7- = injooglim I, 0)(w(C); Cren). We
denote h(z,y) also by .Z"(f).

Ao« was originally defined by [3], and has the following properties. If hj(z,y),
ho(z,y) € A+, then we can define hs(z,2z) = [ hi(z,y)ha(y,2)dy € H,+. In this
way /- becomes a ring with the unit element spé(z — y). Let €% = {u(z); u is a
microfunction defined on a neighborhood of z*, whose support is contained in {z; > 0}}.
If h(z,y) € Hoe, u(x) € €., then we can define [ h(z,y)u(y)dy € €. In this way €.\
becomes a left .77, «-module.

Let - ez, fi(z,y1,8) € 4, (0), Q(z, D) =32 <, Qo ()D€ &,-(i), and let
Qz,&) =3 Qj(z,¢) be its complete symbol, where @; denotes Z\o/|:i—j Qo ()€
We have Y. 7, =Qo0 Y fj € %, (3C1), and we have Q(z, D) F"(f) = F"(F)(x,y).

If Kp(x,y) € £, is the kernel function of our microhyperbolic microdifferential
operator P(x, D), then Kp has the both-side inverse in J#,«. For these facts, see [3].

As for the above .Z"(f), we have F"(f) € - N %1(212/:8* ) and it is easy

to see that if u(x) € ‘5; N %Igi,},m*, 1<s<1/ky (resp. %;' N ‘51(;2@*, 1<s<1/ky),
then we have [ h(z,y)u(y)dy € €5 N %I{Qi}:z* (resp. €L N (51(;2,1*). We shall prove
that K;l belongs to 2« N ‘51(;{121”%;* %) with k1 = (Irr P — 1)/ Irr P. This means that
the fundamental solution of P whose support is contained in the forward half space
is a microlocal ultradistribution of order Irr P/(Irr P — 1), and Theorem 2 is its direct
consequence. Therefore it suffices to show that the symbol function of K ;1 belongs to
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F i (C).

., (C) defines a formal operator, which was called a “pseudodifferential operator
of finite velocity” in [3]. We shall at first construct a formal parametrix belonging to
X, (C), and afterwards show that it in fact belongs to .7, (C).

4. Matrix representation.

As in [3], we first construct a formal parametrix belonging to %, (C). We define
L(z,D) € &Y™ (= m x m matrix of &) by L(z, D) = DI, + L'(z, D'), where

0 -1 --- 0 0
L'(z,D") =
0 0 --- 0 -1
Py(z,D") Py_1(z,D")

We denote by L, 4 the (p,q) component of L'. It is at most of order p — ¢ + 1, and we
define L = 0p—q+1-j(L(p,q) for j € Z,. Consequently the complete symbol o(L’)
has an asymptotic expansion (L) ~ 3 .5 Lj =3 ;e (L}, ). We want to solve
61:1 U(xuylvg/) + L/(J,"fl) o U(xayhfl) = 07 U(l’,yh )|$17y1 - I . In other WOI‘dS, we
have U =}, U;, and

1 ’ ’
02, Uj + Z Ja’?’ L;Cag’ U= 0, Uj($7y1’§/)|11:y1 = 0j01m. (15)
ko =5

Let C > 1. According to [3] there uniquely exists a solution U; € 0(Ay(C))"™*™ of
(15), and we have

U1 = m x max|Uj g ) < G751 () " exp(Clay =y [Img,). (16)

Let Irr P = ro. It is convenient to use k1 = (ko — 1)/ko instead of ro. Note that
1< ko <mand0<r <(m—1)/m. Since C7+1j! (Im&,) "’ < C~It! on 4;(C?), we
have Y~ U; € %, (Co)™*™. This part is very easy and is the same as Proposition 2.2 of
[3]. The problem is to show that > U; € .7, (C2)™*"™. Assume that this is true. Then
as in section 3, we can define E(x,y) = F"(U) € (H- N %élzami* x*))mxm, which
satisfies L(x, D)E(x,y) = spd(x — y)I,,. Therefore we have (L(x D)E(x,y))(pm) =
dpm spd(z — y). It follows that

D1E(x,y)(pm) = E(2,Y) (p+1,m) for1<p<m-—1,
P<an)E<xay)(1,m) = Sp6($ - y)

It follows that E(x,y)(1,m) € o N g/m1)

R2H. xT* _l.*)
show Y U; € 7, (Ca)™>™. For this purpose we need another matrix expression.
For each 7 € S,,,, we have

is the inverse of Kp, and it suffices to
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P(z,D) = A"(2, D)+ > _ (" W7 (z, D) + b7, (x, D')) A" (x, D),
a;(x, D') € &,-(0), nes (17)

b2, D) € Gy (ra(m — ) (€ Gon(m — | — 1)).

We define ¢, (z, D') = x;mH“laL(x,D’)—Fb;(x,D’) and 0(c],) = m;mﬂulaj(a;)—!—aj(b;).

We have o(c],) = ng[m(mf\u\)] aj(c),). Our aim in the rest of this section is to delete

the “generator part” from (17). For this purpose we let m’ = m! x m and rewrite (17)
using an m’ x m’ matrix.

We enumerate the elements of S, and let Sy, = {71, ,7™'}. If 1 <j <ml,
we have 77 = (7{,--- ,71) € Sy Let us define microfunctions uy (), - - - , Uy (z) in the
following way. We denote by p € {0,1,--- ,m — 1} the remainder of an integer p divided

by m. Let u(x) be a solution of (4). Then for any p € {1,2,--- ,m'} we define
up(x) = A -+ Arru(z)

where | = p—T and k = 1+ (p—1—1)/m € {1,---,m!}. Therefore we have k €
{1,2,---,m!} and p = (k—1)m+1+1. We define an m’-dimensional column vector @(z)
by i(z) = *(u1(x), -+ U (2)). O < p—1(=1) < m — 2, then we have AleHup = Upi1.
If p—1(=1) = m — 1, then from (17) we obtain

k k
AleJrlup = Ao Apu(z) = AT u=— Z ¢, (x, D) A" (2, D)u+ f(z). (18)
pes’

In (18) we can delete the “generator part” as follows. Note that @ consists of A*u (u € S’),
and for any p € S’ there exists at least one component u, such that u, = A*u. For each
uw € 8, we select such a number ¢, and we can define a map h : S > uy — ¢ €
{1,---,m'}. We have the following result:

LEMMA 4. h is an injection, and we have h(u) —1 = |p|O

PROOF. Since h(u) = ¢ means u,(z) = A*u(x), the injectivity is clear. If ¢ =
(k—=1m+14+1,1<k<ml 0<Il<m-—1, then we have u, = Ay = AT{C---AT{Cu,

which means p = (7f,--- ,7F), and |pu| =1=¢— 1. O
. T}c
Now we can rewrite (18) as Alellup == es & (@ D )up(uy(2) + f(z). We have

the following system for p = (k — 1)m+1+1€ {1,--- ,m'}:

Aﬂkli-lup = Up+1, p g mZ’
Lk
Aﬂk+1up == Z C (va/)uh(M) () + f(z)
HES’

=— Z Z c;k (z, D uy(x) + f(z), peEmMZ.

1<q<m’ peh=1({q})
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Let us rewrite this by use of an m’ x m’ matrix M(z,D) = M'(x,D) + M"(z,D").
M'(z, D) is a diagonal matrix, and if p=(k—1)m+14+1, 1 <k<ml, 0<I<m-—1,
then its (p,p) component M(' ) s given by M(’ ) = AT{L’ which we also denote by

P.p P.p
M('p). IfpgmZ, then M(';),q) is given by M(’;’q) = —0pt1,4, and if p € mZ, then M(’;)’q) =
=2 ueh-1({q}) c;p/m (x, D"). Since the rows of M" repeat similar forms periodically with

period m, we write the p-th rows for (k—1)m +1 <p < km:

0 -1 0 0 0
o 00 -1 00 ( (k=1)m+1
0o 0 O 0 —1
* - c;k x| ( km
reh=*({q})
(k—1ym+1 q km

M has the following properties. Firstly, the principal part M’ is a diagonal matrix.
Secondly the lower order part M" consists of the “coefficient part” alone, and we have
the following result:

LeMMA 5. M/ €a? I8 (0) + & (mi(p—T—q =1 +1)).

(p,9)
PrOOF. Let p € mZ. We have (’;7(1) = —0pt1q € Epe(k1(p—1—q—1+1)). Let
p € mZ. From (17) and Lemma 4 we have
M(Iglg,q) - = Z Cap/mr,p,(xv D/) € xlierqilé_dz* (0) + g}m* (Hl(m —q— 1))
rneh=1({q})
zxfm"_qj_lgow*(())—ké_ax* (rilp—1—q—1+1)). O
We define

M;,(p,q)(m’g) = 6pq6jOM(/p’p)’ (19)
M ) (@:€) = 00 mtgmri— (M),

and M; = Mj+M] for j € Z,.. Therefore wehave M = 3., M; € a7 R, (O) 5
M =Y ez M, M" =3, , M/ Notethat M/ . =0if p—1+2<g— L

We have constructed a matrix U = ) U; satisfying (15). Let us define an m’ x m/
matrix V =Y V; € %, (C)™ *™ by

{V(p,q) =Uq,g), peEmMZ+ 1, o0
Vip.g) = M(’p—l) °Vip—1,q9)s P ZmZ+ 1.
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Then we have the following result:
LEMMA 6. 9, V+ M3V €ay™AH (C)" >,

PrOOF. If p ¢ mZ, then from (20) we have

(Mo V)pg =Mpp ©Vip.g) + Mpp+1) © Vipri,g)

= M(/p) °Vip.g) = Vip+1,9) = 0,

and
Oy Vip.a) + (M V>(P>Q) = O, Viva) — Oy Vi + (Mo V>(P>Q)
= 02, Vip.g) — a'7'1‘/(1),&1) € A (C).
Let us consider the case p = mp’ € mZ. If 1 < p” < 'm, (20) means V{(p'—1)m+p~,q) =
M(/(p’—l)m—i-p”—l) + 0 M((p/ 1)m+1) 9] U(Lq). If h(/,b) = (p/ — 1)m +p” - ]., then we have

|| =p"” =1 and V((p/—l)m+p”,q> = (A%) 0 Ugr,q)- Here A% denotes Ay, 00 Ay,
Therefore we have

(MoV)p,g = M(Ip) o Vip,g) + Z M(I;),r) o Vir,q)

1<r<m’

= (AOT OU(l q)+ Z Cu © A 'U’ OU(1 q)-
nes’

We regard P(z,¢) as a formal series P =3~ 0p—;(P). We have

P(z,D) = A" (z,D) + Y cu(x, D)4 (x, D)
pes’

and

P(z, AOTP Z Cpu © modulo z; ™A, (C).

pes’

It follows that

(MoV)pqg = (/1” oUfgy + Y cuo(A) o Un g
nes’

=PoUg g modulo z7 " A, (C).
On the other hand, we have Lo U = 0,,U + L' oU = 0,,U — 0,,U € A, (C)™> ™ and

PolUpyg = (Lo U)(m,q) =0 modulo A5, (C).
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It follows that (M o V)(p,q) S l‘l_m%l (C), and 61.11/@,(1) + (M ) V)(p’q) = 8w1 V(p,q) —
61-1‘/(;0’(1) + (M o V)(p’q) S xl—m%l (C) O

It will turn out that the negative powers of x; does not have any influence on the
ultradistribution order. Neglecting them, the diagonal elements of M" are at most of
order k1 (Since we are not considering any operators of fractional orders, they are in fact
at most of order 0). The orders of the off-diagonal components vary according to their
positions, but we may say that the matrix order of M" is equal to k1. Using these facts,
we shall show that V € ., (C)™ ™ which implies U € .%,, (C)™*™.

5. Construction of the real parametrix.

To see that V € .7, (C)™*™ we first consider phase functions. Let r € N =
{1,2,3,---}. Wecall I = (i1, - ,4r) € {1,---,m'}" a multi index of length r, and
we define |I| = r. We denote M('p,p)(x,f') also by & — my(x,&’). Therefore we have
my = A; for some j. We define the phase function @I(x, t,&") where t = (t1,--- ,t,) and
I = (i1, i), by induction on r. If » = 1, then gpl(x,tl,f’) is the solution of

axlﬁpl(xatlagl) — My, (x7§/ + Vx’(pl(xatlagl)) = 07 @I(x7t1751)‘11:t1 =0.

Assume that r > 2 and that ¢ for |I| < r — 1 have already been defined. Let [I|=r.
We define 1" = (i1, -+ ,ip—1) and ¢/ = (t1, -+ ,t,—1). We define ¢, as the solution of

8x1 (Pl(wv t, 5/) - m;, (.’I}, §/ + Vﬁ’(pj(xv t, 5/)) =0,
(21)
801(1‘7 ta 5/) |w1:t7v =@ (I‘, t”7 5/) |w1:t,. .
Here t; corresponds to y; in the previous notation, and to, - - - , %, are parameters which

in fact move between y; and x;.
Let C' > 0 and let

Aj(C) = {(m,t,f') €EC™" xC" x C"™ Y (z,t1,¢) € A;(C),

C Z [t —tp 1|+ Cltr — 21| Sl}

1<r' <r—1

for r € N, j € Z,. Then we have the following result:

LEMMA 7. If C is large enough, then ¢, is holomorphic on AY(C) forr = |1,
and we have [¢, | < C37 ey [t —tpy1| + Clt, —z1]| there. Here we can choose
the same C' for any I.

PROOF. Let (z,t,¢') € C" x C" x C" !, and let 7(x1,t) be the union of

line segments connecting tq,--- ,t,.,x1; in this order. ~ contains r line segments, and
we denote by +, that one from ¢, to t, 41 ({41 denotes z1). Let ¢}(s,a’,&) =
iy, iy (8,2t e, &), and my(s,2', &) = my, (s,2',¢') if s € 4. Then we

have
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8890,1(37 SE’, EI) - mII (57 l’/, fl + Vﬁ’(pll(sv :E/v 5,)) = Oa (pll(sv xlv 5,)‘8:1‘/1 =0

if s € y\{t1, -+ ,¢-}. For any I and v, m}(s,2’,&’) are Lipschitz continuous with respect
to &, and we can take the same Lipschitz constant for them all, and we obtain the
uniform domain Aj(C) and the uniform estimate for ¢, | (For example, we can apply
[7] to the present context). O

We next remark the following result:
LEMMA 8. Let C >0 be large. If |I| =r, then we have

ag,'(exp(gol)) = Z eI a/J(xataf/) eXp(SOI)a

,
0<j<|a’|

la'|—37
(,t,6)| < c +2'5( > |tr’—tr'+1|1m§n> (G+18)!

1<’ <r

ﬁ/
D€y ot

where e, , j(x, t,&') is a function for (z,t,§') € A%(C). Here we have denoted t, 1 = x;.
Furthermore, we have €l alo = [o<r<n Oz 0,) "

PrROOF. If || = 0, then the statements are trivial. Let p > 1, and assume that
the statements are true for |o/| = p — 1. Let us consider the case || = p. We assume
that o/! + /2 = o/, |a/*| = 1, |@’?| = p— 1. Then by the assumption of induction we
have

8;",/(exp(cp1)) = ;f,/l< Z eXP(‘PI)eLa/z,j)

0<j<la’=1

1 71
Z {33/ 6170/27]- +617a’2,j8f”a/ @I}exp(@I).

0<j<la’|-1

71 /1
Therefore we definee, , =03 €, ...+ 0y ¢, wheree

Lo, -1 €ra’; La'?-1- “ra2p
We can easily prove the estimate for the derivatives of these functions.

Let

A(C) = {(x,1,€") € AT(C); |tw| > (Im&y) | for 1<v <r 41,

/
r’ >~ >~ .
larg t,r —argty| <m  for2<¢ <r+1}

We denote A’}(C) also by A’(C). Replacing A;(C) by A’(C) in the definition of %y, (C),
1, (C), A%, (C) and considering single-valued holomorphic functions on A’(C), one can
define new classes of formal series in the same way, which we denote by %, (C), . (C),
N, (C) respectively. Restricting ourselves to A’(C) C A;(C), we can prove the following
result:

PROPOSITION 1. There exists W = 3.5 Wj(z,t1,{) € Y;I(C)W'Xm' such that
V-We ‘/K‘ill (C)m’xm’, TheT@fOTB we have V € yfél (C)m’Xm/ -
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In the rest of this section we define W and prove W € .7 (€)™ ™" In the next
section we shall prove V — W € 4, (C)™'*™".

We use amplitude functions I/IN/j,I(ac',t,g’) € ﬁ(A’;(C’))mlxm/ for [I| =r<j+1
which we shall define below, and define W;(z,t1,£’) in the following way:

Wj(xvtlagl) = Z €xXp (‘p[(xutlagl))ﬁj,l(ir/vtlvgl)

[1=1

r+1
/ / exp (¢, (,t,")) W, (2 t, & )dty - - dt,
t1

2<|I| r<j+1 t

Here t = (t1,---t,) and .41 = z1, as before. Of course we want to let M oW ~ O. Let us

discuss precisely. We have M = M’ + M", and from Lemma 5 we have M(p o= M(lp ot

M(2 )whereM(pq)Exlp p=ltg—1- 1&. ()andM(2 €&-(kilp—1—qg—1+1)). We
define

. s W p=1-g—T+1 /1
M; o) = —J(M@q))( 3 o (2] M(p,q>))7

2 _ 2
Mj (p,q) = O, p=T—q=T41)]—; (M(p,q))
for j € Z.. From (19) we have M} = M].Z(p p=0if p—T+2<qg-—1T

Let us define the amplitude function Wj7 (2, t,&"). We define the (p, q) component
of WNj,I by

~ ‘/j»(PaQ) (l‘, tl? §I)|$1:t1’ il =D,
Wit (@' t1,8) = . (22)
0 iy #p
if |[I] =1, and
Fy 1 o) (8" et in =D
o I L () \ s b s z1=try Ur >
Wirpa @ t, &) = 1 _ (23)
0 ir #p
if |[I| > 2. Here we have written t” = (¢t1,---,t,_1) as before, and Fj(x,t",{') =
Yo<n<a (@, 7, &) is defined by
FOI ./L' t// f Z ﬂ/' ”66 + mi7,71(fL',gl)el,,ﬂ,k(flf7t//7gl)a;:w7j//’1// (,’L‘l7t//,§/)
where the summation is taken for
k+j"+ 1 =5 k<I|B], k+ Y[ #0, (24)
and
F]hl t” Z ﬁll llaﬁ +’Y Mjh( 5,)61"6’k(x7 tlla él)a;,///ﬁj”71//(zla tuv 5/)’

(25)
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where
k4 +i"+ 1 +1=j, k<|p (25)
for h=1,2. In (24) and (25) we have j” < j —1, and
(z,t,&") € AH(C) = (x,t", &), (t,, 2/ 8", &) € A'THO). (26)

If W, jorv is already defined on A"/ L) c A/T_l(C’) then we can in this way define

W, j1 on A”;(C) by induction on j. Furthermore, we have Wﬂ =0if|I|>j+2 In
fact, assume that jo > 1 and this is true for 0 < j < jo — 1. Let j = jo. If (24) or (25)
is true, then we have Wj//[// = O for [I"|(=|I|—1) > j” + 2. This means F;; = O
and le = O for |I| > j + 2. In this way we can define ij € ﬁ(A’;(C’))m/Xm/ for
[ Il=r<j+1.

We next estimate these amplitude functions. We define

K, = {(ky,--- ,ky) € Z7; for each 1’ satisfying 1 < r’ < r we have
0<ks<mandky+- - +kv <m+r'}
Koi={(k1, - k) € Kp; b =0ifr—i4+1<7" <r}
Krij:{(k17"' 7kr)eKr; k1++kr§]}
forre N,1€Z,, je Z,. It is easy to see that these sets are not empty, and therefore

we can define || ¢ [|i; = max(, ... k,)ek, ., [t7* t%2 4k for t € (C\ {0})". Then we
have the following result:

LEMMA 9. Letr € N,i € Z,, j € Zy, 0<I<min(i,m—1) and (t,z1) €
(C\{0})" x (C\ {0}). Then we have

(@) Aty = 1,

() Nt llrig < 1 22) lrenivng <G i,
(i) 22|t iy < 1 () o
Proor. (i) We have (0,---,0) € K,;; for any 4,j, and we have ||t|,;; >
18] =1

(11) If (/{31, cee ,kr) € Km'j, then we have (kl, s ,kr, O) S K,«+1,i+17j C KT+1,i,j~ This
means

= gk e 0
H ||7"L] (kl,“-r,%?i(GKrij ’ 1 r xl‘
< max LI el e o R [ i1,
T (R ke 1) €Ki | ! " ' | 1€, 20) It
_ — —k,
< max et R = [ (f 21) g

T (ke ke €Ki

We can prove (iii) similarly. O
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Now we can prove the following result:

PROPOSITION 2. Let Cy > C. If1 < |I|=r <j+1, then we have

- L
| WJI(pq)x tf)} Z (|Oé/|+7“+p—1flfl/)!C;+1+2|a\ Z
I+ <r+p—1
LI'>0
kil +2m

X || t ||r,m—1—1ﬁ7l(1m€’n)

I
on Aj+|o/|(

Cy).
PROOF. If » = 1, from (16) and (22) we obtain |I/IN/’j,I7(p7q)| <

Lio/|— i 2 .
C’11+2|a =5 ) (Imé&,)"", and the statement is true.

We assume that ry > 2, and that the statement is true if 1 <r <rg—1. Let us
consider the case r = ro. If (2,t,&') € A'T_H (C1), then we have

95 Fy 1(17<1)(x t".¢)| <

>
a/l! 0/2! O/?’! /! /
o Bty

71 ’ ’ 2 3
x [0 08 | |0 e |02 Wi |
where the summation is taken for
0/1—‘,-0/2—|—O/3=O/, k+jll+|"//| :j7 kﬁ |,8'|, k+"7/|7é0' (27>

In (27) we have j” + |2 ++'| < j+ || If (z,t,&) € A" (C1), then by (26) we

gt
have (x,t”,¢&') € A’Tﬂla,l(Cl) c A" o (C’l). Therefore we can apply the statement
to 82,/3+7lw7j“,1”,(p,q) (', ¢",¢) if (Z‘,t,§ ) c A“"Ha ‘(Cl)_ Combining this with Lemma
8 we obtain
4l
" ol
3 1 (P, fI) Z Z o/ o2l o3 B A

(27) 141 <r—14p—1
1,I'>0

« Ol B+ 141 11 g1 A (Imgn)l—lﬁ'-&-v'\
x (2nCH) " (0 Tm e, )P TF Rt o2

1./3 n_ g’
x (a3 4+ [ +r—14+p—T—1-U) Oy 2l 5%
kil +2m

X" 211 —p=1,(Im &)

We have
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k(o249 |+r—1+p—1—-1-1)!

< (|a3+r+p—1—1-1)(m/Cy Im¢,)+N1-1

on A +a’|(cl) Furthermore, from Lemma 9 we have |[¢"]|
Il (&, xl) lsm—1-7=1,- It follows that

r—1lm—1—p—1,1 S

<ot S (o HrepmT—l=r) ot

I+ <r+p—1
1L,I'>0

8 I(pq (x7t/l’£/)

kil +2m
X @ x0) [l ey =7 (I &)™ :

Let p ¢ mZ. From (19) we may assume that M, ~ = 0, and we have F|, |

Therefore we only need to consider F' (lp 9 for p € mZ, and for this case we have

y = 0.

< o
- Z a/ll /21 /31 g1~/

(28)

a Fl(pq)(xatu7£,)

2
60&/ &

o't 9B’ +v a1
X 0% 8 M, o €

a’3+y
oW |

x!

where the summation is taken for

o' ta?raf =o ki Y 1=,
E<|B], 1<p <m/, P =1<p—T1+1

It follows that

6 FI(pq)'rt é‘

DS “
O/l! 0/2! O/?’! 6/! /
(28) 1+V/<r—147—T 7
1,I'>0

x OF'Ha B 1+ 5y /1y gl A |x1|—pfl+ﬁ—1

x (m&,) " T gpety e 0 (O e, )R o
x (a3 +|+r—14+p —1—1-1)!

k1l +2m

r+ e’y =5
x O} |t H7-_1,m_1_p/_171(1m€n)

We have

JTE (B A [+ =14+ —1—1=1)!

<(la®)+r =14+ —1—1—=U)(mImé,/Cy) TFHIl,
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Since p € mZ, from Lemma 9 it follows that

EoY i 1 <@

r—1,m—1-—p’'—1,1 1) ||r,0,l+ﬁfﬁ+l

=2 s o111

Denoting [ +p—1—p' — 1+ 1 by I”, we obtain
1

ot ) <CT7 3> (o[ +r4p=T-1"=1)!

l”+l'§r+p71
l”,l,ZO

141 /_%' kil +2m
x Oy @ ) | g &)™ T

Similarly we can prove the same result for |92 F B 2 (@17, &) | Since this part is
easier, we leave it to the reader. From (23) we obtain

WJI(pq) a’ tf ‘ Z ‘ thl )(traﬂf/»t”af/)
0<h<2
- Lig/|—d
< Y (dtrapoT-l-rpotEeE
I+ <r+p—1
LI'>0

kil +2m
XNty me1—p=1,(Im &) ' :

We next define

Wj](l‘, tl? 5,) = eXp(cpI(x, tla 5/))1/,[7‘771(17/7 t17 El)a

for |[I| =1, and
r41
Wir(z,t1,& / / exp(p,(z,t, )W Vi t,)dty - - dt,

for [I| = r = 2. Therefore we have W; = 3~/ .;11 Wjr. To estimate W, we must
determine the path of integration for the case |I| > 2. Let (z,#1,¢') € Aj(C). If
€ > 0 is sufficiently small, we have |t;[,|z1] > (Im §n)_1 + ¢. For such an ¢, we define
a continuous curve I:(t1,x1) from t; to 7 in the following way. Let v(a,b) be the
line segment from a to b. If we have |s| > (Imgn)_1 + ¢ for any s € (t1,21), we
define I.(t1,21) = v(t1,21). Otherwise, there are two points s1,82 € (t1,21) such
that |s1]| = |s2] = (Im{“n)_1 + e. We assume 11, 51, s2, 21 are located on v(t1,z1) in
this order. We define I'.(t1,21) = v(t1,51) U~/ (s1,52) U y(s2,21), where 7/(s1,52) =
{s € C; |s]| = (Imfn)_1 + &, args varies from args; to argss}. We finally define
IT(t,21) = {(ta, -+ ,tr) € Te(t1,21) X -+ X I(t1,21); t1,ta, -+, tr, 1 are located on
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I'.(t1,21) in this order}.

REMARK. (i) We denote by p.(s) the length from ¢; to s € I (t1,21) along
I'.(t1,z1). Tt is easy to see p.(s) < 7|s—t1]/2.
(ii) If (2,t1,¢") € Al(nC/2) and (tg,--- ,t,) € I'7(t1,71), then we have (z,t,{') €
AT (C).
j

Now we have the following result:
LEMMA 10.  Letr>2, >0, 0<j<m+r—1, and assume (z,t1,§') € A%(C).
If0 <e <1/Im¢&,, then we have

167)" m , -
Lo sl < R )™ gm0 )7

Here we denote (to,- - ,t.) by t'.

PrOOF.  There are two cases: the case [.(t1,21) = ~(t1,z1), and the case
I'.(t1,21) # ~(t1,21). Let us consider the second case (The first case is easier, and
is essentially contained in the second one).

We first assume 0 < j <m. We have 1/Im¢, < |s| < |(x1,t1)] for s € e(t1, 1),

and therefore || ¢ ||,;; < (Im¢&,)” < (Imé,)"™ 1\ (z1,t1) |7t Tt follows that

/ ([t [lrig| dt’| < (Imfn)m+1|($1vt1)|m_j+l/ |dt’|
F"(tl,ml) F"(tl fl)

m+1 m—j+4r
_ (16m) (Im &)™ | (a1, 01) "

- (r—1)!

We next assume m+1<j<m+r—1, 7 < m—p+q+ 1. Let s1,s9 be the
points determined above. Let I'P7"(¢;,21), 1 <p < q < r, be the subset of IV (t1,z1)

defined as follows: (i) ta,---,t, are on ~(t1,s1), (ii) ¢p+1,---,t, are on +/'(s1,s2),
(iii) g1, ,t are on ~y(sg,x1). Let t' = (ta,---,t,), t2 = (tpy1,-- ,tq), and
t3 = (tg+1, - ,tr). Furthermore we denote by I'P%"1(t;,21) the image of the projec-

tion I'PI"(t1,x1) D (ta, - ,t,) — t* € CP~L. We define I'P9"2(t1,x1) and TPI"3(ty,21)
similarly. Note that

ety a) = [ 2o, m),
1<I<3
Fg(t17$1) = U ngqr(th$1)-

1<p<qg<r

We have ||t ||ri; < ((Imfn)71 +¢)77 and

H / |dt!|.

1<1<3 " (t1,21)

/ Vsl dt'] < ()~
P (ty,x1)
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Furthermore, we have

"

-1
oo R I

1=1,371% (t1,21)

/ a2 < (F@m&) "+
P2 (4 @) N (g —p)!

It follows that

Lo Mtllar) < 7
P (ty,x1)

< ——(Im¢,

itp— B B
Imfn)j P q|($1,t1)|p q+r—1

m—+1 +m—7j
)l T,

zlat1)|

We finally assume m —p+q¢+2<j<m+r—1. In addition we assume |z1| >
|t1| (The case | 21| < |t1]| is similar). Let (ug,--- ,u,) be a permutation of (t2,--- ,t,) €
I'P9(t1,21) such that |uz| < --- < |u.|. Since we have |t1]| > -+ > |t >
tpri] = -+ = Ity = (m&) " +& < [tgua] < -+ < [t;] < [1], we may as-
sume (ug, -, Ug—pt1) = (tpt1,- - s tq), and t,, -+ ,to (resp. tgt1,--- ,tr) appear in
Ug—p+2,°** , Uy in this order. Therefore we only have the choice if u, . represents a com-
ponent of t! or of t3, for ¢ —p+2 <71’ <r. Let TP4" C S,_1,_1 be the set of permu-
tations which may appear. TP consists of at most 2P~4t"~! elements, and we have
determined a map h” : I'P9"(t1,21) 2 t' — 7 € TPI". Let I'P4"(t1,x1) = B~ (7). If

(ta, -+ ,ty) € I'P9(ty,21), then we have |t,,| < --- < |t,. |. By a rotation around the

origin, we can map to,--- ,t,—1 € Y(t1,51) into y(s2,x1), and we obtain an injection
~/ ~

O : [P (ty,21) o (4, 2,83) =t — t = (tg, -+ ,1,) € T[H97PFLT(4y 21) (We do not

move t? and t3, see the figure below).

tl tl
Pl o) 3 tl{

S1 S1 ~

FéDqu(tl,iCl) Btz{ to
S92 S92

TPI3(ty, 1) 3 t3{ N

ty

x1 €

. TPgr oY 1,g—p+1,r
9'1—‘57' (tl,.’ﬂl)at —t GFE,’,. ’ (tl,xl)

If ' € I}97P+Lr (¢, 21), then we have [ta]| < --- < |¢,.|, and
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+1
tllris < 1 llro; =1/ ([t2 ™ Its] -+ [tj—m])

— 1/(((Im§n)—1 " €)m+qu+1|tq_p+2 ‘ - |tj_m |)

It follows that

/ e O L
TPI™(t1,21) rha7Prhr () 2q)

1 / |dt'|
(&)~ +&)™ PH Jrramverr o) [tg-pral - [tj-m]

(r((mg,) " +e)) " / |d(ty—pio,- 1))
Fsqu—p+1,r,3(

T (g p)! ((mg,) " )" toan) [ta—pr2l - [tj-m]
_ m+1
< i P(Im&,,) / d(vg—pt2,-- V)
7Pl donpe el (41 p10) - (40 )

7Tq—P(Im é‘n)m+1(log(1/| So |))j—m+p—q—1 | ) |'r‘+m7j

(g—p! (j—m+p—q—1)! (r+m—j)

Here we have denoted v,» = |t,» — s2|. Since |s2| > 1/|&,], it follows that

Lo thar]
I (ty,m1)

m+1 (m +2)7 71

(r—1)

< (Imé&,) (log(Im &,) Y ~™=+P=1| (21, £,) ‘r-l-m—j.

Summing up these inequalities for p, ¢, 7 we obtain the statement. 0

PROPOSITION 3.  We have Y W; € YAI(C%)’”/X”/ (This is the first part of

Proposition 1).

JEZ+
Proor. It suffices to prove
3—1j c3 / K1
|Wj | < cy° (Im¢&,) " exp (C¢($,t1,f )+ C(Imé,) )

on A’ } (C%). For this purpose, we first prepare the following result:

LEmMA 11. (i) If (z,t1,&]) € A’}(C’f), then we have Re ¢ (z,1,¢') < CHip(x,t1,&)
for|I|=1.

(i) If (t2,---,t,) € IZ(t1,x1) n addition, then we have Regpl(x,t,f') <
CH(z,t1,&") +elmé, +1 for |[I| =1 > 2.

ProOF. We have |g01| < 0219«’9» |ty 41 — tp | Im &, where ¢,.41 denotes x1, as
before. Since ¢ satisfies (21) and m;, (z*) = 0, we have
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o, (z,t,8) <C* 3 |tr/+1—tw|(< 3 tr'+1—tw|+x|)1mfn+|»s"’|)-

1<r'<r 1<r’'<r

However, we have Rep (2,t,§') = 0 if (2,£,{') € R" x R" x v/—1R" !, This means

Reyp, < C° Z trr+1—trl|(( Z |Im(tr/+1—trf)+|Imx|)1m§n+|Re§’|>

1<r'<r 1<r'<r
+C* |Im(trx+1—trf)|<< > tr,+1_tr,|+x'|) Im§n+|§”’|>
1<r' <y 1<r'<r

for (z,t,£') € C™ x C" x C"~1, and we obtain (i).
Let (z,t1,&1) € A'J(CT) and (ta,--- ,t.) € I/ (t1,21). We have

-1
Sty =t | < wlar —t[+2(Im&,) + 2

1<r'<r
and
S Ity — )| < @lln(zy — )| +2(IméE,) + 2.
1<r'<r
It follows that Re¢p (,t,{') < CHp(z,t1,&") +eImé, + 1, and we obtain (ii). O

CONTINUED PROOF OF PROPOSITION 3. Let (2,t1,£') € A’}(C’%). Let 0 <e < 1.
From Proposition 2, Lemma 10, and Lemma 11 we have

(Wi(z,t1,€)| < Y exp(Re, (z,,€))|W 1 (x,1,€)|

|I]=1
trg1 ts / N
2 [T [ e (Regy (et )| Wrto.t€) bt
2<|I|=r<j+1" " !
r+1—4 (r+m —1)! (1677)“1
<m Z (& ° NG . 1) (log(lmfn))l
1<|I|=r<j+1 T ’
l+l/§r+m—1
1,I'>0
w1l +3m+1

X [ (21, t0) " (Im €, exp (C1ap(x,t1,€') + eImé&, +1).

Here we can let ¢ — +0, and it follows that

[Wj(z,t1,8') | < Of’*%j(lmﬁn)cii exp (Crp(x,1,€') + Ci(Im&,)™). O
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6. Asymptotic equivalence.

To prove the latter part of Proposition 1, we discuss about asymptotic expansions.
We first note the following result:

LeEMMA 12, IfC > 1, we have 9,V +M SV, 8,,W +M 5 W € A (C)™' ™.
Proor. We have 9, W + M oW =3, G, where

Gj=0:W;+ > ag,M 0% Wjn.

J' i+ |= a

Let us denote M’ = MY. It follows that

Gjpa) (@11, € Z Zexp o, (z,t1,¢ ) Gijrjkrpyppra(®,t1,€")
[I|=r=1
r41 t3
!

DY z/ o [ e (g a1, 6)

|I|=r>2 t
X Gij’j”k]ﬁ/'y’pp’q(ma t’ gl)dtg e dtT7

where
Gijr; L aﬁ A, L0 W,
ij' 5" k1B'y'pp’'q = ﬂ" i’ (') €1 i, 1,(p',q)

and the summation is taken for

{0§i§2, 747"+ + =4 0<k<|F], (29)

1§p/§m,7 p/71§p71+1a rgju+1

We need to show > Gy, > G’ € %, (C), where Gy = Go + --- + Gj. We have defined
W in such a way that it satisfies

ZGij’j/’klﬁ/“/’pp’q(m7tagl) =0 (30)
(31)
for
i:O, j/:07 k+]//+|’7/\ :ja kS |/Bl|a p:p/a ng”+1' (31)

(30) is also true if we replace (31) by

1<i<2, k+j 45"+ [V [+1=j, k<[F],
(31a)

1<p' <m/,p—1<p-1+4+1,r<j"+1
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Therefore G’; = Go + - -+ + G is given by

G;,(p,q) (xatlagl) = Z exp (90](:1: tlv { ZG” '3 kIB Y pp’ q(x tlvg )

|I|=r=1 (32)

> Giyjrkigyppa@11,6) + > Gigrjrkignyppa(@, b, 5/)}

(33) (34)
tria t3
/ / €xp 901 z,t,&') { ZGU g8y ppa (T, 6, )
|1| r>27t t1 (32)
- Z Gijrjrktpyppa(@,6,€) + Z Gijrjrkipryppa(@, 1, fl)}dtZ e diy,
(33) (34)
where
i=j=0,7"+|8+91=2j+1, k+i"+|¥]<7, (32)
0<k<|[p|, p=p, r<j"+1,
1<i<2, j'+ 7"+ +71>j+1 k+j +7"+ ¥ ]+1<7, (33)
0<k<|B,pP—1<p—1+41,r<j"+1,
1<i<2, j'+7"+[8'+91 <4, k+j +3i"+[7[=17, (34)
0<EkE<I|f|, pP—-1<p—1+41,r<j"+1,

respectively. From Proposition 2 we obtain

|G1J 3" k1B pp’ q(m t,&")]|

YA ’ ’ T+m! I'+3
D DN S e T T et

l+l'§r+m71
1L,I'>0

on A'"

j/+j,,+k+|y/|(0), C > 1. From Lemma 10 and Lemma 11 we obtain

Gy, €], |Gl (a1, €| < OO (m &) exp (Cola t1,€) + C(ImE,)™)

on A;-(C" ) for C’ > C, just in the same way as the last part of the proof of Proposition 3.
This means 0, W+M o W € 4, (C). We have already proved 9,,V+M oV € A4/ (C)

in Lemma 6. U
We next prove the following result:

LEMMA 13, If X =Y, X;(z,91,8), Y = 3, Vi(@', 41, &) € Z, (C)™*™, then
there uniquely exists Z =, Z;j(x,y1,£') € %’;1(01)7'L,Xm/ for C1 > C, such that

8;81Z+M o Z:X7 Z‘x1=y1 = Y (35)
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Proor. We need to solve
1 ’ !
0t Y Mz =X Gaen=v G0
343" e =i
on A%(C) for j € Z,. We solve this by successive approximation. We consider
1 a/ a/
00 Zin+ Y 108 My 05 Zjr g1 = 010Xy Zjklar—y, = OroY;
J+i" =)

for j,k € Z,. Here we have denoted Z; 1 = O. Let us prove that Z; = ), Z;
converges for each j, and Z =}, Z; € %;1(01)7"/””/. We have

1 1 ’ ’
Zin(x,y1,€) = / { - > @33 Mj/ (s, ', y1,€)0g Zjr k—1(s, 2", 1, €)
s e =

+ 00X, (s, 2, yn, 5)}d8 + koY (', 41, &),

Let us prove

’ O/! o . Tl-‘rC
108 Zipay | < 7 ORI (p (1) Im &) (Im )"

x exp (Ch]z1 —y1 | Im &, + C(Im&,)"™") (37)

for 3R € (0,1) on A;.Ha,l(Cl). Here 0 < ¢ < 1 and p.(z1) denotes the distance from gy

to 1 along I'.(y1,x1), defined in section 5. If k = 0, then (37) is trivial. Assume ko > 1
and (37) is true if 0 < k < ko — 1. Let us consider the case k = kg. We have

|0 Zj k,(p,q) |

/ a'l

< by T 1
- 11 ~121 37
j/+j”+|5/‘:j Fa(ylxifl) s 6 .
(38)( Ot’lJrOt/z:a’ )

p'—1<p—1+1

’1 4 /2+ /
X za/ 8?, j,’(p’p,)Mj’,(p,p’)(sa33/7y17§l) |8;‘, s Zj”,k_l,(p/,q)(s,w',y1,€')|dpa(8)
Oé/! /1 Y p—1—p —1+1— i =16
+08' |+ +1 11 o p p J
S Z/ o/ /21 Bllc‘a AR B M (ImEy,)
(38) Ie(y1,21) : M

12 a1 2 ’ .11 /— 1
(PR e O () ) ()

x exp (C1|s —y1 | Im&, + C(Im&,)"™ ) dpe(s).
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We have (o2 + )05t < o €7 lame,)” 7 on 4y (€, and (s - <
|z1 —y1| on I'.(y1,71). Therefore we obtain (37), which means Z € #} (C1). The
uniqueness is trivial. O
CorotLary. I X = 55, X;u1,€), ¥ = 5, V(' u1,€) € AL (O 5 then
there uniquely exists Z =3, Z;j(x,y1,£') € A/ (C1)™ *™ for C1 > C, satisfying (35).
PrOOF.  There exists Z = 3, Z; € %, (C1) which satisfies (35). Let Z; =
Zi+--+ Zjand Z' = 3 Z;. We define X' = X7}, Y/ = > Y/ similarly. Then we
have X', Y’ € %;1(0)’"/””/ by definition, and Z} automatically satisfies (36) replacing
X,Y,Z by X',Y',Z'. This means Z' € %., (C1)™*™, and thus Z € A (Cy)™*™. O
PROOF OF PROPOSITION 1. By Proposition 3 we have W € LV,QI(C)’”'XW/.
Lemma 12 means 0,,(V—-W)+ M 5 (V-W) € %’I(C)m,xm/. By (22) we have
Wls—y, = Vs =y, - Therefore the above Corollary means V — W € ./ (C)™*™". O

We finally prove the following result:
PROPOSITION 4. V€., (C)™*™" for C > 0.

Proor. By Proposition 1 we have
Vo+ -+ Vi < C'(Im&,) exp (C(Im&y)"™)
x { exp(Cy (@, y1,€")) + R exp(Clar —y1 [ Im&y) } (39)

on A’(C), and we need to prove it on A;(C). Since V; is holomorphic on the whole A4;(C),
this is true on the closure set of A’(C), which contains A} = {(z,y1,§’) € A;(C); |z1] >

(Im§n)717 ly1| > (Imfn)il}. Let C1 > C. We define
;',;k(cﬂ = {(xvyhg ) € Aj+k(01) |=’E1| > 2(Im£n) |y1| > 2(Im§n)_1}

Assume that (z,y1,£') € A}, (C1) and 2/, ¢’ € C™ ' satisfies |2'| < Cll/Q(k +1)/Imé&,,
[¢'| < Cll/g(k +1). It is easy to see that (z1,2" + 2’,y1,£" + (') € A} (C). Therefore we

have
0% 0% (Vo + -+ V), 31, €)

"nat Vi1, o' + 2,41, & + ()dz'd(’
'6'// 1 sz]za:“)( nlzwmc,fk“)

2<k<n

2<k<n

for [o/[,]8"| <k on A7, (Cy). Here the integration is taken for
26| = C1 2 (k+ 1) /nIm &, |G| = O P(k+1)/n, 2 <k <n.

Since we have ¥(z1, 2" + 2/, & + () < 2¢(z,91,{) + 12C1_1/2(k + 1), it follows that
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|02/ 0 (Vo +--+ ;)]
< 2C'(Im fn)C/ (2anl/2 Imé&,) o] (2nC;1/2) 15l exp (QC(Imfn)m)

x { exp(2C (2, 91,€")) + R exp(2C] 21— yo| Im &) } (40)

for [a/[,|8"] <k on AT\, (C1) (for 3C’" > 0, IR € (0,1)). From the beginning we have
YV, € Z.,(C), and we can similarly prove

0202 vy < RGP (e, g
X exp (20| x1 —y1 | Im&, +2C(Im §n)m) (41)
on A;(C).

Now let (z,y1,£') € A;j(6C1) and let us prove (39). We consider the following four
cases separately:

(a) [z1]>2/Im&, [y1] >2/Im&,,
(b) |z1| <4/Im&, [y1| < 4/Im¢,,
(c) [z1|>3/Im&, |y <3/Im&y,
(d) |z1] <3/Im&n, [y1| > 3/Im¢,,

In case (a), we have (z,y1,§’) € A7(C1), and (39) is true. Next we consider case
(b). We have |z1 —y1|Imé&, < 8, and from (41) it follows that [Vo+---+ V| <

eSCC’(Imfn)C exp(C(Imé&,)"™)/(1 — R), which means (39). Let us consider case (c).
Let 21 = 3/&,. We have (z,21,£') € AT (C1), (21,2",y1,§') € A;(C1), and V(z,y1,§) =
V(z,21,£) 3 V(z1,2',y1,£). From (40) and (41) we obtain

|(Vo+ -+ + V) |[(z,91,€)

1 ’ ’
< Z J‘aal (VO+"'+V7€)(-/I;7217£/)‘"8;1’W(Zl7xl7yla§/)’
S

< 20" (Imé,)" exp (20(Imé,)"™ ) (205 /2) "
x { exp(209(x, 21,¢")) + R* exp(2C| 21 — 21 [Im&,) }
x C'RIC 49 (Img,) exp (20|21 — g1 | Im&, +20(Im€,)™).
We have

1/)(1’,21,5/) S ¢($,y1,§l) + |y1 —Zz1 | Imfn < w(m7yla€/) + 77

|z1 — 21| Im&, < |z —y1|[Im&, +7,

|z1 —y1 [ Im§&, <7
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It follows that

[(Vo+ -+ Vi) l(z,41,8) <

20/2 28C ’ K1
ﬁ(lmgn)“ exp (4C(Im&,)"™)

x { exp(2C¥(z,y1,¢)) + R exp(2C| 21 — 41 | Im &) }

with R; = max(v/R, 01—1/3). This means (39) replacing C,C" and R by new constants.
Similarly we can prove (39) for the last case (d). Therefore (39) is true on A4;(6C;). O

(1]
(2]
(3]

[4]
[5]

[6]

[7]
(8]

[9]
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