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Abstract. For a based space X, we consider the group E#n(X) of all self
homotopy classes α of X such that α# = id : πi(X) → πi(X), for all i ≤ n, where
n ≤ ∞, and the group EΩ(X) of all α such that Ωα = id. Analogously, we study
the semigroups Z#n(X) and ZΩ(X) defined by replacing ‘id’ by ‘0’ above. There
is a chain of containments of the E -groups and the Z -semigroups, and we discuss
examples for which the containment is proper. We then obtain various conditions
on X which ensure that the E -groups and the Z -semigroups are equal. When X is
a group-like space, we derive lower bounds for the order of these groups and their
localizations. In the last section we make specific calculations for the E -groups and
Z -groups of certain low dimensional Lie groups.

1. Introduction.

Let X and Y be topological spaces with base point. A major objective of homotopy
theory is to investigate and understand the set [X, Y ] of homotopy classes of based maps
from X to Y . Typically, one restricts the spaces in order to put more structure on the
sets [X, Y ]. In this paper we consider the case X = Y , so that there is a binary operation
in [X, X] obtained from composing homotopy classes. We study certain subgroups and
subsemigroups of [X, X]. More specifically, we consider the monoid [X, X] and its group
of units E (X). Then E (X) is the group of homotopy classes of homotopy equivalences
X → X. Define subgroups EΩ(X) and E#n(X) of E (X) by

EΩ(X) = {α ∈ E (X), Ωα = id} and

E#n(X) = {α ∈ E (X), α# = id : πi(X) → πi(X), for all i ≤ n},

where Ω is the loop-space functor, α# is the induced homomorphism of homotopy groups
and id is the identity homomorphism. Furthermore, we allow n = ∞, that is,

E#∞(X) = {α ∈ E (X), α# = id : πi(X) → πi(X), for all i}.

In addition, if X is a CW-complex of dimension n, define the subgroup E#(X) of E (X)
by E#(X) = E#n(X). Then there is a chain of subgroups of E (X):
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EΩ(X) ⊆ E#∞(X) ⊆ E#(X). (1.1)

We refer to them collectively as E -groups. They have been studied extensively (for some
of the references, see [1], [2], [3], [4], [6], [8], [11], [12], [13], [21], [22], [23], [30], [31],
[33]).

We also define subsets of [X, Y ] by

ZΩ(X, Y ) = {α ∈ [X, Y ], Ωα = 0} and

Z#n(X, Y ) = {α ∈ [X, Y ], α# = 0 : πi(X) → πi(Y ) for all i ≤ n},

where n ≤ ∞. When X = Y we obtain subsemigroups of [X, X] by setting ZΩ(X) =
ZΩ(X, X) and Z#n(X) = Z#n(X, X). When X is a CW-complex of dimension n, we
define Z#(X) = Z#n(X). Then we have a chain of subsemigroups of [X, X]:

ZΩ(X) ⊆ Z#∞(X) ⊆ Z#(X). (1.2)

These semigroups have also been widely studied [5], [6], [7], [23], [24], [25]. We refer to
them collectively as Z -semigroups.

It is natural to ask if there are spaces X for which containments in (1.1) and (1.2) are
proper. Several known results show that three of the four inclusions can be proper, and
we complete the answer to this question by giving an example in Proposition 2.1 which
shows that the fourth inclusion can be proper. The full result is stated as Proposition
2.1. Most of the spaces which serve as examples are finite complexes. However, the only
known space X for which EΩ(X) ( E#∞(X) is an infinite-dimensional complex. The
obvious analogy between the Z -groups and the corresponding E -groups and the fact that
there is a finite complex X with ZΩ(X) ( Z#∞(X) have led us to make the following
conjecture, which also appears in [31, p. 680].

Conjecture 1.1. There is a finite-dimensional CW-complex X such that
EΩ(X) ( E#∞(X).

When the space X is group-like, this analogy is more precise, for there is a bijec-
tion between the Z -groups and the corresponding E -groups (Proposition 3.1). On the
other hand, finite-dimensional group-like spaces are strongly related to products of odd-
dimensional spheres, for which EΩ = E#∞ (Corollary 2.8). Thus we make the following
additional conjecture, which is supported by the calculations of §4.

Conjecture 1.2. If X is a finite-dimensional group-like space, then EΩ(X) =
E#∞(X).

After discussing the examples mentioned above, we consider in §2 the general prob-
lem of determining when the E -groups are all equal and when the Z -semigroups are all
equal. We first present an alternate characterization of EΩ(X) and ZΩ(X). Our main
result in §2 (Theorem 2.13) is that the E -groups of X are equal and the Z -semigroups
are equal if X is a product of spheres and projective spaces. We then consider localiza-
tion and show that the E -groups and Z -semigroups are equal for a rational space and
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for a group-like space localized at a regular prime. In §3 we obtain lower bounds for the
order of the localizations of the E -groups and Z -groups of a group-like space. We further
specialize to Lie groups in §4 and give conditions which are equivalent to the triviality of
an E -group or a Z -group. We conclude the paper by explicitly calculating these groups
for low-dimensional Lie groups such as U (2), S1×SO(3), SU (3), Sp(2), S3×SO(3) and
SO(4).

We end this section by describing our notation and assumptions. Each space is to
be connected, based and have the homotopy type of a based CW-complex. All maps and
homotopies are to preserve the base point, which is denoted ∗. We do not distinguish
notationally between a map and its homotopy class. A nilpotent space is one such that
the fundamental group is nilpotent and which acts nilpotently on the higher homotopy
groups [17, p. 62]. The identity map of X is denoted idX or simply id and the constant
map is 0 : X → Y . A space X is a co-H-space if there is a map φ : X → X ∨ X (the
wedge of X with itself) whose composition with each of the two projections X ∨X → X

is idX . If f : X → Y and g : Y → X are such that g ◦ f = idX then X is a retract of
Y ; g is called a retraction of f and f is called a section of g. A space is group-like if it
satisfies all the axioms of a group up to homotopy [35, p. 118]. A map f : X → Y induces
functions f∗ : [A,X] → [A, Y ] and f∗ : [Y, B] → [X, B] by composition, for all A and B.
The homomorphism of homotopy groups πn(X) → πn(Y ) induced by f is denoted f# or
f#n. The standard notation of homotopy theory will be used: ‘≡’ for same homotopy
type, ‘Σ’ for (reduced) suspension, ‘Ω’ for loop-space, ‘∨’ for wedge and ‘∧’ for smashed
product. The natural isomorphism between [ΣX, Y ] and [X, ΩY ] is called the adjoint
isomorphism. Finally nilG denotes the nilpotency (class) of the group G, and ‘∼=’ denotes
isomorphism of groups or Lie groups.

2. Equality of the E -groups and Z -semigroups.

We begin this section by discussing CW-complexes X for which the inequalities in
(1.1) and (1.2) are strict containments. We then turn our attention to proving results
which guarantee that the containments of (1.1) and (1.2) are actually equalities. The
bulk of this work is done in subsection 2.2, where we are concerned with results that are
valid for general spaces. These results can be localized, and in the third subsection we
study in more detail spaces that have been localized; of particular interest here are some
special properties of group-like spaces.

2.1. Proper containment.
Our first result gives examples showing that the containments in (1.1) and (1.2) can

be proper. All of these except (4) are already known.

Proposition 2.1.

(1) There is an infinite-dimensional CW-complex X such that EΩ(X) ( E#∞(X).
(2) There is a finite complex X such that E#∞(X) ( E#(X).
(3) There is a finite complex X such that ZΩ(X) ( Z#∞(X).
(4) There is a finite complex X such that Z#∞(X) ( Z#(X).

All of these spaces can be chosen to be simply-connected.
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Proof. For (1), the example can be found in [13]; an example for (2) is given in
[4, Corollary 4.13 or Proposition 6.3]; and examples for (3) can be found in [6] or [7,
p. 395].

We now turn our attention to part (4). Let 2 : Sn−1 → Sn−1 be the map of degree
2, M = Sn−1∪2 en a Moore space of type (Z2, n−1) and X = Sn∨M , where n > 3. Let
q : M → Sn collapse Sn−1 to a point. Let p2 : X → M be the projection and i1 : Sn → X

the injection, and set α = i1◦q◦p2 : X → X. We will show that α#r = 0 for all r ≤ n, and
that α#n+1 6= 0. For these assertions, it suffices to show that q#r = 0 : πr(M) → πr(Sn)
for all r ≤ n, and that q#n+1 6= 0 : πn+1(M) → πn+1(Sn). For r < n, this is obvious
because πr(Sn) = 0. Let r be n or n+1. Let Σ∞ : πk(Y ) → πs

k(Y ) = liml→∞ πk+l(ΣlY )
be the stabilization homomorphism. We have the following commutative diagram in
which the horizontal sequence is an exact sequence of abelian groups:

πr(M)
q#r //

Σ∞1
²²

πr(Sn)

Σ∞2∼=
²²

πs
r(S

n−1)
2s
#r // πs

r(S
n−1)

is
#r // πs

r(M)
qs
#r // πs

r(S
n)

2s
#r // πs

r(S
n).

By the Freudenthal suspension theorem [35, p. 369], Σ∞
2 is an isomorphism, and Σ∞

1

is an isomorphism for r = n and an epimorphism for r = n + 1. Since πs
n(Sn) ∼= Z,

πs
n(Sn−1) ∼= πs

n+1(S
n) ∼= Z2, and 2s

#r is multiplication by 2, we have πs
n(M) ∼= Z2, so

q#n = 0 by the commutativity of the above diagram. Also qs
#n+1 is a surjection and

hence q#n+1 is non-zero. Therefore α /∈ Z#∞(X). ¤

2.2. General results.
In this subsection, we find conditions that are sufficient to guarantee that the in-

clusions in (1.1) and (1.2) are equalities. These results will be applied to products of
spheres and projective spaces and will play a role in the calculations of §4.

We begin with a simple, but useful, observation.

Remark 2.2. Let φ : W → X, where W is a wedge of spheres with dim(W ) ≤ N .
Then

(1) if f ∈ E#N (X) then f ◦ φ = φ and
(2) if f ∈ Z#N (X) then f ◦ φ = 0.

Now we give an alternate characterization of EΩ and ZΩ .

Proposition 2.3. For any two spaces X and Y ,

EΩ(X) = {α ∈ E (X), α∗ = id : [ΣA, X] → [ΣA, X] for every space A} and

ZΩ(X, Y ) = {α ∈ [X, Y ], α∗ = 0 : [ΣA, X] → [ΣA, Y ] for every space A}.

Proof. We only prove the statement for EΩ , since the proof for ZΩ is analogous.
Let α ∈ EΩ(X) and β ∈ [ΣA, X]. Let β̂ : A → ΩX be the adjoint of β. Then
(Ωα) ◦ β̂ = β̂, since Ωα = id. Taking the adjoint gives α ◦ β = β.
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Next let α ∈ E (X) be such that α∗ = id : [ΣA, X] → [ΣA, X] for every space A.
Let A = ΩX and let p : ΣΩX → X be the canonical map. Then α ◦ p = p. By taking
adjoints we obtain Ωα = idΩX . ¤

Using Proposition 2.3, we can give short proofs (and some easy generalizations)
of some results of Paves̆ić on EΩ which were originally proved by spectral sequence
arguments [31]. The first of these concerns co-H-spaces. The second one, Corollary 2.8,
concerns products of spheres. The third one deals with rational spaces, and appears
below in Proposition 2.17.

Corollary 2.4 (Corollary 3.1 of [31]). If X is a co-H-space, then EΩ(X) = {id}
and ZΩ(X) = {0}.

Proof. We will just prove the result for EΩ ; the proof for ZΩ is analogous. Since
X is a co-H-space, X is a retract of some suspension ΣA [16, p. 209]. Therefore there
are maps i : X → ΣA and r : ΣA → X such that r ◦ i = idX . If f ∈ EΩ(X), then
f ◦ r = f∗(r) = r by Proposition 2.3. Applying i to both sides, we get f = idX . ¤

Remark 2.5. One possible approach to Conjecture 1.1 would be to find a finite
co-H-space X such that E#∞(X) 6= {id} (cf. [31, p. 680]).

Next we consider when E# = EΩ and Z# = ZΩ for certain products of spaces. For
this we will make use of the following lemma, which may be of independent interest.

Lemma 2.6. Let f, g : A1 × · · · × Ar → X be two maps, let j : A1 ∨ · · · ∨ Ar ↪→
A1 × · · · ×Ar be the canonical inclusion and consider the conditions

(1) f ◦ j = g ◦ j and
(2) Ωf = Ωg.

Then (1) implies (2). Furthermore, if each Ai is a co-H-space, then (2) implies (1).

Proof. Assume (1) and let V = A1∨· · ·∨An and P = A1×· · ·×An. Consider the
homomorphism j∗ : [ΣΩP, V ] → [ΣΩP, P ] and the canonical map p ∈ [ΣΩP, P ]. Since
j∗ is easily seen to be onto, there is θ ∈ [ΣΩP, V ] such that j ◦ θ = p. By taking adjoints
we get Ωj ◦ θ̂ = p̂ = idΩP . From hypothesis (1) we have (Ωf) ◦ (Ωj) = (Ωg) ◦ (Ωj), so

Ωf = Ωf ◦ idΩP = (Ωf ◦Ωj) ◦ θ̂ = (Ωg ◦Ωj) ◦ θ̂ = Ωg.

Thus (2) holds.
Now assume that each Ai is a co-H-space and that Ωf = Ωg. We claim that

f |Ai
= g|Ai

for each i. For this we use the commutative diagram

ΣΩAi
ΣΩji //

²²

ΣΩP
ΣΩf=ΣΩg //

²²

ΣΩX

p

²²
Ai

ji //

s

II

P
f, g // X
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where ji is the inclusion of the ith factor. The section s exists because Ai is a co-H-space
[16, p. 209]. Now

f ◦ ji = p ◦ΣΩf ◦ΣΩji ◦ s = p ◦ΣΩg ◦ΣΩji ◦ s = g ◦ ji,

which proves (1). ¤

Lemma 2.6 has several corollaries. The first is well-known.

Corollary 2.7. If q : A1 × · · · × An → A1 ∧ · · · ∧ An is the projection, then
Ωq = 0.

Proof. Since q ◦ j = 0 = 0 ◦ j, Lemma 2.6 shows that Ωq ' Ω(0) = 0. ¤

Paves̆ić [31, Theorem 3.6] has proved EΩ(Sk × Sl) = E#(Sk × Sl). Using Lemma
2.6 we can easily generalize this to arbitrary finite products of spheres.

Corollary 2.8. Let X = Sk1 × · · · × Skr and write N = max{k1, . . . , kr}. Then

EΩ(X) = E#∞(X) = E#(X) = E#N (X) and

ZΩ(X) = Z#∞(X) = Z#(X) = Z#N (X).

Proof. We will only prove EΩ(X) = E#N (X). Let j : Sk1 ∨ · · · ∨ Skr ↪→ X. If
f ∈ E#N (X), then f ◦ j = j = id ◦ j by Remark 2.2. Therefore Lemma 2.6 shows that
Ωf ' Ω(id) = id. ¤

In order to further generalize Corollary 2.8, we give a definition.

Definition 2.9. For a space X, we say π∗(X) is spherically generated in dimen-
sions ≤ N if there is a wedge of spheres W with dim(W ) ≤ N and a map φ : W → X

such that φ# : πk(W ) → πk(X) is surjective for all k.

Proposition 2.10. Let X and Y be spaces. Assume that π∗(X) is spherically
generated in dimensions ≤ N and that π∗(Y ) is spherically generated in dimensions
≤ M . Then

(1) E#∞(X) = E#N (X) and Z#∞(X) = Z#N (X),
(2) π∗(X × Y ) is spherically generated in dimensions ≤ max(M, N) and
(3) π∗(Sn) is spherically generated in dimensions ≤ n, and π∗(FPn−1) is spherically

generated in dimensions ≤ nd− 1, where d = 1, 2 or 4 according as F = R,C or
H.

Proof. We let f ∈ E#N (X) and α ∈ πn(X) for some n and show that f ◦ α = α.
Since π∗(X) is spherically generated in dimensions ≤ N , there is an wedge of spheres
W of dimension ≤ N and a map φ : W → X such that φ#i is surjective for all i.
Thus α = φ#(β) for some β ∈ πn(W ). Using Remark 2.2, we have f ◦ φ = φ because
dim(W ) ≤ N . Therefore

f#(α) = f#(φ#(β)) = (f ◦ φ)#(β) = φ#(β) = α,
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which completes the proof of the first assertion of (1). The proof of the second assertion
is similar.

For (2), observe that if W and V are wedges of spheres and W → X and V → Y

are maps which induce surjections on homotopy groups, then the composite W ∨ V →
W × V → X × Y is also surjective on homotopy groups.

In (3), only the statements about the projective spaces require proof. We begin with
the fibration sequence

· · · 0 // ΩSnd−1
Ωp // ΩFPn−1 // Sd−1

s

}}
0 // Snd−1

p // FPn−1,

where s is a section of ΩFPn−1 → Sd−1. Then we have the well-known homotopy
equivalence ΩSnd−1 × Sd−1 ≡ ΩFPn−1 determined by Ωp and s [14], and so

πk(FPn−1) ∼= πk−1(ΩFPn−1) ∼= Im(Ωp#)⊕ Im(s#).

Now let j : Sd ↪→ FPn−1 be the inclusion of the lowest dimensional cell. Since j#d, and
hence (Ωj)#d−1, is surjective, there is a lift λ in the diagram

ΩSd

Ωj

²²
Sd−1

s
//

λ

66llllllll
ΩFPn−1.

From this it follows that Im(s#) ⊆ Im(Ωj#), and so πk−1(ΩFPn−1) ∼= Im(Ωp#) +
Im(Ωj#) (the sum may not be direct). Therefore πk(FPn−1) ∼= Im(p#) + Im(j#), and
hence the map (j, p) : Sd ∨ Snd−1 → FPn−1 determined by j and p is surjective on all
homotopy groups. ¤

Remark 2.11. There are other interesting spaces X for which π∗(X) is spherically
generated in dimensions ≤ N for some N . One important case occurs when X is the
orbit space Sn/G of a free action of a finite group G on Sn, (n ≥ 1). Examples of such
actions can be found in [34, Chapter 6]. Another important case consists of spaces of
the form S4n+3/N(S1), where N(S1) is the normalizer of S1 in S3 and the action is the
restriction of the standard one of S3 on S4n+3 [10, Chapter III].

Now we turn our attention to analogous properties of the following collection of
spaces:

A = {X |ΣΩX ≡ a wedge of spheres}.

Proposition 2.12. Let X and Y be spaces such that X, Y ∈ A . Then

(1) ZΩ(X) = Z#∞(X) and EΩ(X) = E#∞(X) (cf. [6, Proposition 5.1]),
(2) X × Y ∈ A and
(3) Sn,FPn ∈ A for all n ≥ 1 and F = R,C or H.
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Proof. (1) Suppose λ :
∨

Sni → ΣΩX is a homotopy equivalence, and let
f ∈ Z#∞(X). Write p : ΣΩX → X for the canonical map. Then f ◦ p ◦ λ = 0, and
so f ◦ p = 0. By taking adjoints we find that Ωf = 0. The second assertion of (1) is
similarly proved.

(2) Clearly Ω(X×Y ) = Ω(X)×Ω(Y ). For any spaces A and B, we have Σ(A×B) ≡
ΣA ∨ΣB ∨Σ(A ∧B) by [16, 11.10] and so

Σ(Ω(X)×Ω(Y )) ≡ ΣΩ(X) ∨ΣΩ(Y ) ∨ (ΣΩ(X) ∧Ω(Y )).

Then (2) follows.
(3) Since ΣΩSn has the homotopy type of a wedge of spheres according to [18],

Sn ∈ A . Also ΩFPn ≡ Sd−1×ΩS(n+1)d−1, where d = 1, 2 or 4, according as F = R,C

or H, as noted earlier. The result follows from the decomposition for Σ(A×B) used in
(2). ¤

We now put all of these results together.

Theorem 2.13. Let X = X1 ×X2 × · · · ×Xr where each Xi is either a sphere or
a projective space FPn with F = R,C or H and r, n ≥ 1. Let N = 3 + max{dim(Xi)}.
Then

EΩ(X) = E#∞(X) = E#N (X) and

ZΩ(X) = Z#∞(X) = Z#N (X).

Proof. Since each Xi is in A by Proposition 2.12(3), so is the product X

by Proposition 2.12(2). Now Proposition 2.12(1) shows that EΩ(X) = E#∞(X) and
ZΩ(X) = Z#∞(X).

Analogously, each π∗(Xi) is spherically generated in dimensions ≤ dim(Xi) + 3 by
Proposition 2.10(3), so π∗(X) is spherically generated in dimensions ≤ N by Proposi-
tion 2.10(2). Hence Proposition 2.10(1) applies to show that E#∞(X) = E#N (X) and
Z#∞(X) = Z#N (X). ¤

Remark 2.14. Generally, N ≤ dim(X), where N the number in the previous
theorem. This is the case, for example, if either there are at least 4 spaces in the
product, or if there are at least 2 factors with dimension at least 3. Furthermore, the
term ‘3 + max{dim(Xi)}’ can be replaced with ‘1 + max{dim(Xi)}’ if no Xi is equal to
HPn; it can be replaced with ‘0+max{dim(Xi)}’ if none of the factors is HPn or CPn.

The latter special case of this remark will be used in the following sections, so we
state it as a separate corollary.

Corollary 2.15. If each Xi is either a sphere or a real projective space, then the
product X = X1 × · · · ×Xr (r ≥ 1) satisfies

EΩ(X) = E#∞(X) = E#(X) and

ZΩ(X) = Z#∞(X) = Z#(X).
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2.3. Localized spaces.
We now turn to results that are specific to p-local spaces or to rational spaces (for

details on localization, see [17]). We write A → A(0) for rationalization of groups or
spaces and A → A(p) for localization of groups or spaces at a prime p.

To begin, we observe that many of the above results are true p-locally.

Remark 2.16. The proofs of all of the results of §2.2 are valid for p-local spaces,
where p is either a prime number or zero.

Proposition 2.17 (Corollary 3.2 of [31]). If X is the rationalization of a nilpo-
tent CW-complex, then EΩ(X) = E#∞(X) and ZΩ(X) = Z#∞(X).

Proof. In fact, since ΣΩX is the suspension of a rational space, it is homotopy
equivalent to a wedge of rational spheres [15, p. 167]. Therefore, we apply the rational
version of Proposition 2.12, and the proposition is proved. ¤

We next consider group-like spaces, which enjoy special localization properties. In
particular, since group-like spaces are nilpotent, they can be localized. Furthermore, if
a finite complex X is group-like, then for any sufficiently large prime number p, X(p) ≡
Sk1

(p) × · · · × Skr

(p) [19, p. 73]. Such primes are called regular for X.

Corollary 2.18. Let X be a finite group-like complex of dimension N and p a
regular prime for X. Then EΩ(X(p)) = E#N (X(p)) and ZΩ(X(p)) = Z#N (X(p)).

Proof. If p is regular, then X(p) ≡ Sk1
(p)×· · ·×Skr

(p). Now apply (the p-local version
of) Corollary 2.8. ¤

We conclude this section with a general discussion of localization and the E -groups
and Z -semigroups. Let p denote either 0 or a prime number and let X be a finite nilpo-
tent CW-complex of dimension N . Then the groups E#(X) and E#∞(X) are nilpotent
[12], so they may be localized. On the other hand, localization of spaces defines a ho-
momorphism E#(X) → E#N (X(p)). It is known (see [21] and [23, Theorem 2.7]) that
these homomorphisms are in fact p-localization homomorphisms. Furthermore, if X is
an H0-space (i.e., X(0) is an H-space), then E#∞(X) → E#∞(X(p)) is also p-localization
[23, Corollary 2.10].

If, in addition, X is a group-like space, then the sets ZΩ(X), Z#∞(X) and Z#(X)
have a nilpotent group structure obtained from the additive nilpotent group [X, X] [35,
p. 464], and so they may be localized. It has been proved that the natural maps

Z#(X) → Z#N (X(p)) and Z#∞(X) → Z#∞(X(p))

are also p-localization homomorphisms [23, Lemma 1.6 and Corollary 1.7].
This discussion suggests the following questions.

Question 2.19. Let X be a finite nilpotent complex, and let p be a prime number
or zero.

(1) Is the natural map EΩ(X) → EΩ(X(p)) p-localization?
(2) If X is also group-like, is the natural map ZΩ(X) → ZΩ(X(p)) p-localization?
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3. Grouplike spaces.

In this section we consider group-like spaces in more detail. In the first subsection,
we establish a close link between the Z -groups and the E -groups for group-like spaces.
We then use commutator subgroups to give lower bounds for the order of some of these
groups and their localizations.

Throughout this section, X denotes a finite group-like complex and so X is a nilpo-
tent space and the additive group [X, X] is nilpotent.

3.1. Z and E for grouplike spaces.
As was mentioned in the introduction, there is a strong analogy between the E -

groups and the Z -groups when X is group-like. In this case, Ω : [X, X] → [ΩX,ΩX]
is a homomorphism of groups. Thus ZΩ(X) = Ω−1(0) = Ker Ω is a subgroup of [X, X]
and EΩ(X) = Ω−1(id) is a coset of Ker Ω of the group [X, X]. Similarly, we obtain
homomorphisms

rn : [X, X] →
⊕

k≤n

Hom(πk(X), πk(X))

and we deduce that Z#n(X) = ker(rn) is a subgroup and E#n(X) is a coset of Z#n(X).
Furthermore, since rm factors through rn for m < n and rn factors through Ω for all
n ≤ ∞, we have the following proposition.

Proposition 3.1. If X is group-like, then the function α 7→ id + α defines bijec-
tions ΘΩ and Θn making the diagram

ZΩ(X) � � //

ΘΩ

²²

Z#n(X) � � //

Θn

²²

Z#m(X)

Θm

²²
EΩ(X) � � // E#n(X) � � // E#m(X)

commutative for each m ≤ n ≤ ∞.

Remark 3.2. Proposition 3.1 has been observed by several people (e.g., [23, p. 51]
and [8, p. 693]). It follows from Theorem 4.3(2) that ΘΩ : ZΩ(X) → EΩ(X) is not
necessarily a homomorphism.

3.2. Grouplike spaces and commutators.
Commutators feature prominently in this section, so we adopt the notation H (X) =

[X, X] in order to avoid possible confusion of [X, X] with the commutator subgroup of
X, when X is a topological group.

We begin by establishing our notation for commutators. If Γ is a group and if
A,B ⊆ Γ , then we write [A,B] for the subgroup of Γ generated by all commutators
[a, b] = aba−1b−1 with a ∈ A and b ∈ B. The lower central series of Γ is the sequence of
subgroups

Γ = Γ (1) ⊇ Γ (2) ⊇ · · · ⊇ Γ (k) ⊇ Γ (k+1) ⊇ · · ·
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defined by setting Γ (1) = Γ and Γ (i) = [Γ, Γ (i−1)] for i ≥ 2. If k is the smallest integer
such that Γ (k+1) = {id} for some k, then Γ is nilpotent with nilpotency k, written
nilΓ = k.

In what follows, we write |S| to denote the number of elements of a set S.

Lemma 3.3. Let Γ be a nilpotent group with nilΓ = k, and let p be a prime number
or 0. Then

(1) |Γ (2)| ≥ 2k−1;
(2) If Γ is a p-local group, then |Γ (2)| ≥ pk−1;
(3) If Γ is a finitely-generated infinite nilpotent group, then Γ(p) is infinite.

Proof. (1) Since the case k = 1 is trivial, we assume k ≥ 2. Then we have

Γ (1) % Γ (2) % · · · % Γ (k) % Γ (k+1) = 1.

By [17, Corollary 2.6 and Theorem 2.7], the groups Γ (i)/Γ (i+1) are nontrivial for 2 ≤
i ≤ k. It follows that |Γ (i)/Γ (i+1)| ≥ 2 for 2 ≤ i ≤ k, and so |Γ (2)| ≥ 2k−1.

Assertion (2) follows from the same argument because the nontrivial groups
Γ (i)/Γ (i+1) are p-local and so they must have at least p elements each.

We prove (3) by induction on the nilpotency of Γ . If nilΓ = 1, then Γ is abelian.
Hence Γ(p) = Γ⊗Z(p), and so Γ(p) is infinite. Suppose that the result is true for all groups
with nilpotency < k. Let nilΓ = k and let Γ (k) = [Γ, Γ (k−1)] and consider the exact
sequence 1 → Γ (k) → Γ → Γ/Γ (k) → 1, with Γ (k) and Γ/Γ (k) both finitely-generated
and of nilpotency at most k − 1. This gives rise to an exact sequence 1 → (Γ (k))(p) →
Γ(p) → (Γ/Γ (k))(p) → 1 of p-localized groups [17, p. 12]. If Γ is infinite, either Γ (k) or
Γ/Γ (k) is infinite. By the inductive hypothesis, at least one of (Γ (k))(p) or (Γ/Γ (k))(p)

must be infinite and thus Γ(p) is infinite. ¤

Our next lemma establishes the link between commutators and ZΩ(G) (and there-
fore, by Proposition 3.1, with EΩ(G)).

Lemma 3.4. If X is a group-like space, then H (X)(2) ⊆ ZΩ(X).

Proof. If f, g ∈ H (X), we have Ω[f, g] = [Ωf,Ωg] = 0, because ΩX is homotopy-
commutative. Therefore, [f, g] ∈ ZΩ(X), and since H (X)(2) is the subgroup generated
by these commutators, we have H (X)(2) ⊆ Ker(Ω) = ZΩ(X). ¤

Proposition 3.5. Let X be a finite group-like complex, and p be a prime number.
Then

(1) (a) |ZΩ(X)(p)| ≥ pnil H (X)(p)−1;
(b) |EΩ(X)(p)| ≥ pnil H (X)(p)−1;
(c) |ZΩ(X)| ≥ 2nil H (X)−1.

(2) |ZΩ(X(p))| ≥ pnil H (X)(p)−1.

Proof. (1)(a) We have H (X)(2) ⊆ ZΩ(X) by Lemma 3.4, and so by [17, Theo-
rem 2.7 on p. 20], (H (X)(p))(2) = (H (X)(2))(p) ⊆ (ZΩ(X))(p). Then by Lemma 3.3(2),
we have pnil H (X)(p)−1 ≤ |(H (X)(p))(2)| ≤ |ZΩ(X)(p)|.
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(1)(b) This does not follow immediately from (1)(a) since there is only a bijection,
not necessarily an isomorphism, between EΩ(X) and ZΩ(X). If ZΩ(X) is infinite, so
is EΩ(X) by Proposition 3.1. Therefore by Lemma 3.3(3), EΩ(X)(p) is infinite, and the
inequality holds. If ZΩ(X) is finite, so is EΩ(X), and both nilpotent groups have the
same order. But the p-localization of a finite, nilpotent group is its unique p-Sylow
subgroup. Therefore |EΩ(X)(p)| = |ZΩ(X)(p)|, and the result now follows from (1)(a).

(1)(c) We assume without loss of generality that ZΩ(X) is finite. The result then
follows form Lemma 3.3(1).

(2) Since H (X)(p)
∼= H (X(p)) by [9, Proposition 5.3], we have |ZΩ(X(p))| ≥

|(H (X)(p))(2)| ≥ pnil H (X)(p)−1 by Lemmas 3.3 and 3.4. ¤

Remark 3.6. (1) By (1.2) and subsection 2.3, the results of Proposition 3.5 im-
mediately provide lower bounds for the order of: Z#∞(X)(p)

∼= Z#∞(X(p)), Z#(X)(p)

and Z#∞(X). By (1.1) and subsection 2.3, this is also true with E replacing Z .
(2) The inequalities in Proposition 3.5(1)(a) and (1)(b) can be strict: H (Sp(2))(3)

is commutative by [27, Theorem 2] and EΩ(Sp(2))(3) ∼= ZΩ(Sp(2))(3) ∼= Z3 by Theorem
4.3.

4. Lie groups.

In this final section we specialize further and study Lie groups. Our first theorem
gives the equivalence of several statements including the triviality of the Z -semigroups
and the E -groups. We then give explicit computations for some low-dimensional Lie
groups.

Throughout this section, G denotes a compact Lie group. This implies, in particular,
that G is a finite nilpotent complex.

We shall need the following lemma in Theorem 4.2.

Lemma 4.1. If X1 and X2 ∈ {S1, S3,SO(3)} and q : X1 ×X2 → X1 ∧X2 is the
projection inducing q∗ : [X1 ∧X2, X1 ×X2] → [X1 ×X2, X1 ×X2], then

ZΩ(X1 ×X2) = Z#∞(X1 ×X2) = Z#(X1 ×X2) = Im(q∗) ∼= [X1 ∧X2, X1 ×X2].

Proof. First of all, the exact sequence

0 // [X1 ∧X2, X1 ×X2]
q∗ // H (X1 ×X2)

i∗ // [X1 ∨X2, X1 ×X2] // 0

shows that Im(q∗) ∼= [X1 ∧X2, X1 ×X2]. Since SO(3) ∼= RP3, we know

ZΩ(X1 ×X2) = Z#∞(X1 ×X2) = Z#(X1 ×X2)

by Corollary 2.15. Since Ωq = 0 by Corollary 2.7, we clearly have Im(q∗) ⊆ ZΩ(X1×X2).
For the reverse containment, let f ∈ Z#(X1×X2). We claim that f is in Im(q∗). In

every case, X1×X2 has one of S1×S1, S1×S3 or S3×S3 as a covering space (depending
on dim(X1 ×X2)); fix a covering map p : Sa × Sb → X1 ×X2. Since f#1 = 0, there is a
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lift f̂ in the diagram

Sa × Sb

p

²²
X1 ×X2

f
//

f̂
55lllllll
X1 ×X2.

Since p is a covering, p# : π∗(Sa × Sb) → π∗(X1 ×X2) is injective, and so f̂#n = 0 for
all n.

We next show that f̂ |X1∨X2 = 0. It is well-known that [RP3, S1] ∼= H1(RP3;Z) = 0
and [RP3, S3] ∼= H3(RP3;Z) ∼= Z, generated by the quotient map RP3 → RP3/RP2 =
S3. This map, and all of its nonzero multiples, is nontrivial on π3. Therefore, f̂ |Xi

= 0
if X ≡ RP3. Clearly, if Xi is a sphere (i = 1 or 2 or both), then f̂ |Xi = 0. Therefore
f ∈ Im(q∗) as claimed. ¤

The next theorem shows the equivalence of several statements about Lie groups G,
most of which have been previously proved elsewhere. We denote the torus of dimension
n by Tn, n ≥ 1, and let T 0 be the trivial group.

Theorem 4.2. The following statements are equivalent :

(1) ZΩ(G) = {0} (or, equivalently, EΩ(G) = {id}).
(2) Z#∞(G) = {0} (or, equivalently, E#∞(G) = {id}).
(3) Z#(G) = {0} (or, equivalently, E#(G) = {id}).
(4) The left distibutive law holds in H (G) : a◦(b+c) = a◦b+a◦c for a, b, c ∈ H (G).
(5) G is isomorphic to one of Tn (n ≥ 0), S3 or SO(3).
(6) H (G) is commutative and G is not isomorphic to Tn × S3 (n = 1, 2).

Proof. In [20, Theorem 1.1], it is proved that (2), (4), (5) and (6) are equivalent.
Obviously (3) implies (2) and (2) implies (1). Therefore it suffices to show that (5)
implies (3) and (1) implies (5).

To prove that (5) implies (3), let G be Tn, S3 or SO(3), and let k be 1 or 3
according to whether or not G is Tn. Then the map f 7→ f#k induces isomorphisms
H (G) ∼= Hom(πk(G), πk(G)) (see [27, Proposition 4.1] for SO(3)). Hence Z#k(G) =
{0}. Since Z#(Tn) = Z#1(Tn), we have Z#(G) = {0}.

We conclude by showing that (1) implies (5), that is, if G 6∼= Tn, S3 or SO(3), then
EΩ(G) 6= {id}. First suppose G 6∼= Tn, Tm × S3 (m = 1, 2), S3 or SO(3). Then H (G) is
not commutative by [20, Theorem 1.1], so that EΩ(G) 6= {id} by Proposition 3.5(1)(b).
Next suppose that G ∼= Tm × S3 with m = 1, 2. The following square is commutative

E (S1 × S3)
i′∗ //

Ω

²²

E (S1 × S1 × S3)

Ω

²²
E (Ω(S1 × S3))

i′′∗ // E (Ω(S1 × S1 × S3)),
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where i′∗ and i′′∗ are the injective homomorphisms defined by i′∗(f) = idS1 × f and
i′′∗(f) = idΩS1 × f . Hence to show EΩ(Tm × S3) nontrivial for m = 1, 2, it suffices to
prove that EΩ(S1×S3) 6= {id}. But |EΩ(S1×S3)| = |ZΩ(S1×S3)| = |π4(S1×S3)| = 2
by Lemma 4.1, and so the proof is complete. ¤

We conclude with some concrete calculations for low-dimensional Lie Groups.

Theorem 4.3.

(1) If G is isomorphic to one of S1×S3, U(2), S1×SO(3), SU (3), Sp(2) or S3×S3,
then EΩ(G) = E#∞(G) = E#(G)∼=ZΩ(G) = Z#∞(G) = Z#(G), and this common
group is explicitly given as follows:

Z2 if G ∼= S1 × S3 or U(2), Z2 ⊕Z2 if G ∼= S1 × SO(3),

Z12 if G ∼= SU(3), Z12 ⊕Z12 if G ∼= S3 × S3,

Z120 if G ∼= Sp(2).

(2) If G is isomorphic to S3 × SO(3) or SO(4), then

EΩ(G) = E#∞(G) = E#(G)∼= M4 ⊕ (Z3)2 and

ZΩ(G) = Z#∞(G) = Z#(G)∼= (Z4)4 ⊕ (Z3)2,

where M4 is the noncommutative group of order 28 defined in [30].

Proof. First we make the elementary observation that the groups in question
depend only on the homotopy type of G, and not on its structure as a Lie group.

(1) We begin by considering the groups S1×S3 and U(2). Since they are homeomor-
phic, it suffices to prove the result for S1×S3. Lemma 4.1 shows that the Z -groups are
all isomorphic to π4(S3 × S1) ∼= π4(S3) ∼= Z2. The result for the E -groups now follows
from Proposition 3.1.

Now consider G = S1 × SO(3). Since SO(3) is homeomorphic to RP3, we have
EΩ(G) = E#∞(G) = E#(G) and ZΩ(G) = Z#∞(G) = Z#(G) by Corollary 2.15. By
Lemma 4.1, these latter groups are isomorphic to q∗[S1 ∧RP3, S1×RP3] where q : S1×
RP3 → S1∧RP3 is the quotient map. It is known that q∗[S1∧RP3, S1×RP3] ∼= Z2⊕Z2

by [20, Lemma 7.3]. To complete the proof for G = S1 × SO(3) it suffices to show that
ΘΩ : ZΩ(G) → EΩ(G) is a homomorphism. This follows from the methods in the proof
of [30, Proposition 3.1] and is similar to the proof below that ΘΩ : ZΩ(S3 × S3) →
EΩ(S3 × S3) is a homomorphism.

For G = SU (3), let q : G → S8 be the quotient map obtained by collapsing the
7-skeleton. Recall from [28, Theorem 4.1] that π8(G) ∼= Z12 and from [27, p. 85] that
q∗ : π8(G) → H (G) is a monomorphism whose image is generated by a commutator,
and so Im(q∗) ⊆ ZΩ(G). On the other hand, it follows from [27, Theorem 5.1] that
Z#∞(G) ⊆ Im(q∗), and so ZΩ(G) = Z#∞(G) = Im(q∗) ∼= Z12. Also, by [24, Theorem
3.3], Z#∞(G) = Z#(G). Hence EΩ(G) = E#∞(G) = E#(G). By [27, Proposition
7.2(2)], the composite of
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π8(G)
q∗

∼=
// Im(q∗) = Z#∞(G)

Θ∞ // E#∞(G)

is an isomorphism of groups. Hence E#∞(G) ∼= π8(G) and the assertion for G = SU (3)
follows.

Let G = Sp(2), and consider the quotient map q : G → S10. It is known that
q∗ : π10(G) → H (G) is injective, that Z#(G) = Z#∞(G) [24, Theorem 3.3] and that
Z#∞(G) = Im(q∗). Thus we have

ZΩ(G) ⊆ Z#∞(G) = Z#(G) = Im(q∗) ∼= π10(G),

and so the statement about the Z -groups will be verified once we show that Im(q∗) ⊆
ZΩ(G). The reduced diagonal d : G → G ∧ G is the composition of the diagonal
∆ : G → G × G and the quotient map p : G × G → G ∧ G. Since Ωp = 0 by Corollary
2.7, it follows that Ωd = 0. Let γ = γ′ ◦ q, where γ′ is a generator of π10(G) ∼= Z120 [28,
Theorem 5.1]. By the proof of [24, Theorem 3.3], γ factors as

G
d // G ∧G

ψ // G

for some map ψ. Since Ωd = 0, we have γ ∈ ZΩ(G), and so Im(q∗) ⊆ ZΩ(G). For the
E -groups, we now have that EΩ(G) = E#∞(G) = E#(G). By [27, Proposition 7.2(2)],
the bijection Θ∞ : Z#∞(G) → E#∞(G) is a homomorphism, and so it is an isomorphism.
Hence the assertion for G = Sp(2) follows.

Let G = S3 × S3. By Lemma 4.1, ZΩ(G) = Z#∞(G) = Z#(G) = Im(q∗) ∼= π6(G),
where q : S3 × S3 → S3 ∧ S3 is the quotient map, and EΩ(G) = E#∞(G) = E#(G).
Furthermore, π6(G) ∼= π6(S3) ⊕ π6(S3) ∼= Z12 ⊕ Z12 [32]. To complete the proof we
show that the bijection Θ∞ : Z#∞(G) → E#∞(G) defined by Θ∞(α) = id + α is a
homomorphism. For k = 1, 2, let ik : S3 → S3 × S3 and pk : S3 × S3 → S3 be
the standard inclusions and projections, respectively. Write c : S3 × S3 → S3 for the
commutator map; then c = [p1, p2]. It is known that Z#∞(G) ∼= Z12 ⊕ Z12 and that
αk = ik ◦ c are generators [27, Proposition 3.1]. We first prove αk ◦ (id + αl) = αk for
k, l = 1, 2. Now

c ◦ (id + α1) = [p1, p2] ◦ (id + i1 ◦ [p1, p2])

= [p1 ◦ (id + i1 ◦ [p1, p2]), p2 ◦ (id + i1 ◦ [p1, p2])]

= [p1 + [p1, p2], p2].

By [27, Proposition 3.1(3)], [p1, p2] is a central element, so [p1 +[p1, p2], p2] = [p1, p2] = c

and hence c ◦ (id + α1) = c. Similarly, c ◦ (id + α2) = c. It follows that αk ◦ (id + αl) =
ik ◦ c ◦ (id + αl) = ik ◦ c = αk and, more generally, αk ◦ (id + αl)n = αk for any n ≥ 0.
We now prove by induction on n ≥ 0 that (Θ(αk))n = Θ(nαk). The result is trivial for
n = 0 or n = 1. For the inductive step, we have
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(Θ(αk))n = Θ(αk) ◦Θ(αk)n−1

= (id + αk) ◦Θ(αk)n−1

= (id + (n− 1)αk) + αk(id + αk)n−1

= (id + (n− 1)αk) + αk

= id + nαk

= Θ(nαk).

Hence, for any nonnegative integers n1, n2, we have

Θ(α1)n1 ◦Θ(α2)n2 = (1 + n1α1) ◦ (1 + n2α2)

= 1 + n2α2 + n1α1 ◦ (1 + n2α2)

= 1 + n2α2 + n1(α1 ◦ (1 + α2)n2)

= 1 + n2α2 + n1α1

= Θ(n2α2 + n1α1).

Similarly Θ(α2)n2 ◦Θ(α1)n1 = Θ(n1α1 + n2α2), and so

Θ(α1)n1 ◦Θ(α2)n2 = Θ(n2α2 + n1α1)

= Θ(n1α1 + n2α2)

= Θ(α2)n2 ◦Θ(α1)n1

since Z#∞(G) ∼= Z12 ⊕Z12 is an abelian group. Now we have

Θ((m1α1 + m2α2) + (n1α1 + n2α2)) = Θ(α1)m1+n1 ◦Θ(α2)m2+n2

= Θ(α1)m1 ◦Θ(α1)n1 ◦Θ(α2)m2 ◦Θ(α2)n2

= Θ(α1)m1 ◦Θ(α2)m2 ◦Θ(α1)n1 ◦Θ(α2)n2

= Θ(m1α1 + m2α2) ◦Θ(n1α1 + n2α2),

which proves that Θ is a homomorphism.
(2) The groups S3×SO(3) and SO(4) are homeomorphic to S3×RP3, so it suffices

to verify the statement (2) for the space S3 ×RP3. In fact, we know that

ZΩ(S3 ×RP3) = Z#∞(S3 ×RP3) = Z#(S3 ×RP3) ∼= [S3 ∧RP3, S3 ×RP3]

by Lemma 4.1. To identify this latter group we calculate
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[S3 ∧RP3, S3 ×RP3] ∼= [S3 ∧RP3, S3]× [S3 ∧RP3,RP3]

∼= (Z12 ⊕Z4)× (Z12 ⊕Z4)

by [29, Lemma 2.1(6)]. This completes the proof for Z .
Therefore, by Proposition 3.1, we know that EΩ(G) = E#∞(G) = E#(G). Since it

is known [30, Theorem 1.1] that E#∞(G) ∼= M4 ⊕ (Z3)2, the proof of (2), and hence of
Theorem 4.3, is complete. ¤
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[29] H. Ōshima, The group of self homotopy classes of SO(4), J. Pure Appl. Algebra, 185 (2003),

193–205.
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