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Abstract. We consider the Cauchy problem for 92u — 82u + u = —g(u)? on
the real line. It is shown that if g > 0, the solution has an additional logarithmic
time decay in comparison with the free evolution in the sense of LP, 2 < p < oo.
Moreover, the asymptotic profile of u(t,z) as t — 400 is obtained. We also discuss
a generalization. Consequently we see that the “null condition” in the sense of J.
-M. Delort (Ann. Sci. Ecole Norm. Sup., 34 (2001), 1-61) is not optimal for small
data global existence for nonlinear Klein-Gordon equations.

1. Introduction.

We consider the Cauchy problem for
Ou +u = —g(du)? (1.1)

in (t,z) € (0,00) x R, where [0 = 7 —9?2 and g € R. From the heuristic point of view, the
nonlinearity in (1.1) plays a role of a dissipative term if g > 0. So it is natural to expect
that the energy decays in the large time. According to the earlier results (M. Nakao [11],
K. Mochizuki and T. Motai [9], etc.), ||u(t)||z behaves like O((logt)~'/?) as t — +o0 if
the initial data belongs to suitable function space, where

1
lu®)ll% = 5 /R [Opu(t, ) |* + [Ozu(t, ) |* + |ult, ) da.

We remark that their proof relies heavily on the conservation law

lu®)| + / /R 9l0yu(r, z)|*dedr = [u(0) 3 (1.2)

and thus it seems difficult to obtain any other information from their approach. Here,
we raise the following question: What can we say about the large time behavior of the
quantities other than the energy? In particular, what about the pointwise asymptotics of
u(t,x) as t — 4+00? To the author’s knowledge, there are no previous results. The first
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aim of the present paper is to give an answer to this question in the case where the
Cauchy data is sufficiently small, smooth and compactly-supported. In what follows, we
assume that the initial data is given by

u(0,2) = eup(z), Ou(0,x) = euq(z), z € R, (1.3)
where ug, uy are real-valued functions which belong to C§°(R) and € > 0 denotes a small
parameter. The first result is the following one.

THEOREM 1.1.  Suppose g > 0. There exists €9 > 0 such that if € €]0,¢e¢], the
Cauchy problem (1.1)=(1.3) admits a unique global classical solution which satisfies

c+1 G5

log(2 +t)

=

> lotult, e <

laf<1

(1.4)

for any p € [1,00]. Here C denotes a positive constant depending only on ug, u1, g and
p. Moreover, the following asymptotic expression is valid as t — +oo, uniformly with
respect to x € R:

% Re {a(x/t)ei(ﬁ_‘mﬁ)yz}

1+ Llala/t)R(1— [2/t2)5 ogt

u(t,z) = +0(t7/?(logt)=*/?), (1.5)

where (-)y+ = max{-,0}, i = v/—1 and a(y) is a complez-valued smooth function which
satisfies

with sufficiently large N € N and positive constants Cj.

REMARK 1.1. The estimate (1.4) implies the solution of (1.1)—(1.3) has an ad-
ditional logarithmic time decay in comparison with the free evolution in LP for any
p € [2,00]. In particular, it covers the energy decay results mentioned before though the
assumptions on the initial data are stronger than that of [9], [11].

The second objective of this work is to generalize the above result. As we shall see
below, our approach is available for much wider class of nonlinear Klein-Gordon equations
because it does not require the conservation law like (1.2) at all. For instance, let us
consider

Ou + u = F(u, dyu, Oyu) (1.6)
in (¢,z) € (0,00) x R, where F' is a cubic homogeneous polynomial in (u, Oyu, O,u). When
we put

; 2w
Kp(z) = - F(cosf, —cosh zsinf, sinh zsin G)e*“’da
2 Jq
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for z € R, we have the following:

THEOREM 1.2. Suppose that F satisfies

zlél}fa Re Kp(z) > 0. (1.7)

Then, for sufficiently small €, the Cauchy problem (1.6)—(1.3) admits a unique global
classical solution u(t,x) which behaves like

L Re {a(x/t)e{ﬂﬁ—\z|2)1/2+in<w/t>|a<w/t>|2f<t, |a<w/t>|2¢F<z/t)>}}
14+ 29p(x/t)|a(x/t)|%logt
v
+O(t2(logt)~3/?) (1.8)

S

u(t,x) =

as t — +o0, uniformly in © € R. Here a(y) is as before, ®r(y), Yr(y) are given by

Pp(y) = (1 —y*)'?Re [Kp(tanh ™' )],

Up(y) = (1 —y*)/?Im [Kp(tanh " y)]

for lyl <1, and ZL(1,¢) is defined by

T do
k% B
(7. ¢) /1 o(14 2plogo)
B —log T if =20, (1.9)
—ﬁlog(l—&—%@logr) if #0, 14+2plogT > 0. .

REMARK 1.2. The above assertion is still valid for cubic quasilinear equation
Ou + u = F(u, Osu, Opu, 040z u, O2u), (t,z) € (0,00) X R,

if the definition of K (z) is replaced by

i 2m .

by F(cos®, —cosh zsin @, sinh zsin 6, cosh zsinh z cos §, —sinh? z cos #)e =" dd.
T Jo

REMARK 1.3. From Theorem 1.2, we see that J.-M. Delort’s “null condition”
studied in [2], [3] is not optimal for small data global existence for nonlinear Klein-
Gordon equations when we consider the forward Cauchy problem (i.e., for ¢ > 0). Indeed,
his condition is equivalent to Re Kr(z) = 0 in the cubic nonlinear case. Note that it
is nothing but @ (y) = 0, which guarantees the solution has just the logarithmic phase
correction as is proved in [3]. On the other hand, our condition (1.7) is equivalent to
Pr(y) = 0.
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REMARK 1.4. In view of the denominator of the leading term of (1.8), it would
be very reasonable to conjecture that the solution blows up in finite time if (1.7) is not
satisfied. (This is a modification of the Delort conjecture. See [2], [3].) However, the
author has no rigorous proof yet.

REMARK 1.5. Without loss of generality, cubic homogeneous polynomials of
(u, ut, ug) are written in the form
Fu,u,uz) = (70?4 72uf + 302 + Yatsug )u

+ (v5u® + yeui +7ud)ue + (80”4 youp +Y10u7) U
with real coefficients 71, -+ ,v19. For this F, it holds that

Krp(z) = é (3'71 + s cosh? 2 + Y3 sinh? 2z — 74 cosh z sinh z)

sh
- 0058 : (75 + 36 cosh? z + 3v7 sinh? z)
sinh z 9 L9

3 (78 + 379 cosh? z + 319 sinh” 2),

whence
B (y) = — (5 +376) + (98 + 379)y + (15 — 397)y* + (3710 — 18)y°
! 8(1—y?)

and

(371 +72) — vay + (3 — 371)y°
8(1 —y2)1/2 '

Vr(y) =

We see from this expression that both @z (y) and ¥r(y) vanish identically if and only if
F is written as a linear combination of

( —u? + 3u? — 3ui)u, ( — 3u® 4 u? — ui)ut, ( —3u? +u? - ui)um

(cf. [10], [8]). Also we can check that inf,cg Re Kp(z) = 0, > 0, < 0, when F = u?,
—u?, u?u,, respectively.

The rest of this paper is organized as follows. In Section 2, we prepare a preliminary
lemma. Section 3 is devoted to the reduction of the problem and to getting some a priori
estimate. After that, we prove Theorem 1.1 in Sections 4 and finally we give a sketch of
the proof of Theorem 1.2. In what follows, all non-negative constants will be denoted by
C' unless otherwise specified.
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2. A lemma on ODE.

This section is devoted to the proof of the following lemma. Similar argument may
be found (less explicitly) in the works of N. Hayashi and P. I. Naumkin concerning the
large time asymptotics for nonlinear Schrodinger equations (see e.g., [5], [6]).

LEMMA 2.1. (1) Let fp € C and k € C with Rex > 0. Let o(T) be a complez-
valued function of T € R which satisfies

el <Or N e
with some constants A > 0 and 79 > 1. If 5(7) solves the ODE

B o B8P+ colr), Blr) = <o @1)

for sufficiently small €, then there exists B € C such that

ﬂ eilmn|ﬁm|2$(‘r, Re £|Boo|?)
B(r) = == 5
V1+2Rek[f[?log T

—|—O((10g7')_3/2) (2.2)

as T — 400, where £ is given by (1.9).
(2) If B(7), Po, K, o(T) depend smoothly on some parameter z € R and satisfy

|028(r,2)| < Cjm°,  |9lk(2)| < Cy, |dlo(r,2)| < Cjr~ % (j=0,1,2,--+)

with some constants C; > 0, A\; > 0 and sufficiently small § > 0, then B is a bounded
smooth function of z and (2.2) is valid uniformly with respect to z.
(3) If, in addition, k(z) decays like O(1/2) as |z| — oo, then (2.2) can be replaced by

B(r,z) =

Boo (z)el Im £(2)|Boo (2)|2Z (7 cosh z, Re k(2)|Bos (2)]?) ehlZl
V/1+2Re£(2)]B0(2) ]2 log(7 cosh 2) ( {log(r cosh ) }3/2 )

with arbitrary small positive number h.

REMARK 2.1. The assumption Rex > 0 is essential in the above lemma. Indeed,
in the case of Rek < 0, the leading term in the right hand side of (2.2) blows up as 7
tends to exp (W) (cf. p.72 of [1], Lemma 1.3.3 of [7], etc.).

PROOF OF LEMMA 2.1(1). We first remark that the solution of (2.1) is unique.
Accordingly, 3(7) admits the following decomposition:

where p(7) and ¢(7) are the solutions of
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dp T fp(r)P
2, (T) = —ieT— ) p(7) + Va(r)e(r),
A7) = 222 X (), (23)

p(0) = Bo,  q(m0) = 1.
Note that p(7) is complex-valued, while ¢(7) is real and strictly positive. In order to
obtain the desired conclusion, it is sufficent to get the asymptotics of p(7) and ¢(7) as

T — +00.
Next we show that there exists a positive constant A such that

Ip(7)| < A (2.4)

for any 7 > 719. We prove it by the contradiction argument. Suppose that for any
A > |fBpl, there exists a finite time T4 €]7p, o[ such that

sup [p(1)| <A and [p(T4)| = A.
TE€[10,TA

Then, from the second equation of (2.3), we have
1<q(t) <1+2e*RerA?logr

for 7 € [19,T4]. On the other hand, it follows from the first equation of (2.3) that
d ——dp
(P =2Re [T L 0]

=2Re [p(7)Vq(1)o(7)]

|10|2 2_ 14X
+q(7)|o(7)[*T

S T
Ip|? C(1+2e2RerA?logT)
= F1+X + PREDY ’

Then the Gronwall lemma gives us
[P(Ta)[> < ClBo|* + C(1 +24%) < C(1 + A%?).

When we choose A > +/8C, we have

for £ €]0,1/+v/8C], which is the desired contradiction. Hence (2.4) must hold for some A.
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Also we have

1<q(r) <1 +2e?RekA?log T

for any 7 > 9.
Now, let us introduce

" p(o)?

() = —-Imk o)

so that

(e p(n) = Va(r)e(r)e =0,

Then we have

d o C(1+ Ce?logT)'/? c
E(@ 1€ p(T)) S 7_1+)\ = T1+)\/27

which implies the existence of p,, € C such that

ie20(r

|p(7') —€ )po<>| < o2

From this it follows that
ie20(r C
[p()I? = pocl?| < [p(7) = = " Ppoc [(Ip(7)] + Ipec]) < 75
™/

whence
la(1) — 1 — 22 Re k|poc|* log 7|

<[
70

Rer
7 (0) — 26— |poo|?|do 4 22| Re || poo |* log 1o
T o

do

<22Ren [ lpl0) ~ Ipol?| 2 + 22
70
< Ce2.
Let us also introduce
S(7) = — Im K (|P(T)|2 B |Poc )
T q(T) 1+ 2e2Rek|peo|? log T

Then we see that

385
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c HP(T)|2 - |poo‘2’ |poo|2|q(7') —1—2¢2 Ren\poo|2log7-’
s(T)| < = +
T q(7) q(7){1 + 2e2 Re k|poo|? log 7}
C n Ce?
= r1+A/2 7-(1 + COe2 10g7’)2
S
~ 7(log 7)?
and that

T do_ T
0(t) = -1 o 2/ / d
(1) m £[Po | 5 (1+2€2Reﬁ|poo|21ogcr)a+ TOS(U) o

= —Im k|poo)? /T do + 0 —/Oos(a)da
B Pec 1 (14 2e2Rek|ps|?logo)o 0 -
= Imk|pe|>Z (7, 2> Re k|ps|*) + 00 + O((log 7)), (2.5)
where
T0 do_ o0
Oy =1 002/ +/ do. 2.6
0 = Im Afpeo| 1 (1+2e2Rekps|?logo)o /s s(o)do (26)

Thus, putting Bec = epace’ %, we deduce from (2.5) that

3

[epaei™ ) — . eim Al 2 Renlon )| < O

~ logT

Summing up, we obtain
ep(T
o(r) = 2
q(7)
iIm kK 2 7,Rek 2 08
ep(r) = el IR ) < 5
1 1 C

— < ,
Va(r)  /1+2Rek|Bx2logT| ~ e(log 7)3/2

which leads to the desired asymptotic expression (2.2).

PRrROOF OF LEMMA 2.1(2). For any m € Ny := NU{0} and 75 > 71 > 79, we
have

|0 {e == 02 p(ry, ) — e O 7y, e

S / 2 HaTa;n{e—isQ@(T,-)p(T, )}HLoodT (27)
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On the other hand, the second equation of (2.3) yields

_ Rex(2)|B(r, 2)?

T

0/ q(T, 2)

q(t,2),

which leads to

2do

GReR() 1 BP9 ic20(r.2) 5(2) [, 180224

q(7,2) =
Therefore we have
Or (e 0T p(r, 2)) = eI /(7 2ol 2) = O PO o). (28)

From (2.8) and the Leibniz rule, we see that 878271(671‘529(7’2)29(7', z)) consists of the terms
like

e it akena) T o {wta) [0 E) i<
g
Zjlj:l o

which yields

‘}878?{6—1529(7,.)])(7) )}HLOO < C(l + 52 1Og7_)1/27_—(1+mink§m Ak)+Co c L1(7'07oo).
(2.9)

By (2.7) and (2.9), the limit lim,_ o e~ #(T2)p(r, 2) =: poo(z) exists and belongs to
W™ (R) for any m. Since Boo(2) = epoc(2)e’® %) with 6(z) given by (2.6), Bac(z) is
a bounded smooth function of z.

PROOF OF LEMMA 2.1(3).  Since sup,¢p |r(2)logcoshz| < oo and |G (T, 2)| <
Ce, we have
lq(7,2) — 1 — 2Re £(2)|Boo (2)|* log (7 cosh z) |
< lq(r,2) =1 = 2Re k(2)|Boo (2)[* log 7| + 2| oo (2)|?| % (2) log cosh z

< Ce?.
Using this estimate, we can modify the previous argument to obtain

ﬁoo(z)ei Im £(2)|Boo (2)|2Z (T cosh z, Re k(2)|Boo (2)|?)
V/1+2Rer(2)]Bo0(2)]? log( cosh z)

< C n C < Celll
~ {log(Tcosh 2)}3/2  7hlog(Tcoshz) ~ {log(r cosh z)}3/2

B(r,z) —
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with arbitrary small A > 0. O

3. Reduced equation and a priori estimate.

In this section, we make some reduction of the problem and derive an a priori
estimate for the reduced equation. The argument of this section is almost same as that
of the previous work [13], in which the C or R? valued NLKG has been studied (see also
(3], [4], [12]).

Let B be a positive constant which satisfies

supp ug Usupp u; C {z € R : |z| < B}

and let 79 be a fixed positive number strictly greater than 1 + 2B. We start with the
fact that we may treat the problem as if the Cauchy data is given on the upper branch
of the hyperbola

{t,z) e R"™" : (t+2B)>—|2)* =15, t >0}

and it is sufficiently smooth, small, compactly-supported. This is a consequence of
the classical local existence theorem and the finite speed of propagation (see e.g.,
Proposition 1.4 of [3] for detail). Next, let us introduce the hyperbolic coordinate
(1,2) € [10,00[x R in the interior of the light cone, i.e.,

t+2B =r7coshz, x=7sinhz for |z|<t+2B.

Then it is a routine to check that

sinh z

0y = (cosh )0, — faz,

0z = —(sinh 2)0; + @82,

9% 10 1 02

o= y-2 -9
or? 10 12022

and

7=/(t+2B)? — [z, z=tanh™' <t+x2B)'

We also take a weight function x € C*°(R) satisfying
0.<x(2) < Coe™ and [xV(2)] < Cix(2) (G=1,2,-+)

with a large parameter 7 > 1 and positive constants Cy, C;. With this weight function,
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let us define the new unknown function v(7, z) by

x(2)

u(t,z) = i o(T, 2).

Then we see that v satisfies
Pv =G(r,z,v,0.v,0,v),

if u solves (1.1), where

0? 1 /02 X'(z) 0 x'(z) 1
87272<az2+2x(z) 2: T () 4) +1

/ 3
0,v — 1 ((sinhz)X (2) + COShZ)U} .
T

Therefore, the original problem (1.1)—(1.3) is reduced to

sinh z

2
G(t,2,v,0.;v,0,v) = —gX(TZ){(cosh 2)0;v —

Pv=G(r,z,v,0,v,0,v), T>10, 2€ R,
(3.1)

(0, 0:0)|r=r, = (evg,€01) z€R,

where vy and vy are sufficiently smooth functions of z with compact support.

The rest part of this section is devoted to getting an a priori estimate of the solution
v to the reduced problem (3.1). Let us define

S 2
Ey (1) = Z % /R ‘37851)(7, z)|2 + ‘%850(7, 2)| + |8§v(r, Z)Edz

k=0

for s € Ny. What we are going to prove is the following lemma.

LEMMA 3.1.  Let § €]0,%], s > 3 and T > 7. Suppose that v(t,z) is a smooth
solution of (3.1) for T € [19,T[. Then there exists €1 > 0 such that

E (1) < C1e%7° (3.2)
and
1
|v(7, 2)| + |O-v(T, 2)| + ;|8zv(7', 2)| < Cae (3.3)

for T € [0, T|, provided € €]0,e1]. Here C1, Co are positive constants independent of 0,
e, T, T, z, but may depend on s.

REMARK 3.1. Using (3.2), (3.3) and the relation
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o 170 X(x)d  X'(x) 1
O7v = 11—|—T2 92 +2X(Z) 82+ NOR v+ G(1, z,v,0-v,0,v),

we have

< Ck,
LOO

79.\"
sup o7 () v(T, ")
TE[T0,T*] k<2 T
where T* denotes the lifespan of the classical solution. Thus the classical blow-up crite-
rion yields T = +oo0.

PrROOF OF LEMMA 3.1. Set

M(r) = sup (U(U, 2)| + 10-v(o, 2)| + §|6Zv(a, z)|)

(0,2)E[T0,T[XR

To prove Lemma 3.1, it suffices to show (3.2) and (3.3) under the assumption M(T) <
/2. Indeed, when we choose €5 €]0,¢1] so that

1
025;/2 S 5

and
1/2 1 1
gy "sup | [vo(2)| + |v1(2)] + —|0:v0(2)| | < 5,
z€ER 70 2

then, for any € €]0,¢e2], we see from (3.3) that

1/2
MT) < ==

as well as
M(m+ A) <e'/?

with some A > 0. This implies the induction hypothesis M (T') < /2 is harmless.
Now, we prove (3.2) under the assumption M (T) < &'/2. Let us introduce

2
%8511)(7,2) +|3§w(7,z)‘2dz
-

Es(t;w) = Z %/ |8Tafw(7', z)|2 +
k=0 /R

for s € Ny and for smooth function w of (7, 2) € [1p, T[x R. We start with the following
energy inequality, whose proof is found in Appendix of [13] (see also §3 of [12] or §2 of

[4]).
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LEMMA 3.2. For s € Ny andl =0,1, we have

*

d C C
T Bs(msw) < S Bagi(riw) + CEy(r30)' 2| Pu(r, )| e + — B (73 w).

Here C* is given by

/
O 9o G
zER X(Z)
and || - ||gr= denotes the standard norm of the Sobolev space H®.

We shall apply the above lemma with [ =0, s = sg + s1 + 1 and w = v, where sg
is an integer greater than C*, and s; is a fixed arbitrary non-negative integer. Since the
Gagliardo-Nirenberg inequality yields

HG(T, S v(T, -),HTU(T,~),azv(7',~))HHs < gM(T)QES(T)U2 < 95E8(7)1/27
T T
we have
d C*+Ce C so+3 C
%E50+81+1(T) < (T + T2>Eso+sl+1(7') < ( - 2+ T2>Eso+sl+1(7')~

Thus we obtain

T 50 + % C 2 _so+%
E50+51+1(7) § E50+51+1(T0) exp —= 4 70_2 dU S CE T50T3
T

0

Next, we apply Lemma 3.2 with [ = 1, s = sg 4+ s1. Then we have

d Cc* Ce C
%E50+81 (T) < ﬁE80+51+1(7) + 7E50+81 (T) + ﬁESOﬁLSl (T)

: Ce C
< Ce2rs0=% 4 (T + T2)E50+51(7).

Therefore it follows from the Gronwall lemma that
Espts, (1) < Ce2r%7 3,
Repeating the same procedure n times, we have
Egyis111-n(T) < Ce2r%07mF3

forn=1,2,---,sp. In particular we have
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Eq 41(1) < Ce271/2,

Finally, we again use Lemma 3.2 with [ = 1, s = s; to obtain

d c* Ce C
EEsl(T) < ﬁESH—l(T) + 7E81(7) + ﬁEsl(T)

2
< Ci_,_ <C€_|_02)E51(T),
T T

= 73/2

whence we deduce

for 7 € [19, T[. Replacing s; by s and choosing ¢ so small that Ce < §, we arrive at (3.2).
We next prove (3.3). As in [12], [13], let us introduce the C-valued function «(r, z)
by

10
ar,z) = (1 + 207') (1,2), (1,2) € [10, T[XR,
for the solution v(7, z) to (3.1). In view of the relations
a(r.2)| = (jo(r. ) +[9-0(r. 2)P)
and

1/2
% < Cer—(1-9) < Ck,
T

1
— <
T\azv(T,z)| <

it suffices to show that

sup lae(T, 2)| < Ce (3.4)
(1,2)€[r0, T[xR

holds true under the assumptions M(T) < /2 and (3.2).
First we note that

*IN)
\_/

G
{T”avav) 2(83-1—2);/((5))82—!-)1,(%)—31)1)}
- -”gX() (cosh z0,0)* + 12

)
7—2

where
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2
R(r,2)= — iTQe”{G(T, 2,0, 0:v,0,v) + 9x(2) (cosh z@rv)“?’}
T

(P X0 ¥ 1)
(322+2X(z) 2 T X0 4) (:2).

Using the assumption M(T) < €'/2 we have

‘ M(cosh 20,v)3
-

Also we have
|R(T, )| < Cer?®/?
because

gx(z)

2

T4\ G(T, 2,0, 0-v,0,v) + (cosh 20,v)%| < Ce= 13zl g, (7)3/2

< Ce2730/2

and

’( P NE D N _1)v(m>

2
922 x(2) 0z x(2) 4 gCZ]@gv(r,z)]

Jj=0

S CEg(T)1/2
< Cer%/2,

From them it follows that

393

(3.6)

aﬂ( ) Ce*/? Ce Ce
ar N =TT 72-36/2 =
Moreover, since
3 . . - 3
i R (i s _ g 9K cosh 2 f e’ )
T 4 T 2
3
_ QX(Z)ZCOSh Z{a3ei27 — 3a%a + 3aale 2T — a?)e—izlr}7
T

we see that « satisfies

da K(z)

R
2
or |C¥‘C¥+S+ﬁ7
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where
K(z) = M
8
and
g X ooshP s en BT et
8 - - .

Noting that Rex(z) > 0, we have
E|a(7‘ 2)|? = 2Re[a@d,a]
or ’ B i

9 _
= —Reiﬁ(z)kﬂ4 +2Re[aS] + 2Re [Odj]
T T

_ o IR
§2Re[a5]+7+7

a2 Ce?

<2RelaS]|+ — + —=
< 2Re[aS] + -2 +72736’

which yields

la(T, 2)|> < Ce® + 2‘/ aSdo
To

T do
4 / (o, 2) 2%
T() J

T d
< Ce? +/ la(o,2) P52 (3.7)
T0 o
for 7 € [19, T[, provided that
sup / aSdo| < Ce?. (3.8)
TE€[T0,T[ | J 710

Once we get (3.7), we can apply the Gronwall lemma to obtain (3.4).
It remains to prove (3.8). To this end, we observe that

T 20 T
/ Sat—do = / (0:41)(0, 2) + As(0, 2)do

0 g o
:Al(’T,Z) —Al(To,Z)—l—/ A2(0'7Z)d0'7

where

376127— 4 eiQT 0 3 12T
Aq(r,2) =’ o As(T,2) = o’ - (3ajad,a + af0;a) o

1272
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Using (3.6) and M(T) < £'/2, we have

Ce?

|A1(T,2)| < — |Ag(T, 2)| < WP TE S iy

AlQ

From them we deduce that

sup

2 cosh® T i20
gx(z)? cosh” z / 32 4o
T€[T0,T] T

a“a
8 o

< CePem Gl (1 + /oo di) < Ce”.
T0 g

The other two terms of @S can be treated in the same manner because they are of the

[¢]

form

TWT

e

(bounded functions of z) x (quartic terms of (o, @)) x
-

with w # 0. The proof of Lemma 3.1 is completed. O

4. Proof of Theorem 1.1.

We are in position to prove Theorem 1.1. From the argument of the previous section,
we see that

O 3gx(2)? cosh® z R
= 5 lalfetrSt
and that S(7,z) can be written as
S =0:5 +5;
with
Cede—(n-9)l2 Cede—n-9)l2|
S 2l € —————, [l ———f—

Putting 8 = a — S1, we have

0 3gx(2)? cosh?® 2
00 _ SxX& N2 a4 oz,

where

3gx(2)? cosh® z R

1
Q(T,Z)Zg Sy — a0 {|a|2a—|a+51|2(04+51)}+§ .

Note that
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C (3 &5 (Cerdd/?
o2l < S ( 5+ 5+ 9,

T2 T

) <Cor 172

with A =1 — 3—2‘5 > 0. Therefore it follows from Lemma 2.1 that

a(r,z) = B(r,2) + Si(1, 2)

Boo(2) ehl=l
= + 0 4.1
\/1 + 293(2)2 cosh® 2| Boo (2) |2 log (7 cosh 2) <{10g(7’cosh Z)}3/2) )

as 7 — +00, where ,(z) is a bounded smooth function of z, and h denotes an arbitrary
small positive number. In particular we have

C

/log(7 cosh z)

Now, we are going back to the original variables. Remember that our change of
variable is

la(7, 2)|x(z) cosh®? z < (4.2)

u(t,z) = x(z) Re [a(r, 2)e""] (4.3)

with 7 = /(t + 2B)2 — 22, z = tanh™ ' (z/t) and t > 1, |z| < t 4+ 2B. It follows from
(4.2) and (4.3) that

1/2 —1/2
lu(t, )] < mm(ﬂzﬂ < M (4.4)
vt+2B log(2+1)
Similarly, we have
1 t 71/2
S 108 ut,z) < SEED L (45)
’ Tog(2 1 1)

ler|=1

because 0yu and d,u are written as

dyult,z) = <(cosh )8, — SmThZaz) {);E/ng(ﬁ z)}

x(z) cosh®? 2 i
= — WIH} [Q(T7 Z)e ]

2) cosh®/? 2 "(z

and
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dpu(t, z) = ( ~ (sinh 2)8, + CO‘?“@) { fffz) o(r, z)}

_ x(z)tanhz cosh®/? 2 i
= (- cosh )12 Im [a(T, 2)€e'7]

x(z) cosh®? 2 X'(2)  tanhz
(tcoshz)3/2 \"" * x(2) T vl 2),

respectively. Using (4.4), (4.5) and the finite propagation speed, we have

Z 105 ,u(t, ) Lr(r Z 19" e (fjz|<t+BY)

lee| <1 laf<1

—-1/2 1/p
< 0(1“)( / . dx)
log(2+1t) \ Jijz|<t+B

—(1/2-1/p)
< C(1+1)
log(2 +t)

)

which yields (1.4). As for (1.5), it follows from (4.1) and (4.3) that

vies Be [x(2)sc (2) cosh'/? 2 7] - (6_(n—§—h)IZ|)
1/2 3/2
\/1 + 2 x(2)B coshl/Qz‘ cosh? z log(7 cosh z) t1/2(log )3/
7 2712 1/2
\/t+2B Re [ (t+23)e ((¢+25) ) ]

+O(t*(logt)=*/?)

\/1 + %Tg|b(t+$23)|2(1 — l5551%) ! log(t + 2B)
fRe[ ( ) i(t? 7952)1/2]

+O(t2(logt) /%),
\/1+39\ a(2)[*(1 - |2[2)~1 logt

where
(n)e?BVI=v if Jyl <1
a(y) =
0 if |yl >1
b(y) = x(2)Bso(2) cosh 2| _
(cf. p.58-59 of [3]). O

5. Proof of Theorem 1.2.

In this section, we give a sketch of the proof of Theorem 1.2. Since the essential idea
is same as that of Theorem 1.1, we omit the detail here.
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As before, we look for the solution of (1.6)—(1.3) in the form

x(2)

u(t,z) = /2 v(T, 2).

Then we see that v(7, z) satisfies
Pv =G(r,z,v,0.v,0,v),

where

X'(2)
x(2)

F (v, cosh z0,v, —sinh 20,;v) + (remainder terms).

x(z) 4

0. +

1 X'(z) 1
P=(83+1)—T2(8§+2 ,

2
G(t,z,v,0.;v,0,v) = x(z)
-
Also, when we put

ST
a(r,z) =e <1 + ; 87_)1)(7', z),

we have
8 .
% = —ie (02 + 1)
2
_ R
= —ie*”MF(v, cosh 20, v, — sinh 20,v) + (T27 )
- T
. 2 ) . i ‘
— XL - (Reae™], —cosh 2 Im [ae™], sinh = Fm[ac”]) + 2027
. T
K(2), |9 R(r, 2)
e ) 5.1
- lal?a + S(T,2) + 72 oy
where

. 2 27
k(z) = ZX2(7TZ>/O e " F(cosf, — cosh zsinf, sinhzsin#)dd = x(2)°Kp(z),

()2 2t p2m
S(r,z) = _zx(z){a?)e/ e Y F(cos#, — cosh zsin @, sinh zsin #)dd
T Jo

—i27 27
+ oS / ¢ F(cosf, — cosh zsin 6, sinh zsin §)d6
T 0
_3 e_i4T 2 i30 . . .
+a €Y F(cosf, —coshzsinf, sinhzsinf)do o,
T 0

and
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2
R(r,2) = iTQeiT{ x(2) F(v,cosh 20,v, — sinh 20,v) — G(1, z,v, 0, v, azv)}

—ie (92 m X"(z) —1 v(T, 2
(o2 + 250+ 35 - 1))

(For a detail of the derivation of (5.1), see Appendix below.) Therefore, as in the previous
section, we can apply Lemma 2.1 to obtain the asymptotics of a(r,2) as 7 — +oo.
Substituting this asymptotics into (4.3), we can obtain the desired conclusion. O

Appendix.

We give a detail of the derivation of (5.1) here. By the cubic homogeneity of F', we
have

e "F(Re[ae'], —coshzIm [ae'™], sinh z Im [oe’])
= |O¢|3e”F<Re [ae”], —cosh zIm {ae”], sinh z Im {ae”}>
| | |

= |a|?a H(z,00(r, 2)),
where
H(z,0) = e~ F(cosf, — cosh z sin 6, sinh z sin 6)
and

Oo(1,2) =T+ arga(T, 2).
Since H(z,#) is 2m-periodic with respect to 6, we have

H(z,0) = Z ﬁn(z)eina,

nez

where H,(z) denotes the n-th Fourier coefficient, i.e.,

N 1 2w

H,(2) H(z,0)e""d0.

=5 ;
Noting that
2m

F(cos 6, — cosh zsin 0, sinh z sin 0)e (" T%49 = 0
0

when n+1 ¢ {1, 3, —1, —3}, we see that

H(z,0) = Hy(2) + Hy(2)e™? + H_5(2)e "% + H_,(z)e .
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Summing up, we obtain

(6]

[7]
(8]

[9]
[10]
[11]
[12]

(13]

ix(2)

e "F(Re[ae'], —coshzIm [ae'], sinh 2 Im [oe’T])
-

ix(2)?
S 00 (e, o, )

ix(2)? . S a? i S @’ i S at i
—X(T)oz|2a{Ho(z)+H2(z)e’QT+H_2(z)|a|26 () e 47}

|af?
; 2f 02T —i27 —idT
@) Ho@) o Z'X(z)2{a3eH2(z) tomr S H_,(2) + a3 H4(Z)}
T T T T
_82) la)?a + S(7, 2).
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