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In solving elliptic problems by the finite element method in a bounded domain which has a
re-entrant corner, the rate of convergence can be improved by adding a singular function
to the usual interpolating basis. When the domain is enclosed by line segments which

form a corner of π/2 or 3π/2, we have obtained an explicit a priori H1
0 error estimation

of O(h) and an L2 error estimation of O(h2) for such a finite element solution of the
Poisson equation. Particularly, we emphasize that all constants in our error estimates
are numerically determined, which plays an essential role in the numerical verification of
solutions to non-linear elliptic problems.
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1. Introduction

In this paper, we consider the elliptic problem on a polygonal domain Ω which
is enclosed by line segments and right angles. The domain is assumed to be con-
nected, but not necessarily simply connected. First of all, we assume Ω = Ω0,
where Ω0 is the L-shape domain which is shown in Fig. 1. The general case is
described in Section 3.

For f ∈ L2(Ω), we consider the weak solution of the following partial differ-
ential equation: {

−Δu = f in Ω ,

u = 0 on ∂Ω .
(1.1)

It is known that u has a singular function representation [9, 10],

u(x, y) = w(x, y) + λσ(x, y), (1.2)

where w(x, y) ∈ H2(Ω) ∩ H1
0 (Ω), λ is a constant, σ(x, y) ∈ H1

0 (Ω) and

σ(x, y) ∼ r2/3 sin
(

2
3
θ

)
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in a neighborhood of the origin. Here, (r, θ) is the polar coordinate of (x, y) where
θ satisfies 0 ≤ θ < 2π. The choice of σ is arbitrary, but in order to simplify the
calculation of H1

0 inner product, we take

σ(x, y) = (1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)
in this paper.

In solving this problem by the finite element method, we use the square mesh
with mesh size h. The mesh of h = 1/8 is shown in Fig. 2. We use the piecewise
bilinear function,

φi,j(x, y) ≡ max
(

1 −
∣∣∣∣xh − i

∣∣∣∣, 0) · max
(

1 −
∣∣∣∣yh − j

∣∣∣∣, 0)
as the finite element basis and define Φh by the set of functions φi,j in H1

0 (Ω),

Φh = {φi,j | (ih, jh) ∈ Ω}.

Fig. 1. The shape of Ω0 Fig. 2. The square mesh when h = 1/8

In general, since u does not have H2 regularity, we can not obtain O(h) error
estimates with an H1

0 norm by using this interpolating basis. Therefore, we adopt
Φh ∪ {σ} as the finite element basis. In this case, it is known that the following
error estimation holds [8, 9, 10, 14]:

‖uh − u‖H1
0 (Ω) ≤ Ch‖f‖L2(Ω),

where uh is the finite element solution. The following O(h2) estimation for the
L2-error is also obtained by the Aubin–Nitsche trick [6]:

‖uh − u‖L2(Ω) ≤ C2h2‖f‖L2(Ω).

The main purpose of this paper is to obtain this constant C.
The coefficient λ in (1.2) is often called the stress intensity factor in the context

of mechanics. In our error estimation, the explicit evaluation of the coefficient λ
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is essential (Lemma 4.2 and Lemma 4.6 in Section 4). For the coefficient λ, the
following extraction formula holds [9, 10]:

λ =
1
π

{∫∫
Ω

fηs− dx dy +
∫∫

Ω

uΔ(ηs−) dx dy

}
,

where

s− = r−2/3 sin
(

2
3
θ

)
and η is a smooth cut-off function which equals one at the origin and zero on
{(x, y) | max(|x|, |y|) = 1}. In this extraction formula, the coefficient λ does not
depend on η. The Poincaré–Friedrichs inequality is needed to evaluate λ by this
extraction formula. However, since the Poincaré–Friedrichs inequality is reduced to
a kind of problem of eigenvalue bounds, it is not easy to obtain a good estimation,
except for the case that Ω is a simple domain such as a rectangle. In this paper,
instead of using a cut-off function, we use the maximum principle for the super
harmonic functions to evaluate λ directly.

There are several approaches to deal with the lack of regularity at the re-
entrant corner. The most simple method which is described in [8, 14] is that of
adding singular functions to the finite element basis. This method is simple but
is enough to obtain optimal order of H1

0 and L2 error bounds. The dual singular
function method (DSFM) [3, 7] is presented to obtain a better approximation to
the coefficient λ. DSFM consists of a system of w and λ which is derived from
the extraction formula, and is often implemented as an iterative procedure. A
multigrid version of this method appears in [4] and an efficient method using an
improved extraction formula was presented in [5]. Another useful method is based
on the local mesh refinement [2]. The advantage of using mesh refinement is that
calculation of the element matrix is easy, because the information about the singular
function is not needed. In this paper, we construct a priori error estimation for the
finite element solution based on [8, 14]. A priori error estimation for more efficient
methods such as DSFM or the method of mesh refinement is further work.

In many applications, it is useful to obtain an explicit error estimation. For
example, numerical verification methods for nonlinear problems are based on ex-
plicit error bounds for linear equations [12, 17]. We emphasize that, even though
there are many methods concerning with finite element solution in a non-convex
domain, there is no other research which gives an explicit a priori H1

0 estimation of
O(h) and an explicit a priori L2 estimation of O(h2).

While this paper concerns a priori error estimation, a posteriori error esti-
mation is also an important problem. See [16] for the detail of a posteriori error
estimation for non-convex domains.

The present paper is organized as follows. In Section 2, we present a priori
error estimation in the case that Ω is a simple L-shape domain. The general case
is explained in Section 3. Section 4 contains proof of lemmas which appear in
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Sections 2 and 3. We show numerical results in Section 5 and conclude this paper
with Section 6.

Throughout this paper, we take the angle of polar coordinates in [0, 2π) and
1A denotes the function which takes value 1 if condition A holds, and takes value
0 otherwise.

2. A priori error estimation

The main purpose of this section is to prove the following theorem. Lemmas
appearing in this section will be proved in Section 4.

Theorem 2.1. When Ω = Ω0, as to the finite element solution uh by using
Φh ∪ {σ} as the basis, the following error estimation holds:

‖uh − u‖H1
0 (Ω) ≤ 1.156h‖f‖L2(Ω), (2.1)

‖uh − u‖L2(Ω) ≤ 1.335h2‖f‖L2(Ω). (2.2)

Proof. We represent the exact solution as

u = w + λσ, (2.3)

where λ is a constant which depends on Ω and f , and w is a function which belongs
to H2(Ω) ∩ H1

0 (Ω).
Define wh as the bilinear interpolation of w. Then, since w ∈ H2(Ω)∩H1

0 (Ω),

‖w − wh‖H1
0 (Ω) ≤

h

π
|w|H2(Ω)

holds [13]. Since Ω is a polygonal domain, the following equality holds [11]:

|w|H2(Ω) = ‖Δw‖L2(Ω).

Immediately, we have

‖w − wh‖H1
0 (Ω) ≤

h

π
‖Δw‖L2(Ω).

Here, let

ũh = wh + λσ

then, we have

‖u − ũh‖H1
0 (Ω) ≤

h

π
‖Δw‖L2(Ω). (2.4)
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From (2.3), the following inequality holds:

‖Δw‖L2(Ω) ≤ ‖f‖L2(Ω) + |λ| ‖Δσ‖L2(Ω). (2.5)

From Lemma 4.1, we have∥∥∥∥Δ{(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}∥∥∥∥
L2(Ω)

≤
√

4000
81

− 11713
1782

π. (2.6)

For the coefficient λ, Lemma 4.2 implies

|λ| ≤ 1
π

∥∥∥∥(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)∥∥∥∥
L2(Ω)

‖f(x, y)‖L2(Ω) (2.7)

and, from Lemma 4.3,

∥∥∥∥(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)∥∥∥∥
L2(Ω)

≤
√

3 · 21/3

5
π.

Consequently, (2.4), (2.5), (2.6) and (2.7) lead us to

‖u − ũh‖H1
0 (Ω) ≤

h

π

(
1 +

√
4000
81

− 11713
1782

π · 1
π

√
3 · 21/3

5
π

)
‖f‖L2(Ω)

= 1.1552884253 . . . h‖f‖L2(Ω) ≤ 1.156h‖f‖L2(Ω).

Since the finite element solution uh is the best approximation in H1
0 space, we have

‖uh − u‖H1
0 (Ω) ≤ ‖u − ũh‖H1

0 (Ω) ≤ 1.156h‖f‖L2(Ω).

Moreover,

‖uh − u‖L2(Ω) ≤ 1.15532h2‖f‖L2(Ω) ≤ 1.335h2‖f‖L2(Ω)

is also obtained by the Aubin–Nitsche trick. �

3. Generalization

We consider general cases in this section. We suppose that Ω is enclosed by line
segments which form a corner of π/2 or 3π/2. Also Ω is assumed to be connected
but it is not necessarily simply connected (Fig. 3).

The following singular bases are used together with the usual interpolating
basis:

Tkσ

(
x

lk
,

y

lk

)
(k = 1, . . . , n),
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where n is a number of re-entrant corners,

σ(x, y) =

⎧⎪⎨⎪⎩(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)
((x, y) ∈ Ω0),

0 (otherwise),

and Tk is a combination of parallel translation and rotation.
In the above, lk denotes sizes of the singular bases. Different sizes of the

singular bases are admissible. It is also admissible even if some part of the support
of the singular bases are overlapped (Fig. 4).

Fig. 3. Admissible pattern Fig. 4. Admissible pattern

There are some restrictions on defining the singular bases. Let us now suppose
that Γ is the support of a singular basis, and ∂Γ consists of line segments γ1 ∼ γ6

where γ1 and γ6 form the re-entrant corner (Fig. 5). In this case, γ1 and γ6 must
be contained in ∂Ω and γ2 ∼ γ5 must coincide with the grid line of the mesh.
Therefore, both Fig. 6 and Fig. 7 are not admissible.

In this situation, we have the following theorem.

Theorem 3.1. For the finite element solution uh with the basis Φh ∪
{Tkσ(x/lk, y/lk) | k = 1, . . . , n}, the following error estimation holds:

‖uh − u‖H1
0 (Ω) ≤

(
0.319 +

n∑
k=1

√
0.971 + 1.469

|Ω |
l2k

)
h‖f‖L2(Ω), (3.1)

‖uh − u‖L2(Ω) ≤
(

0.319 +
n∑

k=1

√
0.971 + 1.469

|Ω |
l2k

)2

h2‖f‖L2(Ω), (3.2)

where |Ω | denotes the area of Ω.
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Fig. 5. The support of a singular basis

Fig. 6. Nonadmissible pattern Fig. 7. Nonadmissible pattern

Proof. Let

u(x, y) = w(x, y) +
n∑

k=1

λkTkσ

(
x

lk
,

y

lk

)
, w(x, y) ∈ H2(Ω) ∩ H1

0 (Ω),

be the exact solution. We define ũh as follows:

ũh(x, y) = wh(x, y) +
n∑

k=1

λkTkσ

(
x

lk
,

y

lk

)
,

where wh denotes the bilinear interpolation of w. We also define

σ̄(x, y) =

⎧⎪⎨⎪⎩(1 − r)2r2/3 sin
(

2
3
θ

)
(r < 1),

0 (r ≥ 1).
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Now, we exclude the grid of the square mesh from Ω and define it as Ω∗. Then,

‖u − ũh‖H1
0 (Ω) = ‖w − wh‖H1

0 (Ω∗) ≤
h

π
|w|H2(Ω∗)

=
h

π

∣∣∣∣∣u −
n∑

k=1

λkTkσ

(
x

lk
,

y

lk

)∣∣∣∣∣
H2(Ω∗)

≤ h

π

∣∣∣∣∣u −
n∑

k=1

λkTkσ̄

(
x

lk
,

y

lk

)∣∣∣∣∣
H2(Ω)

+
h

π

∣∣∣∣∣
n∑

k=1

λkTk

(
σ

(
x

lk
,

y

lk

)
− σ̄

(
x

lk
,

y

lk

))∣∣∣∣∣
H2(Ω∗)

=
h

π

∥∥∥∥∥Δ
(

u −
n∑

k=1

λkTkσ̄

(
x

lk
,

y

lk

))∥∥∥∥∥
L2(Ω)

+
h

π

∥∥∥∥∥
n∑

k=1

λkΔTk

(
σ

(
x

lk
,

y

lk

)
− σ̄

(
x

lk
,

y

lk

))∥∥∥∥∥
L2(Ω∗)

≤ h

π
‖f(x, y)‖L2(Ω) +

h

π

n∑
k=1

|λk|
lk

‖Δσ̄(x, y)‖L2(Ω0)

+
h

π

n∑
k=1

|λk|
lk

‖Δ(σ(x, y) − σ̄(x, y))‖L2(Ω0).

From Lemma 4.4, we have

‖Δσ̄(x, y)‖L2(Ω0) =
3
√

π

2
.

Lemma 4.5 implies that

‖Δ(σ(x, y) − σ̄(x, y))‖L2(Ω0) ≤
√

4000
81

− 232367
46332

π.

Then, we have

‖u − ũh‖H1
0 (Ω) ≤

h

π
‖f‖L2(Ω) +

h

π

(
3
√

π

2
+

√
4000
81

− 232367
46332

π

) n∑
k=1

|λk|
lk

.
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Now, from Lemma 4.6, we have the following evaluation:

|λk| ≤
{∫∫

Ω

10≤θ<3π/2 ·
∣∣∣∣Glk

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))∣∣∣∣2 dx dy

+
∫∫

Ω

13π/2≤θ<2π ·
∣∣∣∣Glk

(
r,

1
9
(8 + cos(4θ)), 1

)∣∣∣∣2 dx dy

}1/2

‖f(x, y)‖L2(Ω),

where

Gl(r,X, Y ) =
l2/3

√
2π

√√
r−8/3 + l−8/3 − 2r−4/3l−4/3X + l−4/3 − r−4/3Y .

It follows from Lemma 4.7 that

|λk| ≤ 1
π

√(
5
2
− 3π

8

)
l2k + 2|Ω | · ‖f‖L2(Ω).

Then,

‖u − ũh‖H1
0 (Ω)

≤ h

π

(
1 +

(
3
√

π

2
+

√
4000
81

− 232367
46332

π

) n∑
k=1

1
π

√(
5
2
− 3π

8

)
+

2|Ω |
l2k

)
‖f‖L2(Ω)

=

(
0.31830988 . . . +

n∑
k=1

√
0.97070784 . . . + 1.46865243 . . .

|Ω |
l2k

)
h‖f‖L2(Ω)

≤
(

0.319 +
n∑

k=1

√
0.971 + 1.469

|Ω |
l2k

)
h‖f‖L2(Ω).

Since the finite element solution uh is the best approximation in H1
0 space,

‖uh − u‖H1
0 (Ω) ≤ ‖u − ũh‖H1

0 (Ω)

≤
(

0.319 +
n∑

k=1

√
0.971 + 1.469

|Ω |
l2k

)
h‖f‖L2(Ω).

We also obtain

‖uh − u‖L2(Ω) ≤
(

0.319 +
n∑

k=1

√
0.971 + 1.469

|Ω |
l2k

)2

h2‖f‖L2(Ω)

by the Aubin–Nitsche trick. �
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4. Lemmas

Lemma 4.1.∥∥∥∥Δ{(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}∥∥∥∥
L2(Ω0)

≤
√

4000
81

− 11713
1782

π.

Proof.

Δ
{

(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}
=

2
3
r2/3

{
(4r2 − 10) sin

(
2
3
θ

)
+ r2 sin

(
10
3

θ

)}
=

2
3
r2/3 sin

(
2
3
θ

){
9r2 − 10 − 20r2 sin2

(
2
3
θ

)
+ 16r2 sin4

(
2
3
θ

)}
.

When 1 ≤ r ≤ √
2,

Δ
{

(1−x2)(1−y2)r2/3 sin
(

2
3
θ

)}
=

2
3
r2/3 sin

(
2
3
θ

){
9r2−10−4r2 sin2

(
2
3
θ

)
−16r2 sin2

(
2
3
θ

)(
1−sin2

(
2
3
θ

))}
≤ 2

3
r sin

(
2
3
θ

){
8−4r2 sin2

(
2
3
θ

)}
,

and

Δ
{

(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}
= −2

3
r2/3 sin

(
2
3
θ

){
10 − 4r2 sin2

(
2
3
θ

)
− r2

(
3 − 4 sin2

(
2
3
θ

))2}
≥ −2

3
r sin

(
2
3
θ

){
10 − 4r2 sin2

(
2
3
θ

)}
,

which implies∣∣∣∣Δ{(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}∣∣∣∣
≤ 2

3
r sin

(
2
3
θ

){
10 − 4r2 sin2

(
2
3
θ

)}
=

20
√

10
9
√

3
− 8

3

(
r sin

(
2
3
θ

)
−
√

5
6

)2(
r sin

(
2
3
θ

)
+

√
10
3

)
≤ 20

√
10

9
√

3
.
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Then ∥∥∥∥Δ{(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}∥∥∥∥2

L2(Ω0)

≤ 4
9

∫ 1

0

∫ 3π/2

0

r4/3

{
(4r2 − 10) sin

(
2
3
θ

)
+ r2 sin

(
10
3

θ

)}2

r dθ dr

+
(
|Ω0| − 3

4
π

)(
20
√

10
9
√

3

)2

=
127
22

π +
(

3 − 3
4
π

)
4000
243

=
4000
81

− 11713
1782

π. �

Lemma 4.2. When Ω = Ω0,

|λ| ≤ 1
π

∥∥∥∥(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)∥∥∥∥
L2(Ω)

‖f(x, y)‖L2(Ω).

Proof. For any 0 < ε < 1, let gε be a weak solution of the following equation:{
−Δgε = −Δg̃ε in Ω ,

gε = 0 on ∂Ω ,
(4.1)

where

g̃ε(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
π

((2ε−4/3 − 2−2/3)r2/3 − ε−8/3r2) sin
(

2
3
θ

)
(r < ε),

1
π

(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)
(ε ≤ r).

From the fact that −Δg̃ε ≥ 0 in Ω , gε and g̃ε−gε are both superharmonic functions
in Ω . Since gε and g̃ε − gε take non-negative values on ∂Ω ,

0 ≤ gε(x, y) ≤ g̃ε(x, y).

Consequently, we have

|gε(x, y)| ≤ |g̃ε(x, y)|.
From (1.1) and (4.1), taking gε and u as test functions,∫∫

Ω

fgε dx dy =
∫∫

Ω

∇u · ∇gε dx dy = −
∫∫

Ω

uΔg̃ε dx dy

=
32ε−8/3

9π

∫∫
Ω

1r<ε · u(x, y) sin
(

2
3
θ

)
dx dy
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=
32ε−8/3λ

9π

∫ ε

0

∫ 3π/2

0

(1 − x2)(1 − y2)r2/3 sin2

(
2
3
θ

)
r dθ dr

+
32ε−8/3

9π

∫ ε

0

∫ 3π/2

0

w(x, y) sin
(

2
3
θ

)
r dθ dr

=
(

1 − 4
7
ε2 +

ε4

20

)
λ

+
16ε−8/3

9π

∫ ε

0

∫ 3π/2

0

(ε2 − r2)
∂

∂r
w(x, y) sin

(
2
3
θ

)
dθ dr.

Then (
1 − 4

7
ε2 +

ε4

20

)
|λ|

≤ ‖f‖L2(Ω)‖gε‖L2(Ω)

+
16ε−8/3

9π

(∫ ε

0

∫ 3π/2

0

∣∣∣∣(ε2 − r2) sin
(

2
3
θ

)∣∣∣∣7/6

r−1/6 dθ dr

)6/7

×
(∫ ε

0

∫ 3π/2

0

∣∣∣∣ ∂

∂r
w(x, y)

∣∣∣∣7r dθ dr

)1/7

≤ ‖f‖L2(Ω)‖g̃ε‖L2(Ω)

+
16ε1/21

9π

(∫ 1

0

∫ 3π/2

0

∣∣∣∣(1 − r2) sin
(

2
3
θ

)∣∣∣∣7/6

r−1/6 dθ dr

)6/7

×
(∫∫

Ω

(∣∣∣∣ ∂

∂x
w(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
w(x, y)

∣∣∣∣)7

dx dy

)1/7

.

From w ∈ H2 and Sobolev’s embedding theorem [1],

∂w

∂x
∈ L7(Ω),

∂w

∂y
∈ L7(Ω).

Thus, we have the conclusion when ε → 0. �

Lemma 4.3.∥∥∥∥(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)∥∥∥∥
L2(Ω0)

≤
√

3 · 21/3

5
π.

Proof.∥∥∥∥(r−2/3 − 2−2/3r2/3) sin
(

2
3
θ

)∥∥∥∥2

L2(Ω0)

≤
∫ √

2

0

∫ 3π/2

0

(r−2/3 − 2−2/3r2/3)2 sin2

(
2
3
θ

)
r dθ dr =

3 · 21/3

5
π. �
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Lemma 4.4.∥∥∥∥Δ{1r<1 · (1 − r)2r2/3 sin
(

2
3
θ

)}∥∥∥∥
L2(Ω0)

=
3
√

π

2
.

Proof. By a direct calculation, we have∥∥∥∥Δ{1r<1 · (1 − r)2r2/3 sin
(

2
3
θ

)}∥∥∥∥2

L2(Ω0)

=
∥∥∥∥1r<1 · 2

3
(10r − 7)r−1/3 sin

(
2
3
θ

)∥∥∥∥2

L2(Ω0)

=
4
9

∫ 1

0

∫ 3π/2

0

(10r − 7)2r−2/3 sin2

(
2
3
θ

)
r dθ dr =

9
4
π. �

Lemma 4.5.∥∥∥∥Δ{((1 − x2)(1 − y2) − 1r<1 · (1 − r)2)r2/3 sin
(

2
3
θ

)}∥∥∥∥
L2(Ω0)

≤
√

4000
81

− 232367
46332

π.

Proof. Let us start with the following equation:

Δ
{

((1 − x2)(1 − y2) − (1 − r)2)r2/3 sin
(

2
3
θ

)}
=

2
3
r2/3

{(
4r2 − 20 +

7
r

)
sin
(

2
3
θ

)
+ r2 sin

(
10
3

θ

)}
.

When r ≥ 1, in the same way as in the proof of Lemma 4.1,∣∣∣∣Δ{(1 − x2)(1 − y2)r2/3 sin
(

2
3
θ

)}∣∣∣∣ ≤ 20
√

10
9
√

3
.

Then ∥∥∥∥Δ{((1 − x2)(1 − y2) − 1r<1 · (1 − r)2)r2/3 sin
(

2
3
θ

)}∥∥∥∥2

L2(Ω0)

≤ 4
9

∫ 1

0

∫ 3π/2

0

r4/3

{(
4r2 − 20 +

7
r

)
sin
(

2
3
θ

)
+ r2 sin

(
10
3

θ

)}2

r dθ dr

+
(
|Ω0| − 3

4
π

)(
20
√

10
9
√

3

)2

=
4193
572

π +
(

3 − 3
4
π

)
4000
243

=
4000
81

− 232367
46332

π. �
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Lemma 4.6.

|λk| ≤
{∫∫

Ω

10≤θ<3π/2 ·
∣∣∣∣Glk

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))∣∣∣∣2 dx dy

+
∫∫

Ω

13π/2≤θ<2π ·
∣∣∣∣Glk

(
r,

1
9
(8 + cos(4θ)), 1

)∣∣∣∣2 dx dy

}1/2

‖f(x, y)‖L2(Ω).

Proof. Using parallel translation and the rotation, we move the re-entrant
corner to the origin and the re-entrant angle to [0, 3π/2].

For ε < lk, let gε be a weak solution of following equation:{
−Δgε = −10<θ<3π/2 · 1r<ε · Δg̃ε in Ω ,

gε = 0 on ∂Ω ,

where

g̃ε(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2ε−4/3r4/3 − ε−8/3r8/3)Glk

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))
(r < ε, 0 ≤ θ ≤ 3π/2),

Glk

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))
(r ≥ ε, 0 ≤ θ ≤ 3π/2),

Glk

(
r,

1
9
(8 + cos(4θ)), 1

)
(3π/2 < θ < 2π).

From Lemmas 4.8, 4.9 and 4.10, both gε and g̃ε − gε are superharmonic functions
in Ω . Since gε and g̃ε − gε take non-negative values on ∂Ω ,

0 ≤ gε(x, y) ≤ g̃ε(x, y).

Consequently, we have

|gε(x, y)| ≤ |g̃ε(x, y)|.
Then, in the same way as in Lemma 4.2,∫∫

Ω

fgε dx dy

=
∫∫

Ω

∇u · ∇gε dx dy = −
∫∫

Ω

10<θ<3π/2 · 1r<ε · uΔg̃ε dx dy

= −
∫∫

Ω

10<θ<3π/2 · 1r<ε · u(x, y)

× Δ
{

(2ε−4/3r4/3 − ε−8/3r8/3)Glk

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))}
dx dy.
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From Lemma 4.11,∫∫
Ω

fgε dx dy

=
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫∫
Ω

1r<ε · u(x, y) sin
(

2
3
θ

)
dx dy

=
32ε−8/3l

2/3
k λk

9π
(1 + O(ε4/3))

×
∫ ε

0

∫ 3π/2

0

(
1 − x2

l2k

)(
1 − y2

l2k

)(
r

lk

)2/3

sin2

(
2
3
θ

)
r dθ dr

+
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫ ε

0

∫ 3π/2

0

w(x, y) sin
(

2
3
θ

)
r dθ dr

= (1 + O(ε4/3))λk

+
32ε−8/3l

2/3
k

9π
(1 + O(ε4/3))

∫ ε

0

∫ 3π/2

0

w(x, y) sin
(

2
3
θ

)
r dθ dr.

Again, in the same way as in Lemma 4.2,

(1 + O(ε4/3))|λk| ≤ ‖f‖L2(Ω)‖gε‖L2(Ω) + O(ε1/21)

≤ ‖f‖L2(Ω)‖g̃ε‖L2(Ω) + O(ε1/21).

Then, we have the conclusion when ε → 0. �

Lemma 4.7.{∫∫
Ω

10≤θ<3π/2 ·
∣∣∣∣Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))∣∣∣∣2 dx dy

+
∫∫

Ω

13π/2≤θ<2π ·
∣∣∣∣Gl

(
r,

1
9
(8 + cos(4θ)), 1

)∣∣∣∣2 dx dy

}1/2

≤ 1
π

√(
5
2
− 3π

8

)
l2 + 2|Ω |.

Proof. We have the inequalities∣∣∣∣Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))∣∣∣∣2
=

l4/3

2π2

{√
r−8/3 + l−8/3−2r−4/3l−4/3 cos

(
4
3
θ

)
+ l−4/3−r−4/3 cos

(
4
3
θ

)}

≤ l4/3

2π2

{
|l−4/3−r−4/3|+

√
2r−4/3l−4/3

(
1−cos

(
4
3
θ

))
+ l−4/3−r−4/3 cos

(
4
3
θ

)}

=
l4/3

π2

{
max(l−4/3−r−4/3, 0)+r−2/3l−2/3 sin

(
2
3
θ

)
+r−4/3 sin2

(
2
3
θ

)}
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and ∣∣∣∣Gl

(
r,

1
9
(8 + cos(4θ)), 1

)∣∣∣∣2
=

l4/3

2π2

{√
r−8/3 + l−8/3 − 2

9
r−4/3l−4/3(8 + cos(4θ)) + l−4/3 − r−4/3

}
≤ l4/3

2π2

{
|l−4/3 − r−4/3| +

√
2
9
r−4/3l−4/3(1 − cos(4θ)) + l−4/3 − r−4/3

}
=

l4/3

π2

{
max(l−4/3 − r−4/3, 0) +

1
3
r−2/3l−2/3|sin(2θ)|

}
.

It follows from these inequalities that∫∫
Ω

10≤θ<3π/2 ·
∣∣∣∣Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))∣∣∣∣2 dx dy

+
∫∫

Ω

13π/2≤θ<2π ·
∣∣∣∣Gl

(
r,

1
9
(8 + cos(4θ)), 1

)∣∣∣∣2 dx dy

≤ l4/3

π2

∫ l

0

∫ 3π/2

0

{
r−2/3l−2/3 sin

(
2
3
θ

)
+ r−4/3 sin2

(
2
3
θ

)}
r dθ dr

+
l4/3

π2

∫ l

0

∫ 2π

3π/2

1
3
r−2/3l−2/3|sin(2θ)|r dθ dr +

(
|Ω | − 3πl2

4

)
l4/3

π2
· 2l−4/3

=
l2

π2

(
5
2
− 3π

8

)
+

2
π2

|Ω |. �

Lemma 4.8.

−ΔGl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))
= 0 in Ω.

Proof.

Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))
is a constant times the imaginary part of

(z−4/3 − l−4/3)1/2, z = reiθ.

Therefore, this function is harmonic in Ω . �

Lemma 4.9. For r < ε < l and 0 < θ < 3π/2,

−Δ
(

(2ε−4/3r4/3 − ε−8/3r8/3)Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

)))
≥ 0 in Ω.
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Proof. We have

−Δ
{

(2ε−4/3r4/3 − ε−8/3r8/3)Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))}
=

4
√

2
9a2b2cl2π

· (a + c − 1)2(a + c + 1)2(a − b + c)(
a + c − cos

(
4
3
θ

))3/2
,

where

a = r4/3l−4/3, b = ε4/3l−4/3, c =

√
a2 + 1 − 2a cos

(
4
3
θ

)
.

Since

a − b + c = a − b +

√
a2 + 1 − 2a cos

(
4
3
θ

)
≥ a − b + |a − 1| ≥ 1 − b ≥ 0,

this lemma is proved. �

Lemma 4.10. For 3π/2 < θ < 2π,

−ΔGl

(
r,

1
9
(8 + cos(4θ)), 1

)
≥ 0 in Ω.

Proof.

−ΔGl

(
r,

1
9
(8 + cos(4θ)), 1

)
=

2
√

2
√

a + d − 1
9a2d3l2π

(2d3 + 2(a − 1)2d − 4(a − 1)3 + d2),

where

a = r4/3l−4/3, d =

√
a2 + 1 − 2

9
a(8 + cos(4t)).

Since

d ≥
√

a2 + 1 − 2a = |a − 1|
holds,

2d3 + 2(a − 1)2d − 4(a − 1)3 + d2 ≥ 4|a − 1|3 − 4(a − 1)3 + 2(a − 1)2d + d2 ≥ 0.

Then, this lemma is proved. �
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Lemma 4.11. When r < ε,

−Δ
{

(2ε−4/3r4/3 − ε−8/3r8/3)Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))}
=

32ε−8/3l2/3

9π
sin
(

2
3
θ

)
· (1 + O(ε4/3)).

Proof. Define

a = r4/3l−4/3, b = ε4/3l−4/3, c =

√
a2 + 1 − 2a cos

(
4
3
θ

)
,

then we have

−Δ
{

(2ε−4/3r4/3 − ε−8/3r8/3)Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))}
=

4
√

2
9a2b2cl2π

· (a + c − 1)2(a + c + 1)2(a − b + c)(
a + c − cos

(
4
3
θ

))3/2
.

We can easily confirm the following expressions:

c = 1 + O(ε4/3),

a + c − 1 =
2a

c − a + 1

(
1 − cos

(
4
3
θ

))
= 2a sin2

(
2
3
θ

)
· (1 + O(ε4/3)),

a + c + 1 = 2 + O(ε4/3),

a − b + c = 1 + O(ε4/3),

a + c − cos
(

4
3
θ

)
=

c + a + 1
c − a + 1

(
1 − cos

(
4
3
θ

))
= 2 sin2

(
2
3
θ

)
· (1 + O(ε4/3)).

Then,

−Δ
{

(2ε−4/3r4/3 − ε−8/3r8/3)Gl

(
r, cos

(
4
3
θ

)
, cos

(
4
3
θ

))}
=

32ε−8/3l2/3

9π
sin
(

2
3
θ

)
· (1 + O(ε4/3)). �

5. Numerical result

In this section, numerical results are shown to confirm the validity of the error
estimation. All calculations were carried out on an Intel Core 2 Duo 6700 PC at
2.66 GHz with Borland C++ compiler. There are some difficulties in calculating
the H1

0 inner product between the singular basis and the bilinear basis because the
gradient of the singular basis diverges at the re-entrant corner. To deal with this
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difficulty, the following double exponential transformation (DE transformation) [15]
is used to calculate the integral on each of the square elements:∫ yl+h

yl

∫ xk+h

xk

p(x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
p(xk + ϕ(x), yl + ϕ(y))ϕ′(x)ϕ′(y) dx dy, (5.1)

where p(x, y) is an integrand and

ϕ(t) =
h

2

(
tanh

(
π

2
sinh t

)
+ 1
)

.

We approximate (5.1) by the trapezoidal rule as follows:∫ ∞

−∞

∫ ∞

−∞
p(xk + ϕ(x), yl + ϕ(y))ϕ′(x)ϕ′(y) dx dy

≈ L2

N2

N∑
j=−N

N∑
i=−N

(
xk + ϕ

(
kL

N

)
, yl + ϕ

(
kL

N

))
ϕ′
(

kL

N

)
ϕ′
(

kL

N

)
.

It is known that, if the integrand p(x, y) is an analytic function on (xk, xk +h)×
(yl, yl +h), very high accuracy is realized by this numerical integration formula.
We took L = 4 and N = 100 which are sufficient to obtain double floating point
precision. We also use this numerical integration method to compute the right-
hand side vector of the finite element method and the error between the numerical
solution and the exact solution.

At first, we consider the following equation on the L-shape domain which is
shown in Fig. 8: {

−Δu = f(x, y) in Ω ,

u = 0 on ∂Ω ,
(5.2)

where

f(x, y) = r−1/3

{
(x − 2)y(y − 2)

3
sin
(

1
3
θ

)
− x(x − 4)(y − 1)

3
cos
(

1
3
θ

)
− (x2 − 4x + y2 − 2y)r

4
sin
(

2
3
θ

)}
,

(x − 1, y − 1) = (r cos θ, r sin θ) (0 ≤ r, 0 ≤ θ < 2π).

The exact solution of this equation is

u(x, y) =
x(x − 4)y(y − 2)

8
r2/3 sin

(
2
3
θ

)
,

(x − 1, y − 1) = (r cos θ, r sin θ) (0 ≤ r, 0 ≤ θ < 2π).
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Fig. 8. L-shape domain Fig. 9. An arrangement of the singular bases

Fig. 10. The numerical solution when h = 1/10

The numerical results are presented in Table 1, where h is the mesh size and Uh

denotes the numerical solution. Fig. 10 shows the shape of the numerical solution.
The condition numbers of the element matrix were also calculated. The defi-

nition of the condition number is the ratio of the largest to the smallest eigenvalue.
Since ‖f‖Ω is calculated to be 1.9233 . . . , Theorem 3.1 implies that the H1

0

and L2 error estimates for this equation are

‖uh − u‖H1
0 (Ω) ≤

(
0.319 +

√
0.971 + 1.469 · 5

12

)
1.924h,

‖uh − u‖L2(Ω) ≤
(

0.319 +

√
0.971 + 1.469 · 5

12

)2

1.924h2.

Strictly speaking, in order to obtain an explicit error estimate, it is necessary to
use the verified result of ‖f‖Ω . Nevertheless we use the approximate value here
because the main purpose of this section is only to compare the error estimation
with numerical results. The right-hand side of these inequalities are presented in
Table 2. Since the a priori error estimation can be applied to arbitrary f and Ω
(in other words, can be applied to the worst case), the actual error is often smaller
than a priori estimate.
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Table 1. Numerical results for the L-shape domain

h ‖Uh − u‖H1
0 (Ω) ‖Uh − u‖L2(Ω) Degree of freedom Condition number

1/20 3.9052 × 10−2 1.0684 × 10−3 1882 4.9653 × 104

1/40 1.9576 × 10−2 2.6905 × 10−4 7762 6.3104 × 105

1/60 1.3066 × 10−2 1.2008 × 10−4 17642 2.7351 × 106

1/80 9.8064 × 10−3 6.7750 × 10−5 31522 7.6650 × 106

1/100 7.8494 × 10−3 4.3464 × 10−5 49402 1.6951 × 107

Table 2. A priori error estimation for the L-shape domain

h ‖uh − u‖H1
0 (Ω) ‖uh − u‖L2(Ω)

1/20 3.081043 . . . × 10−1 4.933901 . . . × 10−2

1/40 1.540521 . . . × 10−1 1.233475 . . . × 10−2

1/60 1.027014 . . . × 10−1 5.482113 . . . × 10−3

1/80 7.702607 . . . × 10−2 3.083688 . . . × 10−3

1/100 6.162086 . . . × 10−2 1.973560 . . . × 10−3

The second result is a case when Ω is the H-shape domain shown in Fig. 11.
Fig. 12 shows an arrangement of the singular bases. In this situation, we consider
the following equation:⎧⎪⎨⎪⎩

−Δu = f(x − 1, y − 1) + f(3 − x, y − 1)

+ f(3 − x, 2 − y) + f(x − 1, 2 − y) in Ω ,

u = 0 on ∂Ω ,

(5.3)

where

f(x, y) = 1−1<x<2 ·1−1<y<1 ·r−1/3

×
{

x(x−2)(y+1)(y−1)2

3
sin
(

1
3
θ

)
− (x+1)(x−2)2(3y+1)(y−1)

9
cos
(

1
3
θ

)
−
(

(x−1)(y+1)(y−1)2

2
+

(x+1)(x−2)2(3y−1)
6

)
r sin

(
2
3
θ

)}
,

(x, y) = (r cos θ, r sin θ) (0≤ r, 0≤ θ < 2π).

The exact solution of this equation is

u = g(x − 1, y − 1) + g(3 − x, y − 1) + g(3 − x, 2 − y) + g(x − 1, 2 − y),

where

g(x, y) = 1−1<x<2 · 1−1<y<1 · (x + 1)(x − 2)2(y + 1)(y − 1)2

12
r2/3 sin

(
2
3
θ

)
,

(x, y) = (r cos θ, r sin θ) (0 ≤ r, 0 ≤ θ < 2π).
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Fig. 11. H-shape domain Fig. 12. An arrangement of the singular bases

Fig. 13. The numerical solution when h = 1/10

The numerical results are presented in Table 3 and Fig. 13 shows the shape of the
numerical solution.

The L2-norm of the right-hand side of (5.3) is calculated to be 2.8228 . . . Then,
from Theorem 3.1, the H1

0 and L2 error estimates for this equation are obtained as
follows:

‖uh − u‖H1
0 (Ω) ≤

(
0.319 + 4

√
0.971 + 1.469 · 8

0.52

)
2.823h,

‖uh − u‖L2(Ω) ≤
(

0.319 + 4

√
0.971 + 1.469 · 8

0.52

)2

2.823h2.

The right-hand side of these inequalities are presented in Table 4.
As we can see in Table 3 and Table 4, the value of the a priori error estimation

becomes larger as the number of the re-entrant corners increases and when the
support of the singular function becomes smaller.
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Table 3. Numerical results for the H-shape domain

h ‖Uh−Uh/2‖H1
0 (Ω) ‖Uh−Uh/2‖L2(Ω) Degree of freedom Condition number

1/20 3.8100 × 10−2 6.3213 × 10−4 3025 3.9510 × 103

1/40 1.9789 × 10−2 1.7619 × 10−4 12445 5.0101 × 104

1/60 1.3490 × 10−2 8.3725 × 10−5 28265 2.2167 × 105

1/80 1.0274 × 10−2 4.9357 × 10−5 50485 6.3251 × 105

1/100 8.3140 × 10−3 3.2724 × 10−5 79105 1.4194 × 106

Table 4. A priori error estimation for the H-shape domain

h ‖uh − u‖H1
0 (Ω) ‖uh − u‖L2(Ω)

1/20 3.955834 . . . 5.543261 . . .

1/40 1.977917 . . . 1.385815 . . .

1/60 1.318611 . . . 0.615917 . . .

1/80 0.988958 . . . 0.346453 . . .

1/100 0.791166 . . . 0.221730 . . .

6. Concluding remark

We presented a constructive a priori error estimation for a finite element solu-
tion in a polygonal domain by using singular functions. The results are only valid
when the domain is bounded by line segments which form a right angle. However,
it seems possible to extend this method to the general polygonal domain with tri-
angular mesh. Numerical calculations are carried out to confirm the validity of the
error estimation. A priori error estimation for another more efficient method such
as DSFM or method of mesh refinement remains as future work. But from the
viewpoint of application to the numerical verification of non-linear problems, the
most important thing is obtaining an a priori error estimation by any method.
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