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For second-order semilinear elliptic boundary value problems on bounded or unbounded
domains, a general computer-assisted method for proving the existence of a solution in a
“close” and explicit neighborhood of an approximate solution, computed by numerical
means, is proposed. To achieve such an existence and enclosure result, we apply
Banach’s fixed-point theorem to an equivalent problem for the error, i.e., the difference
between exact and approximate solution. The verification of the conditions posed for the
fixed-point argument requires various analytical and numerical techniques, for example
the computation of eigenvalue bounds for the linearization at the approximate solution.
The method is used to prove existence and multiplicity results for some specific examples.
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1. Introduction

Semilinear elliptic differential equations of the form

−Δu(x) + f(x, u(x)) = 0 (x ∈ Ω) (1)

(with Ω ⊂ R
n denoting some given domain, and f : Ω × R → R some given non-

linearity), together with boundary conditions, e.g., of Dirichlet type

u(x) = 0 (x ∈ ∂Ω), (2)

have been (and still are) extensively studied in the differential equations literature.
Such semilinear boundary value problems have a lot of applications, e.g., in Mathe-
matical Physics, and often serve as model problems for more complex mathematical
situations, and last but not least, they form a very exciting and challenging object
for purely mathematical investigations. Starting perhaps with Picard’s successive
iterations at the end of the 19th century, various analytical methods and techniques
have been (and are being) developed to study existence and multiplicity of solu-
tions to problem (1), (2), such as variational methods (including mountain pass
methods), index and degree theory, monotonicity methods, fixed-point methods,
and more.

In this article, we want to report on a supplement to these purely analytical
methods by a computer-assisted approach, which in the recent years has turned out
to be successful with various examples where purely analytical methods have failed.
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Such an approach has the remarkable additional advantage (compared with a
“theoretical” proof) of providing accurate quantitative information in form of tight
and explicit bounds for the solution.

We include problems with an unbounded domain Ω , which have rarely been
treated by computer-assisted methods before. For the easier case of a bounded
domain, see e.g., [5, 26, 27, 28, 32], and also [22, 23, 24, 25]. Our approach has
been applied successfully also to other types of problems; see, e.g., the remarks at
the end of Section 2.

We start with an approximate solution ω to (1), (2), which can be obtained by
any numerical method which gives approximations in the function space needed (to
be specified later). In this first step, there is no need for any mathematical rigor,
and the field is open for the whole rich variety of modern numerics.

Next, we use a Newton–Kantorovich-type argument to prove the existence of
a solution to (1), (2) in some “close” and “explicit” neighborhood of ω. For this
purpose, we consider the boundary value problem for the error v = u− ω and
rewrite it as a fixed-point equation

v ∈ X, v = T (v) (3)

in a Banach space X, which we treat by Banach’s fixed-point theorem. This gives
the existence of a solution v∗ of (3) in some suitable set V ⊂ X, provided that a
contraction property holds on V (see (15) below), and that

T (V ) ⊂ V. (4)

Consequently, u∗ := ω+v∗ is a solution of (1), (2) (which gives the desired existence
result), and the statement “u∗ ∈ ω + V ” (implied by v∗ ∈ V ) gives the desired
bounds, or enclosures, for u∗.

So the crucial condition to be verified, for some suitable set V , is (4). Re-
stricting ourselves to norm balls V (centered at the origin), we find that (4) results
in an inequality involving the radius of V , and various other terms generated by
the “data” of our problem (1), and by the numerical approximation ω. All these
terms are computable, either directly or via additional computer-assisted means
(like the eigenvalue bounds discussed briefly in Section 3.3). In these computations
(in contrast to the computation of ω mentioned above), all possible numerical er-
rors have to be taken into account, in order to be able to check the aforementioned
inequality (implying (4)) with mathematical rigor. For example, remainder term
bounds need to be computed when quadrature formulas are applied, and interval
arithmetic [17, 34] is needed to take rounding errors into account.

Computer-assisted means for obtaining enclosures for solutions to elliptic par-
tial differential equations have been proposed by Collatz [8, 9] already more than
50 years ago. He used maximum-principle-type arguments to obtain two-sided
bounds for the error function u−ω, with ω denoting a numerical C2-approximation.
Schröder [35]–[37], Walter [38] and others generalized these ideas, which resulted
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in the method of differential inequalities. It was successfully applied to many ex-
amples with first or second order ordinary differential equations, or with second
order elliptic or parabolic differential equations. However, there are drawbacks of
differential inequalities methods concerning the size of the class of problems (1),
(2) to which they can be applied: At least for obtaining “tight” solution enclosures,
all eigenvalues of the linearization L of (1), (2) at ω need to be positive, which ex-
cludes many interesting situations. Furthermore, differential inequalities techniques
are essentially restricted to first- and second-order problems (with the exception of
some fourth-order problems which can be handled as second-order systems). In
contrast, the enclosure method proposed in this article requires the eigenvalues of
the linearization L to be non-zero only (which is checked by eigenvalue enclosures),
and at least in principle it can be used for elliptic problems of any (even) order; see
also the remarks at the end of Section 2.

An existence and enclosure method similar to ours has been developed by
Nakao and his group [22]–[25]. This approach avoids the computation of eigenvalue
enclosures for L, which constitutes a significant advantage in some cases. Instead,
a finite-dimensional projection of L is used, and treated by well-established means
of verifying numerical linear algebra. However, also the (infinite-dimensional) pro-
jection error needs to be bounded in a suitable way, which is well possible for
many bounded domains Ω , but problematic e.g., for PDE problems on unbounded
domains.

Another more recent approach, which has at least the potential of being ap-
plicable to elliptic boundary value problems (although this has not been carried
out so far), is based on the Conley index and the numerical verification of corre-
sponding topological conditions; it is suited for proving the existence of stationary
solutions for certain classes of problems, as well as for detecting global dynamics
(see e.g., [10, 15]).

For ordinary differential equation problems (possibly originating from a par-
tial differential equation after symmetry reductions), many existence and enclosure
methods can be found in the literature, which we will not address in this article.

2. Abstract formulation

It turns out to be useful to explain the basics of our computer-assisted approach
first for the following abstract problem:

Find u ∈ X satisfying F(u) = 0, (5)

with (X, 〈 · , · 〉X) and (Y, 〈 · , · 〉Y ) denoting two real Hilbert spaces (also complex
spaces can be admitted), and F : X → Y some Fréchet differentiable mapping.

Let ω ∈ X denote some approximate solution to (5) (computed, e.g., by nu-
merical means), and

L := F ′(ω) : X → Y (6)
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the Fréchet derivative of F at ω, i.e., L ∈ B(X,Y ) (the Banach space of all bounded
linear operators from X to Y ), and ‖F(ω + h) −F(ω) − L[h]‖Y = o(‖h‖X) as
‖h‖X → 0.

Suppose that we know constants δ and K, and a non-decreasing function
g : [0,∞) → [0,∞) such that

‖F(ω)‖Y ≤ δ, (7)

i.e., δ bounds the defect (residual) of the approximate solution ω to (5),

‖u‖X ≤ K‖L[u]‖Y for all u ∈ X, (8)

i.e., K bounds the inverse of the linearization L,

‖F ′(ω + u) −F ′(ω)‖B(X,Y ) ≤ g(‖u‖X) for all u ∈ X, (9)

i.e., g majorizes the modulus of continuity of F ′ at ω, and

g(t) → 0 as t→ 0 (10)

(which in particular requires F ′ to be continuous at ω).
The concrete computation of such δ, K, and g is the main challenge in our

approach, with particular emphasis on K. We will however not address these
questions in this section, i.e., on the abstract level, but postpone them to the more
specific case of the boundary value problem (1), (2), to be treated in the following
section. For now, we assume that (7)–(10) hold true.

In order to obtain a suitable fixed-point formulation (3) for our problem (5),
we will need that the operator L is onto. (Note that L is one-to-one by (8).) For
this purpose, we will make an additional symmetry assumption (see (13) below),
and now assume that Y = X ′, the (topological) dual of X, i.e., the space of all
bounded linear functionals l : X → R. X ′ (= B(X,R)) is a Banach space endowed
with the usual operator sup-norm. Indeed, this norm is generated by an inner
product (which therefore makes X ′ a Hilbert space) as explained in the following:
Consider the linear mapping Φ : X → X ′ given by

(Φ[u])[v] := 〈u, v〉X (u, v ∈ X). (11)

For all u ∈ X,

‖Φ[u]‖X′ = sup
v∈X\{0}

|(Φ[u])[v]|
‖v‖X

= sup
v∈X\{0}

|〈u, v〉X |
‖v‖X

= ‖u‖X ,

i.e., Φ is an isometry (and hence one-to-one).
Furthermore, Φ is onto by Riesz’ representation theorem for bounded linear

functionals on a Hilbert space: Given any r ∈ X ′, some (unique) u ∈ X exists such
that r[v] = 〈u, v〉X for all v ∈ X, i.e., Φ[u] = r by (11). Φ is therefore called the
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canonical isometric isomorphism between X and X ′. It immediately gives an inner
product on X ′ by

〈r, s〉X′ := 〈Φ−1[r],Φ−1[s]〉X (r, s ∈ X ′), (12)

and the norm generated by this inner product is the “old” norm ‖ · ‖X′ , because Φ
is isometric.

In theoretical functional analysis, the Hilbert spaces X and X ′ are often identi-
fied via the isometric isomorphism Φ, i.e., they are not distinguished, which however
we will not do because this might lead to confusion when X is a Sobolev function
space, as it will be later.

To ensure that L : X → Y = X ′ is onto, we make the additional assumption
that Φ−1L : X → X is symmetric with respect to 〈 · , · 〉X , which by (11) amounts
to the relation

(L[u])[v] = (L[v])[u] for all u, v ∈ X. (13)

This implies the denseness of the range (Φ−1L)(X) ⊂ X: Given any u in its
orthogonal complement, we have, for all v ∈ X,

0 = 〈u, (Φ−1L)[v]〉X = 〈(Φ−1L)[u], v〉X ,

and hence (Φ−1L)[u] = 0, which implies L[u] = 0 and thus u = 0 by (8).
Therefore, since Φ is isometric, the range L(X) ⊂ X ′ is dense. For proving that

L is onto, we are therefore left to show that L(X) ⊂ X ′ is closed. For this purpose,
let (L[un])n∈N denote some sequence in L(X) converging to some r ∈ X ′. Then (8)
shows that (un)n∈N is a Cauchy sequence in X. With u ∈ X denoting its limit, the
boundedness of L implies L[un] → L[u] (n → ∞). Thus, r = L[u] ∈ L(X), which
proves closedness of L(X).

We are now able to formulate and prove our main theorem, which is similar to
the Newton–Kantorovich theorem:

Theorem 1. Let δ, K, g satisfy conditions (7)–(10). Suppose that some
α > 0 exists such that

δ ≤ α

K
−G(α), (14)

where G(t) :=
∫ t

0
g(s) ds, and

Kg(α) < 1. (15)

Then, there exists a solution u ∈ X of the equation F(u) = 0 satisfying

‖u− ω‖X ≤ α. (16)

The solution is moreover unique under the side condition (16).
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Remark 1.

a) Due to (10), G(t) =
∫ t

0
g(s) ds is superlinearly small as t→ 0. Therefore, the

crucial condition (14) is indeed satisfied for some “small” α if K is “moderate”
(i.e., not too large) and δ is sufficiently small, which means according to
(7) that the approximate solution ω to problem (5) must be computed with
sufficient accuracy, and (14) tells us how accurate the computation has to be.
This meets the general philosophy of computer-assisted proofs: The “hard
work” of the proof is left to the computer!

b) Due to (10), the additional contraction condition (15) is not too critical if α
(computed according to (14)) is “small.”

Proof of Theorem 1. We rewrite problem (5) as

L[u− ω] = −F(ω) − {F(u) −F(ω) − L[u− ω]},

which due to the bijectivity of L amounts to the equivalent fixed-point equation

v ∈ X, v = −L−1[F(ω) + {F(ω + v) −F(ω) − L[v]}] =: T (v) (17)

for the error v = u− ω.
Now we are going to show the following properties of the fixed-point operator

T : X → X:
i) T (V ) ⊂ V for the closed norm ball

V := {v ∈ X : ‖v‖X ≤ α},

ii) T is contractive on V .
Then, Banach’s fixed-point theorem gives a solution v∗ ∈ V of the fixed-point
equation (17), whence by construction u∗ := ω + v∗ is a solution of F(u) = 0
satisfying (16).

For proving i) and ii), we first note that for every differentiable function
f : [0, 1] → Y , the real-valued function ‖f‖Y is differentiable almost everywhere
on [0, 1], and (d/dt)‖f‖Y ≤ ‖f ′‖Y a.e. on [0, 1]. Hence, for every v, ṽ ∈ X,

‖F(ω + v) −F(ω + ṽ) − L[v − ṽ]‖Y

=
∫ 1

0

d

dt
‖F(ω + (1 − t)ṽ + tv) −F(ω + ṽ) − tL[v − ṽ]‖Y dt

≤
∫ 1

0

‖{F ′(ω + (1 − t)ṽ + tv) − L}[v − ṽ]‖Y dt

≤
∫ 1

0

‖F ′(ω + (1 − t)ṽ + tv) − L‖B(X,Y ) dt · ‖v − ṽ‖X

≤
∫ 1

0

g(‖(1 − t)ṽ + tv‖X) dt · ‖v − ṽ‖X , (18)
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using (6) and (9) in the last step. Choosing ṽ = 0 in (18) we obtain, for each v ∈X,

‖F(ω + v) −F(ω) − L[v]‖Y ≤
∫ 1

0

g(t‖v‖X) dt · ‖v‖X

=
∫ ‖v‖X

0

g(s) ds = G(‖v‖X). (19)

Furthermore, (18) and the fact that g is non-decreasing imply, for all v, ṽ ∈ V ,

‖F(ω + v) −F(ω + ṽ) − L[v − ṽ]‖Y ≤
∫ 1

0

g((1 − t)‖ṽ‖X + t‖v‖X) dt · ‖v − ṽ‖X

≤ g(α)‖v − ṽ‖X . (20)

To prove i), let v ∈ V , i.e., ‖v‖X ≤ α. Now (17), (8), (7), (19), and (14) imply

‖T (v)‖X ≤ K‖F(ω) + {F(ω + v) −F(ω) − L[v]}‖Y

≤ K(δ +G(‖v‖X)) ≤ K(δ +G(α)) ≤ α,

which gives T (v) ∈ V . Thus, T (V ) ⊂ V .
For proving ii), we note that (17), (8), and (20) imply, for v, ṽ ∈ V ,

‖T (v) − T (ṽ)‖X = ‖L−1{F(ω + v) −F(ω + ṽ) − L[v − ṽ]}‖X

≤ K‖F(ω + v) −F(ω + ṽ) − L[v − ṽ]‖Y ≤ Kg(α)‖v − ṽ‖X ,

whence (15) shows that T is contractive on V . This completes the proof of
Theorem 1. �

In the following section, we will apply the abstract approach developed in this
section to the elliptic boundary value problem (1), (2). This can be done in different
ways, i.e., by different choices of the Hilbert space X, resulting in different general
assumptions (e.g., smoothness conditions) to be made for the “data” of the problem
and the numerical approximation ω, and different conditions (7)–(9), (14), (15), as
well as different “results,” i.e., existence statements and error bounds (16).

In this article, we will concentrate on the choice X = H1
0 (Ω), i.e., we will aim

at weak solutions of problem (1), (2). Our abstract setting can also be applied for
obtaining strong solutions by choosing X = H2(Ω) ∩H1

0 (Ω) and Y = L2(Ω) if Ω
is H2-regular (see e.g., [5, 26, 27, 28, 32]), and also to problems with Neumann
boundary conditions by choosing X = H1(Ω), and to systems of elliptic equations.
Now we report briefly on some other applications of our abstract setting which we
cannot discuss in more detail in this article.

For parameter-dependent problems (where F in (5), or f in (1), depends on
an additional parameter λ), one is often interested in branches (uλ)λ∈I of solu-
tions. By additional perturbation techniques, our method can indeed be generalized
to computer-assisted proofs for such solution branches, as long as the parameter-
interval I defining the branch is compact [28]. Such branches may however contain
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turning points (where a branch “returns” at some value λ∗) or bifurcation points
(where several—usually two—branches cross each other). Near such points, the
operator L defined in (6) is “almost” singular, i.e., (8) holds only with a very large
K, or not all all, which makes our approach break down. However, there are means
to overcome these problems:

In case of (simple) turning points, the well-known method of augmenting the
given equation by a bordering equation can also be used here; the “new” operator
F in (5) contains the “old” one and the bordering functional, and the “new” oper-
ator L is regular near the turning point if the bordering equation has been chosen
appropriately [27].

In case of (simple) symmetry-breaking bifurcations, we can, in a first step, in-
clude the symmetry in the space X, which excludes the symmetry-breaking branch
and regularizes the problem, whence an existence and enclosure result for the sym-
metric branch can be obtained. In a second step, we exclude the symmetric branch
by some transformation (similar to the Lyapunov–Schmidt reduction), and defining
a corresponding new operator F we can perform our method to obtain an existence
and enclosure result also for the symmetry-breaking branch [29].

Non-selfadjoint eigenvalue problems have been treated in [19, 25], again using
bordering equation techniques normalizing the unknown eigenfunction. So F now
acts on pairs (u, λ), and is defined via the eigenvalue equation and the (scalar)
normalizing equation. In this way, we were able to give the first known instability
proof of the Orr–Sommerfeld equation with Blasius profile [19] and with Poiseuille
profile [25], which is a fourth-order ODE eigenvalue problem on [0,∞) (for the
Blasius profile) or on [−1, 1] (for the Poiseuille profile), respectively.

Also (other) higher order problems are covered by our abstract setting. In [6],
we could prove the existence of 36 travelling wave solutions of a fourth-order non-
linear beam equation on the real line. Biharmonic problems (with ΔΔu as leading
term) are presently investigated by Fazekas; see also [11].

3. Weak solutions

Based on our abstract considerations, we will now investigate problem (1),
(2). Suppose that Ω ⊂ R

n is a (bounded or unbounded) domain with Lipschitz
boundary. For uniform presentation, we assume that n ≥ 2; the case n = 1 is
actually much simpler. We choose the spaces

X := H1
0 (Ω), Y := H−1(Ω) (21)

for our abstract setting, where H−1(Ω) := (H1
0 (Ω))′ denotes the topological dual

space of H1
0 (Ω), i.e., the space of all bounded linear functionals on H1

0 (Ω). We
endow H1

0 (Ω) with the inner product

〈u, v〉H1
0

:= 〈∇u,∇v〉L2 + σ〈u, v〉L2 (22)

(with some parameter σ > 0 to be chosen later), and H−1(Ω) with the “dual” inner
product given by (12), with Φ from (11).



Computer-Assisted Proofs for Semilinear Elliptic Boundary Value Problems 427

For ρ ∈ L2(Ω)n, we define the functional div ρ : H1
0 (Ω) → R as usual by

(div ρ)[ϕ] := −
∫
Ω

ρ · ∇ϕdx for all ϕ ∈ H1
0 (Ω), (23)

implying in particular that |(div ρ)[ϕ]| ≤ ‖ρ‖L2‖∇ϕ‖L2 ≤ ‖ρ‖L2‖ϕ‖H1
0
, whence

div ρ is indeed a bounded linear functional, i.e., div ρ ∈ H−1(Ω), and

‖div ρ‖H−1 ≤ ‖ρ‖L2 . (24)

Using this definition of Δu (= div(∇u)), it is easy to check that the canonical iso-
metric isomorphism Φ : H1

0 (Ω)→H−1(Ω) defined in (11) is now given by (note (22))

Φ[u] = −Δu+ σu (u ∈ H1
0 (Ω)). (25)

We recall that Sobolev’s embedding theorem [1, Theorem 5.4] gives H1
0 (Ω) ⊂

Lp(Ω), with bounded embedding H1
0 (Ω) ↪→ Lp(Ω), i.e., there exists some constant

Cp > 0 such that

‖u‖Lp ≤ Cp‖u‖H1
0

for all u ∈ H1
0 (Ω), (26)

for each

p ∈ [2,∞) if n = 2, p ∈
[
2,

2n
n− 2

]
if n ≥ 3. (27)

The following lemma (see e.g., the appendix of [31] for a proof) provides explicit
constants Cp satisfying (26); they are not always optimal but easy to compute.

Lemma 1. Let ρ∗ ∈ [0,∞) denote the minimal point of the spectrum of −Δ
on H1

0 (Ω).
a) Let n = 2 and p ∈ [2,∞). With ν denoting the largest integer ≤ p/2, (26)

holds for

Cp =
(

1
2

) 1
2+ 2ν−3

p
[
p

2

(
p

2
− 1
)
· · ·
(
p

2
− ν + 2

)] 2
p 1(
ρ∗ + p

2σ
) 1

p

(where the bracket-term is put equal to 1 if ν = 1).
b) Let n ≥ 3 and p ∈ [2, 2n

n−2

]
. With s := n

(
1
p − 1

2 + 1
n

) ∈ [0, 1], (26) holds for

Cp =
(

n− 1√
n(n− 2)

)1−s(
s

sρ∗ + σ

) s
2

(where the second factor is put equal to 1 if s = 0).

With p in the range (27), and p′ denoting its dual number (i.e., p−1+(p′)−1 =1),
we obtain by Hölder’s inequality, combined with the above embedding, that for all
w ∈ Lp′

(Ω) ∣∣∣∣
∫
Ω

wϕdx

∣∣∣∣ ≤ ‖w‖Lp′ ‖ϕ‖Lp ≤ Cp‖w‖Lp′ ‖ϕ‖H1
0
,
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implying w ∈ H−1(Ω) (with the usual identification of functions with their
canonically associated linear functionals), and ‖w‖H−1 ≤ Cp‖w‖Lp′ . Consequently,
the embedding Lp′

(Ω) ↪→ H−1(Ω) is bounded, with the same embedding constant
Cp as in the “dual” embedding H1

0 (Ω) ↪→ Lp(Ω). Note that the range (27) for p
amounts to the range

p′ ∈ (1, 2] if n = 2, p′ ∈
[

2n
n+ 2

, 2
]

if n ≥ 3 (28)

for the dual number p′.
Our abstract setting requires that f( · , u) ∈ H−1(Ω) for each u ∈ H1

0 (Ω), and
furthermore that

F :

{
H1

0 (Ω) → H−1(Ω),

u �→ −Δu+ f( · , u) (29)

is Fréchet-differentiable. Since Δ : H1
0 (Ω) → H−1(Ω) is linear and bounded by (24),

this amounts to the Fréchet-differentiability of

G :

{
H1

0 (Ω) → H−1(Ω),

u �→ f( · , u). (30)

For this purpose, we require that ∂f/∂y is continuous on Ω̄ × R. But this is not
sufficient; the main reason is that H1

0 (Ω) does not embed into C(Ω̄). We need
additional growth restrictions on f(x, y) or (∂f/∂y)(x, y) as |y| → ∞.

An important (but not the only) admissible class consists of those functions f
which satisfy

f( · , 0) ∈ H−1(Ω), (31)
∂f

∂y
( · , 0) is a bounded function on Ω , (32)∣∣∣∣∂f∂y (x, y) − ∂f

∂y
(x, 0)

∣∣∣∣ ≤ c1|y|r1 + c2|y|r2 (x ∈ Ω , y ∈ R), (33)

with non-negative constants c1, c2, and with

0 < r1 ≤ r2 <∞ if n = 2, 0 < r1 ≤ r2 ≤ 4
n− 2

if n ≥ 3. (34)

(A “small” r1 will make condition (33) weak near y = 0, and a “large” r2 will make
it weak for |y| → ∞.)

Lemma 2. Let f satisfy (31)–(33), besides the continuity of ∂f/∂y. Then
G given by (30) is well-defined and Fréchet-differentiable, with derivative G′(u) ∈
B(H1

0 (Ω),H−1(Ω)) (for u ∈ H1
0 (Ω)) given by

(G′(u)[v])[ϕ] =
∫
Ω

∂f

∂y
( · , u)vϕ dx (v, ϕ ∈ H1

0 (Ω)). (35)
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The proof of Lemma 2 is rather technical, and therefore omitted here.
According to (23) and (35), we have

(F ′(u)[ϕ])[ψ] =
∫
Ω

[
∇ϕ · ∇ψ +

∂f

∂y
( · , u)ϕψ

]
dx

= (F ′(u)[ψ])[ϕ] (u, ϕ, ψ ∈ H1
0 (Ω)) (36)

for the operator F defined in (29), which in particular implies condition (13) (for
any ω ∈ H1

0 (Ω); note (6)), in the setting (21), (29).

Remark 2. If the domain Ω is bounded, several simplifications and exten-
sions are possible:
a) The range σ > 0 for the parameter in (22) can be extended to σ ≥ 0.
b) Condition (33) can be simplified to

∣∣∣∣∂f∂y (x, y)
∣∣∣∣ ≤ c̃1 + c̃2|y|r (x ∈ Ω , y ∈ R) (37)

for some r in the range (34). Condition (32) is satisfied automatically and
can therefore be omitted.

c) In the case n = 2, the power-growth condition (33) (or (37)) is too restrictive
(for bounded domains). Instead, exponential growth can be allowed, based on
the Trudinger–Moser inequality [21, Theorem 1 and the first part of its proof]
which states that

1
meas(Ω)

∫
Ω

exp
[(

u(x)
c‖u‖H1

0

)2]
dx ≤ 1 +

1
4πc2 − 1

(u ∈ H1
0 (Ω)) (38)

for each c > (4π)−
1
2 . In [32], we showed that, e.g., in the case f(x, y) = −λey,

the Fréchet differentiability (and other properties) of the mapping G defined in
(30) can easily be derived from (38); see also the second example in Section 4.

We comment now on the computation of an approximate solution ω, and of
the terms δ, K, and g satisfying (7)–(10), needed for the application of Theorem 1,
in the setting (21), (29).

3.1. Computation of ω
By (21), ω needs to be in X = H1

0 (Ω). In the finite element context, this
allows, for example, the “usual” linear (or quadratic) triangular elements. We are
furthermore allowed to use approximations ω of the form

ω =

{
ω0 on Ω0,

0 on Ω \ Ω0,
(39)

with Ω0 ⊂ Ω denoting some bounded subdomain (the “computational” domain),
and ω0 ∈ H1

0 (Ω0) some approximate solution of the differential equation (1) on Ω0,
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subject to Dirichlet boundary conditions on ∂Ω0. If Ω is bounded, one will usually
choose Ω0 := Ω .

For computing ω0, one may use a Newton iteration, together with e.g., a
Ritz–Galerkin or a collocation method, and some linear algebraic system solver,
which possibly incorporates multigrid methods. To start the Newton iteration, a
rough initial approximation is needed, which can e.g., be obtained by path-following
methods, or by use of the numerical mountain pass algorithm proposed in [7].

An important remark is that, no matter how ω is put up or which numerical
method is used, there is no need for any rigorous (i.e., error free) computation at
this stage, i.e., the whole variety of numerical methods is at hand.

We pose the additional condition of ω being bounded, which on one hand is
satisfied anyway for all practical numerical schemes, and on the other hand turns
out to be very useful in the following.

3.2. Defect bound δ

By (21) and (29), condition (7) for the defect bound δ now amounts to

‖−Δω + f( · , ω)‖H−1 ≤ δ. (40)

The best general way for obtaining δ seems to be the following. First we compute
an additional approximation ρ ∈ H(div,Ω) to ∇ω. (Here, H(div,Ω) denotes the
space of all vector-valued functions τ ∈ L2(Ω)n with weak derivative div τ in L2(Ω).
Hence, obviously H(div,Ω) ⊃ H1(Ω)n.) ρ can be computed e.g., by interpolation
(or some more general projection) of ∇ω in H(div,Ω), or in H1(Ω)n. It should
be noted that ρ comes “for free” as a part of the approximation, if mixed finite
elements are used to compute ω.

Furthermore, according to the arguments after Lemma 1, applied with p =
p′ = 2,

‖w‖H−1 ≤ C2‖w‖L2 for all w ∈ L2(Ω). (41)

Due to Lemma 1, C2 = (ρ∗ +σ)−
1
2 , with ρ∗ ∈ [0,∞) denoting the smallest point of

the spectrum of −Δ on H1
0 (Ω), is a valid embedding constant. By (24) and (41),

‖−Δω + f( · , ω)‖H−1 ≤ ‖div(−∇ω + ρ)‖H−1 + ‖−div ρ+ f( · , ω)‖H−1

≤ ‖∇ω − ρ‖L2 + C2‖−div ρ+ f( · , ω)‖L2 , (42)

which reduces the computation of a defect bound δ (satisfying (40)) to computing
bounds for two integrals. To accomplish this task, we now assume that ω is of the
form (39), and that also ρ is supported in the bounded subdomain Ω0.

In some cases the integrals can be calculated in closed form, by hand or by
computer algebra routines, for example if f is polynomial and ω, ρ are piecewise
polynomial (as they are if finite element methods have been used to compute them),
or if f(x, · ) is polynomial and f( · , y), ω, and ρ are trigonometric polynomial. The
resulting formulas have to be evaluated rigorously, to obtain true upper bounds for
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the integrals in (42). For this purpose, interval arithmetic [17, 34] must be used in
this evaluation, in order to take rounding errors into account.

If closed form integration is impossible, a quadrature formula should be applied,
possibly piecewise, to the integrals, again with evaluation in interval arithmetic. To
obtain true upper bounds for the integrals, we need in addition a remainder term
bound for the quadrature formula, which usually requires rough ‖ · ‖∞-bounds for
some higher derivatives of the integrand. Such rough bounds can be obtained, e.g.,
by subdividing Ω0 into (many) small boxes, and performing interval evaluations of
the needed higher derivatives over each of these boxes (which gives true supersets
of the function value ranges over each of the boxes, and thus, by union, over Ω0).

There is an alternative way to compute δ if ω is of the form (39), with ω0 ∈
H2(Ω0) ∩H1

0 (Ω0), and with Ω0 having a Lipschitz boundary. This situation
can arise, e.g., if Ω is the whole of R

n, and the “computational” domain Ω0 =
(−l1, l1)× · · · × (−ln, ln) is chosen as a “large” rectangle, whence ω0 can be put up,
e.g., as a finite Fourier series on Ω0.

Using partial integration on Ω0, we obtain now

‖−Δω + f( · , ω)‖H−1

≤ C2

[‖ − Δω0 + f( · , ω0)‖2
L2(Ω0)

+ ‖f( · , 0)‖2
L2(Ω\Ω0)

] 1
2 + Ctr

∥∥∥∥∂ω0

∂ν0

∥∥∥∥
L2(∂Ω0)

,

(43)

with Ctr denoting a constant for the trace embedding H1(Ω0) ↪→ L2(∂Ω0), and
∂ω0/∂ν0 the normal derivative on ∂Ω0. It can be shown that

Ctr =

⎡
⎣ 1
σ

⎛
⎝1

2

n∑
i=1

1
li

+

√√√√1
4

(
n∑

i=1

1
li

)2

+ nσ

⎞
⎠
⎤
⎦

1
2

(44)

is a valid embedding constant; see the appendix of [31] for a proof.

3.3. Bound K for L−1

According to (21), condition (8) now reads

‖u‖H1
0
≤ K‖L[u]‖H−1 for all u ∈ H1

0 (Ω), (45)

with L, defined in (6), now given by (note (29), (30))

L = −Δ + G′(ω) : H1
0 (Ω) → H−1(Ω).

Under the growth conditions (31)–(34), Lemma 2 (or (35)) shows that, more
concretely,

(L[ϕ])[ψ] =
∫
Ω

[
∇ϕ · ∇ψ +

∂f

∂y
( · , ω)ϕψ

]
dx (ϕ,ψ ∈ H1

0 (Ω)); (46)
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the same formula holds true also in the exponential case mentioned in Remark 2 c).
So we will assume from now on that L is given by (46).

Making use of the isomorphism Φ : H1
0 (Ω) → H−1(Ω) given by (11) or (25),

we obtain

‖L[u]‖H−1 = ‖Φ−1L[u]‖H1
0

(u ∈ H1
0 (Ω)).

Since moreover Φ−1L is 〈 · , · 〉H1
0
-symmetric by (46) and (13), and defined on the

whole Hilbert space H1
0 (Ω), and hence selfadjoint, we find that (45) holds for any

K ≥ [min{|λ| : λ is in the spectrum of Φ−1L}]−1, (47)

provided that the min is positive (which is clearly an unavoidable condition for
Φ−1L being invertible with bounded inverse). Thus, in order to compute K, we
need bounds for
i) the essential spectrum of Φ−1L (i.e., accumulation points of the spectrum,

and eigenvalues of infinite multiplicity),
ii) isolated eigenvalues of Φ−1L of finite multiplicity, more precisely those neigh-

boring 0.
ad i) If Ω is unbounded, we suppose again that ω is given in the form (39), with

some bounded Lipschitz domain Ω0 ⊂ Ω . If Ω is bounded, we may assume
the same, simply choosing Ω0 := Ω (and ω0 := ω).
Now define L0 : H1

0 (Ω) → H−1(Ω) by (46), but with (∂f/∂y)(x, ω(x)) re-
placed by (∂f/∂y)(x, 0). Using the Sobolev–Kondratchev–Rellich embedding
theorem [1], implying the compactness of the embedding H1(Ω0) ↪→ L2(Ω0),
we find that Φ−1L− Φ−1L0 : H1

0 (Ω) → H1
0 (Ω) is compact. Therefore, the

perturbation result given in [16, IV, Theorem 5.35] shows that the essential
spectra of Φ−1L and Φ−1L0 coincide. Thus, being left with the computation
of bounds for the essential spectrum of Φ−1L0, we can use e.g., Fourier trans-
form methods if Ω = R

n and (∂f/∂y)( · , 0) is constant, or Floquet theory if
(∂f/∂y)( · , 0) is periodic. Alternatively, if

∂f

∂y
(x, 0) ≥ c0 > −ρ∗ (x ∈ Ω), (48)

with ρ∗ ∈ [0,∞) denoting the minimal point of the spectrum of −Δ onH1
0 (Ω),

we obtain by straightforward estimates of the Rayleigh quotient that the (full)
spectrum of Φ−1L0, and thus in particular the essential spectrum, is bounded
from below by min{1, (c0 + ρ∗)/(σ + ρ∗)}.

ad ii) For computing bounds to eigenvalues of Φ−1L, we choose the parameter σ
in the H1

0 -product (22) such that

σ >
∂f

∂y
(x, ω(x)) (x ∈ Ω); (49)

thus, we have to assume that the right-hand side of (49) is bounded above.
Furthermore, we assume that the infimum s0 of the essential spectrum of
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Φ−1L is positive, which is true, e.g., if (48) holds. As a particular consequence
of (49) (and (25)) we obtain that s0 ≤ 1 and all eigenvalues of Φ−1L are less
than 1, and that, via the transformation κ = 1/(1−λ), the eigenvalue problem
Φ−1L[u] = λu is equivalent to

−Δu+ σu = κ

(
σ − ∂f

∂y
( · , ω)

)
u (50)

(to be understood as an equation in H−1(Ω)), which is furthermore equivalent
to the eigenvalue problem for the selfadjoint operatorR := (IH1

0 (Ω)−Φ−1L)−1.
Thus, defining the essential spectrum of problem (50) to be the one of R, we
find that it is bounded from below by 1/(1 − s0) if s0 < 1, and is empty if
s0 = 1. In particular, its infimum is larger than 1, since s0 > 0 by assumption.
Therefore, the eigenvalue enclosure methods mentioned briefly below (which
are applicable to eigenvalues below the essential spectrum; see [39]) can be
used to enclose the eigenvalue(s) of problem (50) neighboring 1 (if they exist),
whence by the transformation κ = 1/(1 − λ) we obtain enclosures for the
eigenvalue(s) of Φ−1L neighboring 0 (if they exist). Taking also s0 into ac-
count, we can now easily compute the desired constant K via (47). (Note that
K = s−1

0 can be chosen if no eigenvalues below the essential spectrum exist.)

The desired eigenvalue bounds for problem (50) can be obtained by computer-
assisted means of their own. For example, upper bounds to κ1, . . . , κN (with N ∈ N

given) are easily and efficiently computed by the Rayleigh–Ritz method [33]:
Let ϕ̃1, . . . , ϕ̃N ∈ H1

0 (Ω) denote linearly independent trial functions, for exam-
ple approximate eigenfunctions obtained by numerical means, and form the matrices

A1 := (〈ϕ̃i, ϕ̃j〉H1
0
)i,j=1,...,N , A0 :=

(∫
Ω

(
σ − ∂f

∂y
( · , ω)

)
ϕ̃iϕ̃j dx

)
i,j=1,...,N

.

Then, with Λ1 ≤ · · · ≤ ΛN denoting the eigenvalues of the matrix eigenvalue
problem

A1x = ΛA0x

(which can be enclosed by means of verifying numerical linear algebra; see [3]), the
Rayleigh–Ritz method gives

κi ≤ Λi for i = 1, . . . , N.

However, also lower eigenvalue bounds are needed, which constitute a more com-
plicated task than upper bounds. The most accurate method for this purpose has
been proposed by Lehmann [20], and improved by Goerisch concerning its range
of applicability [4]. Its numerical core is again (as in the Rayleigh–Ritz method)
a matrix eigenvalue problem, but the accompanying analysis is more involved. In
particular, in order to compute lower bounds to the first N eigenvalues, a rough
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lower bound to the (N + 1)-st eigenvalue must be known already. This a priori
information can usually be obtained via a homotopy method connecting a simple
“base problem” with known eigenvalues to the given eigenvalue problem, such that
all eigenvalues increase (index-wise) along the homotopy; see [30] or [6] for details
on this method, a detailed description of which would be beyond the scope of this
article. In fact, [6] contains the newest version of the homotopy method, where
only very small (2× 2 or even 1× 1) matrix eigenvalue problems need to be treated
rigorously in the course of the homotopy.

Finding a base problem for problem (50), and a suitable homotopy connecting
them, is often possible along the following lines. If Ω is a bounded rectangle (whence
the eigenvalues of −Δ on H1

0 (Ω) are known), we choose a constant lower bound c0
for (∂f/∂y)( · , ω) on Ω , and the coefficient homotopy

cs(x) := (1 − s)c0 + s
∂f

∂y
(x, ω(x)) (x ∈ Ω , 0 ≤ s ≤ 1).

Then, the family of eigenvalue problems

−Δu+ σu = κ(s)(σ − cs(x))u

connects the explicitly solvable constant-coefficient base problem (s = 0) to problem
(50) (s = 1), and the eigenvalues increase in s, since the Rayleigh quotient does,
by Poincaré’s min-max principle.

If Ω is bounded but no rectangle (or ball), we can first choose a rectangle Ω0

containing Ω , and a domain deformation homotopy between Ω0 and Ω , to enclose
the (first M) eigenvalues of −Δ on H1

0 (Ω), see e.g., [32]. Then, the above coefficient
homotopy is applied in a second step.

If Ω is unbounded, for example the whole of R
n, we choose a piecewise constant

lower bound c0 for (∂f/∂y)( · , ω) (because a constant lower bound would usually
lower the essential spectrum too much), and proceed as before. If, e.g., c0 is chosen
constant on (finitely many) spherical shells, the base problem can be solved using
polar coordinates and matched Bessel functions.

3.4. Local Lipschitz bound g for F ′

In the setting (21), (29), condition (9) now reads

∣∣∣∣
∫
Ω

[
∂f

∂y
(x, ω(x) + u(x)) − ∂f

∂y
(x, ω(x))

]
v(x)ϕ(x) dx

∣∣∣∣ ≤ g(‖u‖H1
0
)‖v‖H1

0
‖ϕ‖H1

0

(51)
for all u, v, ϕ ∈ H1

0 (Ω). Here, we have assumed that the Fréchet derivative of G
(defined in (30)) is given by (35), which is true, e.g., under the growth conditions
(31)–(34), but also in the exponential case (with n = 2 and Ω bounded) mentioned
in Remark 2 c). We will now concentrate on the case where (31)–(34) hold true.
For the exponential case, we refer to [32] and to the second example in Section 4.
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We start with a monotonically non-decreasing function g̃ : [0,∞) → [0,∞)
satisfying

∣∣∣∣∂f∂y (x, ω(x) + y) − ∂f

∂y
(x, ω(x))

∣∣∣∣ ≤ g̃(|y|) for all x ∈ Ω , y ∈ R, (52)

and g̃(t) → 0 as t → 0+. We require in addition that g̃
(
t

1
r

)
is a concave function

of t. Here, r := r2 is the (larger) exponent in (33).
In practice, g̃ can often be put up in the form

g̃(t) =
N∑

j=1

ajt
μj (0 ≤ t <∞),

where a1, . . . , aN > 0 and μ1, . . . , μN ∈ (0, r] are arranged in order to satisfy (52).
Now defining ψ(t) := g̃

(
t

1
r

)
, the left-hand side of (51) can be bounded by

(note (52))

∫
Ω

g̃(|u(x)|)|v(x)ϕ(x)| dx =
∫
Ω

ψ(|u(x)|r)|v(x)ϕ(x)| dx. (53)

Without loss of generality we may assume that vϕ does not vanish identically
(almost everywhere) on Ω (otherwise, (51) is trivial because the left-hand side is
zero). Since vϕ ∈ L1(Ω) and hence |v(x)ϕ(x)| dx induces a finite measure, and
since ψ is concave, Jensen’s inequality [2] shows that

∫
Ω
ψ(|u(x)|r)|v(x)ϕ(x)| dx∫

Ω
|v(x)ϕ(x)| dx ≤ ψ

(∫
Ω
|u(x)|r|v(x)ϕ(x)| dx∫

Ω
|v(x)ϕ(x)| dx

)
. (54)

Furthermore, for λ ∈ (0, 1] and t ∈ [0,∞), ψ(λt) = ψ(λt+ (1 − λ)0) ≥ λψ(t) +
(1−λ)ψ(0) = λψ(t), i.e., ψ(t) ≤ λ−1ψ(λt). By Cauchy–Schwarz and the embedding
H1

0 (Ω) ↪→ L2(Ω),

λ :=

∫
Ω
|v(x)ϕ(x)| dx

C2
2‖v‖H1

0
‖ϕ‖H1

0

∈ (0, 1],

whence the right-hand side of (54) is bounded by

C2
2‖v‖H1

0
‖ϕ‖H1

0∫
Ω
|v(x)ϕ(x)| dx · ψ

(∫
Ω
|u(x)|r|v(x)ϕ(x)| dx
C2

2‖v‖H1
0
‖ϕ‖H1

0

)
. (55)

According to (34), we can find some

q ∈ (1,∞) if n = 2, q ∈
[
n

2
,∞
)

if n ≥ 3, (56)



436 M. Plum

such that qr is in the range (27). Since (56) implies that also p := 2q/(q − 1) is
in the range (27), both the embeddings H1

0 (Ω) ↪→ Lqr(Ω) and H1
0 (Ω) ↪→ Lp(Ω)

are bounded. Furthermore, q−1 + p−1 + p−1 = 1, whence the generalized Hölder
inequality gives

∫
Ω

|u(x)|r|v(x)ϕ(x)| dx ≤ ‖u‖r
Lqr‖v‖Lp‖ϕ‖Lp ≤ Cr

qrC
2
p‖u‖r

H1
0
‖v‖H1

0
‖ϕ‖H1

0
.

Using this estimate in (55), and combining it with (54) and (53), we find that the
left-hand side of (51) is bounded by

C2
2‖v‖H1

0
‖ϕ‖H1

0
· ψ(Cr

qr(Cp/C2)2‖u‖r
H1

0

)
.

Since ψ(t) = g̃
(
t

1
r

)
, (51) therefore holds for

g(t) := C2
2 · g̃(Cqr(Cp/C2)

2
r t
)

(0 ≤ t <∞), (57)

which also satisfies (10) and is non-decreasing. Note that (upper bounds to) the
embedding constants can be computed using Lemma 1.

4. Examples

In our first example, we consider the problem of finding nontrivial solutions to

−Δu+ V (x)u− u2 = 0 on Ω := R
2, (58)

where V (x) = A + B sin(π(x1 + x2)) sin(π(x1 − x2)), with real parameters A and
B. The results presented here have been obtained in joint work with B. Breuer and
P.J. McKenna.

We are interested only in solutions which are symmetric with respect to re-
flection about both coordinate axes. Thus, we include these symmetries into all
function spaces used, and into the numerical approximation spaces.

We treated the particular case A = 6, B = 2. On a “computational” domain
Ω0 := (−l, l)×(−l, l), we computed an approximation ω0 ∈ H2(Ω0)∩H1

0 (Ω0) of the
differential equation in (58), with Dirichlet boundary conditions on ∂Ω0, as a finite
Fourier series with 80×80 trigonometric basis functions. For finding ω0, we started
with a nontrivial approximate solution for Emden’s equation (which is (58) with
A = B = 0) on Ω0, and performed a path following Newton method, deforming
(A,B) from (0, 0) into (6, 2).

In the single Newton steps, we used a collocation method with equidistant
collocation points. By increasing the sidelength of Ω0 in an additional path fol-
lowing, we found that the approximation ω0 remains “stable,” with rapidly de-
creasing normal derivative ∂ω0/∂ν0 (on ∂Ω0), as l increases; this gives rise to
some hope that a “good” approximation ω for problem (58) is obtained in the
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form (39). For l = 8, ‖∂ω0/∂ν0‖L2(∂Ω0) turned out to be small enough compared
with ‖−Δω0+V ω0−ω2

0‖L2(Ω0), and we computed a defect bound δ (satisfying (40))
via (43) as

δ = 0.7102 · 10−2; (59)

note that the embedding constants C2 = σ− 1
2 , and Ctr = σ− 1

2 [l−1 +
√
l−2 + 2σ ]

1
2

can be used; compare (44). Moreover, (49) requires σ > A+B = 8 (since ω turns
out to be non-negative). Choosing σ := 9, we obtain C2 ≤ 0.3334 and Ctr ≤ 0.6968.

Since condition (48) holds for c0 = A − B = 4 (and ρ∗ = 0), the arguments
following (48) give the lower bound s0 := 4/9 ≥ 0.4444 for the essential spectrum
of Φ−1L, and hence the lower bound 1/(1− s0) = 1.8 for the essential spectrum of
problem (50).

By the eigenvalue enclosure methods mentioned at the end of Subsection 3.3,
we were able to compute the bounds

κ1 ≤ 0.5293, κ2 ≥ 1.1769

for the first two eigenvalues of problem (50), which by (47) leads to the constant

K = 6.653 (60)

satisfying (45).
For computing g satisfying (9) or (51), we first note that (52) holds for

g̃(t) := 2t,

and (33) for r1 = r2 = 1, whence the additional concavity condition is satisfied.
Choosing q := 2 we obtain qr = 2 and p = 4 in the arguments following (56), whence
(57) gives

g(t) = 2C2C
2
4 t =

1
9
t (61)

since 2C2C
2
4 = σ−1 by Lemma 1.

Using (59)–(61), we find that (14) and (15) hold for α = 0.04811, whence
Theorem 1 implies the existence of a solution u∗ ∈ H1

0 (R2) = H1(R2) to problem
(58) such that

‖u∗ − ω‖H1
0
≤ 0.04811. (62)

It is easy to check on the basis of the numerical data that ‖ω‖H1
0
> 0.04811, whence

(62) shows in particular that u∗ is non-trivial.
We wish to remark that it would be of great interest to achieve such results

also for cases where 0 < A < B in the potential V , because V is then no longer
non-negative, which excludes an important class of purely analytical approaches
to prove existence of a nontrivial solution. So far, we were not successful with
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such cases due to difficulties in the homotopy method which has to be used for
our computer-assisted eigenvalue enclosures (see the brief remarks at the end of
Subsection 3.3); note that these difficulties occur on a rather “technical” level. We
were however able to compute an (apparently) “good” approximation ω, e.g., in
the case A = 6, B = 26 (using l = 8 again).

The following Fig. 1 shows plots of ω for the successful case A = 6, B = 2, and
for the non-successful case A = 6, B = 26.

Fig. 1. Example (58); A = 6, B = 2 (left) and A = 6, B = 26 (right).

In our second example, we consider the Gelfand equation

−Δu = λeu on Ω , u = 0 on ∂Ω , (63)

depending on a real parameter λ. We are interested in parameter values λ ≥ 0
only; negative values of λ are less important. The results reported on here are joint
work with C. Wieners and published in [32].

It is known that, on “simple” domains Ω like the unit square or the unit ball,
problem (63) has a “nose”-shaped branch (λ, u) of solutions, starting in (λ = 0,
u ≡ 0), going up to some maximal value of λ where the branch has a turning point,
and then returning to λ = 0 but with ‖u‖∞ tending to ∞ as λ → 0. Moreover,
there are no other solutions (on these “simple” domains).

Here (and in [32]) we are concerned with a special non-convex domain Ω ⊂
R

2 plotted in Fig. 2. (For an exact quantitative definition of Ω , see [32].) Ω is
symmetric with respect to the x1-axis but not quite symmetric with respect to the
x2-axis; it is a bit shorter on the left-hand side than on the right. Starting at
(λ = 0, u ≡ 0), and performing numerical branch following, we obtained the usual
“nose”-shaped branch (of approximate solutions) plotted in Fig. 3; the plot consists
in fact of an interpolation of many grid points.

Obviously, the approximations develop substantial unsymmetries along the
branch. In order to find new (approximate) solutions, we reflected such an un-
symmetric approximation about the x2-axis, re-arranged the boundary values
(which is necessary but easily possible due to the slight unsymmetry of Ω), and
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Fig. 2. Domain Ω for example (63).

Fig. 3. Main branch of (approximate)

solutions for problem (63).

Fig. 4. Main and new branch for prob-

lem (63).

re-started the Newton iteration. Fortunately, it “converged” to a new approxi-
mation, and by branch following we could detect a new branch of approximate
solutions plotted (together with the “old” one) in Fig. 4; in order to obtain a nicely
visible separation of the two branches, we introduced the difference d(u) between
the two peak values of each approximation as a third dimension in the bifurcation
diagram.

In oder to prove the existence of a new solution branch, we performed the
computer-assisted method described above for the selected value λ = 15/32. Here,
our “new” approximation ω was computed with 65536 quadratic triangular finite
elements, corresponding to 132225 unknowns.

For calculating a defect bound δ (satisfying (40)), we used essentially (up
to some technical refinements) the estimate (42), where the approximation ρ ∈
H(div,Ω) to ∇ω was computed by linear Raviart–Thomas elements. The result is

δ = 0.8979 · 10−2. (64)

Since (∂f/∂y)(x, y) = −λey < 0 here, condition (49) is satisfied for σ = 0; indeed,
this choice is allowed because Ω is bounded (see Remark 2 a)). We computed eigen-
value bounds for problem (50) by the Rayleigh–Ritz and the Lehmann–Goerisch
method, exploiting symmetry properties, with the final result that (45) holds for

K = 3.126; (65)

note that problem (50) has no essential spectrum here since Ω is bounded.
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For proving that G defined in (30) is Fréchet differentiable and for computing
a function g satisfying (9) or (51), we make essential use of the Trudinger–Moser
inequality (38) (note that Lemma 2 does not apply here due to the exponential
nonlinearity). For each u ∈ H1

0 (Ω) \ {0},

4|u(x)| = 2 · 2‖u‖H1
0
· |u(x)|‖u‖H1

0

≤ 4‖u‖2
H1

0
+
( |u(x)|
‖u‖H1

0

)2

,

whence (38) (with c := 1) gives, since [4π/(4π − 1)]1/4 ≤ 1.03,

‖exp(|u|)‖L4 ≤ 1.03meas(Ω)
1
4 exp

(‖u‖2
H1

0

)
. (66)

For all u0, u, v, ϕ ∈ H1
0 (Ω), the generalized Hölder inequality and (66) imply∫

Ω

|eu0+u − eu0 | |v| |ϕ| dx ≤
∫
Ω

eu0e|u||u| |v| |ϕ| dx

≤ ‖eu0‖L4‖e|u|‖L4‖u‖L6‖v‖L6‖ϕ‖L6

≤ ‖eu0‖L4 · 1.03meas(Ω)
1
4 exp

(‖u‖2
H1

0

)
C3

6‖u‖H1
0
‖v‖H1

0
‖ϕ‖H1

0
. (67)

By an argument similar to the abstract estimate (18), (19), we obtain the desired
Fréchet differentiability from (67). Furthermore, for u0 := ω, (67) shows that (51)
holds for

g(t) = γtet2 , where γ := ‖λeω‖L4 · 1.03meas(Ω)
1
4C3

6 , (68)

and thus G(t) =
∫ t

0
g(s) ds = 1

2γ(exp(t2) − 1) ≤ 1
2γt

2 exp(t2). From the numerical
data, Lemma 1, and the result ρ∗ ≥ 1.4399 (obtained by eigenvalue bounds), we
obtain that γ ≤ 5.62. Together with (64), (65), (68), we obtain that (14) and
(15) hold for α := 0.05066, whence Theorem 1 gives the existence of a solution
u∗ ∈ H1

0 (Ω) of problem (63) (with λ = 15/32) such that

‖u∗ − ω‖H1
0
≤ 0.05066. (69)

(It should be remarked that we could do without condition (15) being satisfied,
since Ω is bounded and hence we could use compactness properties, and Schauder’s
instead of Banach’s fixed point theorem.)

In the same way, we also obtained existence results with H1
0 -error bounds

for two solutions of (63) on the “old” (nose-shaped) branch, again for λ = 15/32.
From the numerical data, and all three error bounds, we can easily deduce that the
three solutions are pairwise different, whence u∗ established above lies on a new in-
dependent solution branch; the implicit function theorem (plus some perturbation
type argument showing that −Δ−λeu∗

: H1
0 (Ω) → H−1(Ω) is one-to-one and onto)

shows that indeed a solution branch through (λ = 15/32, u∗) exists.
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