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We have made the implementation of symbolic computation programs which can derive
identity relations for arbitrarily given mathematical expressions. Simulations of relatively
easy several concrete examples have been shown to run within practical speeds.
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1. Introduction

The uses of rapidly developing symbolic computation software such as Math-
ematica [13], Maple [4] and Risa/Asir [11, 12] in the fields of sciences, technologies
and educations are becoming very useful and in many cases indispensable. Nat-
urally in applied mathematics fields this tendency is especially strong. By the
present-day symbolic computation software we can perform differentiations and
integrations relatively easily for the given mathematical expressions. For the illus-
trations of the following arguments, let us take a simple and easy example by the
so-called Hermite polynomial Hn(x). The definition and their low-order concrete
expressions are given by [1, 5]
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H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x, . . . .
(2)

Since this function is well-known, their differential equation and recurrence relations
(hereafter abbreviated as r.r.) can be obtained from the standard literature as [1, 5][(
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Hn(x) = 0, (3)

Hn+1(x) − xHn(x) + nHn−1(x) = 0. (4)

Several low order expressions of equation (4) can be written explicitly as

H2(x) − xH1(x) + 1H0(x) = 0, H3(x) − xH2(x) + 2H1(x) = 0,

H4(x) − xH3(x) + 3H2(x) = 0, H5(x) − xH4(x) + 4H3(x) = 0.
(5)
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As stated above it is easy to verify that equations (5) actually hold by the present-
day symbolic computation software.

In the research activities very different situation arises. When a new set of re-
search materials are given, we want to discover the relations so far unknown among
them. We usually do trial and error searches for the unknown relationships based
on one theoretical expectation or another. In these searches, it will be nice to have
the help of rapidly developing power of symbolic computation software. In this
paper we consider the creation of the symbolic computation programs which help
above searches.

More precisely our aim can be explained in the following steps from (a) to (e).
(a) We assume that we have explicitly-known mathematical expressions given

by the various forms such as the orthogonal polynomials, special functions, their
determinants, pfaffians. . . and so forth.

(b) We want to find the new unknown identity relations such as the differen-
tial relations, r.r. and so forth satisfied by the mathematical expressions prepared
in (a).

(c) In the process (b), we assume that we can obtain certain basic knowledge
about special/low-order relations, but not general/higher-order relations.

(d) Based on the hints suggested by the special/low-order relations, we per-
form the trial and error searches for the general/higher-order relations.

(e) In order to help the searching processes in (d), we consider the creation
(and the use) of the symbolic computation programs which give output of identity
relations (which mathematically correspond to the ones such as differential rela-
tions, r.r. and so forth) for arbitrarily chosen input of mathematical expressions.

Now we explain by the illustrative examples. Let us assume that the quantity
Hn(x) can be given explicitly by the definition (1), but the differential equation such
as equation (3) and r.r. such as equation (4) are unknown and we want to discover
them. We like to create the program which helps this process of discovering the
relations such as equations (3) and (4). Concretely, we are supposed to type the
input commands such as

(comp. 1.1)
H=newvect(20)$ Name=newvect(20)$

for(N=0;N<15;N++){H[N]=naka_H(N,x)$ Name[N]="H("+rtostr(N)+",x)"$}

cputime(1)$

for(N=1;N<4;N++){naka_FinderOfIdentityRelation([H[N+2],H[N+1],H[N]],

[Name[N+2],Name[N+1],Name[N]])$}

cputime(0)$

where naka_H(N,x) stands for the program to create Hermite polynomial and
cputime(1,0) is the command for measuring cpu-time consumed for the calcu-
lation. To such input we want to have the computer program which returns the
very direct output such as
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(comp. 1.2)
### YES Relation Exists! ###

(-1)*(H(3,x))+(x)*(H(2,x))+(-2)*(H(1,x))=0.

### YES Relation Exists! ###

(-1)*(H(4,x))+(x)*(H(3,x))+(-3)*(H(2,x))=0.

### YES Relation Exists! ###

(-1)*(H(5,x))+(x)*(H(4,x))+(-4)*(H(3,x))=0.

and so forth where H(n,x) stands for Hn(x). In the later section, slightly modified
commands of (comp. 1.1) written as

(comp. 1.3)
P1=naka_H(N+2,x)$ P2=naka_H(N+1,x)$ P3=naka_H(N,x)$

Name1="H("+rtostr(N+2)+",x)"$ Name2="H("+rtostr(N+1)+",x)"$

Name3="H("+rtostr(N)+",x)"$ cputime(1)$

naka_FinderOfIdentityRelation([P1,P2,P3],[Name1,Name2,Name3])$

cputime(0)$

with varying N values will be used to measure size-effect of calculation time.
Throughout the paper, the term ‘list’ denotes the programming data given by
square bracket, comma, and elements such as [a,b,c]. Note that although the
input material of above examples are mathematically linear expressions in Hn(x),
they can be chosen as the nonlinear expressions with respect to (hereafter abbrevi-
ated as w.r.t.) Hn(x) as will be shown later.

In the following we will show the basic scheme and the explanations of the
concrete programming and the commands. Once the basic strategy is established
and the concrete implementation is made in one software, implementations in other
software can be expected to be basically similar. At present we have created soft-
ware for Risa/Asir and Maple. We present the concrete programming explanations
by the example of Risa/Asir. (Maple case is completely parallel.) As to the nam-
ing of the commands, we follow the proposed rule [12] such that every command
begins with the fixed prefix, in our case for example naka_, which ensures to avoid
collisions with any commands already existing in the software.

2. Basic Features of the Algorithm

In this section we will consider rough overall algorithmic scheme of the calcu-
lations. For the present problem we need the following steps (I-A) to (I-F).

(I-A) Creation of command to solve the input data identically as the prepa-
ration.

Since we consider the problem of deriving the identity relations, first of all, we
must tackle with the problem of identically solving an arbitrarily given expression.
Needless to say, we should distinguish the difference between solving the expression
and ‘identically’ solving the expression. For example as to the expression

ax2 − (b− 2)x− cx2 = 0, (6)



318 A. Nakamura

solving it w.r.t. x in the ordinary sense gives solution x = 0, (b − 2)/(a − c) while
‘identically’ solving it w.r.t. x gives different solution a = c, b = 2. Clearly our needs
lie in the ‘identically’ solving the expressions. The command to be created should
have input arguments consisting of input identity data and the set of independent
variables data. The input data should include both independent variables and
unknowns. To solve ‘identically’ means that the values of the unknowns included
in the input should be determined such that every order of coefficients w.r.t. the
independent variables should vanish.

(I-B) Gathering the independent variables from the given initial set of ex-
pressions.

Let us denote the given initial set of mathematical quantities (= input data) as
Pi = Pi(x1, x2, . . . ) for i = 1, 2, . . . , N ′ where x1, x2, . . . are independent variables.
This Pi corresponds to Hi(x) of our illustrative example in the previous section.
We extract all the independent variables x1, x2, . . . from the initial data set of Pi’s
and provide them in a list form.

(I-C) Creation of the trial function.
Let the trial function T be the linear combination of Pi’s defined by

T ≡ T (x1, x2, . . . ) ≡
N ′∑
i=1

C
(Mi)
i (x1, x2, . . . )Pi(x1, x2, . . . ). (7)

We assume that the coefficients C(Mi)
i (x1, x2, . . . )’s are the Mi-th order polynomials

w.r.t. the independent variables gathered in (I-B) and also include the program-
induced unknowns which we denote by the name coeijk···. They can be written as

C
(Mi)
i = C

(Mi)
i (x1, x2, . . . ) ≡ coei00··· +(coei10··· x1 + coei01··· x2 + · · · ) + · · · ,

=
Mi∑cond

a1=0

· · ·
Mi∑cond

aN=0

coeia1a2···aN
(x1)a1(x2)a2 · · · (xN )aN ,

(8)

∑cond ≡ summation under condition (a1 + a2 + · · · + aN ≤Mi). (9)

(I-D) ‘Identically’ solving the trial function w.r.t. the set of independent
variables.

By using the command prepared in (I-A), we ‘identically’ solve the trial
function

T = 0, (10)

w.r.t. the independent variables. Namely we obtain the solutions for the program-
induced unknowns coeia1a2···aN

’s.
(I-E) Simplifying all C(Mi)

i ’s by substituting the solutions of coeia1a2···aN
’s

given in (I-D).
(I-F) Erasing the common multiplication factors from C

(Mi)
i ’s.

From the structure of equations (7) and (10) it is obvious that if C(Mi)
i ’s are

solutions then C
(Mi)
i ’s multiplied by any polynomial or numeric common factors
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can again be the solutions and vice versa. Namely the common multiplication
factors have no effect on the final results. Therefore we perform the erasing of
these unnecessary common factors from C

(Mi)
i ’s and obtain the simplest identity

expression. Finally we display the resultant expression.

3. Details of the Algorithmic Scheme (I-A) to (I-F)

In this section we consider more details of (I-A) to (I-F).

Details of (I-A)
We will name the ‘identically’ solving command as naka_SolverOfIdentity(

Identity00,IndependentVariablesList00) which determines the unknowns in-
cluded in Identity00 such that Identity00 = 0 holds identically w.r.t. the inde-
pendent variables given by IndependentVariablesList00. In order to create this
command we need the following steps.

(I-A-1) We extract all the variables from the input data Identity00. This
gives us all variables set which is the set of independent variables plus unknown
variables.

(I-A-2) From above all variables set, we kick out independent variables and
obtain the unknown variables set. From this we make a list of unknown variables.

(I-A-3) We extract coefficients of all orders w.r.t. all independent variables
from Identity00.

(I-A-4) We determine the values of unknowns such that the coefficients of all
orders w.r.t. independent variables obtained in (I-A-3) vanish.
Now we will check (I-A-1) to (I-A-4). The process (I-A-1) can be done by
Risa/Asir command ‘vars’. (Maple command ‘indets’ plays the similar role.) The
process (I-A-2) can be done relatively easily for example by creating the command
working such as naka_SetSubtract([a,b,x,y],[x,y])=[a,b]. As to (I-A-3) we
note that Risa/Asir command ‘coef’ picks up the coefficient of the polynomial
of given single order w.r.t. single independent variable. By using this we can
make command which provides coefficients of all orders w.r.t. one independent
variable named as naka CoefficientsOfAllOrdersWithRespectToOneVariable(

Identity00,OneVariable00). By using this command we can make the com-
mand which provides coefficients of all orders w.r.t. all independent variables named
as naka CoefficientsOfAllOrdersWithRespectToAllVariables(Identity00,

VariablesList00). Next we consider (I-A-4). We consider the case where un-
knowns can be solved in the linear framework. (Note that here solving means
solving in the ordinary sense and not in the ‘identical’ sense.) Due to the simplicity
of the linearity we can create the command which gives the values of unknowns
which make the linear quantities vanish. The illustrative example of this com-
mand can be seen by naka SolverOfLinearMultiComponentsByMultiVariables(

[a*y-c-2,7*x-14],[x,y])=[[a*y-c-2,7*x-14],[0,0],[x,y],[2,(c+2)/(a)],

YES SolutionExists]. By using these commands, it is now easy to create
the command of ‘identity’-solver. Its operational example can be seen by
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naka SolverOfIdentity((a-c)*x^2+(b-d)*x*y+(a-5)*y,[x,y])=[[a,b,c,d],

[5,d,5,d],[x,y],YES SolutionExists]. Here in the output list, the first and
second elements correspond respectively to the unknowns and their solutions.

Details of (I-B)
Again, Risa/Asir command ‘vars’ gives us all the variables of not only any

given polynomial but also a set of polynomials. (Maple command ‘indets’ plays the
similar role.) So use of this command is sufficient for (I-B).

Details of (I-C)
Now we must consider the command to create the polynomial C(Mi)

i (x1, x2, . . . )
in equation (8). This should include all lower-order monomials up to Mi-th order
w.r.t. the given set of independent variables and every monomial term should con-
tain every different unknown variable. The input data to this command should
contain the name of unknown, a list containing a set of independent variables and
the order number Mi.

We note that although the sum in equation (8) suggests program coding of
N -tuple sum loops, usually programming language does not support unconditional
straight-forward loops of such kind when the value of N is not known before-hand.
Thus in order to realize automatic programming rigorously, we must avoid this
N -tuple sum loops. It happens that by using the scheme of p-nary number we
can change the present N -tuple sum loops to the single sum loop as shown in the
following. We note that the total number of terms in equation (8) is less than (Mi+
1)N since each exponent aj at most takes the value 0, 1, . . . ,Mi for j = 1, . . . , N and
some terms are to be dropped by the condition (9). Thus it is sufficient to consider
single integer index, say k, which takes the values as k = 0, 1, 2, . . . , (Mi+1)N . For
each values of k we can derive its (Mi + 1)-nary representation by the formula

k = iN ∗(Mi+1)N−1+· · ·+i2∗(Mi+1)1+i1∗(Mi+1)0, (0 ≤ i1, i2, . . . , iN ≤Mi).
(11)

We express this (Mi + 1)-nary number by the list

k = [i1, i2, . . . , iN ]. (12)

If we obtain data given by equation (12), then by using it we can make un-
known variable having name for example coei1i2...iN and monomial of the form
(x1)i1(x2)i2 · · · (xN )iN . By summing up these monomials w.r.t. the single sum in-
dex k from 0 to (Mi + 1)N , (with sifting them by the condition (9)) we can create
polynomial given by equation (8). By this way we can change the multiple sum
loops to the single sum loop. This ensures the programming workable for the cases
of fully arbitrary number of independent variables and polynomial order Mi. We
have created the command as stated above. As the illustrative example, we can
check that for example the coefficient C(2)

1 can be produced by
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(comp. 2)
naka_MakerOfPolynomialWithUnknownCoefficients("coe1",[x1,x2],2)

=coe120*x1^2+(coe111*x2+coe110)*x1+coe102*x2^2+coe101*x2+coe100,

where coe120, . . . , coe100 are programming variables for coe120, . . . , coe100. This
finishes the creation of C(Mi)

i .
Next we assume that the input data Pi’s and the maximum orders Mi’s

in equation (7) are given respectively by the list form as IdentityDataList00 =
[P1, P2, . . . , PN ′ ] and MaxOrderList00=[M1,M2, . . . ,MN ′ ]. We first collect in-
dependent variables from the Pi-list and then create C

(Mi)
i by the command

in (comp. 2) and sum up the product of C(Mi)
i Pi and easily obtain the trial

function T given by equation (7). The command working for this is named as
naka_MakerOfTrialFunction(IdentityDataList00,MaxOrderList00). The out-
put of this command is chosen as output = [TrialFunction, [C1, C2, . . . , CN ′ ],
[P1, P2, . . . , PN ′ ]].

Details of (I-D) and (I-E)
We simply use the command obtained in (I-A) and identically solve trial func-

tion equation (10). From the resulting output of naka_SolverOfIdentity(), we
obtain the set of unknowns and their solutions. By substituting thus-obtained
solutions of the unknowns in the quantity [C1, C2, . . . , CN ], we can do step (I-E).

Details of (I-F)
We consider the following steps.
(I-F-1) We erase common polynomial factors from the input data set.
(I-F-2) We erase common numeric factors from the input data set.

As to (I-F-1), for a given data set, we derive the least common multiplier of the
denominators and greatest common divisor of the numerators and then multiply
them by the former and divide them by the latter. As to (I-F-2), for a given data
set, we first pick out all orders of coefficients w.r.t. all independent variables. Then
we pick out all numeric constants from them. For this set, we perform similar
procedures as in (I-F-1).

By using all of above procedures we now create the command
naka FinderOfIdentityRelation00(IdentityDataList00,NameList00,MaxOrderList00).
By using this command we can create final commands which do final search-
ing loop to obtain the final identity relation. As to the final searching loop we
consider the two types. In the first type (= default type), we perform the loop
as MaxOrderList00= [M1,M2,M3, . . . ] = [0, 0, 0, . . . ], [1, 1, 1, . . . ], [2, 2, 2, . . . ] and
stop the loop when identity has the solution. This default command is named
as naka_FinderOfIdentityRelation(IdentityDataList00,NameList00). In the
second type we perform the loop of command naka FinderOfIdentityRelation00(

IdentityDataList00,NameList00,MaxOrderList00) as MaxOrderList00 =[0, 0,
0, . . . ], [1, 1, 1, . . . ], [2, 2, 2, . . . ] under the extra condition such that each component
of MaxOrderList00 does not exceed the corresponding value of MaxOrderList11 =
[M1,M2,M3, . . . ]. For example when MaxOrderList11 = [1, 0, 3, . . . ] the loop goes
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like MaxOrderList00 = [0, 0, 0, . . . ], [1, 0, 1, . . . ], [1, 0, 2, . . . ], [1, 0, 3, . . . ] and so forth
and stops when identity has the solution. The command of the second type is named
as naka FinderOfIdentityRelationWithOrderConditions(IdentityDataList00,

NameList00,MaxOrderList11).

4. Simulations for Nonlinear Input Expressions

In this section we report the results of the simulations. The examples given
in Section 1 have been obtained easily. We will consider more heavy (advanced)
calculations. Recently the calculations of highly nonlinear systems attract research
interests such as in the so-called nonlinear completely integrable systems [3, 10].
In the field, the various different kinds of solutions of the Toda equation have been
investigated [6, 7, 8, 9]. The 2 + 1-dimensional Toda equation

L+L− log Vn(x, y)−Vn+1(x, y)+2Vn(x, y)−Vn−1(x, y) = 0, L± ≡ ∂

∂x
± ∂

∂y
, (13)

can be reduced by the dependent variable transformation, Vn(x, y) = V
(0)
n (x, y) +

L+L− log fn(x, y), to the so-called bilinear Toda equation

fn(L+L−fn) − (L+fn)(L−fn) − V (0)Toda
n

(
C(0)Toda(n)fn+1fn−1 − f2

n

)
= 0, (14)

where V
(0)Toda
n (x, y), C(0)Toda(n) respectively represent the non-trivial simple

solution of the Toda equation and the integration constant satisfying
L+L− logC(0)Toda(n) = 0. We consider the simulations of the present program
to the problem of finding the identity relations of the form (14). We assume that
the quantity fn can be given by certain matrix determinants,

fn = |Sn,ij |1≤i,j≤N , (15)

where Sn,ij is written by some kind of special function. As suggested from equa-
tion (14) we put

P1 = fn(L+L−fn) − (L+fn)(L−fn), P2 = fn+1fn−1, P3 = f2
n, (16)

and try to find identity relations among Pi’s for the concrete data of fn. First
we investigate the case where Sn,ij is given by the Hermite polynomial as Sn,ij =
Hn+i+j−2(kx) with k being arbitrary constant. We consider 5 by 5 matrix case in
equation (15) and the search for n = 1, . . . , 4. We have performed the program

(comp. 3.1)
F=newvect(20)$

for(N=0;N<7;N++){ F[N]=naka_fnNxN_H(5,N,[0,1,2,3,4],k*x)$}

cputime(1)$

for(N=1;N<=4;N++){Fx=diff(F[N],x)$ Fxx=diff(Fx,x)$
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P1=F[N]*Fxx-Fx^2$ P2=F[N+1]*F[N-1]$ P3=F[N]^2$

printList([" ### Hermite 5x5 det relation for N=",N," ===>"])$

naka_FinderOfIdentityRelation([P1,P2,P3],["P1","P2","P3"])$ }

cputime(0)$

where naka_fnNxN_H() part stands for the program to create input of 5x5 deter-
minant consisting of Hermite polynomials. The result was obtained as

(comp. 3.2)
### Hermite 5x5 det relation for N=1 ===>

### YES Relation Exists! ###

(1)*(P1)+(-k^2)*(P2)+(k^2)*(P3)=0.

### Hermite 5x5 det relation for N=2 ===>

### YES Relation Exists! ###

(1)*(P1)+(-2*k^2)*(P2)+(2*k^2)*(P3)=0.

### Hermite 5x5 det relation for N=3 ===>

### YES Relation Exists! ###

(1)*(P1)+(-3*k^2)*(P2)+(3*k^2)*(P3)=0.

### Hermite 5x5 det relation for N=4 ===>

### YES Relation Exists! ###

(1)*(P1)+(-4*k^2)*(P2)+(4*k^2)*(P3)=0.

This gives us the result that the identity relation

P1 − nk2(P2 − P3) = 0, (17)

holds at least for 1 ≤ n ≤ 4. By the simple direct calculation we can check that
V

(0)Toda
n = nk2 is the solution of the Toda equation (13). Thus this gives us the

explicit solutions of the Toda equation at least for 1 ≤ n ≤ 4. Once we obtain
such a relation then we can proceed to the next stage of research activities such as
proving it analytically for all n which was done by the present author in the paper
[6]. In the later section, slightly modified commands of (comp. 3.1) written as

(comp. 3.3)
Fm=naka_fnNxN_H(5,N-1,[0,1,2,3,4],k*x)$

F0=naka_fnNxN_H(5,N ,[0,1,2,3,4],k*x)$

Fp=naka_fnNxN_H(5,N+1,[0,1,2,3,4],k*x)$ Fx=diff(F0,x)$

Fxx=diff(Fx,x)$ P1=F0*Fxx-Fx^2$ P2=Fp*Fm$ P3=F0^2$

printList([" ### Hermite 5x5 det relation for N=",N," ===>"])$

cputime(1)$

naka_FinderOfIdentityRelation([P1,P2,P3],["P1","P2","P3"])$

cputime(0)$

with varying N values will be used to measure size-effect of calculation time.
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Next we consider the Hyper Geometric Function (hereafter abbreviated as
HGF) with two variables F2(a, b, b′, c, c′, x, y) [2, 7]. We make the choice of Sn,ij =
F2(ai, n + j − bc, b

′
i, c, c

′
i, x, y) where ai, bc, b′i, c, c

′
i are constants. The input data

Pi’s are selected as

P1 = fnfn,xx − f2
n,x, P2 = fnfn,xy − fn,xfn,y, P3 = fnfn,x,

P4 = fn+1fn−1, P5 = f2
n,

(18)

where x, y in the subscripts denote partial differentiations w.r.t. x, y such as fn,x =
(∂/∂x)fn. We choose 2 by 2 matrix case in equation (15) and consider the search
for n = 2, 3, 4. We have performed the program

(comp. 4.1)
F=newvect(20)$

for(N=1;N<10;N=N+1){

F[N]=naka_fnNxN_F2(Size0,N,AiList,Bc,BDiList,C,CDiList,x,y)$}

cputime(1)$

for(N=2;N<5;N=N+1){Fx=diff(F[N],x)$ Fxx=diff(Fx,x)$ Fy=diff(F[N],y)$

Fyy=diff(Fy,y)$ Fxy=diff(Fx,y)$ P1=F[N]*Fxx-Fx^2$

P2=F[N]*Fxy-Fx*Fy$ P3=F[N]*Fx$ P4=F[N+1]*F[N-1]$ P5=F[N]^2$

printList(["### HGF_F2 2x2 det relation for N=",N," ===>"])$

naka_FinderOfIdentityRelation([P1,P2,P3,P4,P5],

["P1","P2","P3","P4","P5"])$}

cputime(0)$

where naka_fnNxN_F2() part stands for the program to create input of 2 by 2
determinant consisting of HGF F2. The result was obtained as

(comp. 4.2)
### HGF_F2 2x2 det relation for N=2 ===>

### YES Relation Exists! ###

(x^3-x^2)*(P1)+(y*x^2)*(P2)+(x^2)*(P3)+(21)*(P4)+(-22)*(P5)=0.

### HGF_F2 2x2 det relation for N=3 ===>

### YES Relation Exists! ###

(x^3-x^2)*(P1)+(y*x^2)*(P2)+(x^2)*(P3)+(12)*(P4)+(-13)*(P5)=0.

### HGF_F2 2x2 det relation for N=4 ===>

### YES Relation Exists! ###

(x^3-x^2)*(P1)+(y*x^2)*(P2)+(x^2)*(P3)+(5)*(P4)+(-6)*(P5)=0.

(The constants values were chosen as a1 = −3, a2 = −4, bc = −6, b′1 = −2,
b′2 = −3, c = 3, c′1 = 11, c′2 = 10.) From these data and more simulations of similar
nature, one can guess the general bilinear relations satisfied by the HGF F2. By
using thus-obtained data we can generalize the relations, give the analytic proofs
and obtain so-called Casorati-type N -soliton solutions of the finite Toda equation
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written by the HGF F2 as reported in the paper [7]. In the later section, modified
commands of (comp. 4.1) written as

(comp. 4.3)
N=2$ Size0=2$ AiList=[1,2]$ C=3$ CDiList=[10,9]$

Fm=naka_fnNxN_F2(Size0,N-1,AiList,Bc,BDiList,C,CDiList,x,y)$

F0=naka_fnNxN_F2(Size0,N ,AiList,Bc,BDiList,C,CDiList,x,y)$

Fp=naka_fnNxN_F2(Size0,N+1,AiList,Bc,BDiList,C,CDiList,x,y)$

Fx=diff(F0,x)$ Fxx=diff(Fx,x)$ Fy=diff(F0,y)$ Fyy=diff(Fy,y)$

Fxy=diff(Fx,y)$ P1=F0*Fxx-Fx^2$ P2=F0*Fxy-Fx*Fy$ P3=F0*Fx$

P4=Fm*Fp$ P5=F0^2$

printList([" ### HGF_F2 2x2 det relation for BDiList,Bc=",

BDiList,",",Bc," ====>"])$ cputime(1)$

naka_FinderOfIdentityRelation([P1,P2,P3,P4,P5],["P1","P2","P3",

"P4","P5"])$ cputime(0)$

with varying values of Bc = bc, BDiList = [b′1, b
′
2] will be used to measure size-effect

of calculation time.
As to the type of the input data Pi’s so far we have treated examples of

polynomials. Next we consider the non-polynomial example. The Gauss HGF,
F (a, b, c, x), for positive integer indexes contains log(1 − x) term such as
F (1, 1, 2, x) = −x−1 log(1 − x), [1, 5]. In this case the command ‘vars’ works as
vars(-log(1-x)/x) = [x, log(−x + 1)], namely it has the convenient property of
giving us not only x but also log(1−x) as the variables (Maple command ‘indets’
also works in the parallel manner.) Thanks to this feature, our program can work
also for non-polynomial input cases. We have performed the program

(comp. 5.1)
F=newvect(20)$ Name=newvect(20)$

for(N=1;N<=10;N++){F[N]=naka_GaussHGF(N,1,6,x)$

Name[N]="F("+rtostr(N)+",1,6,x)"$ }

cputime(1)$

for(N=1;N<=4;N++){naka_FinderOfIdentityRelation([F[N],F[N+1],F[N+2]],

[Name[N],Name[N+1],Name[N+2]])$ }

cputime(0)$

where naka_GaussHGF(A,B,C,X) stands for the program to create Gauss HGF by
Risa/Asir. The result was obtained as

(comp. 5.2)
### YES Relation Exists! ###

(4)*(F(1,1,6,x))+(-x-2)*(F(2,1,6,x))+(2*x-2)*(F(3,1,6,x))=0.

### YES Relation Exists! ###

(3)*(F(2,1,6,x))+(-2*x)*(F(3,1,6,x))+(3*x-3)*(F(4,1,6,x))=0.

### YES Relation Exists! ###
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(2)*(F(3,1,6,x))+(-3*x+2)*(F(4,1,6,x))+(4*x-4)*(F(5,1,6,x))=0.

### YES Relation Exists! ###

(1)*(F(4,1,6,x))+(-4*x+4)*(F(5,1,6,x))+(5*x-5)*(F(6,1,6,x))=0.

This shows that indeed the input for the present program is not limited to the pure
polynomials but can contain functions like log(1 − x).

From the results of the above simulations, we see that the present program
can be used for the derivations of not only simple linear relations but also highly
nonlinear ones.

Before concluding this section we explain additions of several commands. For
people who may feel cumbersome to use names in input data, we prepared the com-
mand naka_FinderOfIdentityRelationSimple(IdentityDataList00) which
needs only input data of identities. In the final output on the screen,
instead of names like “H(5,x), H(4,x), . . . ” (which was typed by user), this
command gives us fixed name of “EXPR1, EXPR2, . . . .” Also we have prepared
two short-name commands, naka_FindIdRel() and naka_FindIdRelCond(),
which are equal to the commands naka_FinderOfIdentityRelation() and
naka_FinderOfIdentityRelationWithOrderConditions() respectively.

5. Calculation Speeds for Software Risa/Asir and Maple

In the above simulations we have shown that our programs can actually work
for several practical calculations. It may be interesting to measure the calculation
speeds of these simulations by the various symbolic computation software. For this,
let us have a brief overview of the software. Mathematica [13] is perhaps the most
widely used all over the world and has not only good user-interface but also many
good other aspects but sometimes the calculation speed seems to be low. Maple [4]
seems to have both good user-interface and relatively high speeds of calculations.
Perhaps Risa/Asir might not be widely known compared to above two. Risa/Asir
has not highly-developed user-interface but it is understandable because it is free
software and other two are commercial ones. We will limit ourselves to pick up one
free software and one commercial one. So in the following, we present the data of
calculation speeds for Risa/Asir and Maple. The machine used for this is the com-
monly available commercial personal computer which has 3.40GHz CPU, 1 Giga
Byte RAM with Windows XP OS. The versions of software used are Risa/Asir Ver-
sion 20060621 (Kobe Distribution), and Maple version 10.03. The calculation time
has been measured for running the command naka_FinderOfIdentityRelation()

part only. Namely the calculation time for the input data preparation part has been
excluded from the measurement. The results are shown in the Table 1 to Table 4.

From these, we can see that Risa/Asir has always higher speeds than Maple.
Risa/Asir speeds are several times or more higher than those of Maple. This kind
of high speeds together with money-free easy availability (free software) seems to
be the strong attractive features of the software Risa/Asir.
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Table 1. The calculation time needed for the input examples of the present pa-

per. The symbols (comp. 1.1) to (comp. 5.1) are the equation numbers.

Consumed cpu-time is measured for the execution time of the command

naka FinderOfIdentityRelation().

Consumed cpu-time (in seconds)

input commands Risa/Asir Maple

(comp.1.1) 0.016 0.032

(comp.3.1) 0.16 1.5

(comp.4.1) 12 50

(comp.5.1) 0.016 0.50

Table 2. The size-effect of the cpu-time for the input by (comp. 1.3) with the various N

values. Consumed cpu-time is measured for the execution time of the command

naka FinderOfIdentityRelation().

Consumed cpu-time (in seconds)

input commands maximum order Risa/Asir Maple

by (comp.1.3) of input

N=100 O(x102) 0.016 0.047

N=1000 O(x1002) 0.53 2.3

N=2000 O(x2002) 2.0 5.2

N=3000 O(x3002) 4.4 9.5

N=4000 O(x4002) 8.2 15.5

Table 3. The size-effect of the cpu-time for the input by (comp. 3.3) with the various N

values. Consumed cpu-time is measured for the execution time of the command

naka FinderOfIdentityRelation().

Consumed cpu-time (in seconds)

input commands maximum order Risa/Asir Maple

by (comp.3.3) of input

N=1 O(x10) 0.016 0.08

N=10 O(x100) 0.25 1.3

N=50 O(x500) 5.3 13

N=100 O(x1000) 21 60

Table 4. The size-effect of the cpu-time for the input by (comp. 4.3) for the various

BDiList and Bc values. Consumed cpu-time is measured for the execution time

of the command naka FinderOfIdentityRelation().

Consumed cpu-time (in seconds)

input commands maximum order Risa/Asir Maple

by (comp.4.3) of input

BDiList=[-1,-1],Bc=-4 O(x6y4) 0.31 4.5

BDiList=[-2,-2],Bc=-5 O(x10y8) 3.6 20

BDiList=[-3,-3],Bc=-6 O(x14y12) 12 55
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6. Conclusion

In this paper we have reported the implementations of symbolic computation
programs which perform derivations of identity relations for input data of arbitrarily
given mathematical expressions. We have presented the basic algorithmic schemes,
actual examples of the simulations and comparisons of their calculation speeds. The
present two examples of the nonlinear simulations have been picked up from the
bilinear theoretical calculations of the Toda equation. These examples correspond
to the reproduction of relations already known in the published papers. However
the present program can be used in any new field so far as input data is given
explicitly (based on the hints from the special/low-order relations) to help the
trial and error type searches in the quest for the knowledge of general/higher-order
identity relations. We expect that the present programs would be helpful for the
higher productivity of research activities in the fields of applied mathematics and
technologies.

Besides that we can also consider their possible uses for the educational pur-
poses. Let us imagine the scene where elementary course students are first taught
about the new mathematical expressions (for example the Hermite polynomials.)
The very natural first curiosity would yield questions of something like “What kind
of relations among neighbors (recurrence relations) do they have?” or “What kind
of differential equations do they satisfy?” Obviously the present programs can be
the convenient tool for them to visualize these answers by simply typing the ques-
tioning commands in the computer display. In this way we hope that the present
programs might be used in the diversified purposes.

The source code of the present program will be made available also on the
internet at the address http://homewww.osaka-gaidai.ac.jp/%7Enakamura/

nakamura.html.

Appendix A. List of All Commands for Software Risa/Asir

In this appendix we have made the list of all the commands used in the present
program (listed in the alphabetical order). In spite of certain writing inconve-
niences, we have adopted the long command names such that the names themselves
can indicate the meaning of their functions as much as possible. So the explanations
of the meanings of the commands are given only when they seem necessary. In the
following we adopt the abbreviations such that polynomial = poly, vector = vect,
integer = int.
1. naka CoefficientsOfAllOrdersWithRespectToAllVariables(

Identity00,VariablesList00),
type of Identity00 = poly, VariablesList00, output = list.

2. naka CoefficientsOfAllOrdersWithRespectToOneVariable(

Identity00,OneVariable00),
type of Identity00 = poly, OneVariable00 = one variable, output = list.
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3. naka_EraserOfCommonNumericFactors(ListOrVector00),
type of ListOrVector00, output = list or vect.

4. naka_EraserOfCommonPolynomialFactors(ListOrVector00),
type of ListOrVector00, output = list or vect.

5. naka_FinderOfIdentityRelation(IdentityDataList00,NameList00),
naka_FindIdRel(same),
type of IdentityDataList00 = list, NameList00 = list of names given in
‘string,’ output = none.

6. naka FinderOfIdentityRelation00(

IdentityDataList00,NameList00,MaxOrderList00),
type of IdentityDataList00 = list, NameList00= list of names given in
‘string,’ MaxOrderList00 = list, output= list consisting of coefficients Ci
in vector, IdentityDataList00, final resulting identity expression given in
‘string’ and the message of yes or no given in ‘string .’

7. naka_FinderOfIdentityRelationSimple(IdentityDataList00),
type of IdentityDataList00 = list, output = none.

8. naka FinderOfIdentityRelationWithOrderConditions(

IdentityDataList00,NameList00,MaxOrderList11),
naka FindIdRelCond(same),
type of IdentityDataList00 = list, NameList00= list of names given in
‘string ,’ MaxOrderList11 = list, output = none.

9. naka_gcdzOfDataInListOrVector(ListOrVector00),
type of ListOrVector00 = list or vect, output = poly.

10. naka_ilcmOfDataInListOrVector(ListOrVector00),
type of ListOrVector00 = list or vect, output = int.

11. naka_IsMember(Object00,Variable00),
type of Object00 = poly or list or vect, Variable00 = single variable,
output = true or false.

12. naka_IsMemberInPolynomial(Polynomial00,Variable00),
type of Polynomial00 = poly, Variable00 = single variable, output =
true or false.

13. naka_IsZeroListOrVector(ListOrVector00),
type of ListOrVector00 = list or vect, output = true or false.

14. naka_lcmOfDataInListOrVector(ListOrVector00),
type of ListOrVector00 = list or vect, output = poly.

15. naka MakerOfPolynomialWithUnknownCoefficients(

Name00,IndependentVariablesList00,Order00),
type of Name00 = string, IndependentVariablesList00 = list, Order00 =
int, output = poly.

16. naka_MakerOfTrialFunction(IdentityDataList00,MaxOrderList00),
type of IdentityDataList00 = list, MaxOrderList00 = list. The output
= [TrialFunction, [C1, C2, . . . , CN ′ ], IdentityDataList00].
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17. naka_pNaryNumberInListForm(GivenNumber00,P00,ListLength00),
type of GivenNumber00, P00, ListLength00 = int, output = list.
GivenNumber00 = input integer, P00 = p of p-nary number, ListLength00 =
length of the output list.

18. naka_SetSubtract(List1,List2),
type of List1, List2, output = list, This gives the elements of List1 which
is not contained in List2.

19. naka_SetSum(List1,List2),
type of List1, List2, output = list, This gives the elements of List1 and
List2 with common elements counted only once.

20. naka SolverOfIdentity(IdentityPoly00,IndependentVariablesList00),
type of IdentityPoly00 = poly, IndependentVariablesList00 = list,
output = list consisting of unknown variables list, its solution, independent
variables list of IndependentVariablesList00, string of YesNoMessage.

21. naka SolverOfLinearMultiComponentsByMultiVariables(

MultiComponents00,VariablesList00),
type of MultiComponentsList = list or vector, VariablesList00 = list,
output = list consisting of MultiComponentsList00, solution of
MultiComponentsList00, VariablesList00, solution of VariablesList00.

22. naka SolverOfLinearMultiComponentsByOneVariable(

MultiComponents00,IndependentVariable00),
type of MultiComponents00, IndependentVariable00 = list or vect,
output = list consisting of MultiComponents00, solution of MultiComponents00,
IndependentVariable00, solution of IndependentVariable00.

23. naka_SolverOfLinearOneComponentByOneVariable(Comp00,Variable00),
type of Comp00, Variable00 = poly or list or vect, output = list consist-
ing of Comp00, solution of Comp00, Variable00, solution of Variable00.

Appendix B. List of All Commands for Software Maple

Most of the commands for Maple have precisely equal Risa/Asir counter-
parts listed in the Appendix A. The word ‘vector’ of Risa/Asir should be read
as 1-dimensional ‘array’ of Maple. Other different points for Maple are as follows.
3. naka EraserOfCommonNumericFactors() is unnecessary since it is covered by

the command 4.
5, 6, 8. NameList00 = list of names given by Maple ‘symbol’ instead of

Risa/Asir ‘string .’
10. naka_ilcmOfDataInListOrVector() is unnecessary since it is covered by the

command 14.
11. naka_IsMember() is unnecessary.
15. Type of Name00 = Maple ‘symbol’ instead of Risa/Asir ‘string .’
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Appendix C. Full Source Code for Risa/Asir

The following is the full source code for the software Risa/Asir. Here we
briefly comment about the complex input. The Risa/Asir command red simplifies
the real expression but not complex one (containing

√
(−1) ≡ @i). Therefore we

added the command naka_redc(Rat) which can work for the complex input such
as naka_redc((x^2+1)/(x+@i))=x+(-1)*@i. Due to this, the present program can
also work for the complex input.

Naka_MaxOrderOfCoeffs=7 $

def naka_CoefficientsOfAllOrdersWithRespectToAllVariables(Identity00,

VariablesList00){

Identity00=red(Identity00);

if(length(VariablesList00)==0){Atai=[Identity00];}

if(length(VariablesList00)>=1){

CoefList=naka_CoefficientsOfAllOrdersWithRespectToOneVariable(

Identity00,VariablesList00[0]);

if(length(VariablesList00)==1){Atai=CoefList;}

if(length(VariablesList00)>=2){

List0=[];

for(VK=1;VK<length(VariablesList00);VK++){

for(K=0;K<length(CoefList);K++){

CoefList22=naka_CoefficientsOfAllOrdersWithRespectToOneVariable(

CoefList[K],VariablesList00[VK]);

List0=append(List0,CoefList22);}}

Atai=List0;}}

return(Atai);}

def naka_CoefficientsOfAllOrdersWithRespectToOneVariable(Identity00,

OneVariable00){

Identity00=red(Identity00);

Max=deg(Identity00,OneVariable00);

List0=[];

for(K=Max;K>=0;K--){

Coe=coef(Identity00,K,OneVariable00);

if(Coe!=0){List0=append(List0,[Coe]);}}

Atai=List0;

return(Atai);}

def naka_EraserOfCommonNumericFactors(ListOrVector00){

Lov=ListOrVector00;

if(naka_IsZeroListOrVector(Lov)==true){Atai=Lov;}else{

VariablesList=vars(Lov);

if(VariablesList==[]){NuList=Lov;}

if(VariablesList!=[]){Ws=[];

for(K=0;K<length(Lov);K++){

List00=naka_CoefficientsOfAllOrdersWithRespectToAllVariables(Lov[K],

VariablesList);

Ws=naka_SetSum(Ws,List00);}

NuList=Ws;}

Deno=map(dn,NuList);

ILCMOfDeno=naka_ilcmOfDataInListOrVector(Deno);

if(type(Lov)==4){

Ws=[];
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for(K=0;K<length(Lov);K++){

XX=naka_redc(Lov[K]*ILCMOfDeno);

Ws=append(Ws,[XX]);}

Lov=Ws;}

if(type(Lov)==5){

for(K=0;K<size(Lov)[0];K++){

Lov[K]=naka_redc(Lov[K]*ILCMOfDeno);}}

Nume=map(nm,NuList);

GCDOfNume=naka_gcdzOfDataInListOrVector(Nume);

if(GCDOfNume==0){GCDOfNume=1;}

if(type(Lov)==4){

Ws=[];

for(K=0;K<length(Lov);K++){

XX=naka_redc(Lov[K]/GCDOfNume);

Ws=append(Ws,[XX]);}

Lov=Ws;}

if(type(Lov)==5){

for(K=0;K<size(Lov)[0];K++){

Lov[K]=naka_redc(Lov[K]/GCDOfNume);}}

Atai=Lov;}

return(Atai);}

def naka_EraserOfCommonPolynomialFactors(ListOrVector00){

Lov=ListOrVector00;

if(naka_IsZeroListOrVector(Lov)==true){Atai=Lov;}else{

Deno=map(dn,Lov);

LCMOfDeno=naka_lcmOfDataInListOrVector(Deno);

if(type(Lov)==4){

Ws=[];

for(K=0;K<length(Lov);K++){

XX=naka_redc(Lov[K]*LCMOfDeno);

Ws=append(Ws,[XX]);}

Lov=Ws;}

if(type(Lov)==5){

for(K=0;K<size(Lov)[0];K++){

Lov[K]=red(Lov[K]*LCMOfDeno);}}

Nume=map(nm,Lov);

GCDOfNume=naka_gcdzOfDataInListOrVector(Nume);

if(type(Lov)==4){

Ws=[];

for(K=0;K<length(Lov);K++){

XX=naka_redc(Lov[K]/GCDOfNume);

Ws=append(Ws,[XX]);}

Lov=Ws;}

if(type(Lov)==5){

for(K=0;K<size(Lov)[0];K++){

Lov[K]=naka_redc(Lov[K]/GCDOfNume);}}

Atai=Lov;}

return(Atai);}

def naka_FinderOfIdentityRelation(IdentityDataList00,NameList00){

extern Naka_MaxOrderOfCoeffs;

Max=Naka_MaxOrderOfCoeffs;

FlagOfRelationExist=0;

for(Order00=0;Order00<=Max;Order00++){

L0=[];
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for(K=0;K<length(IdentityDataList00);K++){

L0=append(L0,[Order00]);}

MaxOrderList00=L0;

List00=naka_FinderOfIdentityRelation00(

IdentityDataList00,NameList00,MaxOrderList00);

if(List00[3]=="YES_SolutionExists"){

FlagOfRelationExist=1;

break;}}

if(FlagOfRelationExist==0){print(" ### NO Relation Exists! ### ");}

if(FlagOfRelationExist==1){print(" ### YES Relation Exists! ### ");

Mess=" "+List00[2];

print(Mess);}}

def naka_FindIdRel(IdentityDataList00,NameList00){

nakaFinderOfIdentityRelation(IdentityDataList00,NameList00);}

def naka_FinderOfIdentityRelation00(IdentityDataList00,NameList00,MaxOrderList00){

IDList=IdentityDataList00;

IDListLen=length(IDList);

ResultIdentityString="";

IndependentVariablesList=vars(IDList);

IVList=IndependentVariablesList;

TrialFunList=naka_MakerOfTrialFunction(IDList,MaxOrderList00);

Coef00=TrialFunList[1];

SolutionList=naka_SolverOfIdentity(TrialFunList[0],IVList);

YesNoMessage=SolutionList[3];

if(YesNoMessage=="YES_SolutionExists" &&

naka_IsZeroListOrVector(SolutionList[1])==false){

for(K=0;K<IDListLen;K++){

for(KK=0;KK<length(SolutionList[0]);KK++){

Coef00[K]=subst(Coef00[K],SolutionList[0][KK],

SolutionList[1][KK]);}}

Coef00=naka_EraserOfCommonPolynomialFactors(Coef00);

Coef00=naka_EraserOfCommonNumericFactors(Coef00);

Ws="";

for(K=0;K<IDListLen;K++){

if(K!=0){Ws=Ws+"+";}

Ws=Ws+"("+rtostr(Coef00[K])+")*("+NameList00[K]+")";}

Ws=Ws+"=0.";

ResultIdentityString=Ws;

ReturnMessage="YES_SolutionExists";}

if(YesNoMessage=="YES_SolutionExists" &&

naka_IsZeroListOrVector(SolutionList[1])==true){

ReturnMessage="NO_SolutionDoesNotExist";}

if(YesNoMessage=="NO_SolutionDoesNotExist"){

ReturnMessage="NO_SolutionDoesNotExist";}

Atai=[Coef00,IDList,ResultIdentityString,ReturnMessage];

return(Atai);}

def naka_FinderOfIdentityRelationSimple(IdentityDataList){

extern Naka_MaxOrderOfCoeffs;

Max=Naka_MaxOrderOfCoeffs;

FlagOfRelationExist=0;

Ws=[];

for(K=0;K<length(IdentityDataList);K++){

String="EXPR"+rtostr(K+1);
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Ws=append(Ws,[String]);}

NameList=Ws;

naka_FinderOfIdentityRelation(IdentityDataList,NameList);}

def naka_FinderOfIdentityRelationWithOrderConditions(IdentityDataList00,

NameList00,MaxOrderList00){

extern Naka_MaxOrderOfCoeffs;

Max=Naka_MaxOrderOfCoeffs;

FlagOfRelationExist=0;

Len=length(IdentityDataList00);

for(Order00=0;Order00 <= Max;Order00++){

Ws=[];

for(K=0;K<Len;K++){

if(Order00<MaxOrderList00[K]){A00=Order00;}

else{A00=MaxOrderList00[K];}

Ws=append(Ws,[A00]);}

L00=Ws;

List00=naka_FinderOfIdentityRelation00(IdentityDataList00,NameList00,L00);

if(List00[3]=="YES_SolutionExists"){

FlagOfRelationExist=1;

break;}}

if(FlagOfRelationExist==0){print(" ### NO Relation Exists! ### ");}

if(FlagOfRelationExist==1){print(" ### YES Relation Exists! ### ");

Mess=" "+List00[2];print(Mess);}}

def naka_FindIdRelCond(IdentityDataList00,NameList00,MaxOrderList00){

naka_FinderOfIdentityRelationWithOrderConditions(IdentityDataList00,

NameList00,MaxOrderList00);}

def naka_gcdzOfDataInListOrVector(ListOrVector00){

if(type(ListOrVector00)==4){Max=length(ListOrVector00);}

if(type(ListOrVector00)==5){Max=size(ListOrVector00)[0];}

if(Max==1){

X=ListOrVector00[0];

Atai=gcdz(real(X),imag(X));}

if(Max>=2){

X=ListOrVector00[0];

Atai=gcdz(real(X),imag(X));

for(K=0;K<Max;K++){

X=ListOrVector00[K];

XX=gcdz(real(X),imag(X));

Atai=gcdz(Atai,XX);}}

return(Atai);}

def naka_ilcmOfDataInListOrVector(ListOrVector00){

if(type(ListOrVector00)==4){Max=length(ListOrVector00);}

if(type(ListOrVector00)==5){Max=size(ListOrVector00)[0];}

if(Max==1){

Atai=ListOrVector00[0];

if(type(Atai)!=1){Atai=1;}}

if(Max>=2){

XX1=ListOrVector00[0];

for(K=0;K<Max;K++){

XX2=ListOrVector00[K];

if(type(XX1)!=1 || type(XX2)!=1){

Atai=1;
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break;}

Atai=ilcm(XX1,XX2);

XX1=Atai;}}

return(Atai);}

def naka_IsMember(Object00,Variable00){

Atai=false;

Var00=Variable00;

if(type(Variable00)==4 && length(Variable00)==1){

Var00=Variable00[0];}

if(type(Object00) <= 2){

Atai=naka_IsMemberInPolynomial(Object00,Var00);}

if(type(Object00)==4 || type(Object00)==5){

if(type(Object00)==4){Max=length(Object00);}

if(type(Object00)==5){Max=size(Object00)[0];}

for(K=0;K<Max;K++){

if(naka_IsMemberInPolynomial(Object00[K],Var00)==true){

Atai=true;

break;}}}

return(Atai);}

def naka_IsMemberInPolynomial(Polynomial00,Variable00){

Atai=false;

if(type(Polynomial00)<2 && type(Variable00)<2){

if(Polynomial00==Variable00){Atai=true;}}

if(type(Variable00)==4){Var00=Variable00[0];}

if(type(Variable00)==5){Var00=Variable00[0];}

if(type(Variable00)==2){Var00=Variable00;}

PVariablesList00=vars(Polynomial00);

for(K=0;K<length(PVariablesList00);K++){

if(PVariablesList00[K]==Var00){Atai=true;}}

return(Atai);}

def naka_IsZeroListOrVector(ListOrVect00){

Atai=true;

if(type(ListOrVect00)==4){Max=length(ListOrVect00);}

if(type(ListOrVect00)==5){Max=size(ListOrVect00)[0];}

for(K=0;K<Max;K++){

if(ListOrVect00[K]!=0){Atai=false;break;}}

return(Atai);}

def naka_lcmOfDataInListOrVector(ListOrVector00){

if(type(ListOrVector00)==4){Max=length(ListOrVector00);}

if(type(ListOrVector00)==5){Max=size(ListOrVector00)[0];}

if(Max==1){Atai=ListOrVector00[0];}

if(Max>=2){Atai=ListOrVector00[0];

for(K=0;K<Max;K++){Atai=lcm(Atai,ListOrVector00[K]);}}

return(Atai);}

def naka_MakerOfPolynomialWithUnknownCoefficients(

Name00,IndependentVariablesList00,Order00){

IVList=IndependentVariablesList00;

IVNumber=length(IVList);

MaxTotal=(Order00+1)^IVNumber;

Atai=0;

for(J=0;J<MaxTotal;J++){
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L=naka_pNaryNumberInListForm(J,Order00+1,IVNumber);

String=""; Power=0; Prod=1;

for(K=0;K<IVNumber;K++){

String=String+rtostr(L[K]);

Prod=Prod*IVList[K]^L[K];

Power=Power+L[K];}

Term=strtov(Name00+String)*Prod;

if(Power <=Order00){Atai=Atai+Term;}}

return(Atai);}

def naka_MakerOfTrialFunction(IdentityDataList00,MaxOrderList00){

IDList=IdentityDataList00;

IDListLen=length(IDList);

IVList=vars(IDList);

Coef00=newvect(IDListLen);

for(K=0;K<IDListLen;K++){

Coef00[K]=naka_MakerOfPolynomialWithUnknownCoefficients(

"coe"+rtostr(K+1),IVList,MaxOrderList00[K]);}

Sum=0;

for(K=0;K<IDListLen;K++){Sum=Sum+Coef00[K]*IDList[K];}

TrialFun=Sum;

TrialFun=nm(TrialFun);

Atai=[TrialFun,Coef00,IDList];

return(Atai);}

def naka_pNaryNumberInListForm(GivenNumber00,P00,ListLength00){

X=GivenNumber00;

Atai=[];

for(K=0;K<ListLength00;K++){

Atai=append(Atai,[irem(X,P00)]);

X=idiv(X,P00);}

Atai=reverse(Atai);

return(Atai);}

def naka_redc(Rat){

Deno=dn(Rat);

Nume=nm(Rat);

DenoRe=real(Deno);

DenoIm=imag(Deno);

NumeRe=real(Nume);

NumeIm=imag(Nume);

if(DenoIm!=0 && DenoRe!=0){

Deno2=DenoRe^2+DenoIm^2;

Nume2Re=NumeRe*DenoRe+NumeIm*DenoIm;

Nume2Im=NumeIm*DenoRe-NumeRe*DenoIm;

Re=Nume2Re/Deno2;

Im=Nume2Im/Deno2;}

if(DenoIm!=0 && DenoRe==0){

Re=NumeIm/DenoIm;

Im=-NumeRe/DenoIm;}

if(DenoIm==0 && DenoRe!=0){

Re=NumeRe/DenoRe;

Im=NumeIm/DenoRe;}

AtaiIm=red(Im);

AtaiRe=red(Re);

Atai=AtaiRe+AtaiIm*@i;
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return(Atai);}

def naka_SetSubtract(List1,List2){

if(List2==[]){Atai=List1;}

else{Ws=[];

for(K=0;K<length(List1);K++){

Vari=List1[K];

if(naka_IsMember(List2,Vari)==false){

Ws=append(Ws,[Vari]);}

Atai=Ws;}}

return(Atai);}

def naka_SetSum(List1,List2){

if(List2==[]){Atai=List1;}

else{

Ws=List1;

for(K=0;K<length(List2);K++){

Vari=List2[K];

if(naka_IsMember(List1,Vari)==false){

Ws=append(Ws,[Vari]);}

Atai=Ws;}}

return(Atai);}

def naka_SolverOfIdentity(IdentityPoly00,IndependentVariablesList00){

if(type(IdentityPoly00)==2){ID=IdentityPoly00;}

if(type(IdentityPoly00)==3){ID=nm(IdentityPoly00);}

IVList=IndependentVariablesList00;

MCList=naka_CoefficientsOfAllOrdersWithRespectToAllVariables(ID,IVList);

List11=append(IVList,[ID]);

AllVariablesList=vars(List11);

UnknownVariablesList=naka_SetSubtract(AllVariablesList,IVList);

UVList=UnknownVariablesList;

List00=naka_SolverOfLinearMultiComponentsByMultiVariables(MCList,UVList);

Atai=[List00[2],List00[3],IVList,List00[4]];

return(Atai);}

def naka_SolverOfLinearMultiComponentsByMultiVariables(MultiComponents00,

VariablesList00){

MC=MultiComponents00;

MCSolution=MC;

VList=VariablesList00;

VListSolution=VList;

for(K=0;K<length(VList);K++){

List00=naka_SolverOfLinearMultiComponentsByOneVariable(MCSolution,VList[K]);

MCSolution=List00[1];

Ws=[];

for(KK=0;KK<length(VList);KK++){

XX=VListSolution[KK];

XX=subst(XX,List00[2],List00[3]);

XX=red(XX);

Ws=append(Ws,[XX]);}

VListSolution=Ws;}

if(naka_IsZeroListOrVector(MCSolution)==true){

YesNoMessage="YES_SolutionExists";}

if(naka_IsZeroListOrVector(MCSolution)==false){

YesNoMessage="NO_SolutionDoesNotExist";}
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Atai=[MC,MCSolution,VList,VListSolution,YesNoMessage];

return(Atai);}

def naka_SolverOfLinearMultiComponentsByOneVariable(MultiComponents00,Variable00){

MC=MultiComponents00;

MCSolution=MC;

IndVar=Variable00;

IndVarSolution=IndVar;

Flag00=0;

for(K=0;K<length(MCSolution);K++){

if(naka_IsMember(MCSolution[K],IndVar)==true && Flag00==0){

IndVarSolution=naka_SolverOfLinearOneComponentByOneVariable(

MCSolution[K],IndVar)[3][0];

Ws=[];

for(KK=0;KK<length(MCSolution);KK++){

XX=MCSolution[KK];

XX=subst(XX,IndVar,IndVarSolution);

XX=red(XX);

Ws=append(Ws,[XX]);}

MCSolution=Ws;

Flag00=1;

break;}}

Atai=[MC,MCSolution,IndVar,IndVarSolution];

return(Atai);}

def naka_SolverOfLinearOneComponentByOneVariable(Comp00,Variable00){

if(type(Comp00)==4 && length(Comp00)==1){CC=Comp00[0];}

if(type(Comp00)==5 && size(Comp00)[0]==1){CC=Comp00[0];}

if(type(Comp00)==2){CC=Comp00;}

if(type(Variable00)==4 && length(Variable00)==1){

VV=Variable00[0];}

if(type(Variable00)==5 && size(Variable00)[0]==1){

VV=Variable00[0];}

if(type(Variable00)==2){VV=Variable00;}

if(deg(CC,VV)==1){

VarSol=red(-coef(CC,0,VV)/coef(CC,1,VV));

Atai=[[CC],[0],[VV],[VarSol]];}

if(deg(CC,VV)>1){Atai=[[CC],[CC],[VV],[VV]];}

return(Atai);}

end$
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